JP4764313B2 - Durability evaluation method of aluminum alloy electrode - Google Patents

Durability evaluation method of aluminum alloy electrode Download PDF

Info

Publication number
JP4764313B2
JP4764313B2 JP2006296420A JP2006296420A JP4764313B2 JP 4764313 B2 JP4764313 B2 JP 4764313B2 JP 2006296420 A JP2006296420 A JP 2006296420A JP 2006296420 A JP2006296420 A JP 2006296420A JP 4764313 B2 JP4764313 B2 JP 4764313B2
Authority
JP
Japan
Prior art keywords
electrode
hydrochloric acid
aluminum alloy
durability
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006296420A
Other languages
Japanese (ja)
Other versions
JP2008111179A (en
Inventor
浩司 和田
隆之 坪田
淳 久本
弘高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006296420A priority Critical patent/JP4764313B2/en
Publication of JP2008111179A publication Critical patent/JP2008111179A/en
Application granted granted Critical
Publication of JP4764313B2 publication Critical patent/JP4764313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルミニウム合金電極の耐久性評価方法に関する技術分野に属し、特には、半導体や液晶のドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極の耐久性評価方法に関する技術分野に属するものである。   The present invention belongs to a technical field related to a method for evaluating the durability of an aluminum alloy electrode, and particularly relates to a technical field related to a method for evaluating the durability of an anodized aluminum alloy electrode used in a dry etching apparatus for semiconductors and liquid crystals. It is.

半導体や液晶のドライエッチング装置において、プラズマを発生させるための陽極酸化処理を施したアルミニウム合金電極(上部電極、下部電極)は、塩素系のガスプラズマに曝され、また、温度は最高で200℃程度となり、更に、メンテナンスの水拭き時に電極に付着しているプラズマ成分から生成する塩酸に曝されるため、使用とともに劣化し、特に、使用温度が120〜200℃の場合、劣化が激しくなる。   In a semiconductor or liquid crystal dry etching apparatus, an anodized aluminum alloy electrode (upper electrode, lower electrode) subjected to anodizing treatment to generate plasma is exposed to chlorine-based gas plasma, and the temperature is a maximum of 200 ° C. Furthermore, since it is exposed to hydrochloric acid generated from the plasma component adhering to the electrode when wiping with water for maintenance, it deteriorates with use, particularly when the use temperature is 120 to 200 ° C.

その結果、電極としての機能が損なわれ、下記(1)〜(4)の問題のいずれか、あるいは、2以上の問題が発生し、電極の寿命となる。
(1)所定のエッチング形状にならない。
(2)所定のエッチング速度にならない。
(3)エッチング形状やエッチング速度(これらを、以下、エッチング特性ともいう)が処理基板(ウエハやガラス基板)面内でばらつく。
(4)電極の腐食生成物がゴミになって、処理基板を汚染する。
As a result, the function as an electrode is impaired, and any one of the following problems (1) to (4) or two or more problems occur, resulting in the life of the electrode.
(1) A predetermined etching shape is not obtained.
(2) A predetermined etching rate is not achieved.
(3) Etching shape and etching rate (hereinafter also referred to as etching characteristics) vary in the processing substrate (wafer or glass substrate) surface.
(4) The corrosion product of the electrode becomes dust and contaminates the processing substrate.

電極の寿命が、上記の(1)、(2)、(4)の問題で決定される場合、これは陽極酸化処理材料全体の耐久性の問題である。   When the life of the electrode is determined by the above problems (1), (2), and (4), this is a problem of durability of the entire anodized material.

そこで、電極の長寿命化、つまり耐久性向上の方法として種々提案されている。その場合、耐久性評価試験方法として下記(A) 〜(C) の評価試験が実施されており、実使用をしなくても事前に現用材との耐久性の比較が予測できている。
(A) プラズマを材料に直接照射して材料の損耗量や損傷状態を評価する(例えば、特許第2900822 号公報、特許第2943634 号公報、特許第2900820 号公報参照)。この評価試験を、以下、プラズマ照射試験ともいう。
(B) 高温で腐食性のガスを材料に曝して腐食状態を評価する(例えば、特許第2900822 号公報、特許第2943634 号公報、特許第2900820 号公報参照)。この評価試験を、以下、高温ガス腐食試験ともいう。
(C) 材料を酸に浸漬して腐食状態を評価する(例えば、特開2003-34894号公報、特開2004-225113 号公報参照)。この評価試験を、以下、酸浸漬試験ともいう。
Therefore, various methods have been proposed for extending the life of the electrode, that is, for improving the durability. In that case, the following evaluation tests (A) to (C) are carried out as durability evaluation test methods, and it is possible to predict the durability comparison with the current material in advance without actually using it.
(A) A material is directly irradiated with plasma to evaluate the amount of wear and damage of the material (see, for example, Japanese Patent No. 2900822, Japanese Patent No. 2944934, and Japanese Patent No. 2900820). Hereinafter, this evaluation test is also referred to as a plasma irradiation test.
(B) Corrosion state is evaluated by exposing a corrosive gas to a material at a high temperature (see, for example, Japanese Patent No. 2900822, Japanese Patent No. 2936334, Japanese Patent No. 2900820). Hereinafter, this evaluation test is also referred to as a hot gas corrosion test.
(C) The material is immersed in an acid to evaluate the corrosion state (see, for example, JP-A-2003-34894 and JP-A-2004-225113). Hereinafter, this evaluation test is also referred to as an acid immersion test.

一方、電極の寿命が前述の(3)の問題で律速される場合は、1個の電極内での陽極酸化処理材料状態のバラツキの問題、即ち、耐久性がよい部分と悪い部分とが混在していることに起因する。   On the other hand, when the life of the electrode is limited by the above-mentioned problem (3), there is a problem of variation in the state of the anodized material in one electrode, that is, a part with good durability and a bad part are mixed. It is caused by doing.

この耐久性がよい部分と悪い部分とが混在する原因は、基材アルミ合金の材料状態の分布(組成分布、晶出物や析出物の組成、大きさなどの分布、結晶粒の形状や大きさの分布など)、陽極酸化処理時の非処理材表面の温度分布(処理液の設定温度、循環方法などに起因)、被処理面の処理溶液組成の分布(処理液の循環方法に起因)、水洗時の洗浄バラツキ、乾燥時の乾燥バラツキなど、電極の製造条件や管理方法などが影響する。   The reason why this durable part and the bad part coexist is that the distribution of the material state of the base aluminum alloy (composition distribution, composition of crystallized substances and precipitates, size distribution, crystal grain shape and size, etc. ), Temperature distribution on the surface of the non-treated material during anodization (due to the set temperature of the treatment liquid, circulation method, etc.), distribution of the treatment solution composition on the treated surface (due to the treatment liquid circulation method) Electrode manufacturing conditions and management methods such as washing variation during water washing and drying variation during drying are affected.

上記電極の製造条件を制御して長寿命化の改善を図った場合、その効果を確認するための評価試験としては、電極から複数のピースを切り出して各ピースについて前述のプラズマ照射試験、高温ガス腐食試験、酸浸漬試験を行ない、ピース間の耐食性を比較して、現行材ではピース間に耐食性の差があるが、改善材では差がないなどの結果を求める方法がある。しかしながら、電極面内の局所的な材料状態の差異を検出するのは困難であり、前述のプラズマ照射試験、高温ガス腐食試験、酸浸漬試験では、エッチング特性(エッチング形状やエッチング速度)の処理基板面内でのばらつきを検出できない場合もある。従って、現行は実使用にて改善の効果を確認しているのが現状であり、実使用をしなくても改善の効果を確認できる評価試験方法の出現が望まれている。
特許第2900822 号公報 特許第2943634 号公報 特許第2900820 号公報 特開2003-34894号公報 特開2004-225113 号公報
When the manufacturing conditions of the above electrode are controlled to improve the life, the evaluation test for confirming the effect is that a plurality of pieces are cut out from the electrode and the above-mentioned plasma irradiation test and high temperature gas are performed on each piece. There is a method of performing a corrosion test and an acid immersion test and comparing the corrosion resistance between pieces, and obtaining a result that there is a difference in corrosion resistance between pieces in the current material, but no difference in the improved material. However, it is difficult to detect the difference in the local material state in the electrode surface. In the plasma irradiation test, the high temperature gas corrosion test, and the acid immersion test, the processing substrate having the etching characteristics (etching shape and etching rate) is used. In some cases, in-plane variation cannot be detected. Therefore, at present, the effect of improvement is confirmed by actual use, and the appearance of an evaluation test method that can confirm the effect of improvement without actual use is desired.
Japanese Patent No. 2900822 Japanese Patent No.2943634 Japanese Patent No. 2900820 Japanese Patent Laid-Open No. 2003-34894 JP 2004-225113 A

本発明はこのような事情に着目してなされたものであって、その目的は、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極について、エッチング特性(エッチング形状やエッチング速度)の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)を、前記アルミニウム合金電極を実使用せずに予測できるアルミニウム合金電極の耐久性評価方法を提供しようとするものである。   The present invention has been made by paying attention to such a situation, and the purpose thereof is to treat an anodized aluminum alloy electrode used in a dry etching apparatus with an etching characteristic (etching shape and etching rate). An object of the present invention is to provide an aluminum alloy electrode durability evaluation method capable of predicting the difficulty of occurrence of in-plane variation (whether or not variation is likely to occur) without actually using the aluminum alloy electrode. It is.

本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、アルミニウム合金電極の耐久性評価方法に係わり、特許請求の範囲の請求項1〜5に記載のアルミニウム合金電極の耐久性評価方法であり、それは次のような構成としたものである。   The present invention thus completed and capable of achieving the above object relates to a method for evaluating the durability of an aluminum alloy electrode. The durability evaluation of an aluminum alloy electrode according to claims 1 to 5 of the claims. It is a method and has the following configuration.

即ち、請求項1に記載のアルミニウム合金電極の耐久性評価方法は、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極の耐久性評価方法であって、前記電極を120〜200℃の温度で1時間以上保持した後、塩酸水溶液に浸漬し、しかる後、前記電極表面の漏れ電流分布のばらつきを測定することを特徴とするアルミニウム合金電極の耐久性評価方法である〔第1発明〕。   That is, the durability evaluation method for an aluminum alloy electrode according to claim 1 is a durability evaluation method for an aluminum alloy electrode subjected to an anodizing treatment used in a dry etching apparatus, wherein the electrode is heated at a temperature of 120 to 200 ° C. The aluminum alloy electrode durability evaluation method is characterized by measuring the dispersion of leakage current distribution on the surface of the electrode after being held for 1 hour or longer and then immersed in a hydrochloric acid aqueous solution, and then measuring the variation in leakage current distribution on the electrode surface [first invention].

請求項2に記載のアルミニウム合金電極の耐久性評価方法は、前記塩酸水溶液の温度が10℃以上である請求項1記載のアルミニウム合金電極の耐久性評価方法である〔第2発明〕。請求項3に記載のアルミニウム合金電極の耐久性評価方法は、前記塩酸水溶液の温度が40℃以下である請求項1または2記載のアルミニウム合金電極の耐久性評価方法である〔第3発明〕。   The durability evaluation method for an aluminum alloy electrode according to claim 2 is the durability evaluation method for an aluminum alloy electrode according to claim 1, wherein the temperature of the aqueous hydrochloric acid solution is 10 ° C. or higher [second invention]. The durability evaluation method for an aluminum alloy electrode according to claim 3 is the durability evaluation method for an aluminum alloy electrode according to claim 1 or 2, wherein the temperature of the aqueous hydrochloric acid solution is 40 ° C. or lower [third invention].

請求項4に記載のアルミニウム合金電極の耐久性評価方法は、前記塩酸水溶液の濃度が0.1質量%以上である請求項1〜3のいずれかに記載のアルミニウム合金電極の耐久性評価方法である〔第4発明〕。請求項5に記載のアルミニウム合金電極の耐久性評価方法は、前記塩酸水溶液の濃度が10質量%以下である請求項1〜4のいずれかに記載のアルミニウム合金電極の耐久性評価方法である〔第5発明〕。   The durability evaluation method for an aluminum alloy electrode according to claim 4 is a method for evaluating the durability of an aluminum alloy electrode according to any one of claims 1 to 3, wherein the concentration of the hydrochloric acid aqueous solution is 0.1 mass% or more. There is [fourth invention]. The durability evaluation method for an aluminum alloy electrode according to claim 5 is the durability evaluation method for an aluminum alloy electrode according to any one of claims 1 to 4, wherein the concentration of the aqueous hydrochloric acid solution is 10% by mass or less. Fifth invention].

本発明に係るアルミニウム合金電極の耐久性評価方法によれば、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極について、エッチング特性(エッチング形状やエッチング速度)の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)を、前記アルミニウム合金電極を実使用せずに予測できるようになる。   According to the durability evaluation method for an aluminum alloy electrode according to the present invention, the variation in etching characteristics (etching shape and etching rate) within the surface of the processed substrate is observed for the anodized aluminum alloy electrode used in the dry etching apparatus. It becomes possible to predict the difficulty of generation (whether or not it is easy to generate variation) without actually using the aluminum alloy electrode.

ドライエッチングはプラズマを用いて行なわれるため、エッチング形状やエッチング速度(エッチング特性)はプラズマの状態に影響される。つまり、ドライエッチング形状やエッチング速度が処理基板面内でばらつくのは、処理基板面内でプラズマの状態がばらつくためである。プラズマは電極間に電圧を印加することで発生するため、プラズマ状態のばらつきは電極面内の材料の電気特性のばらつきによるものである。故に、エッチング特性が処理基板面内でばらつくのは、電極面内の材料の電気特性がばらつくためであると考えた。   Since dry etching is performed using plasma, the etching shape and the etching rate (etching characteristics) are affected by the state of the plasma. That is, the reason why the dry etching shape and the etching rate vary within the processing substrate surface is that the plasma state varies within the processing substrate surface. Since the plasma is generated by applying a voltage between the electrodes, the variation in the plasma state is due to the variation in the electrical characteristics of the material in the electrode surface. Therefore, it was considered that the etching characteristics varied in the processing substrate surface because the electrical characteristics of the material in the electrode surface varied.

そこで、ドライエッチング形状やエッチング速度が処理基板面内でばらつくようになったときの電極について電気特性を調査した。その結果、この電極は電極面内で電極表面の漏れ電流がばらついていることがわかった。   Therefore, the electrical characteristics of the electrodes when the dry etching shape and the etching rate varied within the processing substrate surface were investigated. As a result, it was found that the leakage current on the electrode surface varied within the electrode surface.

更に、新品の電極ではいずれも電極面内での電極表面の漏れ電流のばらつきがなく、エッチング形状やエッチング速度の処理基板面内でのばらつきがないが、ドライエッチング形状やエッチング速度の処理基板面内でのばらつきの発生までの使用時間に差異がある電極について、検討した。その結果、電極を加熱した後、塩酸水溶液(以下、塩酸ともいう)に浸漬することで、前記電極間の差異を再現できることを突き止めた。即ち、新品の電極を加熱した後、塩酸に浸漬したものについて、電極面内での電極表面の漏れ電流のばらつきを測定した結果、電極面内での電極表面の漏れ電流のばらつきの発生までの時間は、ドライエッチング形状やエッチング速度の処理基板面内でのばらつきの発生までの使用時間が長いものほど長いことがわかった。   Furthermore, all of the new electrodes have no variation in the leakage current of the electrode surface within the electrode surface, and there is no variation in the etching shape and etching rate within the processing substrate surface, but the dry etching shape and etching rate processing substrate surface We examined electrodes that have a difference in use time until the occurrence of variation in the inside. As a result, it was found that the difference between the electrodes can be reproduced by heating the electrodes and then immersing them in an aqueous hydrochloric acid solution (hereinafter also referred to as hydrochloric acid). That is, for a new electrode heated and then immersed in hydrochloric acid, the variation in the leakage current on the electrode surface within the electrode surface was measured, and as a result, the variation in the leakage current on the electrode surface within the electrode surface was observed. It was found that the longer the use time until the variation in the dry etching shape and the etching rate within the surface of the processing substrate occurs, the longer the time.

つまり、電極を加熱した後、塩酸に浸漬することで、電極の使用環境を模擬することができることがわかった。そして、電極を加熱した後、塩酸に浸漬したものについて電極面内での電極表面の漏れ電流のばらつきの発生までの時間を測定することにより、エッチング特性の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)を電極を実使用せずに予測できることがわかった。   That is, it was found that the environment in which the electrode is used can be simulated by heating the electrode and then immersing it in hydrochloric acid. Then, after heating the electrode, by measuring the time until the occurrence of variation in the leakage current on the electrode surface within the electrode surface of the sample immersed in hydrochloric acid, the variation in etching characteristics within the treated substrate surface is caused. It was found that difficulty (whether it is easy to cause variation or not) can be predicted without actually using the electrode.

ここで、単に電極を加熱しただけでは前記電極間の差異を再現できず、また、単に塩酸浸漬しただけでは前記電極間の差異を再現できず、電極を加熱した後に塩酸に浸漬することによって前記電極間の差異を再現でき、電極を加熱した後に塩酸に浸漬することで使用環境を模擬することがポイントである。   Here, the difference between the electrodes cannot be reproduced simply by heating the electrodes, and the difference between the electrodes cannot be reproduced simply by soaking in hydrochloric acid. The difference between the electrodes can be reproduced, and the point is to simulate the use environment by immersing in hydrochloric acid after heating the electrodes.

これは、陽極酸化処理アルミ合金は一旦加熱されることで、耐塩酸性が変化するということを表している。この現象のメカニズムはわかっておらず、鋭意解析中である。   This indicates that the anodized aluminum alloy changes its hydrochloric acid resistance once heated. The mechanism of this phenomenon is unknown, and is under intensive analysis.

また、電極を加熱した後に塩酸に浸漬することで実機使用環境を模擬できるメカニズムは解明できていないが、加熱にて電極の使用温度を模擬し、塩酸浸漬にて、塩素系のガスプラズマに曝されることとメンテナンス時の塩酸暴露を模擬できていると考えている。   In addition, the mechanism that can simulate the operating environment of the actual machine by immersing the electrode in hydrochloric acid after heating the electrode has not been elucidated, but the electrode operating temperature is simulated by heating, and the electrode is exposed to chlorine-based gas plasma by immersing in hydrochloric acid. I think that it can simulate the exposure to hydrochloric acid during maintenance.

以上のように、電極を加熱した後に塩酸に浸漬することによって使用環境を模擬することができ、電極間の差異を再現できる。即ち、電極を加熱した後に塩酸に浸漬し、これについて電極面内での電極表面の漏れ電流のばらつきの発生のし難さ(ばらつきを発生し易いか、し難いか)を調べれば、これによってエッチング特性の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)がわかる。   As described above, the environment of use can be simulated by heating the electrodes and then immersing them in hydrochloric acid, and the difference between the electrodes can be reproduced. That is, after the electrode is heated, it is immersed in hydrochloric acid, and if it is examined whether it is difficult to cause variations in the leakage current of the electrode surface within the electrode surface (whether or not the variation is likely to occur), It can be seen that it is difficult to cause variations in etching characteristics within the processing substrate surface (whether or not it is easy to cause variations).

このとき、電極を加熱するに際しては、120〜200℃の温度で少なくとも1時間保持する必要がある。   At this time, when heating the electrode, it is necessary to hold at a temperature of 120 to 200 ° C. for at least 1 hour.

そこで、本発明に係るアルミニウム合金電極の耐久性評価方法は、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極の耐久性評価方法であって、前記電極を120〜200℃の温度で1時間以上保持した後、塩酸水溶液(塩酸)に浸漬し、しかる後、前記電極表面の漏れ電流分布のばらつきを測定することを特徴とするアルミニウム合金電極の耐久性評価方法としている。   Therefore, the durability evaluation method for an aluminum alloy electrode according to the present invention is a durability evaluation method for an aluminum alloy electrode subjected to an anodizing treatment used in a dry etching apparatus, and the electrode is heated at a temperature of 120 to 200 ° C. The aluminum alloy electrode durability evaluation method is characterized by measuring the dispersion of the leakage current distribution on the surface of the electrode after dipping in an aqueous hydrochloric acid solution (hydrochloric acid) after holding for more than an hour, and then measuring the variation in leakage current distribution on the electrode surface.

以上のことからわかるように、本発明に係るアルミニウム合金電極の耐久性評価方法によれば、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極について、エッチング特性(エッチング形状やエッチング速度)の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)を、前記アルミニウム合金電極を実使用せずに予測できる。   As can be seen from the above, according to the durability evaluation method for an aluminum alloy electrode according to the present invention, the etching characteristics (etching shape and etching rate) of the anodized aluminum alloy electrode used in the dry etching apparatus are It is possible to predict the difficulty of occurrence of variation within the surface of the processing substrate (whether or not variation is likely to occur) without actually using the aluminum alloy electrode.

本発明に係るアルミニウム合金電極の耐久性評価方法において、塩酸浸漬前の電極の保持温度(加熱温度)を120〜200℃としているのは、120℃未満とすると、実使用で生じる陽極酸化皮膜の変化を再現できず、一方、200℃超とすると、実使用の挙動を模擬できない場合が生じるからである。加熱温度:120〜200℃の範囲で、電極使用温度以上とすると実機の使用状況をより加速模擬することができる。   In the durability evaluation method for an aluminum alloy electrode according to the present invention, the holding temperature (heating temperature) of the electrode before immersion in hydrochloric acid is 120 to 200 ° C. This is because the change cannot be reproduced, while if it exceeds 200 ° C., the actual use behavior may not be simulated. When the heating temperature is in the range of 120 to 200 ° C. and the electrode operating temperature or higher, the actual usage status can be simulated more rapidly.

電極の保持時間(加熱時間)を1時間以上としているのは、1時間未満とすると、使用環境を模擬できないからである。加熱時間が長すぎると評価試験作業性が悪くなるため、加熱時間は1時間以上の範囲で、短い方がよい。1時間でも十分である。加熱環境は特には限定されず、簡便な大気中でよい。   The reason why the holding time (heating time) of the electrode is set to 1 hour or longer is that if it is less than 1 hour, the use environment cannot be simulated. If the heating time is too long, the evaluation test workability deteriorates, so the heating time is preferably in the range of 1 hour or more and shorter. One hour is enough. The heating environment is not particularly limited and may be in a simple atmosphere.

電極を120〜200℃で1時間以上保持した後、塩酸に浸漬するに際し、この塩酸の温度、濃度、及び、塩酸に浸漬する時間(以下、塩酸浸漬時間という)については、特には限定されず、適宜設定すればよい。即ち、この塩酸の温度が低い場合、及び/又は、塩酸の濃度が低い場合は、塩酸浸漬時間を長くし、一方、塩酸水溶液の温度が高い場合、及び/又は、塩酸の濃度が高い場合は、塩酸浸漬時間を短くすればよい。   When the electrode is held at 120 to 200 ° C. for 1 hour or more and then immersed in hydrochloric acid, the temperature and concentration of the hydrochloric acid and the time of immersion in hydrochloric acid (hereinafter referred to as hydrochloric acid immersion time) are not particularly limited. These may be set as appropriate. That is, when the hydrochloric acid temperature is low and / or the hydrochloric acid concentration is low, the hydrochloric acid immersion time is lengthened. On the other hand, when the hydrochloric acid aqueous solution temperature is high and / or the hydrochloric acid concentration is high, The hydrochloric acid immersion time may be shortened.

塩酸の温度が10℃未満の場合、反応の進行が遅く、このため塩酸浸漬時間を長くする必要がある。この塩酸浸漬時間の短縮化の点から塩酸の温度は10℃以上とすることが望ましい〔第2発明〕。塩酸の温度が40℃超の場合、腐食(孔食)が生じ易くなり、実使用で生じる陽極酸化皮膜の変化を再現し難くなる傾向が出てくる。この抑制の点から塩酸の温度は40℃以下とすることが望ましい〔第3発明〕。   When the temperature of hydrochloric acid is less than 10 ° C., the progress of the reaction is slow, and therefore it is necessary to lengthen the hydrochloric acid immersion time. From the viewpoint of shortening the hydrochloric acid immersion time, the temperature of hydrochloric acid is preferably 10 ° C. or higher [second invention]. When the temperature of hydrochloric acid exceeds 40 ° C., corrosion (pitting corrosion) tends to occur, and the change of the anodic oxide film that occurs in actual use tends to be difficult to reproduce. From the viewpoint of this suppression, the temperature of hydrochloric acid is desirably 40 ° C. or lower [third invention].

塩酸の濃度が0.1質量%未満の場合、反応の進行が遅く、このため塩酸浸漬時間を長くする必要がある。この塩酸浸漬時間の短縮化の点から塩酸の濃度は0.1質量%以上とすることが望ましい〔第4発明〕。塩酸の濃度が10質量%超の場合、腐食(孔食)が生じ易くなり、実使用で生じる陽極酸化皮膜の変化を再現し難くなる傾向が出てくる。この抑制の点から塩酸の濃度は10質量%以下とすることが望ましい〔第5発明〕。なお、塩酸(塩酸水溶液)の濃度とは、塩酸水溶液中のHClの濃度(質量%)のことである。即ち、〔塩酸水溶液中のHClの量(質量)/塩酸水溶液の量(質量)〕×100=塩酸水溶液の濃度(質量%)である。   When the concentration of hydrochloric acid is less than 0.1% by mass, the progress of the reaction is slow, and therefore it is necessary to lengthen the hydrochloric acid immersion time. From the viewpoint of shortening the hydrochloric acid immersion time, the concentration of hydrochloric acid is preferably 0.1% by mass or more [fourth invention]. When the concentration of hydrochloric acid exceeds 10% by mass, corrosion (pitting corrosion) is likely to occur, and it becomes difficult to reproduce changes in the anodized film that occur in actual use. From the viewpoint of this suppression, the concentration of hydrochloric acid is preferably 10% by mass or less [fifth invention]. The concentration of hydrochloric acid (hydrochloric acid aqueous solution) refers to the concentration (mass%) of HCl in the aqueous hydrochloric acid solution. That is, [amount (mass) of HCl in hydrochloric acid aqueous solution / amount (mass) of aqueous hydrochloric acid] × 100 = concentration (mass%) of the aqueous hydrochloric acid solution.

塩酸の温度:10℃未満、且つ、塩酸の濃度:0.1質量%未満の場合、塩酸浸漬時間を10分間超とする必要があり、このため、耐久性評価試験の効率(試験数/時間)が低い。この効率の向上の点から塩酸の温度:10℃以上、且つ、塩酸の濃度:0.1質量%以上とすることが望ましい。   When the temperature of hydrochloric acid is less than 10 ° C. and the concentration of hydrochloric acid is less than 0.1% by mass, the immersion time of hydrochloric acid needs to exceed 10 minutes. For this reason, the efficiency of the durability evaluation test (number of tests / hour ) Is low. From the viewpoint of improving efficiency, it is desirable that the hydrochloric acid temperature is 10 ° C. or higher and the hydrochloric acid concentration is 0.1 mass% or higher.

塩酸の温度:40℃超、且つ、塩酸の濃度:10質量%超の場合、腐食(孔食)が生じ易くなり、これを防止するために塩酸浸漬時間を30秒未満とする必要があり、評価試験作業を迅速に行わなければならなくて大変であり、また、塩酸浸漬時間差の影響が大きいことに起因して測定精度が低下する可能性もあり得る。この改善の点から塩酸の温度:40℃以下、且つ、塩酸の濃度:10質量%以下とすることが望ましい。   When the temperature of hydrochloric acid exceeds 40 ° C. and the concentration of hydrochloric acid exceeds 10% by mass, corrosion (pitting corrosion) is likely to occur, and in order to prevent this, the hydrochloric acid immersion time needs to be less than 30 seconds. The evaluation test work must be performed quickly, and it is difficult, and the measurement accuracy may be lowered due to the large influence of the difference in hydrochloric acid immersion time. In view of this improvement, it is desirable that the hydrochloric acid temperature is 40 ° C. or lower and the hydrochloric acid concentration is 10 mass% or lower.

本発明は次のような形態で実施する。まず、陽極酸化処理を施したアルミニウム合金電極を加熱する。あるいは、この電極をピースに分割してから加熱する。このとき、加熱温度は120〜200℃とする。加熱時間は1時間以上とする。   The present invention is implemented in the following manner. First, the anodized aluminum alloy electrode is heated. Alternatively, this electrode is divided into pieces and then heated. At this time, heating temperature shall be 120-200 degreeC. The heating time is 1 hour or longer.

上記電極(またはピース)の加熱の後、塩酸に浸漬する。なお、通常は電極(またはピース)を室温まで冷却してから塩酸に浸漬する。塩酸の温度以下であれば室温まで冷却しない時点で塩酸に浸漬してもかまわないが、塩酸の温度以下に冷却した時点で塩酸に浸漬した方がよく、更に室温まで冷却してから塩酸に浸漬する方がより好ましく、測定精度がより安定する。   After the electrode (or piece) is heated, it is immersed in hydrochloric acid. Usually, the electrode (or piece) is cooled to room temperature and then immersed in hydrochloric acid. If it is below the temperature of hydrochloric acid, it may be immersed in hydrochloric acid when it is not cooled to room temperature, but it is better to immerse it in hydrochloric acid when it is cooled below the temperature of hydrochloric acid. Is more preferable, and the measurement accuracy is more stable.

上記塩酸への電極(またはピース)の浸漬の後、電極表面の漏れ電流を測定し、電極面内での電極表面の漏れ電流の分布を求める。つまり、電極面内での電極表面の漏れ電流のばらつきを求める。なお、電極(またはピース)の塩酸浸漬後、通常は水洗し乾燥し、この後、電極表面の漏れ電流を測定する。   After the electrode (or piece) is immersed in the hydrochloric acid, the leakage current on the electrode surface is measured, and the distribution of the leakage current on the electrode surface in the electrode surface is determined. That is, the variation in leakage current on the electrode surface within the electrode surface is obtained. After the electrode (or piece) is immersed in hydrochloric acid, it is usually washed with water and dried, and then the leakage current on the electrode surface is measured.

この電極表面の漏れ電流の測定方法および測定条件の例を以下説明する。陽極酸化処理アルミ合金(陽極酸化処理を施したアルミニウム合金電極)は表面皮膜の電気絶縁性が高いため、表面に導電性の物質にて端子を形成させる。この端子の材料としては安定な金が好ましく、蒸着やスパッタリングにて形成させる。この場合、測定点1点につき独立した端子としなければ、漏れ電流の電極面内の分布を測定できない。   An example of the measurement method and measurement conditions of the leakage current on the electrode surface will be described below. Since an anodized aluminum alloy (an anodized aluminum alloy electrode) has a highly electrically insulating surface coating, a terminal is formed of a conductive material on the surface. As the material of this terminal, stable gold is preferable, and it is formed by vapor deposition or sputtering. In this case, the distribution of the leakage current in the electrode plane cannot be measured unless an independent terminal is used for each measurement point.

上記端子と測定器との接続は、測定器からの導線の先につけたプローブにて行う。プローブの形状は任意でよいが、確実に端子と接触し、かつ、再現性よく測定するためには針型のプローブが適している。   The connection between the terminal and the measuring instrument is made with a probe attached to the end of the conducting wire from the measuring instrument. The shape of the probe may be arbitrary, but a needle-type probe is suitable for reliably contacting the terminal and measuring with good reproducibility.

具体的には、例えば図13に示すように陽極酸化皮膜表面に作製した端子を測定器の+極につなげ、電極のアルミ合金基材から測定器の−極につなげる。アルミ合金基材側からは例えばネジをねじこみ、ネジを測定器からの導線の先のクリップで挟むなどする。陽極酸化皮膜表面の端子やアルミ合金は導電性であるため、実質、陽極酸化皮膜の表面とアルミ合金基材界面との間に電圧を印加し、その間に流れる電流(漏れ電流)を測定することになる。   Specifically, for example, as shown in FIG. 13, the terminal produced on the surface of the anodized film is connected to the positive electrode of the measuring device, and the aluminum alloy substrate of the electrode is connected to the negative electrode of the measuring device. For example, a screw is screwed in from the aluminum alloy substrate side, and the screw is sandwiched between clips at the end of the lead wire from the measuring instrument. Since the terminals on the surface of the anodized film and the aluminum alloy are electrically conductive, a voltage is applied between the surface of the anodized film and the aluminum alloy substrate interface, and the current (leakage current) flowing between them is measured. become.

漏れ電流の測定電圧(アルミ合金基材と陽極酸化皮膜表面との間の電圧)は適宜設定すればよいが、陽極酸化処理を施したアルミ合金では絶縁破壊を起こすため、予め絶縁破壊電圧を測定し、それ以下の電圧とする。   The leakage current measurement voltage (the voltage between the aluminum alloy substrate and the surface of the anodized film) may be set as appropriate. However, since an anodized aluminum alloy causes dielectric breakdown, the dielectric breakdown voltage is measured in advance. The voltage is lower than that.

漏れ電流(アルミ合金基材と陽極酸化皮膜表面との間に流れる電流)は、例えば、陽極酸化処理を施したアルミ合金では、数μA〜数mAであるので、それが測定できる測定器を使用する。漏れ電流の測定点は多いほどよいが、電極の大きさなどに応じて適宜設定する。   The leakage current (current flowing between the aluminum alloy substrate and the anodized film surface) is, for example, several μA to several mA for an anodized aluminum alloy, so use a measuring instrument that can measure it. To do. Although the number of measurement points of the leakage current is preferably as many as possible, it is appropriately set according to the size of the electrode.

このような測定方法ないしは測定条件にて電極表面の漏れ電流を測定する。   The leakage current on the electrode surface is measured by such a measurement method or measurement condition.

本発明の実施例および比較例について、以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔例1〕
液晶のドライエッチング装置用の下部電極(陽極酸化処理を施したアルミニウム合金電極)に相当する電極(900mm ×700mm )として、下記2種類のアルミニウム合金電極(陽極酸化処理を施したアルミニウム合金電極)を作製した。即ち、アルミニウム合金電極の陽極酸化処理に際し、陽極酸化処理溶液のバブリングのノズルの数を通常の数(n:4本)とし、陽極酸化処理して得られた電極(以下、電極1という)と、陽極酸化処理溶液のバブリングのノズルの数をnの半分(n/2:2本)とし、陽極酸化処理して得られた電極(以下、電極2という)とを作製した。なお、電極2の作製に際してのバブリングのノズルの数を除き、陽極酸化処理は通常の方法により行った。
[Example 1]
The following two types of aluminum alloy electrodes (anodized aluminum alloy electrodes) are used as electrodes (900 mm x 700 mm) corresponding to the lower electrode (anodized aluminum alloy electrodes) for liquid crystal dry etching equipment. Produced. That is, when anodizing an aluminum alloy electrode, the number of nozzles for bubbling the anodizing solution is set to a normal number (n: 4), and an electrode obtained by anodizing (hereinafter referred to as electrode 1) Then, the number of nozzles for bubbling the anodizing solution was reduced to half of n (n / 2: 2), and an electrode obtained by anodizing (hereinafter referred to as electrode 2) was produced. The anodic oxidation treatment was carried out by a normal method except for the number of bubbling nozzles when the electrode 2 was produced.

このようにして作製された電極1〜2を用いて、液晶のドライエッチングを行った。このとき、ドライエッチングの際の温度は130℃とした。ドライエッチングは、液晶のガラス基板面内のエッチング速度がばらつくまで行った。即ち、エッチング速度の均一性が規定値(±5%)を超えるまでドライエッチングを行った。そして、それまでのガラス基板処理(ドライエッチング処理)枚数を、電極寿命とした。   Liquid crystal dry etching was performed using the electrodes 1 and 2 thus fabricated. At this time, the temperature during dry etching was set to 130 ° C. Dry etching was performed until the etching rate of the liquid crystal glass substrate surface varied. That is, dry etching was performed until the uniformity of the etching rate exceeded a specified value (± 5%). The number of glass substrate treatments (dry etching treatments) up to that time was defined as the electrode life.

その結果、電極2は電極1の1/6の寿命(耐久性)であった。これは、電極1と電極2とは、その作製(陽極酸化処理)の際の陽極酸化処理溶液のバブリングのノズルの数が異なることにより、電極2の場合の方が電極面内の陽極酸化皮膜の状態のばらつきが大きくなったためと考えられる。   As a result, the electrode 2 had a lifetime (durability) of 1/6 that of the electrode 1. This is because the electrode 1 and the electrode 2 are different in the number of nozzles for bubbling the anodizing solution during the preparation (anodizing treatment). This is thought to be due to the increased variation in the state of the

〔例2〕
上記電極1〜2であって新品のもの〔作製(陽極酸化処理)後、ドライエッチングに用いていないもの〕から10個のピース(50×50mm)を切り出し、各ピースの漏れ電流を測定した。
[Example 2]
Ten pieces (50 × 50 mm) were cut out from the above-described electrodes 1 and 2 (one that was not used for dry etching after preparation (anodizing treatment)), and the leakage current of each piece was measured.

このとき、漏れ電流の測定に先立ち、スパッタリングにてφ3mm、厚み0.5 μm の金を各ピースの陽極酸化皮膜表面に端子として形成させた。この端子は1ピース当たり1個とした。上記端子と測定器との接続用の導線としては、先端がφ500 μm のタングステン製針型プローブからなるものを用い、このプローブにより上記端子と接触させた。漏れ電流の測定に際しては、電圧(電極ピースのアルミ合金基材と陽極酸化皮膜表面との間の電圧)を0〜1000Vまで、2V/秒で印加し、1000Vでの電流(電極ピースのアルミ合金基材と陽極酸化皮膜表面との間に流れる電流)を測定した。この電流は、即ち、電圧1000Vでの漏れ電流である。   At this time, prior to the measurement of the leakage current, gold having a diameter of 3 mm and a thickness of 0.5 μm was formed as a terminal on the surface of the anodized film of each piece by sputtering. One terminal was used per piece. As a conducting wire for connecting the terminal and the measuring instrument, a tungsten needle probe having a tip of φ500 μm was used, and the probe was brought into contact with the terminal. When measuring the leakage current, the voltage (voltage between the aluminum alloy substrate of the electrode piece and the anodized film surface) was applied from 0 to 1000 V at 2 V / second, and the current at 1000 V (the aluminum alloy of the electrode piece) The current flowing between the substrate and the anodized film surface was measured. This current is a leakage current at a voltage of 1000V.

上記の漏れ電流の測定結果を図1に示す。なお、図1の(1) は電極1(ピース)についての結果を示すものであり、図1の(2) は電極2(ピース)についての結果を示すものである。即ち、左側の図は電極1(ピース)についての結果を示すものであり、右側の図は電極2(ピース)についての結果を示すものである。図1に示すように、新品の状態での漏れ電流のばらつきは、電極1と電極2で同程度であり、電極1と電極2の耐久性の差異は判断できなかった。   The measurement result of said leakage current is shown in FIG. In addition, (1) of FIG. 1 shows the result about the electrode 1 (piece), and (2) of FIG. 1 shows the result about the electrode 2 (piece). That is, the left figure shows the result for the electrode 1 (piece), and the right figure shows the result for the electrode 2 (piece). As shown in FIG. 1, the variation in leakage current in the new state was the same between the electrode 1 and the electrode 2, and the difference in durability between the electrode 1 and the electrode 2 could not be determined.

〔例3〕
上記電極1〜2であって新品のもの(以下、新品の電極1〜2ともいう)から10個のピース(50×50mm)を切り出し、大気中において140℃で1時間加熱した後、空冷した。そして、この空冷後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 3]
Ten pieces (50 × 50 mm) were cut out from the above-mentioned electrodes 1 to 2 and were new (hereinafter also referred to as new electrodes 1 and 2), heated in air at 140 ° C. for 1 hour, and then air-cooled. . And about this piece after this air cooling, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図2に示す。なお、図2の(1) は電極1(ピース)についての結果を示すものであり、図2の(2) は電極2(ピース)についての結果を示すものである。図2に示すように、漏れ電流は、新品の電極の場合に比べ、全体に小さくなったが、漏れ電流のばらつきは電極1(ピース)と電極2(ピース)で同程度であり、電極1と電極2の耐久性の差異は判断できなかった。   The measurement result of this leakage current is shown in FIG. 2 shows the result for the electrode 1 (piece), and FIG. 2 (2) shows the result for the electrode 2 (piece). As shown in FIG. 2, the leakage current was smaller as a whole than in the case of a new electrode, but the variation in leakage current was about the same between electrode 1 (piece) and electrode 2 (piece). The difference in durability between the electrode 2 and the electrode 2 could not be determined.

〔例4〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、25℃の1質量%の濃度の塩酸水溶液中に2〜20分間浸漬(各10個ずつ)した後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 4]
Pieces (50 × 50 mm) were cut out from the new electrodes 1-2, immersed in a 1% by mass aqueous hydrochloric acid solution at 25 ° C. for 2 to 20 minutes (10 pieces each), and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図3に示す。なお、図3の(1-1) 、(1-2) 、(1-3) 、(1-4) は電極1(ピース)についての結果を示すものであり、図1の(2-1) 、(2-2) 、(2-3) 、(2-4) は電極2(ピース)についての結果を示すものである。即ち、図中の左側の図は電極1(ピース)についての結果を示すものであり、右側の図は電極2(ピース)についての結果を示すものである(以降の図においても同様)。図3に示すように、漏れ電流は、新品の電極の場合に比べ、全体に大きくなっていったが、漏れ電流のばらつきは電極1(ピース)と電極2(ピース)で同程度であり、電極1と電極2の耐久性の差異は判断できなかった。   The measurement result of this leakage current is shown in FIG. Note that (1-1), (1-2), (1-3), and (1-4) in FIG. 3 show the results for the electrode 1 (piece). ), (2-2), (2-3), and (2-4) show the results for the electrode 2 (piece). That is, the left figure in the figure shows the result for the electrode 1 (piece), and the right figure shows the result for the electrode 2 (piece) (the same applies to the following figures). As shown in FIG. 3, the leakage current increased as a whole as compared with the case of a new electrode, but the variation in leakage current was about the same between the electrode 1 (piece) and the electrode 2 (piece). The difference in durability between electrode 1 and electrode 2 could not be determined.

〔例5〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、大気中において140℃で1時間加熱した後、空冷し、しかる後、25℃の1質量%の濃度の塩酸水溶液中に5分間または10分間浸漬(各10個ずつ)し、その後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 5]
A piece (50 × 50 mm) is cut out from the new electrodes 1 and 2 and heated in the atmosphere at 140 ° C. for 1 hour, then air-cooled, and then in a 1% by mass hydrochloric acid aqueous solution at 25 ° C. for 5 minutes. Or it was immersed for 10 minutes (each 10 pieces), and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図4に示す。上記のように加熱し、塩酸水溶液中に浸漬したものは、漏れ電流のばらつきは電極1(ピース)に比べ、電極2(ピース)で大きく、電極1と電極2の耐久性の差異を検出できた。   The measurement result of this leakage current is shown in FIG. When heated and immersed in aqueous hydrochloric acid as described above, the variation in leakage current is larger at electrode 2 (piece) than at electrode 1 (piece), and the difference in durability between electrode 1 and electrode 2 can be detected. It was.

〔例6〕
前記例5での塩酸水溶液中10分間浸漬、水洗後のピースを、以下、ピースAという。このピースAの中、電極1から得られたものをピースA−1、電極2から得られたものをピースA−2ということとする。
[Example 6]
The piece after immersion for 10 minutes in the aqueous hydrochloric acid in Example 5 and washing with water is hereinafter referred to as piece A. In this piece A, what is obtained from the electrode 1 is referred to as piece A-1, and what is obtained from the electrode 2 is referred to as piece A-2.

上記新品の電極1〜2、および、ピースAについて、皮膜の表面状態を光学顕微鏡(光顕)により観察した。その結果を図12に示す。図12のAは、ピースA−1の表面の顕微鏡写真を示す図面代用写真である。図12のBは、ピースA−2の表面の顕微鏡写真を示す図面代用写真である。これらの図からわかるように、光学顕微鏡ではピースA−1とピースA−2の表面状態に差異は認められなかった。つまり、光学顕微鏡では電極1と電極2で皮膜状態の差異は判断できなかった。このように従来の評価方法では電極1と電極2の耐久性の差異を検出できないが、例5の方法では電極1と電極2の耐久性の差異を検出できる。この例5の方法は本発明に係る方法である。従って、従来の評価方法では検出できない耐久性の差異を本発明では検出できることが確認された。   About the said new electrodes 1-2 and the piece A, the surface state of the film | membrane was observed with the optical microscope (light microscope). The result is shown in FIG. FIG. 12A is a drawing-substituting photograph showing a micrograph of the surface of piece A-1. FIG. 12B is a drawing-substituting photograph showing a micrograph of the surface of the piece A-2. As can be seen from these figures, in the optical microscope, no difference was observed between the surface states of piece A-1 and piece A-2. That is, the difference in the film state between the electrode 1 and the electrode 2 could not be judged with the optical microscope. Thus, although the conventional evaluation method cannot detect the difference in durability between the electrode 1 and the electrode 2, the method in Example 5 can detect the difference in durability between the electrode 1 and the electrode 2. The method of Example 5 is a method according to the present invention. Therefore, it was confirmed that the present invention can detect a difference in durability that cannot be detected by the conventional evaluation method.

〔例7〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、大気中において110℃〜210℃で1時間加熱した後、空冷し、しかる後、25℃の1質量%の濃度の塩酸水溶液中に10分間浸漬(各10個ずつ)し、その後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 7]
A piece (50 × 50 mm) is cut out from the new electrodes 1-2, heated in the atmosphere at 110 ° C. to 210 ° C. for 1 hour, then air-cooled, and then in a hydrochloric acid aqueous solution having a concentration of 1% by mass at 25 ° C. For 10 minutes (10 pieces each), and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図5〜6に示す。なお、前記例4(加熱しないもの)、および、前記例5(加熱温度140℃のもの)の結果も、図5〜6中に示した。図5〜6からわかるように、上記ピースの中、加熱の際の温度(加熱温度)を110℃としたものは、前記例4(加熱しないもの)と同様の傾向を示し、加熱の効果がなかった。加熱温度を120℃〜200℃としたものは、電極1と電極2の耐久性の差異を検出できた。   The measurement results of this leakage current are shown in FIGS. The results of Example 4 (not heated) and Example 5 (heating temperature 140 ° C.) are also shown in FIGS. As can be seen from FIGS. 5 to 6, in the above pieces, the heating temperature (heating temperature) of 110 ° C. showed the same tendency as in Example 4 (not heated), and the heating effect was There wasn't. When the heating temperature was 120 ° C. to 200 ° C., a difference in durability between the electrode 1 and the electrode 2 could be detected.

加熱温度を210℃としたものは、電極1であっても漏れ電流がばらついており、電極1と電極2の耐久性の差異を検出することができなかった。このテストピース表面を光学顕微鏡で観察すると実機(ドライエッチング装置の下部電極に使用時)では発生しない大きな割れが観察され、これが原因で漏れ電流がばらついたと考えられる。   When the heating temperature was 210 ° C., the leakage current varied even with the electrode 1, and a difference in durability between the electrode 1 and the electrode 2 could not be detected. When the surface of the test piece is observed with an optical microscope, a large crack that does not occur in the actual machine (when used for the lower electrode of the dry etching apparatus) is observed, and it is considered that the leakage current varies due to this.

〔例8〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、大気中において140℃で0〜1時間加熱した後、空冷し、しかる後、25℃の1質量%の濃度の塩酸水溶液中に10分間浸漬(各10個ずつ)し、その後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 8]
A piece (50 × 50 mm) is cut out from the new electrodes 1 and 2 and heated in the atmosphere at 140 ° C. for 0 to 1 hour, then air-cooled, and then in a hydrochloric acid aqueous solution having a concentration of 1% by mass at 25 ° C. It was immersed for 10 minutes (each 10 pieces) and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図7に示す。なお、前記例4(加熱しないもの)、および、前記例5(加熱時間1時間のもの)の結果も、図7中に示した。図7からわかるように、上記ピースの中、加熱の際の時間(加熱時間)を45分としたものは、電極1と電極2の耐久性の差異を検出できなかった。加熱時間45分では加熱時間が不足している。加熱時間を1時間としたものは、電極1と電極2の耐久性の差異を検出できた。   The measurement result of this leakage current is shown in FIG. The results of Example 4 (not heated) and Example 5 (heating time 1 hour) are also shown in FIG. As can be seen from FIG. 7, no difference in durability between the electrode 1 and the electrode 2 was detected when the piece was heated for 45 minutes (heating time). When the heating time is 45 minutes, the heating time is insufficient. When the heating time was 1 hour, a difference in durability between the electrode 1 and the electrode 2 could be detected.

〔例9〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、大気中において140℃で1時間加熱した後、空冷し、しかる後、9〜10℃の0.08〜0.1質量%の濃度の塩酸水溶液中に9〜12分間浸漬(各10個ずつ)し、その後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 9]
A piece (50 × 50 mm) is cut out from the new electrodes 1 and 2 and heated in air at 140 ° C. for 1 hour, then air-cooled, and then 0.08 to 0.1% by mass of 9 to 10 ° C. It was immersed in a hydrochloric acid solution having a concentration for 9 to 12 minutes (each 10 pieces) and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図8〜9に示す。なお、これらの図において、横軸は漏れ電流(μA)であり、縦軸は頻度(点)であるが、この図示を省略した(以降の図10〜11においても同様)。図8〜9からわかるように、10℃の0.1質量%濃度の塩酸水溶液に浸漬の場合には、9分間浸漬で電極1と電極2の耐久性の差異を検出できた。10℃の0.08質量%濃度の塩酸水溶液中に浸漬の場合には、10分間浸漬では電極1と電極2の耐久性の差異を検出できず、10分間超の12分間浸漬で電極1と電極2の耐久性の差異を検出でき、10分間超の時間を要するため評価試験効率が悪かった。9℃の0.1質量%濃度の塩酸水溶液に浸漬の場合には、10分間浸漬では電極1と電極2の耐久性の差異を検出できず、10分間超の12分間浸漬で電極1と電極2の耐久性の差異を検出でき、10分間超の時間を要するため評価試験効率が悪かった。9℃の0.08質量%濃度の塩酸水溶液に浸漬の場合には、10分間浸漬では電極1と電極2の耐久性の差異を検出できず、10分間超の20分間浸漬で電極1と電極2の耐久性の差異を検出でき、10分間超の時間を要するため評価試験効率が悪かった。   The measurement results of this leakage current are shown in FIGS. In these figures, the horizontal axis is leakage current (μA) and the vertical axis is frequency (point), but this illustration is omitted (the same applies to FIGS. 10 to 11 below). As can be seen from FIGS. 8 to 9, in the case of immersion in a 0.1 mass% hydrochloric acid aqueous solution at 10 ° C., a difference in durability between the electrodes 1 and 2 could be detected by immersion for 9 minutes. In the case of immersion in a 0.08 mass% hydrochloric acid aqueous solution at 10 ° C., the difference in durability between the electrode 1 and the electrode 2 cannot be detected in the immersion for 10 minutes, and the electrode 1 and the electrode 1 in the immersion for 12 minutes exceeding 10 minutes. Since the difference in durability of the electrode 2 could be detected and it took more than 10 minutes, the evaluation test efficiency was poor. In the case of immersion in a 0.1% by mass hydrochloric acid aqueous solution at 9 ° C., the difference in durability between the electrode 1 and the electrode 2 cannot be detected by immersion for 10 minutes, and the electrode 1 and the electrode can be detected by immersion for more than 10 minutes for 12 minutes. The difference in durability between the two was detected, and it took more than 10 minutes, so the evaluation test efficiency was poor. In the case of immersion in a 0.08 mass% hydrochloric acid aqueous solution at 9 ° C., the difference in durability between the electrode 1 and the electrode 2 cannot be detected by immersion for 10 minutes, and the electrode 1 and the electrode can be detected by immersion for 20 minutes exceeding 10 minutes. The difference in durability between the two was detected, and it took more than 10 minutes, so the evaluation test efficiency was poor.

10分間超の浸漬時間となるものは評価試験効率(試験数/時間)が悪いため、10分間以内の浸漬で評価できる10℃以上、0.1質量%濃度の塩酸水溶液を用いることが望ましい。   Those having an immersion time of more than 10 minutes have poor evaluation test efficiency (number of tests / hour), so it is desirable to use a hydrochloric acid aqueous solution having a concentration of 10% or more and 0.1% by mass that can be evaluated by immersion within 10 minutes.

〔例10〕
上記新品の電極1〜2からピース(50×50mm)を切り出し、大気中において140℃で1時間加熱した後、空冷し、しかる後、40〜42℃の10〜11質量%の濃度の塩酸水溶液中に10〜30秒間浸漬(各10個ずつ)し、その後、水洗した。そして、この水洗後の各ピースについて、例2の場合と同様の方法により、漏れ電流を測定した。
[Example 10]
Pieces (50 × 50 mm) are cut out from the new electrodes 1 and 2 and heated in the atmosphere at 140 ° C. for 1 hour, then air-cooled, and thereafter, an aqueous hydrochloric acid solution having a concentration of 10 to 11% by mass at 40 to 42 ° C. It was immersed for 10 to 30 seconds (10 pieces each), and then washed with water. And about this piece after this water washing, the leakage current was measured by the method similar to the case of Example 2. FIG.

この漏れ電流の測定結果を図10〜11に示す。図10〜11からわかるように、40℃の10質量%濃度の塩酸水溶液に浸漬の場合には、30秒間浸漬で電極1と電極2の耐久性の差異を検出できた。40℃の11質量%濃度の塩酸水溶液に浸漬の場合には、20秒間浸漬で電極1と電極2の耐久性の差異を検出できたが、30秒間浸漬では腐食によって電極1も漏れ電流がばらつき、電極1と電極2の耐久性の差異を検出できなかった。42℃の10質量%濃度の塩酸水溶液に浸漬の場合には、20秒間浸漬で電極1と電極2の耐久性の差異を検出できたが、30秒間浸漬では腐食によって電極1も漏れ電流がばらつき、電極1と電極2の耐久性の差異を検出できなかった。42℃の11質量%濃度の塩酸水溶液に浸漬の場合には、10秒間浸漬で電極1と電極2の耐久性の差異を検出できたが、30秒間浸漬では腐食によって電極1も漏れ電流がばらつき、電極1と電極2の耐久性の差異を検出できなかった。   The measurement results of this leakage current are shown in FIGS. As can be seen from FIGS. 10 to 11, in the case of immersion in a 10 mass% hydrochloric acid aqueous solution at 40 ° C., a difference in durability between the electrodes 1 and 2 could be detected by immersion for 30 seconds. In the case of immersion in an hydrochloric acid aqueous solution of 11% by mass at 40 ° C., a difference in durability between the electrode 1 and the electrode 2 was detected by immersion for 20 seconds, but the leakage current of the electrode 1 also varied due to corrosion after immersion for 30 seconds. The difference in durability between electrode 1 and electrode 2 could not be detected. In the case of immersion in an aqueous hydrochloric acid solution having a concentration of 10% by mass at 42 ° C., it was possible to detect a difference in durability between the electrodes 1 and 2 after immersion for 20 seconds. The difference in durability between electrode 1 and electrode 2 could not be detected. In the case of immersion in an aqueous 11 mass% hydrochloric acid solution at 42 ° C., a difference in durability between the electrode 1 and the electrode 2 could be detected by immersion for 10 seconds, but the leakage current of the electrode 1 also varied due to corrosion after immersion for 30 seconds. The difference in durability between electrode 1 and electrode 2 could not be detected.

30秒未満の浸漬時間となるものは評価試験作業を迅速に行わなければならなくて大変であり、また、塩酸浸漬時間差の影響が大きいことに起因して測定精度が低下する可能性もあり得るため、30秒以上の浸漬で評価できる40℃以下、10質量%濃度の塩酸水溶液を用いることが望ましい。   If the immersion time is less than 30 seconds, the evaluation test work must be performed quickly, and the measurement accuracy may decrease due to the large influence of the difference in hydrochloric acid immersion time. Therefore, it is desirable to use an aqueous hydrochloric acid solution having a concentration of 40% or less and 10% by mass that can be evaluated by immersion for 30 seconds or more.

本発明に係るアルミニウム合金電極の耐久性評価方法は、ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極について、エッチング特性(エッチング形状やエッチング速度)の処理基板面内でのばらつきの発生させ難さ(ばらつきを発生させ易いか、させ難いか)を、前記アルミニウム合金電極を実使用せずに予測できて有用である。   The durability evaluation method for an aluminum alloy electrode according to the present invention is a method of causing variation in etching characteristics (etching shape and etching rate) within the surface of a processed substrate for an anodized aluminum alloy electrode used in a dry etching apparatus. The difficulty (whether or not it is easy to cause variation) is useful because it can be predicted without actually using the aluminum alloy electrode.

例2に係る電極1〜2の漏れ電流の測定結果を示す図であり、図1の(1) は電極1についての結果、図1の(2) は電極2についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 2, (1) of FIG. 1 shows the result about the electrode 1, and (2) of FIG. . 例3に係る電極1〜2の漏れ電流の測定結果を示す図であり、図2の(1) は電極1についての結果、図2の(2) は電極2についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 concerning Example 3, (1) of FIG. 2 shows the result about the electrode 1, and (2) of FIG. . 例4に係る電極1〜2の漏れ電流の測定結果を示す図であり、図3の (1-1)、(1-2) 、(1-3) 、(1-4) は電極1(ピース)についての結果、図3の (2-1)、(2-2) 、(2-3) 、(2-4) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 4, (1-1), (1-2), (1-3), (1-4) of FIG. (2-1), (2-2), (2-3) and (2-4) in FIG. 3 show the results for the electrode 2 (piece). 例5に係る電極1〜2の漏れ電流の測定結果を示す図であり、図4の (1-1)、(1-2) 、(1-3) は電極1(ピース)についての結果、図4の (2-1)、(2-2) 、(2-3) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 5, (1-1), (1-2), (1-3) of FIG. 4 is the result about the electrode 1 (piece), (2-1), (2-2), and (2-3) in FIG. 4 show the results for the electrode 2 (piece). 例7に係る電極1〜2の漏れ電流の測定結果を示す図であり、図5の (1-1)、(1-2) 、(1-3) は電極1(ピース)についての結果、図5の (2-1)、(2-2) 、(2-3) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 concerning Example 7, (1-1), (1-2), (1-3) of FIG. 5 is the result about the electrode 1 (piece), (2-1), (2-2), and (2-3) in FIG. 5 show the results for the electrode 2 (piece). 例7に係る電極1〜2の漏れ電流の測定結果を示す図であり、図6の (1-4)、(1-5) 、(1-6) は電極1(ピース)についての結果、図6の (2-4)、(2-5) 、(2-6) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 concerning Example 7, (1-4), (1-5), (1-6) of FIG. 6 is the result about the electrode 1 (piece), (2-4), (2-5) and (2-6) in FIG. 6 show the results for the electrode 2 (piece). 例8に係る電極1〜2の漏れ電流の測定結果を示す図であり、図7の (1-1)、(1-2) 、(1-3) は電極1(ピース)についての結果、図7の (2-1)、(2-2) 、(2-3) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 8, (1-1), (1-2), (1-3) of FIG. 7 is the result about the electrode 1 (piece), (2-1), (2-2), and (2-3) in FIG. 7 show the results for the electrode 2 (piece). 例9に係る電極1〜2の漏れ電流の測定結果を示す図であり、図8の (1-1)、(1-2) 、(1-3) は電極1(ピース)についての結果、図8の (2-1)、(2-2) 、(2-3) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 9, (1-1), (1-2), (1-3) of FIG. 8 is the result about the electrode 1 (piece), (2-1), (2-2), and (2-3) in FIG. 8 show the results for the electrode 2 (piece). 例9に係る電極1〜2の漏れ電流の測定結果を示す図であり、図9の (1-4)、(1-5) 、(1-6) 、(1-7) は電極1(ピース)についての結果、図9の (2-4)、(2-5) 、(2-6) 、(2-7) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 9, (1-4), (1-5), (1-6), (1-7) of FIG. (2-4), (2-5), (2-6) and (2-7) in FIG. 9 show the results for the electrode 2 (piece). 例10に係る電極1〜2の漏れ電流の測定結果を示す図であり、図10の (1-1)、(1-2) 、(1-3) は電極1(ピース)についての結果、図10の (2-1)、(2-2) 、(2-3) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 10, (1-1), (1-2), (1-3) of FIG. 10 is the result about the electrode 1 (piece), (2-1), (2-2), and (2-3) in FIG. 10 show the results for the electrode 2 (piece). 例10に係る電極1〜2の漏れ電流の測定結果を示す図であり、図11の (1-4)、(1-5) 、(1-6) 、(1-7) は電極1(ピース)についての結果、図11の (2-4)、(2-5) 、(2-6) 、(2-7) は電極2(ピース)についての結果を示すものである。It is a figure which shows the measurement result of the leakage current of the electrodes 1-2 which concern on Example 10, (1-4), (1-5), (1-6), (1-7) of FIG. (2-4), (2-5), (2-6) and (2-7) in FIG. 11 show the results for the electrode 2 (piece). 例6に係るピースA−1(電極1)およびピースA−2(電極2)の表面の顕微鏡写真を示す図面代用写真であって、図12の(A)は電極1についてのものであり、図12の(B)は電極2についてのものである。FIG. 12A is a drawing-substituting photograph showing micrographs of the surfaces of piece A-1 (electrode 1) and piece A-2 (electrode 2) according to Example 6, and FIG. FIG. 12B is for the electrode 2. アルミニウム合金電極表面の漏れ電流の測定方法の例を示す図である。It is a figure which shows the example of the measuring method of the leakage current of the aluminum alloy electrode surface.

Claims (5)

ドライエッチング装置に用いる陽極酸化処理を施したアルミニウム合金電極の耐久性評価方法であって、前記電極を120〜200℃の温度で1時間以上保持した後、塩酸水溶液に浸漬し、しかる後、前記電極表面の漏れ電流分布のばらつきを測定することを特徴とするアルミニウム合金電極の耐久性評価方法。   A method for evaluating the durability of an anodized aluminum alloy electrode used in a dry etching apparatus, wherein the electrode is held at a temperature of 120 to 200 ° C. for 1 hour or more, then immersed in an aqueous hydrochloric acid solution, A method for evaluating the durability of an aluminum alloy electrode, characterized by measuring variations in leakage current distribution on the electrode surface. 前記塩酸水溶液の温度が10℃以上である請求項1記載のアルミニウム合金電極の耐久性評価方法。   The method for evaluating the durability of an aluminum alloy electrode according to claim 1, wherein the temperature of the aqueous hydrochloric acid solution is 10 ° C or higher. 前記塩酸水溶液の温度が40℃以下である請求項1または2記載のアルミニウム合金電極の耐久性評価方法。   The method for evaluating the durability of an aluminum alloy electrode according to claim 1 or 2, wherein the temperature of the hydrochloric acid aqueous solution is 40 ° C or lower. 前記塩酸水溶液の濃度が0.1質量%以上である請求項1〜3のいずれかに記載のアルミニウム合金電極の耐久性評価方法。   The method for evaluating the durability of an aluminum alloy electrode according to any one of claims 1 to 3, wherein the concentration of the hydrochloric acid aqueous solution is 0.1 mass% or more. 前記塩酸水溶液の濃度が10質量%以下である請求項1〜4のいずれかに記載のアルミニウム合金電極の耐久性評価方法。   The method for evaluating the durability of an aluminum alloy electrode according to any one of claims 1 to 4, wherein the concentration of the hydrochloric acid aqueous solution is 10% by mass or less.
JP2006296420A 2006-10-31 2006-10-31 Durability evaluation method of aluminum alloy electrode Expired - Fee Related JP4764313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296420A JP4764313B2 (en) 2006-10-31 2006-10-31 Durability evaluation method of aluminum alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296420A JP4764313B2 (en) 2006-10-31 2006-10-31 Durability evaluation method of aluminum alloy electrode

Publications (2)

Publication Number Publication Date
JP2008111179A JP2008111179A (en) 2008-05-15
JP4764313B2 true JP4764313B2 (en) 2011-08-31

Family

ID=39443856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296420A Expired - Fee Related JP4764313B2 (en) 2006-10-31 2006-10-31 Durability evaluation method of aluminum alloy electrode

Country Status (1)

Country Link
JP (1) JP4764313B2 (en)

Also Published As

Publication number Publication date
JP2008111179A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
KR101235350B1 (en) Surface treatment method of mother metal
JP4785039B2 (en) Silicon wafer lifetime measurement method
CN113609760B (en) Integrated circuit life prediction method and device, electronic equipment and storage medium
Ding et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films
JP4764313B2 (en) Durability evaluation method of aluminum alloy electrode
CN107132497B (en) Substrate for nondestructive testing of Hall effect of semiconductor film and preparation method thereof
JP2010117194A (en) Probe coated with insulating material with sliding property and probe card using the same
JP5617179B2 (en) Dielectric breakdown test apparatus and dielectric breakdown test method for coated electric wire
KR101715153B1 (en) Method of fabricating insulated probe pin
CN112701072B (en) Wafer processing apparatus and wafer defect evaluation method
JP4020810B2 (en) Semiconductor carrier lifetime measuring apparatus and method
US6593759B2 (en) Apparatuses and methods for determining if protective coatings on semiconductor substrate holding devices have been compromised
CN110174412B (en) Method for testing corrosion depth of glass in silver paste on surface of silicon wafer
JP2018072283A (en) Probe needle, and manufacturing method for insulation-coated probe needle
JP2015089955A (en) Plating method
TWI769850B (en) Method for inspecting defects of aluminum-containing oxide ceramic coated wire based on observation of air bubbles
JP2002083853A (en) Evaluation method of semiconductor wafer and its apparatus
JP5152165B2 (en) Inspection method of silicon wafer
Veselý et al. Electrochemical Migration Issues Related to Improper Solder Mask Application
WO2002001626A1 (en) Method and apparatus for evaluating semiconductor wafer
Mach et al. Study of Changes in the Dissipation Factor of PP Film Capacitors Caused by Heat Treatment
JP2018006636A (en) Semiconductor substrate evaluation method
KR100224498B1 (en) Cleaning method of silicon wafer
JP6421711B2 (en) Preprocessing method for recombination lifetime measurement
JP3607070B2 (en) Insulating film defect detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees