JP4765711B2 - Engine intake / exhaust system - Google Patents

Engine intake / exhaust system Download PDF

Info

Publication number
JP4765711B2
JP4765711B2 JP2006082681A JP2006082681A JP4765711B2 JP 4765711 B2 JP4765711 B2 JP 4765711B2 JP 2006082681 A JP2006082681 A JP 2006082681A JP 2006082681 A JP2006082681 A JP 2006082681A JP 4765711 B2 JP4765711 B2 JP 4765711B2
Authority
JP
Japan
Prior art keywords
exhaust
catalyst carrier
exhaust gas
gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082681A
Other languages
Japanese (ja)
Other versions
JP2007255358A (en
Inventor
健朗 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006082681A priority Critical patent/JP4765711B2/en
Publication of JP2007255358A publication Critical patent/JP2007255358A/en
Application granted granted Critical
Publication of JP4765711B2 publication Critical patent/JP4765711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、エンジンの吸排気システムに係り、特に排気タービン駆動式の過給機を備えたエンジンの排気系に設けられる排気浄化装置の触媒担体の外周に高温の排気ガスを取り込んで再生能力を高める技術に関するものである。   The present invention relates to an intake / exhaust system for an engine, and in particular, a high temperature exhaust gas is taken into an outer periphery of a catalyst carrier of an exhaust purification device provided in an exhaust system of an engine equipped with an exhaust turbine-driven supercharger to improve a regeneration capability. It is about technology to improve.

近年、排出ガス規制の強化に伴い、エンジン例えばディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)を捕集し、焼却除去することにより再生可能なパティキュレート・フィルタを有する排気浄化装置の装着が必須となり始めている。さらに、ディーゼルエンジンを搭載した乗用車の利用率の高い欧州市場においては、小型コンパクトでシンプルなレイアオウトを可能とし、高い排気ガス温度が確保でき、エンジンに直付けされる触媒機能付きの単一のクローズド・カップル型の排気浄化装置が考案されている。なお、排気浄化装置としては、例えば図10に示すように、円筒状のケーシング28内に円筒状の触媒担体14をセラミック系担体保持材例えばアルミナ繊維34を介して保持したものや、或いは特許文献1に記載されているように、触媒担体を通過した排気ガスのうちの少なくとも一部を折り返して触媒担体の周囲に流通させるリターン流路をケーシングに設けたものが知られている。   In recent years, with the tightening of exhaust gas regulations, exhaust purification systems with particulate filters that can be regenerated by collecting particulate matter (particulate matter) discharged from engines such as diesel engines and incineration and removal. It is beginning to become mandatory. Furthermore, in the European market where passenger cars equipped with diesel engines are highly utilized, a single closed with a catalytic function that can be directly attached to the engine, enabling a small, compact and simple layout, ensuring a high exhaust gas temperature.・ A couple-type exhaust gas purification device has been devised. As an exhaust purification device, for example, as shown in FIG. 10, a cylindrical catalyst carrier 14 is held in a cylindrical casing 28 via a ceramic carrier holding material such as alumina fiber 34, or a patent document. As described in No. 1, there is known one in which a casing is provided with a return flow path that folds at least a part of exhaust gas that has passed through a catalyst carrier to flow around the catalyst carrier.

一方、ディーゼルエンジンにおいては、低NOxと低スモークの同時低減を可能にする予混合圧縮着火燃焼の研究が近年活発に行われている。この予混合圧縮着火燃焼は、均一で希薄な混合気を早期に生成し燃焼させるため、技術課題としてエンジン負荷を増すと過早着火が発生して着火時期の制御が困難となり、そのため運転領域が低負荷領域に限定されるといった問題がある。この予混合圧縮着火燃焼による運転領域を拡大する手法としては、排気ガスの一部を排気系から取り出して吸気系に戻し、混合気に加えるEGR(Exhaust Gas Recirculation:排気再循環)のEGR率を高め、混合気の酸素濃度を低減することにより燃焼を抑制し、空燃比を確保することが効果的である。そして、その具体的対応策としては、多段例えば2段過給機を用い、高圧段の小型過給機により低速低負荷領域から高ブーストを得て、高EGR率と高空燃比を確保することが考えられる。また、2段過給機は、市街地(低中速・低中負荷)走行における燃費の低減と定格点における高出力化を両立させる手段としても有効な手段である。   On the other hand, in a diesel engine, research on premixed compression ignition combustion that enables simultaneous reduction of low NOx and low smoke has been actively conducted in recent years. This premixed compression ignition combustion generates and burns a uniform and lean mixture at an early stage, and as a technical problem, if the engine load is increased, pre-ignition occurs and it becomes difficult to control the ignition timing. There is a problem that it is limited to a low load region. As a method of expanding the operating range by this premixed compression ignition combustion, a part of the exhaust gas is taken out from the exhaust system and returned to the intake system, and the EGR rate of EGR (Exhaust Gas Recirculation) added to the mixture is increased. It is effective to suppress the combustion by increasing the oxygen concentration of the air-fuel mixture and to secure the air-fuel ratio. As a specific countermeasure, a high boost is obtained from a low-speed and low-load region by using a multi-stage turbocharger, for example, a high-pressure small turbocharger, and a high EGR rate and a high air-fuel ratio are secured. Conceivable. The two-stage turbocharger is also an effective means as a means for achieving both a reduction in fuel consumption and a high output at the rated point in urban areas (low / medium speed / low / medium load).

特開2003−120260号公報JP 2003-120260 A

しかしながら、上記エンジンにおいては、触媒機能付きの単一の排気浄化装置を装着する場合、前段に十分な容量の酸化触媒等がないため、再生能力の低下が懸念される。特に、前記多段過給付きエンジンの排気系の下流に排気浄化装置を装着する場合には、排気浄化装置の入口温度の低下を招くため、単段過給装置に比べて更なる再生能力の低下が懸念される。   However, in the above engine, when a single exhaust purification device with a catalytic function is mounted, there is a concern that the regeneration capacity may be lowered because there is no sufficient capacity of an oxidation catalyst or the like in the previous stage. In particular, when an exhaust purification device is installed downstream of the exhaust system of the engine with multistage supercharging, the inlet temperature of the exhaust purification device is lowered, so that the regeneration capacity is further reduced as compared with the single-stage supercharging device. Is concerned.

また、触媒担体の保持構造に着目した場合、従来の保持構造では、触媒担体の外周部とケーシングの境界面における熱伝達率を十分に低減できず、触媒担体からケーシング外周への熱通過率の低減、つまり担体の断熱保温特性に改善の余地があった。   Further, when focusing on the catalyst carrier holding structure, the conventional holding structure cannot sufficiently reduce the heat transfer coefficient at the boundary between the outer periphery of the catalyst carrier and the casing, and the heat transfer rate from the catalyst carrier to the outer periphery of the casing is reduced. There was room for reduction, that is, improvement in the heat insulation and heat retention characteristics of the carrier.

本発明は、上述した従来の技術が有する課題を解消し、排気浄化装置の触媒担体の外周部における昇温効果及び断熱保温特性を高めることができ、排気浄化装置の再生能力の向上が図れるエンジンの吸排気システムを提供することを目的とする。   The present invention solves the above-described problems of the prior art, can increase the temperature rise effect and the heat insulating heat retaining characteristic in the outer peripheral portion of the catalyst carrier of the exhaust purification device, and can improve the regeneration capability of the exhaust purification device An object of the present invention is to provide an intake / exhaust system.

本発明は、排気ガスの一部を排気系から取り出して再びエンジンの吸気系に戻すEGRガス流路と、該EGRガス流路に設けられたEGRガスクーラと、上記吸気系に設けられた過給機を駆動するべく上記排気系に設けられた排気タービンと、該排気タービンよりも下流に設けられた触媒担体を有する排気浄化装置とを備え、上記EGRガス流路のEGRガスクーラよりも上流側上記触媒担体の外周に沿う触媒担体外周ガス流路を設け、該触媒担体外周ガス流路に上記排気系の排気タービンよりも上流から直に排気ガスを導入するようにし、上記排気系における触媒担体の排気ガス入口側前方と、上記EGRガス流路の触媒担体外周ガス流路よりも上流部とを繋ぐためのバイパス弁を有するバイパス流路を設けたことを特徴とする。 The present invention relates to an EGR gas passage that extracts a part of exhaust gas from the exhaust system and returns it to the intake system of the engine again, an EGR gas cooler provided in the EGR gas passage, and a supercharging provided in the intake system. An exhaust turbine provided in the exhaust system to drive the engine, and an exhaust purification device having a catalyst carrier provided downstream from the exhaust turbine, the upstream of the EGR gas cooler in the EGR gas flow path A catalyst carrier outer peripheral gas flow path is provided along the outer periphery of the catalyst carrier, and exhaust gas is introduced directly into the catalyst carrier outer gas flow path from upstream of the exhaust turbine of the exhaust system. The present invention is characterized in that a bypass flow path having a bypass valve for connecting the front side of the carrier on the exhaust gas inlet side and the upstream portion of the EGR gas flow path with respect to the catalyst carrier outer peripheral gas flow path is provided.

上記排気系における触媒担体の排気ガス出口側後方に、排気ガス温度を検出して上記バイパス弁を制御するための温度センサを設けることが好ましいThe exhaust gas outlet side rear of the catalyst carrier in the exhaust system, Rukoto provided a temperature sensor for controlling the bypass valve is preferably detects the exhaust gas temperature.

上記バイパス流路の出口部に、上記排気系における触媒担体の排気ガス入口側端面に臨んで開口するノズルを設けることが好ましい It is preferable to provide a nozzle that opens toward the exhaust gas inlet side end face of the catalyst carrier in the exhaust system at the outlet of the bypass flow path .

本発明によれば、上記EGRガス流路のEGRガスクーラよりも上流側上記触媒担体の外周に沿う触媒担体外周ガス流路を設け、該触媒担体外周ガス流路に上記排気系の排気タービンよりも上流から直に排気ガスを導入するようにし、上記排気系における触媒担体の排気ガス入口側前方と、上記EGRガス流路の触媒担体外周ガス流路よりも上流部とを繋ぐためのバイパス弁を有するバイパス流路を設けたので、排気浄化装置の触媒担体の外周部だけでなく中心部からも加熱することができ、触媒担体を内外から効果的に加熱して効率よく再生することができ、排気浄化装置の再生能力の向上が図れる。 According to the present invention, the upstream side of the EGR cooler of the EGR gas passage, a catalyst carrier outer peripheral gas flow path along the outer circumference of the catalyst carrier provided, the exhaust turbine of the exhaust system to the catalyst carrier outer peripheral gas flow path The exhaust gas is directly introduced from the upstream side, and the bypass for connecting the front side of the exhaust gas inlet side of the catalyst carrier in the exhaust system and the upstream portion of the EGR gas channel with respect to the outer peripheral gas channel of the catalyst carrier. is provided with the bypass flow passage having a valve, can also you to heating from the center not only the outer peripheral portion of the catalyst carrier of the exhaust purification device, playing efficiently catalyst support from inside and outside to effectively heat And the regeneration capability of the exhaust emission control device can be improved.

以下に、本発明を実施するための最良の形態を添付図面に基いて詳述する。図1は本発明の実施の形態であるエンジンの吸排気システムを概略的に示す図、図2はバイパス弁が閉の時のEGRガスの流れを示す図、図3はバイパス弁が開の時のEGRガスの流れを示す図、図4は排気浄化装置の構造を示す断面図、図5は図4のA−A線断面図である。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing an intake / exhaust system for an engine according to an embodiment of the present invention, FIG. 2 is a diagram showing a flow of EGR gas when the bypass valve is closed, and FIG. 3 is a diagram when the bypass valve is opened. 4 is a diagram showing the flow of EGR gas, FIG. 4 is a sectional view showing the structure of the exhaust purification device, and FIG. 5 is a sectional view taken along line AA of FIG.

これらの図において、1はエンジン例えばディーゼルエンジンで、このエンジン1にはその吸気系及び排気系を含む吸排気システム2が設けられ、この吸排気システム2は、以下に述べるように構成されている。上記エンジン1のエンジン本体1aには吸気系の一部を構成する吸気マニホールド3と、排気系の一部を構成する排気マニホールド4とが設けられている。吸気マニホールド3には吸気系の配管である吸気流路5が接続され、排気マニホールド4には排気系の配管である排気ガス流路6が接続されている。   In these drawings, reference numeral 1 denotes an engine, for example, a diesel engine. The engine 1 is provided with an intake / exhaust system 2 including an intake system and an exhaust system thereof. The intake / exhaust system 2 is configured as described below. . The engine body 1a of the engine 1 is provided with an intake manifold 3 constituting a part of the intake system and an exhaust manifold 4 constituting a part of the exhaust system. The intake manifold 3 is connected to an intake flow path 5 that is an intake system pipe, and the exhaust manifold 4 is connected to an exhaust gas flow path 6 that is an exhaust system pipe.

吸気流路5には、下流から順にスロットルバルブ7、インタークーラ8、高圧段過給機9、低圧段過給機10及びエアフローセンサ11が設けられている。すなわち、本実施の形態では、エンジン1の吸気系に多段例えば2段過給機9,10が設けられている。上記過給機9,10は、排気タービン駆動式のもので、コンプレッサ9a,10aと排気タービン9b,10bとからなっている。上記吸気流路5には、高圧段過給機9のコンプレッサ9aの上流と下流を繋ぐバイパス弁12を有するバイパス流路13が設けられている。   A throttle valve 7, an intercooler 8, a high-pressure stage supercharger 9, a low-pressure stage supercharger 10, and an air flow sensor 11 are provided in the intake passage 5 in order from the downstream. That is, in the present embodiment, multistage, for example, two-stage superchargers 9 and 10 are provided in the intake system of the engine 1. The superchargers 9 and 10 are of an exhaust turbine drive type and include compressors 9a and 10a and exhaust turbines 9b and 10b. The intake passage 5 is provided with a bypass passage 13 having a bypass valve 12 connecting the upstream and downstream of the compressor 9 a of the high-pressure supercharger 9.

上記排気ガス流路6には、上流から順に高圧段過給機9を駆動する排気タービン9b、低圧段過給機10を駆動する排気タービン10b及びパティキュレート・フィルタである触媒担体14を有する排気浄化装置(排気後処理装置ともいう。)15が設けられている。上記排気ガス流路6には、高圧段過給機9の排気タービン9bの上流と下流を繋ぐバイパス弁16を有するバイパス流路17が設けられている。また、上記排気ガス流路6には、低圧段過給機10の排気タービン10bの上流と下流を繋ぐバイパス弁18を有するバイパス流路19が設けられている。   The exhaust gas passage 6 has an exhaust turbine 9b for driving the high-pressure stage turbocharger 9 in order from the upstream, an exhaust turbine 10b for driving the low-pressure stage turbocharger 10, and a catalyst carrier 14 that is a particulate filter. A purification device (also referred to as an exhaust aftertreatment device) 15 is provided. The exhaust gas passage 6 is provided with a bypass passage 17 having a bypass valve 16 that connects the upstream and downstream of the exhaust turbine 9 b of the high-pressure supercharger 9. The exhaust gas passage 6 is provided with a bypass passage 19 having a bypass valve 18 connecting the upstream and downstream of the exhaust turbine 10 b of the low-pressure supercharger 10.

また、上記エンジン1には、排気ガスの一部を排気系から取り出して再びエンジン1の吸気系に戻すEGRガス流路20が設けられている。このEGRガス流路20の一端は排気マニホールド4に接続され、EGRガス流路20の他端は吸気流路5のスロットルバルブ7よりも下流に接続されている。EGRガス流路20には、下流側から順に、EGR弁21及びEGRクーラ22が設けられている。これらEGR弁21及びEGRクーラ22は吸気マニホールド3の近傍に設けられていることが好ましい。   Further, the engine 1 is provided with an EGR gas flow path 20 that extracts a part of the exhaust gas from the exhaust system and returns it to the intake system of the engine 1 again. One end of the EGR gas flow path 20 is connected to the exhaust manifold 4, and the other end of the EGR gas flow path 20 is connected downstream of the throttle valve 7 in the intake flow path 5. The EGR gas flow path 20 is provided with an EGR valve 21 and an EGR cooler 22 in order from the downstream side. These EGR valve 21 and EGR cooler 22 are preferably provided in the vicinity of intake manifold 3.

上記EGRガス流路20のEGRガスクーラ22よりも上流側には、上記排気浄化装置15の触媒担体14の外周に沿う触媒担体外周ガス流路23が設けられ、この触媒担体外周ガス流路23に上記排気系の排気タービン9b,10bよりも上流から直に排気ガスを導入するように構成されている。換言すれば、上記触媒担体14の外周に触媒担体外周ガス流路23が設けられ、この触媒担体外周ガス流路23と排気マニホールド4とを繋ぐ配管(EGRガス流路上流部)20aにより高温の排気ガスが触媒担体外周ガス流路23に直接導入されるようになっている。   On the upstream side of the EGR gas cooler 22 of the EGR gas channel 20, a catalyst carrier outer gas channel 23 is provided along the outer periphery of the catalyst carrier 14 of the exhaust purification device 15. Exhaust gas is introduced directly from upstream of the exhaust turbines 9b and 10b of the exhaust system. In other words, the catalyst carrier outer peripheral gas flow path 23 is provided on the outer periphery of the catalyst carrier 14, and the pipe (EGR gas flow path upstream portion) 20 a connecting the catalyst carrier outer peripheral gas flow path 23 and the exhaust manifold 4 has a high temperature. Exhaust gas is introduced directly into the catalyst carrier peripheral gas flow path 23.

また、上記排気ガス流路6における触媒担体14の排気ガス入口側前方と、上記EGRガス流路20の触媒担体外周ガス流路23よりも上流部20aとを繋ぐためのバイパス弁24を有するバイパス流路25が設けられている。上記排気ガス流路6における触媒担体14の排気ガス出口側後方には、排気ガス温度を検出して上記バイパス弁24を制御するための温度センサ26が設けられている。上記吸排気システム2においては、温度センサ26からの検出信号を入力し、その検出値が設定値(設定温度)を超える場合には上記バイパス弁24を閉じ、検出値が設定値を下回る場合には上記バイパス弁24を開くように制御するコントローラ27が設けられている。   The bypass having a bypass valve 24 for connecting the exhaust gas inlet side front side of the catalyst carrier 14 in the exhaust gas passage 6 and the upstream portion 20a of the catalyst carrier outer peripheral gas passage 23 of the EGR gas passage 20 is provided. A flow path 25 is provided. A temperature sensor 26 for detecting the exhaust gas temperature and controlling the bypass valve 24 is provided at the exhaust gas outlet side rear side of the catalyst carrier 14 in the exhaust gas passage 6. In the intake / exhaust system 2, when a detection signal from the temperature sensor 26 is input and the detected value exceeds a set value (set temperature), the bypass valve 24 is closed, and when the detected value falls below the set value. A controller 27 is provided for controlling the bypass valve 24 to open.

上記排気浄化装置15は、図4乃至図6に示すように、円筒状のケーシング28を有し、該ケーシング28内に円筒状の触媒担体14が設けられ、該触媒担体14の外周とケーシング28の内周との間には触媒担体外周ガス流路23が設けられている。触媒担体14は、コージュライト等のセラミックからなる多孔質のハニカム構造となっており、格子状に区画された各流路の入口と出口が交互に目封止され、各流路を区画する多孔質隔壁を透過した排気ガスのみが下流側に排出され、多孔質隔壁の内壁面にパティキュレートを捕集する。パティキュレートは、捕集されて堆積するので、目詰りにより排気抵抗が増加しないように適宜焼却除去され、パティキュレート・フィルタの再生が図られるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自然燃焼するほどの高い排気温度が得られる機会が少ない。このため、上記パティキュレート・フィルタは、例えばアルミナに白金を担持させたものにセリウム等の希土類元素を添加してなる酸化触媒を一的に担持させた触媒再生型のパティキュレート・フィルタ(触媒担体)とされ、再生能力の向上が図られている。   As shown in FIGS. 4 to 6, the exhaust purification device 15 has a cylindrical casing 28, and a cylindrical catalyst carrier 14 is provided in the casing 28, and the outer periphery of the catalyst carrier 14 and the casing 28 are provided. A catalyst carrier outer peripheral gas flow path 23 is provided between the inner periphery and the inner periphery of the catalyst carrier. The catalyst carrier 14 has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets and outlets of each flow path partitioned in a lattice shape are alternately plugged, so that the porous supports partition each flow path. Only the exhaust gas that has permeated through the porous partition is discharged downstream, and the particulates are collected on the inner wall surface of the porous partition. Since the particulates are collected and accumulated, they are removed by incineration as appropriate so that the exhaust resistance does not increase due to clogging, and the particulate filter is regenerated, but in normal diesel engine operating conditions, the particulates There are few opportunities to obtain exhaust temperatures that are high enough to cause natural combustion. For this reason, the above particulate filter is a catalyst regeneration type particulate filter (catalyst carrier) in which an oxidation catalyst made by adding rare earth elements such as cerium is supported on a material in which platinum is supported on alumina, for example. ), And the improvement of the reproduction ability is attempted.

上記ケーシング28の一端には、排気ガス流路6の低圧側タービン10bよりも下流から排気ガスを導入するための接続口として漏斗状に漸次縮径した入口管部28aが設けられ、ケーシング28の他端には、触媒担体14内を通過した排気ガスを排気ガス流路6に排出するための接続口として漏斗状に漸次縮径した出口管部28bが設けられている。ケーシング28の一側(図示例では上側部)にはEGRガス流路上流部20aからの排気ガスを触媒担体外周ガス流路23に導入するための接続口である導入管部28cが設けられ、ケーシング28の他側(同下側部)には触媒担体外周ガス流路23からEGRガス流路20に排気ガスを排出するための接続口である排気管部28dが設けられている。   One end of the casing 28 is provided with an inlet pipe portion 28a having a diameter gradually reduced in a funnel shape as a connection port for introducing exhaust gas from the downstream side of the low-pressure turbine 10b of the exhaust gas passage 6. The other end is provided with an outlet pipe portion 28b whose diameter is gradually reduced in a funnel shape as a connection port for discharging exhaust gas that has passed through the catalyst carrier 14 to the exhaust gas passage 6. On one side of the casing 28 (upper portion in the illustrated example), an introduction pipe portion 28c that is a connection port for introducing exhaust gas from the upstream portion 20a of the EGR gas passage into the catalyst carrier outer peripheral gas passage 23 is provided. On the other side (the lower side) of the casing 28, an exhaust pipe portion 28d is provided as a connection port for discharging exhaust gas from the catalyst carrier outer peripheral gas flow channel 23 to the EGR gas flow channel 20.

上記バイパス流路25は、図6に示すように、上記導入管部28cと入口管部28aとを繋ぐように設けられていることが構造の簡素化を図る上で好ましい。また、バイパス流路25の出口部25aは、触媒担体14の入口側端面に臨んで開口していることが好ましい。バイパス流路25に設けられるバイパス弁24は、ON・OFF制御弁ではなく、EGR弁21と同様、電動モータ駆動式の無段階リフト制御が可能になっていることが好ましい。   As shown in FIG. 6, the bypass flow path 25 is preferably provided so as to connect the introduction pipe portion 28c and the inlet pipe portion 28a in order to simplify the structure. The outlet 25a of the bypass channel 25 is preferably open to face the inlet side end face of the catalyst carrier 14. The bypass valve 24 provided in the bypass flow path 25 is not an ON / OFF control valve, and it is preferable that stepless lift control driven by an electric motor can be performed similarly to the EGR valve 21.

上記ケーシング28内において、触媒担体14の両端外周縁部を保持すると共にケーシング28との間を封止するために触媒担体14の両端部外周縁部には断面略Z字状で環状の端部プレート29が配置されていると共に、該端部プレート29の外端部とケーシング28の両端環状隅部30との間には断面略U字状で環状のガスケット31が介設されている。ガスケット31は、その材質及び断面形状によるバネ性により、触媒担体14及びケーシング28の熱膨張に追従することができ、シール性を確保することができる。ガスケット31は、高温強度に優れる耐熱合金例えばインコロイにより形成さている。なお、触媒担体14の外周とケーシング28の内周との間には、触媒担体14の強度上必要に応じて断片的に保持材32が設けられていてもよい。   In the casing 28, both ends of the outer periphery of the catalyst carrier 14 are held, and the outer periphery of the ends of the catalyst carrier 14 is sealed with a substantially Z-shaped cross section to seal the gap between the casing 28. A plate 29 is disposed, and an annular gasket 31 having a substantially U-shaped cross section is interposed between the outer end of the end plate 29 and the annular corners 30 on both ends of the casing 28. The gasket 31 can follow the thermal expansion of the catalyst carrier 14 and the casing 28 by the spring property due to the material and the cross-sectional shape, and can ensure the sealing property. The gasket 31 is made of a heat-resistant alloy having excellent high temperature strength, for example, incoloy. Note that a holding material 32 may be provided between the outer periphery of the catalyst carrier 14 and the inner periphery of the casing 28 as necessary in terms of the strength of the catalyst carrier 14.

以上の構成からなるエンジン1の吸排気システム2において、エンジン1を始動すると、エンジン1の燃焼室から排出される排気ガスは、図1に示すように、排気マニホールド4から排気ガス流路6に導入され、2段過給機9,10の排気タービン9b,10b或いはバイパス流路17,19を通り、さらに排気浄化装置15の触媒担体14を通過した後、大気に排出される。吸気は、吸気流路5の低圧段過給機10のコンプレッサ10a及び高圧段過給機9のコンプレッサ9a又はバイパス流路13を通り、さらにインタークーラ8、スロットルバルブ7、吸気マニホールド3を通ってエンジン1の燃焼室に導入される。   In the intake / exhaust system 2 of the engine 1 having the above configuration, when the engine 1 is started, the exhaust gas discharged from the combustion chamber of the engine 1 flows from the exhaust manifold 4 to the exhaust gas flow path 6 as shown in FIG. It is introduced, passes through the exhaust turbines 9b, 10b or the bypass flow passages 17, 19 of the two-stage turbochargers 9, 10, and further passes through the catalyst carrier 14 of the exhaust purification device 15, and is then discharged to the atmosphere. The intake air passes through the compressor 10a of the low pressure supercharger 10 in the intake flow passage 5 and the compressor 9a or the bypass flow passage 13 of the high pressure supercharger 9, and further passes through the intercooler 8, the throttle valve 7, and the intake manifold 3. It is introduced into the combustion chamber of the engine 1.

一方、EGR弁21を開くと、図2に示すように、エンジン1から排出される排気ガスの一部は、排気マニホールド4からEGRガス流路上流部20aに導入され、排気浄化装置15の外周ガス流路23を経てた後、EGRクーラ22及びEGR弁21を通って再びエンジン1の吸気マニホールド3に戻される。この時、排気ガス流路6における排気浄化装置15よりも下流の排気ガス温度が温度センサ26により検出されており、温度センサ26により検出される排気ガス流路6の排気浄化装置15よりも下流の排気ガス温度が所定の設定値を越える場合には、コントローラ27によってバイパス弁24は閉とされている。この場合、排気浄化装置15の触媒担体14が触媒担体外周ガス流路23を流れる排気ガスにより十分に加熱され、触媒担体14の再生が十分に図られる。   On the other hand, when the EGR valve 21 is opened, as shown in FIG. 2, a part of the exhaust gas discharged from the engine 1 is introduced from the exhaust manifold 4 to the EGR gas flow path upstream portion 20 a and the outer periphery of the exhaust purification device 15. After passing through the gas flow path 23, the gas is again returned to the intake manifold 3 of the engine 1 through the EGR cooler 22 and the EGR valve 21. At this time, the temperature of the exhaust gas downstream of the exhaust gas purification device 15 in the exhaust gas flow path 6 is detected by the temperature sensor 26, and the downstream of the exhaust gas purification device 15 of the exhaust gas flow path 6 detected by the temperature sensor 26. When the exhaust gas temperature exceeds the predetermined set value, the bypass valve 24 is closed by the controller 27. In this case, the catalyst carrier 14 of the exhaust purification device 15 is sufficiently heated by the exhaust gas flowing through the catalyst carrier outer peripheral gas flow path 23, and the catalyst carrier 14 is sufficiently regenerated.

ところで、エンジン1の始動時等で、触媒担体14の温度が低下していて温度センサ26により検出される排気ガス流路6の排気浄化装置15よりも下流の排気ガス温度が所定の設定値を下回る場合には、コントローラ27によってバイパス弁24は開操作される。この場合、排気浄化装置15の触媒担体14が触媒担体外周ガス流路23を流れる排気ガス及びバイパス流路25を通って排気浄化装置15の触媒担体14の入口側に導入される排気ガスにより、排気浄化装置15の触媒担体14を外周側だけでなく中心部からも加熱することができ、触媒担体14を内外から効果的に加熱して効率よく再生することができる。これにより、排気ガス流路6の排気浄化装置15よりも下流の排気ガス温度が設定値を超えるとバイパス弁24が閉じられ、上記触媒担体14は触媒担体外周ガス流路23を流れる排気ガスのみによって再生が行われる。   By the way, when the engine 1 is started, the temperature of the catalyst carrier 14 is decreased, and the exhaust gas temperature downstream of the exhaust gas purification device 15 in the exhaust gas flow path 6 detected by the temperature sensor 26 has a predetermined set value. If it falls below, the controller 27 opens the bypass valve 24. In this case, the exhaust gas introduced into the inlet side of the catalyst carrier 14 of the exhaust gas purification device 15 through the exhaust gas through which the catalyst carrier 14 of the exhaust gas purification device 15 flows through the catalyst carrier outer peripheral gas flow channel 23 and the bypass flow channel 25, The catalyst carrier 14 of the exhaust gas purification device 15 can be heated not only from the outer peripheral side but also from the center part, and the catalyst carrier 14 can be effectively regenerated by efficiently heating from the inside and outside. As a result, when the exhaust gas temperature downstream of the exhaust gas purification device 15 in the exhaust gas passage 6 exceeds the set value, the bypass valve 24 is closed, and the catalyst carrier 14 is only exhaust gas flowing through the catalyst carrier outer peripheral gas passage 23. Playback is performed by.

このように、エンジン1の吸排気システム2によれば、上記EGRガス流路20のEGRガスクーラ22よりも上流側に、上記触媒担体14の外周に沿う触媒担体外周ガス流路23を設け、該触媒担体外周ガス流路23に上記排気系の排気タービン9b,10bよりも上流である排気マニホールド4から直に排気ガスを導入するように構成されているため、排気浄化装置15の触媒担体14の外周部における昇温効果及び断熱保温特性を高めることができ、排気浄化装置15の再生能力の向上が図れる。この場合、上記断熱保温特性は、触媒担体14の外周に触媒担体外周ガス流路23により高温の排気ガス層が形成されることによって向上する。   Thus, according to the intake / exhaust system 2 of the engine 1, the catalyst carrier outer peripheral gas flow path 23 along the outer periphery of the catalyst carrier 14 is provided on the upstream side of the EGR gas cooler 22 of the EGR gas flow path 20. Since the exhaust gas is directly introduced into the catalyst carrier peripheral gas flow path 23 from the exhaust manifold 4 upstream of the exhaust turbines 9b and 10b of the exhaust system, the catalyst carrier 14 of the exhaust purification device 15 is provided. The temperature rise effect and heat insulation and heat retention characteristics in the outer peripheral portion can be enhanced, and the regeneration capability of the exhaust purification device 15 can be improved. In this case, the adiabatic heat retention characteristic is improved by forming a high-temperature exhaust gas layer on the outer periphery of the catalyst carrier 14 by the catalyst carrier outer periphery gas flow path 23.

また、上記排気系における触媒担体14の排気ガス入口側前方と、上記EGRガス流路20の触媒担体外周ガス流路23よりも上流部20aとを繋ぐためのバイパス弁24を有するバイパス流路25を設けているため、触媒担体14を外周側だけでなく中心部からも加熱することができ、触媒担体14を内外から効果的に加熱して効率よく再生することができる。   Further, a bypass passage 25 having a bypass valve 24 for connecting the front side of the exhaust gas inlet of the catalyst carrier 14 in the exhaust system and the upstream portion 20a of the catalyst carrier outer gas passage 23 of the EGR gas passage 20 is connected. Therefore, the catalyst carrier 14 can be heated not only from the outer peripheral side but also from the central part, and the catalyst carrier 14 can be effectively regenerated by being effectively heated from the inside and outside.

さらに、上記排気系における触媒担体14の排気ガス出口側後方に、排気ガス温度を検出して上記バイパス弁24を制御するための温度センサ26を設けているため、触媒担体14の温度を管理することができ、その再生能力の向上が図れる。また、上記触媒担体14の再生にEGRガス流路20のEGRクーラ22よりも上流の排気ガスを熱交換に利用するため、EGRクーラ22の手前で排気ガス温度を低下させることができ、EGRクーラ22の容量(サイズ)を低減することができ、構造の簡素化及びコストの低減が図れる。   Further, since a temperature sensor 26 for detecting the exhaust gas temperature and controlling the bypass valve 24 is provided behind the exhaust gas outlet side of the catalyst carrier 14 in the exhaust system, the temperature of the catalyst carrier 14 is managed. And the reproduction ability can be improved. Further, since the exhaust gas upstream of the EGR cooler 22 in the EGR gas flow path 20 is used for heat exchange for regeneration of the catalyst carrier 14, the exhaust gas temperature can be lowered before the EGR cooler 22, and the EGR cooler can be reduced. The capacity (size) of 22 can be reduced, and the structure can be simplified and the cost can be reduced.

以上、本発明の実施の形態ないし実施例を図面により詳述してきたが、本発明は前記実施の形態ないし実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更が可能である。図7乃至図9は排気浄化装置の変形例を示す断面図である。本実施の形態において、上記実施の形態と同一部分は同一符号を付して説明を省略する。本実施の形態における排気浄化装置15においては、上記バイパス流路25の出口部25aに、上記排気系における触媒担体14の排気ガス入口側端面に臨んで開口するノズル33が設けられている。このノズル33としては、図8に示すように、触媒担体14の排気ガス入口側端面の中心部(中央部)を臨んで開口し、触媒担体14の中心部が低温の時に高温の排気ガスを触媒担体14の中心部に吹付けるように構成されていてもよく、或いは図9に示すように、触媒担体14の排気ガス入口側端面の中心部と外周部との中間部を臨んで開口し、触媒担体14の中間部が低温の時に高温の排気ガスを触媒担体14の中間部に吹付けるように構成されていてもよい。   As mentioned above, although embodiment thru | or example of this invention has been explained in full detail with drawing, this invention is not limited to the said embodiment thru | or example, Various in the range which does not deviate from the summary of this invention. Design changes are possible. 7 to 9 are sectional views showing modifications of the exhaust purification device. In the present embodiment, the same parts as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted. In the exhaust purification device 15 according to the present embodiment, a nozzle 33 that opens toward the exhaust gas inlet side end surface of the catalyst carrier 14 in the exhaust system is provided at the outlet 25a of the bypass passage 25. As shown in FIG. 8, the nozzle 33 opens to face the central portion (center portion) of the end surface on the exhaust gas inlet side of the catalyst carrier 14, and discharges hot exhaust gas when the central portion of the catalyst carrier 14 is cold. The catalyst carrier 14 may be configured to be sprayed to the center portion, or as shown in FIG. 9, the catalyst carrier 14 is opened so as to face an intermediate portion between the center portion of the exhaust gas inlet side end surface and the outer peripheral portion. The high temperature exhaust gas may be blown onto the intermediate portion of the catalyst carrier 14 when the intermediate portion of the catalyst carrier 14 is at a low temperature.

また、上記実施の形態では、EGRガス流路20の上流部20aが排気マニホールド4に直接接続されているが、EGRガス流路20の上流部20aは排気ガス流路6の高圧段側過給機9の排気タービン9bよりも上流に接続されていてもよい。   Further, in the above embodiment, the upstream portion 20 a of the EGR gas flow path 20 is directly connected to the exhaust manifold 4, but the upstream portion 20 a of the EGR gas flow path 20 is supercharged on the high pressure stage side of the exhaust gas flow path 6. It may be connected upstream of the exhaust turbine 9 b of the machine 9.

本発明の実施の形態であるエンジンの吸排気システムを概略的に示す図である。1 is a diagram schematically showing an engine intake / exhaust system according to an embodiment of the present invention. バイパス弁が閉の時のEGRガスの流れを示す図である。It is a figure which shows the flow of EGR gas when a bypass valve is closed. バイパス弁が開の時のEGRガスの流れを示す図である。It is a figure which shows the flow of EGR gas when a bypass valve is open. 排気浄化装置の構造を示す断面図である。It is sectional drawing which shows the structure of an exhaust gas purification apparatus. 図4のA−A線断面図である。It is the sectional view on the AA line of FIG. 排気浄化装置の要部拡大断面図である。It is a principal part expanded sectional view of an exhaust gas purification apparatus. 排気浄化装置の変形例を示す断面図である。It is sectional drawing which shows the modification of an exhaust gas purification apparatus. 排気浄化装置の変形例を示す断面図である。It is sectional drawing which shows the modification of an exhaust gas purification apparatus. 排気浄化装置の変形例を示す断面図である。It is sectional drawing which shows the modification of an exhaust gas purification apparatus. 従来の排気浄化装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional exhaust gas purification apparatus.

符号の説明Explanation of symbols

1 エンジン
2 吸排気システム
9,10 過給機
9b,10b 排気タービン
14 触媒担体
15 排気浄化装置
20 EGRガス流路
20a EGRガス流路上流部
23 触媒担体外周ガス流路
24 バイパス弁
25 バイパス流路
26 温度センサ
33 ノズル
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake / exhaust system 9,10 Supercharger 9b, 10b Exhaust turbine 14 Catalyst carrier 15 Exhaust purification device 20 EGR gas channel 20a EGR gas channel upstream part 23 Catalyst carrier outer periphery gas channel 24 Bypass valve 25 Bypass channel 26 Temperature sensor 33 Nozzle

Claims (3)

排気ガスの一部を排気系から取り出して再びエンジンの吸気系に戻すEGRガス流路と、該EGRガス流路に設けられたEGRガスクーラと、上記吸気系に設けられた過給機を駆動するべく上記排気系に設けられた排気タービンと、該排気タービンよりも下流に設けられた触媒担体を有する排気浄化装置とを備え、上記EGRガス流路のEGRガスクーラよりも上流側上記触媒担体の外周に沿う触媒担体外周ガス流路を設け、該触媒担体外周ガス流路に上記排気系の排気タービンよりも上流から直に排気ガスを導入するようにし、上記排気系における触媒担体の排気ガス入口側前方と、上記EGRガス流路の触媒担体外周ガス流路よりも上流部とを繋ぐためのバイパス弁を有するバイパス流路を設けたことを特徴とするエンジンの吸排気システム。 Drives an EGR gas passage that extracts a part of the exhaust gas from the exhaust system and returns it to the intake system of the engine again, an EGR gas cooler provided in the EGR gas passage, and a supercharger provided in the intake system to an exhaust turbine provided in the exhaust system, and an exhaust purification device having a catalyst support which is provided downstream of the exhaust turbine, upstream of EGR gas cooler of the EGR gas passage, the catalyst carrier An exhaust gas of the catalyst carrier in the exhaust system is provided so that an exhaust gas is provided directly from the upstream of the exhaust turbine of the exhaust system to the catalyst carrier outer gas channel. Engine intake / exhaust having a bypass flow path having a bypass valve for connecting the front side of the inlet side and the upstream portion of the EGR gas flow path from the catalyst carrier outer peripheral gas flow path Stem. 上記排気系における触媒担体の排気ガス出口側後方に、排気ガス温度を検出して上記バイパス弁を制御するための温度センサを設けたことを特徴とする請求項1に記載のエンジンの吸排気システム。   2. The intake / exhaust system for an engine according to claim 1, wherein a temperature sensor for detecting the exhaust gas temperature and controlling the bypass valve is provided behind the exhaust gas outlet side of the catalyst carrier in the exhaust system. . 上記バイパス流路の出口部に、上記排気系における触媒担体の排気ガス入口側端面に臨んで開口するノズルを設けたことを特徴とする請求項1又2に記載のエンジンの吸排気システム。   The intake / exhaust system for an engine according to claim 1 or 2, wherein a nozzle that opens toward an exhaust gas inlet side end face of the catalyst carrier in the exhaust system is provided at an outlet portion of the bypass passage.
JP2006082681A 2006-03-24 2006-03-24 Engine intake / exhaust system Expired - Fee Related JP4765711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082681A JP4765711B2 (en) 2006-03-24 2006-03-24 Engine intake / exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082681A JP4765711B2 (en) 2006-03-24 2006-03-24 Engine intake / exhaust system

Publications (2)

Publication Number Publication Date
JP2007255358A JP2007255358A (en) 2007-10-04
JP4765711B2 true JP4765711B2 (en) 2011-09-07

Family

ID=38629836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082681A Expired - Fee Related JP4765711B2 (en) 2006-03-24 2006-03-24 Engine intake / exhaust system

Country Status (1)

Country Link
JP (1) JP4765711B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504740B1 (en) * 2008-04-01 2009-08-15 Avl List Gmbh Internal combustion engine
US20130263579A1 (en) * 2010-12-17 2013-10-10 Toyota Jidosha Kabushiki Kaisha Exhaust heating device for internal combustion engine and control method therefor
JP2017219226A (en) * 2016-06-06 2017-12-14 イビデン株式会社 Heat exchanger
JP7468996B2 (en) * 2019-03-25 2024-04-16 フタバ産業株式会社 EGR device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180825A (en) * 2000-12-14 2002-06-26 Isuzu Ceramics Res Inst Co Ltd Exhaust emission control system
JP2003028008A (en) * 2001-07-13 2003-01-29 Mitsubishi Motors Corp Egr device of internal combustion engine

Also Published As

Publication number Publication date
JP2007255358A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
EP1420159B1 (en) EGR system for internal combustion engine provided with a turbo-charger
US6966179B2 (en) Exhaust gas purifying system
JP4843035B2 (en) Engine and method for maintaining engine exhaust temperature
CN101828010B (en) Exhaust-gas secondary treatment preceding a turbocharger
JP3951899B2 (en) Diesel engine exhaust purification system
EP1873366B1 (en) Control strategy for turbocharged diesel engines
US20040144069A1 (en) Exhaust gas purifying system
JP2002276405A (en) Exhaust emission control device of diesel engine
JP2012518115A (en) Exhaust manifold for reciprocating engine with turbocharger
US20090077954A1 (en) Continuously regenerating particulate filter for internal combustion engine
JP2011521166A (en) Exhaust-driven auxiliary air pump and product and method of use thereof
US10774724B2 (en) Dual stage internal combustion engine aftertreatment system using exhaust gas intercooling and charger driven air ejector
US11306688B2 (en) Low-pressure EGR system with turbo bypass
US11560831B2 (en) Low-pressure EGR system with turbo bypass
JP4765711B2 (en) Engine intake / exhaust system
JP2007285281A (en) Supercharged internal combustion engine provided with oxygen enriching device
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
KR101071874B1 (en) Engine system using vortex tube
KR101071873B1 (en) Recirculating exhaust gas system using vortex tube
JP2009191737A (en) Supercharger for engine
JP3788283B2 (en) Exhaust gas purification device for a turbocharged diesel engine
JP2005299628A (en) Filter regeneration control device for diesel engine
JP6213260B2 (en) Exhaust gas purification system and control method thereof
WO2004111399A1 (en) Apparatus for adjusting the temperature of exhaust gases
KR20110071315A (en) Egr cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees