JP4764988B2 - Method for manufacturing insulated gate field effect transistor - Google Patents

Method for manufacturing insulated gate field effect transistor Download PDF

Info

Publication number
JP4764988B2
JP4764988B2 JP2004221159A JP2004221159A JP4764988B2 JP 4764988 B2 JP4764988 B2 JP 4764988B2 JP 2004221159 A JP2004221159 A JP 2004221159A JP 2004221159 A JP2004221159 A JP 2004221159A JP 4764988 B2 JP4764988 B2 JP 4764988B2
Authority
JP
Japan
Prior art keywords
trench
film
insulating film
oxide film
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004221159A
Other languages
Japanese (ja)
Other versions
JP2006041307A (en
Inventor
邦雄 望月
和男 下山
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2004221159A priority Critical patent/JP4764988B2/en
Publication of JP2006041307A publication Critical patent/JP2006041307A/en
Application granted granted Critical
Publication of JP4764988B2 publication Critical patent/JP4764988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

この発明は、半導体基板上にトレンチ(溝)を形成し、このトレンチの内部にゲート電極や表面の金属電極−トレンチ底部ドレイン領域間のコンタクト孔、チャネル領域など横型パワーMOSFET(絶縁ゲート型電界効果トランジスタ)の製造方法に関する。この横型パワーMOSFETはパワーIC等の半導体装置の主要構成素子とされることも多い。   In this invention, a trench (groove) is formed on a semiconductor substrate, and a lateral power MOSFET (insulated gate type field effect) such as a gate electrode, a contact hole between a metal electrode on the surface and a drain region at the bottom of the trench, and a channel region is formed inside the trench. The present invention relates to a method for manufacturing a transistor. This horizontal power MOSFET is often used as a main component of a semiconductor device such as a power IC.

近年、携帯機器の急速な普及や通信技術の高度化などに伴い、パワーMOSFETを内蔵したパワーICの重要性が高まっている。特に、従来のプレナー型の横型パワーMOSFETより低オン抵抗化が計られ、デバイスピッチを小さくできることにより、いっそう高集積化が可能なトレンチ横型パワーMOSFET(以下、TLPMとする)を制御回路などと共に同一半導体基板に集積したパワーICでは、従来の同様の組み合わせからなるパワーICと比較して、小型化、低消費電力化、高信頼性化および低コスト化などが期待される。
また、本発明者らが開示したように、TLPMにはトレンチ底部にドレインコンタクトを設けるタイプのTLPM(以下、TLPM/Dとする)と、トレンチ底部にソースコンタクトを設けるタイプのTLPM(以下、TLPM/Sとする)がある。これらのTLPMでは、MOSFETとして電流を駆動する領域(以下、活性領域とする)、および基板表面にゲート電極となるポリシリコンゲートを引き出す領域(以下、ゲート領域とする)のいずれにおいても、トレンチの中央部には、デバイス表面のドレイン電極とトレンチ底部のドレイン領域(TLPM/Dの場合)、またはデバイス表面のソース電極とトレンチ底部のソース領域(TLPM/Sの場合)とを電気的に接続するポリシリコンなどの導電体が形成されている(たとえば、特許文献1または2参照。)。
In recent years, with the rapid spread of portable devices and the advancement of communication technology, the importance of power ICs incorporating power MOSFETs has increased. In particular, trench on-resistance power MOSFETs (hereinafter referred to as TLPM) that can be further highly integrated by controlling the on-resistance lower than conventional planar-type lateral power MOSFETs and reducing the device pitch can be the same as the control circuit. A power IC integrated on a semiconductor substrate is expected to have a smaller size, lower power consumption, higher reliability, and lower cost as compared with a conventional power IC having the same combination.
As disclosed by the present inventors, the TLPM has a type of TLPM in which a drain contact is provided at the bottom of the trench (hereinafter referred to as TLPM / D) and a type of TLPM in which a source contact is provided at the bottom of the trench (hereinafter referred to as TLPM). / S). In these TLPMs, in both the region for driving current as a MOSFET (hereinafter referred to as an active region) and the region for pulling out a polysilicon gate serving as a gate electrode on the substrate surface (hereinafter referred to as a gate region), In the central portion, the drain electrode on the device surface and the drain region at the bottom of the trench (for TLPM / D), or the source electrode on the device surface and the source region at the bottom of the trench (for TLPM / S) are electrically connected. A conductor such as polysilicon is formed (for example, see Patent Document 1 or 2).

また一方、半導体基板に形成したトレンチ内へ絶縁膜を埋め込む際にボイドが発生せず、かつ半導体基板に形成される素子の特性劣化を防止することが可能なSTI(Sallow Trench Isolation)構造の絶縁ゲート型電界効果トランジスタの製造方法とするために、半導体基板の表面に溝を形成する工程と、この溝内にTEOS(Tetra Ethyl
Ortho Silicate−Si(OC)ガスを分解して生成される絶縁膜を埋め込んでSTI構造を形成する製造方法において、絶縁膜の埋め込み工程として、TEOSガスを気相熱分解して第一の絶縁膜を成長させる第一の成長工程と、前記TEOSを表面熱分解して第二の絶縁膜を成長させる第二の成長工程とを含む製造方法とする発明が知られている(特許文献3―課題、解決手段)。
On the other hand, when an insulating film is embedded in a trench formed in a semiconductor substrate, voids are not generated, and the insulation of an STI (Sallow Trench Isolation) structure that can prevent deterioration of characteristics of an element formed in the semiconductor substrate. In order to obtain a method for manufacturing a gate-type field effect transistor, a step of forming a groove in the surface of the semiconductor substrate and a TEOS (Tetra Ethyl in the groove)
Ortho Silicate-Si (OC 2 H 5 ) 4 ) In a manufacturing method for forming an STI structure by embedding an insulating film generated by decomposing gas, TEOS gas is vapor-phase pyrolyzed as a step of embedding the insulating film. An invention is known which is a manufacturing method including a first growth step of growing a first insulating film and a second growth step of growing the second insulating film by surface pyrolyzing the TEOS ( Patent Document 3—Problems, Solution).

図13に前記TLPMの要部平面図を示す。この図13で、A−A線における断面を図14に示す。図13、図14において、符号53は矩形状トレンチであり、特に図13ではトレンチの平面パターンを示す。このトレンチ53狭い方の幅(A−A方向の幅)は、たとえば、2.5μmである。このトレンチ53を挟む両側の表面にソース電極78、80が位置する。この電極78、80下には絶縁膜55を挟み、この絶縁膜55に形成された開口部(コンタクト孔)66、68とこの開口部に充填された金属材料70、72、74、76により、前記表面ソース電極78、80とシリコン基板表面のソース領域58とが導電接続される。前記トレンチ53内には側面にゲート酸化膜57を介して、ポリシリコンゲート電極59が位置し、さらに絶縁膜55を介して、前記トレンチ53の中央部には、トレンチ底部のドレイン領域54と表面のドレイン電極79とを導電接続するための金属材料71、75で充填された開口部67が位置する。   FIG. 13 shows a plan view of the main part of the TLPM. FIG. 14 is a cross-sectional view taken along line AA in FIG. 13 and 14, reference numeral 53 denotes a rectangular trench, and in particular, FIG. 13 shows a planar pattern of the trench. The narrower width of the trench 53 (the width in the AA direction) is, for example, 2.5 μm. Source electrodes 78 and 80 are located on the surfaces on both sides of the trench 53. An insulating film 55 is sandwiched between the electrodes 78 and 80, and openings (contact holes) 66 and 68 formed in the insulating film 55 and metal materials 70, 72, 74, and 76 filled in the openings, The surface source electrodes 78, 80 and the source region 58 on the silicon substrate surface are conductively connected. A polysilicon gate electrode 59 is located on the side surface of the trench 53 with a gate oxide film 57 interposed therebetween, and further, a drain region 54 at the bottom of the trench and the surface of the trench 53 are disposed in the center of the trench 53 with an insulating film 55 interposed therebetween. An opening 67 filled with metal materials 71 and 75 for conductively connecting the drain electrode 79 is located.

トレンチ53の底部をドレイン領域54とするNch TLPMのウェハの製造工程について、図4〜図9を用いて説明する。図4に示すように、P型シリコン基板(P sub)50に選択的にPウェル領域51を形成する。図5に示すように、熱酸化膜またはCVD酸化膜52などをマスクとしてトレンチ53をRIEなどの異方性エッチングにより形成する。このトレンチ53のサイズはTLPM40に求められる電気特性に応じて決められる事項であって、たとえば、耐圧30VのTLPM40のトレンチ53に必要なサイズは幅2.5μm、深さ2.0μmである。次に酸化膜52をイオン注入マスクとして用い、トレンチ53底部にドレイン領域54を形成する。そして前記TLPM40の外周部境界に相当する部分には必要に応じて図示しないLOCOS酸化膜56を形成して素子分離領域とする。次に、犠牲酸化膜(図示せず)を形成除去してトレンチ53内面を清浄化した後、図6に示すようにゲート酸化膜57を17nmの厚さに形成し、さらにCVD法により0.05μm厚のポリシリコン膜を全面に形成した後、異方性エッチングにより、トレンチ53の側壁に前記ゲート酸化膜57を介してポリシリコンゲート電極59を形成する。図7に示すようにソース領域58を形成した後、図8に示すように、トレンチ53に埋め込み酸化膜55をHTO(High Temperature Oxide)膜により形成する。このHTO膜55はゲート電極59と後述するドレイン電極79間の層間絶縁膜55となる。また、前記トレンチ53に埋め込まれた層間絶縁膜55は、その最表面を化学機械研磨(以下CMPと略す)により研磨して平坦化するために、少なくともトレンチ53を完全に埋める必要がある。たとえば、前述の幅2.5μm、深さ2.0μmのトレンチの場合、幅が狭いので絶縁膜の厚さは2.0μm以下でもトレンチを完全に埋めることができるが、前述のLOCOS酸化膜等、半導体基板上の突起部分を考慮すると、支障なく絶縁膜の最表面を平坦化するには、少なくとも2.0μm以上の厚さの絶縁膜を必要とする。その後、図9に示すように、フォトリソグラフィ技術により層間絶縁膜55内に、トレンチ53底部のドレイン領域54との電気的導通をとるための開口部(コンタクト孔)67およびその他の開口部66、68を形成し、図14に示すように、開口部67内部をバリア金属71、埋め込み金属プラグ75で、、開口部66、68内部をバリア金属70、72、埋め込み金属プラグ74、76でそれぞれ充填し、さらに最表面に金属電極(ドレイン電極79、ソース電極78、80)を形成して、TLPM素子40を得る。   A manufacturing process of an Nch TLPM wafer having the bottom of the trench 53 as the drain region 54 will be described with reference to FIGS. As shown in FIG. 4, a P well region 51 is selectively formed on a P type silicon substrate (P sub) 50. As shown in FIG. 5, a trench 53 is formed by anisotropic etching such as RIE using a thermal oxide film or a CVD oxide film 52 as a mask. The size of the trench 53 is determined according to the electrical characteristics required for the TLPM 40. For example, the size required for the trench 53 of the TLPM 40 having a withstand voltage of 30 V is 2.5 μm wide and 2.0 μm deep. Next, using the oxide film 52 as an ion implantation mask, a drain region 54 is formed at the bottom of the trench 53. A LOCOS oxide film 56 (not shown) is formed on the portion corresponding to the boundary of the outer peripheral portion of the TLPM 40 as necessary to form an element isolation region. Next, after sacrificial oxide film (not shown) is formed and removed to clean the inner surface of the trench 53, a gate oxide film 57 is formed to a thickness of 17 nm as shown in FIG. After a polysilicon film having a thickness of 05 μm is formed on the entire surface, a polysilicon gate electrode 59 is formed on the sidewall of the trench 53 via the gate oxide film 57 by anisotropic etching. After the source region 58 is formed as shown in FIG. 7, a buried oxide film 55 is formed in the trench 53 with an HTO (High Temperature Oxide) film, as shown in FIG. The HTO film 55 becomes an interlayer insulating film 55 between the gate electrode 59 and a drain electrode 79 described later. Further, the interlayer insulating film 55 embedded in the trench 53 needs to completely fill at least the trench 53 in order to polish and planarize the outermost surface thereof by chemical mechanical polishing (hereinafter abbreviated as CMP). For example, in the case of the above-mentioned trench having a width of 2.5 μm and a depth of 2.0 μm, the trench can be completely filled even if the thickness of the insulating film is 2.0 μm or less because the width is narrow. Considering the protruding portion on the semiconductor substrate, in order to flatten the outermost surface of the insulating film without hindrance, an insulating film having a thickness of at least 2.0 μm or more is required. After that, as shown in FIG. 9, an opening (contact hole) 67 and other openings 66 for establishing electrical continuity with the drain region 54 at the bottom of the trench 53 are formed in the interlayer insulating film 55 by photolithography. As shown in FIG. 14, the opening 67 is filled with the barrier metal 71 and the buried metal plug 75, and the openings 66 and 68 are filled with the barrier metal 70 and 72 and the buried metal plugs 74 and 76, respectively. Further, metal electrodes (drain electrode 79, source electrodes 78, 80) are formed on the outermost surface, and the TLPM element 40 is obtained.

このTLPM40では、部分的に拡大した図11bに示すようにトレンチ53の幅が前述のように2.5μmの場合、トレンチ内絶縁膜55の中央に開口部67のコンタクト幅として少なくとも必要な幅0.6μmの孔を設けても、前記ゲート電極59と開口部67間(矢印点線T1)に要求される絶縁破壊電圧30Vを確保するために、HTO膜55の場合に少なくとも必要な膜厚0.05μm以上を充分にとることができる。このTLPM40は、以上説明したようなトレンチ構造を形成したので、トレンチ53を有さない従来のプレナー型のMOSFETに比べて、高耐圧素子の場合でも、素子の大きさを相対的に小さくできる特長がある。
特開2002−353447号公報 特開2002−280549号公報 特開2000−200831号公報
In this TLPM 40, when the width of the trench 53 is 2.5 μm as described above as shown in FIG. 11b, which is partially enlarged, at least the necessary width 0 as the contact width of the opening 67 in the center of the insulating film 55 in the trench. Even if a 6 μm hole is provided, in order to ensure a dielectric breakdown voltage of 30 V required between the gate electrode 59 and the opening 67 (arrow dotted line T1), at least the required film thickness of 0. A sufficient thickness of 05 μm or more can be obtained. Since the TLPM 40 has a trench structure as described above, the size of the element can be made relatively small even in the case of a high breakdown voltage element as compared with a conventional planar type MOSFET having no trench 53. There is.
JP 2002-353447 A JP 2002-280549 A JP 2000-200241 A

しかしながら、前記TLPMは、トレンチに埋め込む層間絶縁膜として成膜速度の遅いHTO膜を厚く成膜する必要があるから、量産性が良くないという問題が生じる。たとえば、前述の寸法仕様のTLPMで、深さ2μmのトレンチをHTO膜で埋め、かつHTO膜の最表面を平坦化のためにCMPにより研磨するには、2μmを超える厚さのHTO膜を形成しなければならない。2μm以上の厚さのHTO膜の形成は成膜時間が長すぎるだけでなく、さらにHTO成膜装置の維持管理のために必要な補修頻度が多く、装置の効率的運用ができないという問題がある。詳述すると、HTO膜の成膜速度は1.5nm/分
程度が通常であるので、1.5nm/分の場合、前記2μmのHTO膜の厚さにするには、成膜時間として約22時間を必要とし、さらに、装置の補修頻度については、HTO膜の成膜装置のメンテナンスをHTO膜約4μm成膜毎に一回(すなわち、2μm厚のHTO膜の場合一回/2ロット)行なわなくてはならい。このような理由により前述のように、2μm厚を超えるHOT膜の成膜は量産性に問題がある。
However, the TLPM has a problem that the mass productivity is not good because it is necessary to form a thick HTO film having a low deposition rate as an interlayer insulating film embedded in the trench. For example, in order to fill a trench having a depth of 2 μm with an HTO film and polishing the outermost surface of the HTO film by CMP for planarization with the TLPM having the above-mentioned dimensional specifications, an HTO film having a thickness exceeding 2 μm is formed. Must. The formation of an HTO film having a thickness of 2 μm or more has a problem that not only the film formation time is too long, but also the frequency of repair necessary for maintenance of the HTO film formation apparatus is high, and the apparatus cannot be operated efficiently. . More specifically, since the film formation rate of the HTO film is usually about 1.5 nm / min, in the case of 1.5 nm / min, in order to obtain the thickness of the HTO film of 2 μm, the film formation time is about 22 Time is required and the maintenance of the HTO film is performed once for every 4 μm of HTO film (ie, once for 2 μm thick HTO film, 2 lots). It must be. For this reason, as described above, the formation of a HOT film having a thickness of more than 2 μm has a problem in mass productivity.

一方、前記特許文献3には、成膜速度がHTO膜より数倍速いTEOS酸化膜という絶縁膜が開示されている。ところが、前述のようなTLPM素子基板の表面に形成されるトレンチを埋め込むための絶縁膜として、前記TEOS酸化膜を用いると、確かに、成膜時間は短くなるが、前記TLPM素子を製造した場合、ゲート−ドレイン間の耐圧不良が多く発生した。この原因は前記トレンチ部分の絶縁膜の膜厚が2μm以上と厚いため、膜中に存在するCやHなどの原子や分子により、絶縁耐圧が低下したためと考えられた。実際に、OBIC(Optical Beam Induced Current)法、断面観察等により、リーク個所を調べると、図11bに示すようにT1、T2などの矢印のところで、多くリークが見られた。SIMS(Secondery Ion Mass Spectrum)分析(二次イオン質量分析)によると、前記TEOS酸化膜の絶縁耐圧が低下した原因は炭素等の残留不純物によるものと考えられた。   On the other hand, Patent Document 3 discloses an insulating film called a TEOS oxide film whose deposition rate is several times faster than that of an HTO film. However, when the TEOS oxide film is used as the insulating film for embedding the trench formed on the surface of the TLPM element substrate as described above, the film formation time is surely shortened, but the TLPM element is manufactured. Many breakdown defects occurred between the gate and the drain. The reason for this is thought to be that the insulation breakdown voltage was reduced by atoms and molecules such as C and H existing in the film because the thickness of the insulating film in the trench portion was as thick as 2 μm or more. Actually, when the leak location was examined by the OBIC (Optical Beam Induced Current) method, cross-sectional observation, etc., many leaks were observed at the arrows such as T1 and T2 as shown in FIG. 11b. According to SIMS (Secondary Ion Mass Spectrum) analysis (secondary ion mass spectrometry), it was considered that the cause of the decrease in the withstand voltage of the TEOS oxide film was due to residual impurities such as carbon.

前記OBIC法は、半導体装置の故障解析手法の一例として、半導体装置にレーザ光を走査照射し、半導体置に発生する電子− 正孔対に起因した光励起電流を観測する光励起顕微鏡を用いた公知の手法である。
本発明は、以上、述べた問題点に鑑みてなされたものであり、本発明の目的は、絶縁ゲート型電界効果トランジスタの製造方法において、ゲート−ドレイン間の絶縁不良を増やすことなく、より短時間に効率的にトレンチ埋め込み絶縁膜を形成することのできる絶縁ゲート型電界効果トランジスタの製造方法を提供することである。
The OBIC method is a known example of a failure analysis method for a semiconductor device, which uses a light excitation microscope that scans and irradiates a semiconductor device with laser light and observes a photoexcitation current caused by electron-hole pairs generated in the semiconductor device. It is a technique.
The present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the number of gate-drain insulation defects in a method for manufacturing an insulated gate field-effect transistor without increasing the number of defects. An object of the present invention is to provide a method of manufacturing an insulated gate field effect transistor capable of efficiently forming a trench buried insulating film in time.

特許請求の範囲の請求項1記載の本発明によれば、前記目的は、第一導電型の半導体基板に、トレンチを形成する工程と、前記トレンチ底部に第二導電型 第一領域を形成する工程と、前記トレンチの側壁にゲート絶縁膜を介してゲート電極膜を形成する工程と、半導体基板に前記トレンチに隣接して形成される第二導電型第二領域を形成する工程と、前記トレンチ内に絶縁膜を埋め込む工程と、前記絶縁膜表面から前記第一領域に達する開口部を形成する工程と、該開口部に金属プラグを埋め込む工程とを備える絶縁ゲート型電界効果トランジスタの製造方法において、
前記絶縁膜を埋め込む工程が、第一TEOS酸化膜を前記トレンチの形状に沿って凹部ができる厚さに堆積して不純物となる炭素を除去するためのアニール処理をすることにより0.05μm以上の第一絶縁膜を形成する工程と、該第一絶縁膜上に第二TEOS酸化膜を堆積し前記不純物となる炭素を除去するためのアニール処理を行わないことにより第二絶縁膜を形成する工程とからなる絶縁ゲート型電界効果トランジスタの製造方法とすることにより、達成される。
According to the first aspect of the present invention, the object is to form a trench in the first conductivity type semiconductor substrate and to form a second conductivity type first region at the bottom of the trench. A step of forming a gate electrode film on a sidewall of the trench through a gate insulating film, a step of forming a second conductivity type second region formed adjacent to the trench on a semiconductor substrate, and the trench In a method of manufacturing an insulated gate field effect transistor , comprising: embedding an insulating film therein ; forming an opening reaching the first region from the surface of the insulating film; and embedding a metal plug in the opening . ,
In the step of embedding the insulating film, the first TEOS oxide film is deposited to a thickness capable of forming a recess along the shape of the trench , and an annealing process is performed to remove carbon that is an impurity, so that the thickness is 0.05 μm or more. A step of forming a first insulating film, and a step of forming a second insulating film by depositing a second TEOS oxide film on the first insulating film and not performing an annealing process for removing carbon as the impurity with the manufacturing method of an insulated gate field effect transistor consisting of, it is achieved.

特許請求の範囲の請求項2記載の本発明によれば、前記絶縁膜を埋め込む工程後、前記絶縁膜を研磨する平坦化工程を備えた請求項1に記載の絶縁ゲート型電界効果トランジスタの製造方法ことが好ましい。
特許請求の範囲の請求項3記載の本発明によれば、前記開口部の幅は、前記凹部の幅よりも広い請求項1または2に記載の絶縁ゲート型電界効果トランジスタの製造方法ことがより好ましい。
According to the second aspect of the present invention, the insulated gate field effect transistor according to claim 1, further comprising a planarization step of polishing the insulating film after the step of embedding the insulating film. The method is preferred.
According to the third aspect of the present invention, the method for manufacturing an insulated gate field effect transistor according to claim 1 or 2, wherein the width of the opening is wider than the width of the recess. preferable.

本発明によれば、絶縁ゲート型電界効果トランジスタの製造方法において、ゲートドレイン間の絶縁不良を増やすことなく、より短時間に効率的にトレンチ埋め込み絶縁膜を形成することのできる絶縁ゲート型電界効果トランジスタの製造方法を提供することができる。   According to the present invention, in a method of manufacturing an insulated gate field effect transistor, an insulated gate field effect capable of efficiently forming a trench-filled insulating film in a shorter time without increasing insulation failure between the gate and drain. A method for manufacturing a transistor can be provided.

以下、本発明にかかる一実施例について、図面を用いて詳細に説明する。以下の実施例ではトレンチ絶縁ゲート型電界効果トランジスタとして、TLPM/Dの場合について説明するが、TLPM/Sの場合についても同様に本発明にかかる半導体基板の製造方法により作ることができることは言うまでもない。本発明の要旨を超えない限り、本発明は以下説明する実施例の記載に限定されるものではない。   Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings. In the following embodiments, the case of TLPM / D will be described as a trench insulated gate field effect transistor, but it goes without saying that the case of TLPM / S can be similarly produced by the method for manufacturing a semiconductor substrate according to the present invention. . As long as the gist of the present invention is not exceeded, the present invention is not limited to the description of the examples described below.

本発明にかかる絶縁ゲート型電界効果トランジスタの製造方法について、以下説明する。図1は、前記従来の図8に示すTLPMの製造工程における一要部断面図に対応する本発明にかかるTLPMの製造工程における要部断面図である。図1(a)はトレンチ3内に第一絶縁膜5aを形成する工程に対応するTLPMの要部断面図、図1(b)はトレンチ3内に第二絶縁膜5bを形成する工程に対応するTLPMの要部断面図をそれぞれ示す。前記図8に至るまでの製造工程は前記従来の図4〜図7に示す製造工程とほぼ同じであるから、ここでは簡略に説明する。
前記従来の図4〜図7に示すように、図1でP型Si基板(P sub)1にPウェル層2、トレンチ3、Nドレイン層4および図示しないLOCOS酸化膜等を周知の技術により形成後、ゲート酸化膜7を熱酸化法により形成し、全面にポリシリコン膜(図示せず)をCVD法により成膜した後、RIEなどの異方性エッチングにより前記ポリシリコン膜をパターニング加工してゲート電極膜9を形成する。次にイオン注入により、Nソース領域8を形成する。
A method for manufacturing an insulated gate field effect transistor according to the present invention will be described below. FIG. 1 is a cross-sectional view of the main part in the manufacturing process of the TLPM according to the present invention corresponding to the cross-sectional view of the main part in the manufacturing process of the TLPM shown in FIG. 1A is a cross-sectional view of the main part of the TLPM corresponding to the step of forming the first insulating film 5a in the trench 3, and FIG. 1B corresponds to the step of forming the second insulating film 5b in the trench 3. The principal part sectional drawing of TLPM which performs is shown, respectively. The manufacturing process up to FIG. 8 is almost the same as the conventional manufacturing process shown in FIGS. 4 to 7 and will be described briefly here.
As shown in FIGS. 4 to 7, the P well layer 2, the trench 3, the N drain layer 4, the LOCOS oxide film (not shown) and the like are formed on the P type Si substrate (P sub) 1 in FIG. After the formation, a gate oxide film 7 is formed by a thermal oxidation method, and a polysilicon film (not shown) is formed on the entire surface by a CVD method, and then the polysilicon film is patterned by anisotropic etching such as RIE. Thus, the gate electrode film 9 is formed. Next, an N source region 8 is formed by ion implantation.

次に、前記図1(a)に示すように、第一絶縁膜としてTEOS酸化膜5aをトレンチ3が埋まらず、トレンチ3形状に沿って凹部ができる程度以下の厚さ1μm厚に成膜する。TEOS酸化膜の成膜は、流量130ml/分のTEOSガスと流量6ml/分の酸素ガスをヒーター温度680℃、60Paの成膜室に導入し、成膜速度4nm/分で成膜した。次にこのTEOS5a膜を酸素雰囲気中で850℃、30分間アニール処理を行なうことにより、前記TEOS酸化膜の形成過程において、TEOSガスの熱分解により生成される酸化シリコンが堆積して酸化膜化する際、同時に巻き込まれて閉じ込められた還元炭素成分を除去することができる。前記アニール温度は、前述の半導体基板に形成されたソース領域、ドレイン領域等の不純物拡散層を熱処理により実質的に変化させないという観点から、850℃以下とすることが望ましい。その結果、前記TEOS酸化膜の絶縁性を高めることができる。この処理により、たとえば、アニール処理前には4MΩ/cmであったTEOS酸化膜5aの抵抗率がアニール後には10MΩ/cm近くまで高くなった。   Next, as shown in FIG. 1A, a TEOS oxide film 5a is formed as a first insulating film to a thickness of 1 μm or less so that a recess is formed along the shape of the trench 3 without filling the trench 3. . The TEOS oxide film was formed by introducing TEOS gas at a flow rate of 130 ml / min and oxygen gas at a flow rate of 6 ml / min into a film formation chamber at a heater temperature of 680 ° C. and 60 Pa, and a film formation rate of 4 nm / min. Next, the TEOS 5a film is annealed at 850 ° C. for 30 minutes in an oxygen atmosphere, so that silicon oxide generated by thermal decomposition of the TEOS gas is deposited and formed into an oxide film in the process of forming the TEOS oxide film. At the same time, the reduced carbon component caught and trapped at the same time can be removed. The annealing temperature is desirably 850 ° C. or lower from the viewpoint that the impurity diffusion layers such as the source region and the drain region formed on the semiconductor substrate are not substantially changed by the heat treatment. As a result, the insulation property of the TEOS oxide film can be improved. By this treatment, for example, the resistivity of the TEOS oxide film 5a, which was 4 MΩ / cm before the annealing treatment, increased to nearly 10 MΩ / cm after the annealing.

次に図1(b)に示すように、第二絶縁膜として、再度、TEOS酸化膜5bをトレンチが完全に埋まる厚さ1μm厚に成膜し、第一絶縁膜と同様に、850℃、30分のアニール処理を施した。前記第二絶縁膜としてのTEOS酸化膜5bについては、必ずしも、アニール処理を必要とするものではない。前記850℃、30分のアニール処理では、表面から1μm程度の厚さにおける炭素等の不純物を除去できるのみであるが、第二TEOS酸化膜5bについても前記アニール処理を行った方が、後工程においてCMPにより研磨する際に、第一絶縁膜5aと第二絶縁膜5bの膜質が同じになり、研磨速度に差が無くなると言う点からは好ましい。
図10は図1(b)にLOCOS酸化膜6を追加して示した図である。その後、前記TEOS酸化膜5bの表面の凹凸を平坦化するために、図12に示すように、CMPにより研磨し、図11(a)に示すようにTLPM領域の各電極位置に対応するように、開口部(コンタクト孔)16、17、18をフォトリソグラフ技術により形成し、前記開口部16、17、18にTi−TiN膜などのバリアメタル20、21、22、タングステンなどの埋め込み金属プラグ24、25、26およびアルミニウム膜などの金属電極膜28、29、30をこの順に形成すると、図3に示す本発明のTLPM素子100が完成する。ここで、開口部17の幅を制御し、トレンチ内の第二絶縁膜5bが除去されて無くなる程度の開口部幅(たとえば、幅1μm)とすると、トレンチ内の絶縁膜中に炭素等の不純物が残留することも無くなるので、信頼性が向上する。
Next, as shown in FIG. 1B, as the second insulating film, the TEOS oxide film 5b is again formed to a thickness of 1 μm so that the trench is completely filled. An annealing treatment for 30 minutes was performed. The TEOS oxide film 5b as the second insulating film does not necessarily require annealing. The annealing process at 850 ° C. for 30 minutes can only remove impurities such as carbon having a thickness of about 1 μm from the surface, but the second TEOS oxide film 5b is also subjected to the annealing process after the annealing process. In the polishing by CMP, the first insulating film 5a and the second insulating film 5b have the same film quality, which is preferable from the point that there is no difference in the polishing rate.
FIG. 10 shows the LOCOS oxide film 6 added to FIG. Thereafter, in order to flatten the unevenness on the surface of the TEOS oxide film 5b, as shown in FIG. 12, it is polished by CMP so as to correspond to each electrode position in the TLPM region as shown in FIG. , Openings (contact holes) 16, 17, 18 are formed by a photolithographic technique. Barrier metals 20, 21, 22 such as a Ti—TiN film and buried metal plugs 24 such as tungsten are formed in the openings 16, 17, 18. , 25, 26 and metal electrode films 28, 29, 30 such as an aluminum film are formed in this order, the TLPM element 100 of the present invention shown in FIG. 3 is completed. Here, when the width of the opening 17 is controlled so that the opening width is such that the second insulating film 5b in the trench is removed and removed (for example, 1 μm in width), impurities such as carbon are contained in the insulating film in the trench. As a result, the reliability is improved.

前記タングステンプラグ24、25、26は次のようにして形成される。まず、前記Ti−TiN膜上に、六フッ化タングステンとモノシランを用いた還元反応によるタングステンの核生成後、六フッ化タングステンと水素を用いた還元反応により前記開口部(コンタクト孔)16、17、18を埋めるの厚さ以上のタングステン膜を形成する。次にドライエッチングにより、前記開口部(コンタクト孔)16、17、18以外のタングステン膜をエッチバックして除去して前記タングステンプラグを形成する。
TLPM素子の前記トレンチ内に前記TEOS酸化膜を埋め込む場合、前述のように、トレンチ内の絶縁膜中のソース電極とドレイン電極(特にはポリシリコンガート電極とドレイン用コンタクト孔との間)間の絶縁耐圧を満たすためには、TEOS酸化膜内に残留する炭素のような不純物を除去すると共に、両電極間を0.05μm以上とすることが必要である。第一絶縁膜5aおよび第二絶縁膜5bは850℃で30分のアニール処理がされることがこのましいが、このアニール処理条件によれば、抵抗率は10MΩ/cmと十分に高抵抗率になり、第一絶縁膜のみでも十分に前記条件を満たすので、第二絶縁膜としてのTEOS酸化膜5bは前述したように必ずしもアニール処理をして高抵抗化しなくとも、実用上、問題はないのである。
The tungsten plugs 24, 25 and 26 are formed as follows. First, after nucleation of tungsten by a reduction reaction using tungsten hexafluoride and monosilane on the Ti-TiN film, the openings (contact holes) 16 and 17 by a reduction reaction using tungsten hexafluoride and hydrogen. , 18 is formed to form a tungsten film having a thickness equal to or greater than the thickness. Next, by dry etching, the tungsten film other than the openings (contact holes) 16, 17 and 18 is etched back and removed to form the tungsten plug.
When the TEOS oxide film is embedded in the trench of the TLPM element, as described above, between the source electrode and the drain electrode (particularly between the polysilicon gart electrode and the drain contact hole) in the insulating film in the trench. In order to satisfy the withstand voltage, it is necessary to remove impurities such as carbon remaining in the TEOS oxide film and to make the distance between both electrodes 0.05 μm or more. The first insulating film 5a and the second insulating film 5b are preferably annealed at 850 ° C. for 30 minutes. However, according to the annealing conditions, the resistivity is sufficiently high at 10 MΩ / cm. Therefore, the TEOS oxide film 5b as the second insulating film does not necessarily have a problem in practice even if it is not necessarily annealed to increase the resistance, as described above, because only the first insulating film satisfies the above conditions. It is.

前述のトレンチへ埋め込む絶縁膜を、本発明にかかるTEOS酸化膜により形成する場合と、従来のように、HTO酸化膜のみにより形成する場合とについて、10ロット分の膜の形成と必要な処理や装置維持時間をあわせた時間とを比較すると、次のようになった。但し、HTO膜の成膜時間は膜厚は2μmの場合であり、TEOS酸化膜の成膜時間は膜厚1μmを2回成膜した場合である。TEOS酸化膜とHTO膜の成膜およびアニール処理とも、昇温と降温時間を含み、装置のメンテナンス時間は1回4時間とする。   In the case where the insulating film embedded in the trench is formed by the TEOS oxide film according to the present invention and in the case where the insulating film is formed only by the HTO oxide film as in the prior art, the film formation for 10 lots and the necessary processing are performed. A comparison of the time with the device maintenance time is as follows. However, the film formation time of the HTO film is when the film thickness is 2 μm, and the film formation time of the TEOS oxide film is when the film thickness of 1 μm is formed twice. Both the TEOS oxide film and the HTO film and annealing treatment include temperature rise and temperature drop times, and the maintenance time of the apparatus is 4 hours once.

Figure 0004764988
Figure 0004764988

表1から分かるように、本発明の絶縁ゲート型電界効果トランジスタの製造方法によれば、従来のHTO膜では10ロット全部で226時間かかっていたものが、10ロットで114時間と半減することができた。
本発明により作成されたTLPM素子100個と従来の製造方法により作成されたTLPM素子100個について、トレンチ内のゲート電極とドレイン用コンタクト孔の間の絶縁耐圧について調べたところ、本発明にかかるTLPM素子の場合の前記絶縁耐圧は120V±10Vであるのに対して、従来の製造方法によるTLPM素子の場合の絶縁耐圧は118V±10Vであり、同程度の絶縁耐圧であった。
次に、本発明と、成膜時間について比較するために、TEOS酸化膜を1回で膜厚2μmを成膜する場合について、その成膜時間を調べた。本発明では前記表1から1ロットの成膜時間が10時間かかるのに比べ、1回で膜厚2μmとする場合の成膜時間は8.5時間と、1.5時間短縮できる。しかし、本発明の場合は、1回目のTEOS酸化膜5aでは、図1(a)でも示したように、トレンチ3がすべて酸化膜で埋まっていないので、850℃、30分のアニール処理により不純物が除去されて高抵抗化が可能であり、併せてアニール処理1回の場合(第一絶縁膜だけをアニール処理する場合)で10.5時間、2回のアニール処理の場合(第一、第二絶縁膜共アニール処理する場合)で11時間となる。
As can be seen from Table 1, according to the method of manufacturing an insulated gate field effect transistor of the present invention, the conventional HTO film, which took 226 hours in all 10 lots, can be halved to 114 hours in 10 lots. did it.
With respect to 100 TLPM elements created according to the present invention and 100 TLPM elements created by a conventional manufacturing method, the dielectric breakdown voltage between the gate electrode in the trench and the drain contact hole was examined. The dielectric strength in the case of the element is 120V ± 10V, whereas the dielectric strength in the case of the TLPM element according to the conventional manufacturing method is 118V ± 10V, which is a comparable dielectric strength.
Next, in order to compare the present invention with the film formation time, the film formation time was examined in the case of forming a TEOS oxide film with a film thickness of 2 μm at a time. According to the present invention, the film formation time for one lot from the above Table 1 takes 10 hours, but the film formation time for one film thickness of 2 μm can be shortened to 8.5 hours, which is 1.5 hours. However, in the case of the present invention, in the first TEOS oxide film 5a, as shown in FIG. 1A, since the trench 3 is not completely filled with the oxide film, the impurity is obtained by annealing at 850 ° C. for 30 minutes. In the case of one annealing treatment (when only the first insulating film is annealed) for 10.5 hours and two annealing treatments (first and second) 11 hours in the case of annealing the two insulating films).

一方、一度に膜厚2μmを成膜すると、TLPM素子に形成されるトレンチ幅が2.5μmと狭いので、早くにトレンチが埋められ、膜厚2μm成膜時にはトレンチ部の表面から底部までのTEOS酸化膜の膜厚は4μmになり、もはや30分のアニール処理では時間的に不充分であり、十分に不純物を除去することはできない。膜厚が4μmの場合、十分に不純物が除去されたTEOS酸化膜とするためにはアニール処理時間を8時間にする必要のあることが分かった。
この結果、成膜時間と前記アニール処理時間と前後の昇温、降温時間の30分を加えると、併せて17時間となる。従って、膜厚1μmのTEOS酸化膜を2回成膜する方が時間が短いことが分かる。前記TEOS酸化膜から炭素原子Cを除去するために必要な時間について以下説明する。炭素原子Cの元の位置(閉じ込められた膜中位置)からの拡散距離xで、t時間後の濃度C(x,t)を表す拡散方程式は、次式で表される。この式で、Csは炭素原子の初期濃度、Dは炭素の拡散常数である。
On the other hand, when a film thickness of 2 μm is formed at a time, the trench width formed in the TLPM element is as narrow as 2.5 μm. The thickness of the oxide film is 4 μm, and the annealing process for 30 minutes is no longer sufficient in time, and impurities cannot be removed sufficiently. It has been found that when the film thickness is 4 μm, the annealing time needs to be 8 hours in order to obtain a TEOS oxide film from which impurities are sufficiently removed.
As a result, when the film formation time, the annealing time, and the temperature increase / decrease time of 30 minutes are added, the total time is 17 hours. Therefore, it can be seen that the time is shorter when the TEOS oxide film having a thickness of 1 μm is formed twice. The time required for removing carbon atoms C from the TEOS oxide film will be described below. A diffusion equation representing the concentration C (x, t) after t time with the diffusion distance x from the original position of carbon atom C (contained position in the film) is expressed by the following equation. In this formula, Cs is the initial concentration of carbon atoms, and D is the carbon diffusion constant.

Figure 0004764988
Figure 0004764988

この式より、TEOS酸化膜中から炭素原子Cを外部に拡散により移動させて排除するには、前記式中の拡散距離xをTEOS酸化膜の膜厚に想定してみると、TEOS酸化膜の膜厚は(Dt)1/2に関係して決まることがわかる。言い換えれば、前述の一回目のTEOS酸化膜5aの膜厚が1μmの場合のアニール時間30分が、トレンチ部分の膜厚4μmの場合には8時間のアニール時間が必要となったことが示すように、アニール処理する膜厚が4倍(1μmが4μm)になれば、その処理時間は16倍(30分が8時間)になるということである。それでも、前記TEOS酸化膜(4μm膜厚)の場合は、従来の膜厚2μmのHTO膜でトレンチを埋める方法(処理時間21時間)よりも処理時間は大幅に短縮することができる。 From this equation, in order to remove the carbon atoms C from the TEOS oxide film by diffusion to the outside, assuming that the diffusion distance x in the equation is the film thickness of the TEOS oxide film, the TEOS oxide film It can be seen that the film thickness is determined in relation to (Dt) 1/2 . In other words, it shows that the annealing time of 30 minutes when the film thickness of the first TEOS oxide film 5a is 1 μm is required, and that the annealing time of 8 hours is required when the film thickness of the trench is 4 μm. Furthermore, if the film thickness to be annealed is 4 times (1 μm is 4 μm), the processing time is 16 times (30 minutes is 8 hours). Nevertheless, in the case of the TEOS oxide film (4 μm film thickness), the processing time can be significantly shortened compared with the conventional method of filling the trench with a 2 μm thick HTO film (processing time 21 hours).

TLPM素子において、第二絶縁膜としてのTEOS酸化膜5bについて、アニール処理をしない場合について、以下詳細に説明する。トレンチ内を埋める酸化膜に要求される仕様は、酸化膜中のドレイン電極とソース電極間の耐圧を確保するために必要な、アニール処理された酸化膜の膜厚は少なくとも0.05μm以上である。また、本実施例ではLOCOS酸化膜の厚みは0.2μmであり、CMPの研磨量が1.5μmであるため、図12に示すように本発明にかかるTEOS酸化膜5a、5bのうち、上部1.3μmは研磨により除去される。また、1回目のTEOS酸化膜5a(膜厚1μm)のアニール処理により必要な耐圧を確保できるため、2回目のTEOS酸化膜5bについては、必ずしもアニール処理を行なう必要がない。そこで、実際に素子を作成し、その効果を確かめた。
2回目のアニール処理を行わないことにより、2回目のTEOS酸化膜5bの高抵抗化はされないので、CMPの研磨速度、およびTEOS酸化膜のエッチング速度の変動が懸念されるため、その懸念を確認するための実験を行った。その結果を表2に示す。表2より分かるように、アニール処理の有無によりTEOS酸化膜の研磨速度の変動(850mm/分が760mm/分に変動)は見られたが、CMPは表面をパッドに押し付けて研磨を行うものであり、研磨速度は表面に出ている遅いものに律則されて研磨されるため、実際には問題無いと思われる。酸化膜エッチャによるエッチング速度の変動は、共に210mm/分で、全く見られなかった。この結果を踏まえて、実際にTLPM素子に適用したところCMP研磨およびコンタクト孔の加工形状にはほとんど問題が見られなかった。
In the TLPM element, the case where the TEOS oxide film 5b as the second insulating film is not annealed will be described in detail below. The specification required for the oxide film filling the trench is that the annealed oxide film thickness is at least 0.05 μm or more necessary to ensure the withstand voltage between the drain electrode and the source electrode in the oxide film. . In this embodiment, the thickness of the LOCOS oxide film is 0.2 μm, and the polishing amount of CMP is 1.5 μm. Therefore, as shown in FIG. 12, among the TEOS oxide films 5a and 5b according to the present invention, 1.3 μm is removed by polishing. Further, since the required breakdown voltage can be secured by the first annealing process of the TEOS oxide film 5a (film thickness: 1 μm), the second TEOS oxide film 5b does not necessarily need to be annealed. Therefore, an element was actually created and the effect was confirmed.
Since the second TEOS oxide film 5b is not increased in resistance by not performing the second annealing process, there is a concern about fluctuations in the polishing rate of the CMP and the etching rate of the TEOS oxide film. An experiment was conducted. The results are shown in Table 2. As can be seen from Table 2, although the TEOS oxide film polishing rate fluctuated (from 850 mm / min to 760 mm / min) depending on the presence or absence of annealing treatment, CMP is performed by pressing the surface against the pad. In addition, the polishing speed is regulated by the slow one appearing on the surface, so that it is considered that there is actually no problem. Variations in the etching rate due to the oxide film etcher were both 210 mm / min and were not seen at all. Based on this result, when actually applied to a TLPM element, there was almost no problem in the CMP polishing and the processed shape of the contact hole.

Figure 0004764988
Figure 0004764988

実施例2にかかるTLPM素子を以下の手順で作成した。実施例1と同様に一回目のTEOS酸化膜5aを1μm成膜後、850℃で30分のアニール処理をした。次に、二回目のTEOS酸化膜5bを膜厚1μmに形成し、その後のアニール処理を行わず、従来技術と同様にCMPにより1.3μm研磨後、コンタクト孔を開口し、開口内にバリアメタル、埋め込み用タングステンプラグ、金属電極を形成した。
前述の実施例2により得られたTLPM素子100個と従来技術で作成した素子100個について、前記図11bの矢印点線Tと同様、ゲート電極―ドレイン用プラグ間の絶縁耐圧について調べた。本発明の場合の絶縁耐圧は119V±10Vであったのに対し、従来法の場合の絶縁耐圧は118V±10Vとほぼ同等であった。また、実施例1で説明したものと同じ絶縁耐圧を持つことを実際のTLPM素子で確認できた。このことは、一回目のTEOS酸化膜5aのアニール処理により実効的な絶縁耐圧を持つのに有効な改質(高抵抗化)が行われた結果を示すものと考えられる
A TLPM element according to Example 2 was prepared by the following procedure. As in Example 1, the first TEOS oxide film 5a was formed to a thickness of 1 μm, and then annealed at 850 ° C. for 30 minutes. Next, a second TEOS oxide film 5b is formed to a thickness of 1 μm, and after that, annealing is not performed, and after polishing 1.3 μm by CMP as in the prior art, a contact hole is opened and a barrier metal is formed in the opening. Then, a buried tungsten plug and a metal electrode were formed.
With respect to 100 TLPM elements obtained by the above-described Example 2 and 100 elements prepared by the conventional technique, the withstand voltage between the gate electrode and the drain plug was examined in the same manner as the dotted line T in FIG. The withstand voltage in the case of the present invention was 119V ± 10V, whereas the withstand voltage in the case of the conventional method was almost equal to 118V ± 10V. Moreover, it has confirmed with an actual TLPM element that it has the same withstand voltage as that described in the first embodiment. This is considered to indicate the result of the effective modification (high resistance) for having an effective withstand voltage by the first annealing process of the TEOS oxide film 5a.

以上説明した実施例1と2では、第一絶縁膜5a、第二絶縁膜5b共、TEOS酸化膜をもちいたが、第一絶縁膜はHTO膜とすることもできる。必要に応じて、さらに第三絶縁膜としてのTEOS酸化膜を形成することができる。この場合、第三絶縁膜としてのTEOS酸化膜の厚さは0.5μm乃至1μmとなる。この第三絶縁膜は、すでに第二絶縁膜により、絶縁耐圧が確保されているので、アニール処理を必要としない。   In the first and second embodiments described above, the TEOS oxide film is used for both the first insulating film 5a and the second insulating film 5b, but the first insulating film may be an HTO film. If necessary, a TEOS oxide film as a third insulating film can be further formed. In this case, the thickness of the TEOS oxide film as the third insulating film is 0.5 μm to 1 μm. This third insulating film does not require an annealing process because the withstand voltage is already secured by the second insulating film.

本発明の製造方法により作られる絶縁ゲート型電界効果トランジスタの模式的断面図Schematic sectional view of an insulated gate field effect transistor made by the manufacturing method of the present invention 本発明の製造方法により作られる絶縁ゲート型電界効果トランジスタの要部平面図The principal part top view of the insulated gate field effect transistor made by the manufacturing method of this invention 本発明の製造方法により作られる絶縁ゲート型電界効果トランジスタの要部断面図Sectional drawing of the principal part of the insulated gate field effect transistor made by the manufacturing method of this invention 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる製造工程における一ステップの半導体装置の要部断面図Sectional drawing of the principal part of the one-step semiconductor device in the manufacturing process concerning the manufacturing method of the conventional insulated gate field effect transistor 本発明の製造方法にかかる製造工程における絶縁ゲート型電界効果トランジスタの一ステップの要部断面図模式的断面図Sectional drawing of an essential part of one step of an insulated gate field effect transistor in the manufacturing process according to the manufacturing method of the present invention. (a)は本発明の製造方法により作られる絶縁ゲート型電界効果トランジスタの要部断面図、(b)は本発明の製造方法により作られる絶縁ゲート型電界効果トランジスタの模式的拡大断面図(A) is principal part sectional drawing of the insulated gate field effect transistor made by the manufacturing method of this invention, (b) is typical expanded sectional view of the insulated gate field effect transistor made by the manufacturing method of this invention 本発明の製造方法にかかる製造工程における絶縁ゲート型電界効果トランジスタの一ステップの要部断面図Sectional drawing of the principal part of one step of the insulated gate field effect transistor in the manufacturing process according to the manufacturing method of the present invention 従来の絶縁ゲート型電界効果トランジスタの製造方法にかかる半導体装置の要部平面図Plan view of relevant part of a semiconductor device according to a conventional method of manufacturing an insulated gate field effect transistor 従来の絶縁ゲート型電界効果トランジスタの製造方法により作られる半導体装置の模式的断面図Schematic cross-sectional view of a semiconductor device manufactured by a conventional method of manufacturing an insulated gate field effect transistor

符号の説明Explanation of symbols

1 P型Si基板
2 Pウェル領域
3 トレンチ
4 Nドレイン領域
5a 第一絶縁膜
5b 第二絶縁膜
6 LOCOS酸化膜(素子分離酸化膜)
7 ゲート酸化膜
8 Nソース領域
9 ゲート電極膜
16、17、18 開口部(コンタクト孔)
20、21、22 バリアメタル
24、25、26 タングステンプラグ
28、29、30 金属電極
40 絶縁ゲート型電界効果型トランジスタ、TLPM(トレンチ横型MOSFET)
100 本発明にかかるTLPM素子(トレンチ横型MOSFET)。
1 P-type Si substrate 2 P well region 3 Trench 4 N drain region 5a First insulating film 5b Second insulating film 6 LOCOS oxide film (element isolation oxide film)
7 Gate oxide film 8 N source region 9 Gate electrode film 16, 17, 18 Opening (contact hole)
20, 21, 22 Barrier metal 24, 25, 26 Tungsten plug 28, 29, 30 Metal electrode 40 Insulated gate field effect transistor, TLPM (trench lateral MOSFET)
100 TLPM element (trench lateral MOSFET) according to the present invention.

Claims (3)

第一導電型の半導体基板に、トレンチを形成する工程と、前記トレンチ底部に第二導電型 第一領域を形成する工程と、前記トレンチの側壁にゲート絶縁膜を介してゲート電極膜を形成する工程と、半導体基板に前記トレンチに隣接して形成される第二導電型第二領域を形成する工程と、前記トレンチ内に絶縁膜を埋め込む工程と、前記絶縁膜表面から前記第一領域に達する開口部を形成する工程と、該開口部に金属プラグを埋め込む工程とを備える絶縁ゲート型電界効果トランジスタの製造方法において、
前記絶縁膜を埋め込む工程が、第一TEOS酸化膜を前記トレンチの形状に沿って凹部ができる厚さに堆積して不純物となる炭素を除去するためのアニール処理をすることにより0.05μm以上の第一絶縁膜を形成する工程と、該第一絶縁膜上に第二TEOS酸化膜を堆積し前記不純物となる炭素を除去するためのアニール処理を行わないことにより第二絶縁膜を形成する工程とからなることを特徴とする絶縁ゲート型電界効果トランジスタの製造方法。
Forming a trench in a first conductivity type semiconductor substrate; forming a second conductivity type first region at the bottom of the trench; and forming a gate electrode film on a sidewall of the trench through a gate insulating film. A step of forming a second region of a second conductivity type formed adjacent to the trench on the semiconductor substrate, a step of embedding an insulating film in the trench, and reaching the first region from the surface of the insulating film In a method of manufacturing an insulated gate field effect transistor comprising the steps of forming an opening and embedding a metal plug in the opening
In the step of embedding the insulating film, the first TEOS oxide film is deposited to a thickness capable of forming a recess along the shape of the trench , and an annealing process is performed to remove carbon that is an impurity, so that the thickness is 0.05 μm or more. A step of forming a first insulating film, and a step of forming a second insulating film by depositing a second TEOS oxide film on the first insulating film and not performing an annealing process for removing carbon as the impurity insulated gate field effect method for producing a transistor, characterized by comprising a.
前記絶縁膜を埋め込む工程後、研磨による平坦化工程を備えたことを特徴とする請求項1に記載の絶縁ゲート型電界効果トランジスタの製造方法。2. The method of manufacturing an insulated gate field effect transistor according to claim 1, further comprising a planarization step by polishing after the step of embedding the insulating film. 前記開口部の幅は、前記凹部の幅よりも広いことを特徴とする請求項5記載の絶縁ゲート型電界効果トランジスタの製造方法。6. The method of manufacturing an insulated gate field effect transistor according to claim 5, wherein the width of the opening is wider than the width of the recess.
JP2004221159A 2004-07-29 2004-07-29 Method for manufacturing insulated gate field effect transistor Expired - Fee Related JP4764988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221159A JP4764988B2 (en) 2004-07-29 2004-07-29 Method for manufacturing insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221159A JP4764988B2 (en) 2004-07-29 2004-07-29 Method for manufacturing insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JP2006041307A JP2006041307A (en) 2006-02-09
JP4764988B2 true JP4764988B2 (en) 2011-09-07

Family

ID=35905960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221159A Expired - Fee Related JP4764988B2 (en) 2004-07-29 2004-07-29 Method for manufacturing insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JP4764988B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130896A (en) * 2006-11-22 2008-06-05 Fuji Electric Device Technology Co Ltd Semiconductor device
JP4561747B2 (en) * 2007-01-11 2010-10-13 富士電機システムズ株式会社 Semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476727A (en) * 1987-09-17 1989-03-22 Nec Corp Manufacture of semiconductor device
JP2659600B2 (en) * 1990-01-18 1997-09-30 三菱電機株式会社 Method for manufacturing semiconductor device
JPH03242934A (en) * 1990-02-21 1991-10-29 Mitsubishi Electric Corp Formation of semiconductor film
JP2538740B2 (en) * 1992-06-09 1996-10-02 株式会社半導体プロセス研究所 Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2666681B2 (en) * 1993-06-11 1997-10-22 日本電気株式会社 Method for manufacturing semiconductor device
JP2757782B2 (en) * 1994-06-30 1998-05-25 日本電気株式会社 Method for manufacturing semiconductor device
JP3245136B2 (en) * 1999-09-01 2002-01-07 キヤノン販売株式会社 Method of improving film quality of insulating film
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2004207706A (en) * 2002-12-10 2004-07-22 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2006041307A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
TWI754161B (en) A semiconductor-on-insulator (soi) substrate and method for forming the same
US9755069B2 (en) Semiconductor device
US9029237B2 (en) Semiconductor device and method of manufacturing the same
JP6335089B2 (en) Manufacturing method of semiconductor device
US20060166419A1 (en) Method for manufacturing semiconductor device
US7790551B2 (en) Method for fabricating a transistor having a recess gate structure
TWI515893B (en) Vertical power mosfet and method for manufacturing the same
US8592284B2 (en) Semiconductor device and manufacturing method thereof
TW201338053A (en) Semiconductor structure and method for fabricating the same
JP5198760B2 (en) Semiconductor device and manufacturing method thereof
JP2006066438A (en) Semiconductor device and its manufacturing method
US10453958B2 (en) Semiconductor device and manufacturing method for semiconductor device
JP3877672B2 (en) Manufacturing method of semiconductor device
JP4764988B2 (en) Method for manufacturing insulated gate field effect transistor
JP4288925B2 (en) Semiconductor device and manufacturing method thereof
WO2016076055A1 (en) Silicon carbide semiconductor switching element and method for manufacturing same
JP2021082689A (en) Silicon carbide semiconductor device, and method for manufacturing the same
US10748809B2 (en) Semiconductor structure including inter-layer dielectric
JP7040315B2 (en) Manufacturing method of silicon carbide semiconductor device
JP2004193281A (en) Semiconductor device and its manufacturing method
JP2009164384A (en) Method of manufacturing semiconductor device
KR100562744B1 (en) A Manufacturing Method of Layer Insulation Film of Semiconductor Element
JP4943394B2 (en) Manufacturing method of semiconductor device
JP2007042782A (en) Semiconductor device and its fabrication process
JP2005322708A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees