WO2002001626A1 - Method and apparatus for evaluating semiconductor wafer - Google Patents

Method and apparatus for evaluating semiconductor wafer Download PDF

Info

Publication number
WO2002001626A1
WO2002001626A1 PCT/JP2001/005399 JP0105399W WO0201626A1 WO 2002001626 A1 WO2002001626 A1 WO 2002001626A1 JP 0105399 W JP0105399 W JP 0105399W WO 0201626 A1 WO0201626 A1 WO 0201626A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor wafer
solvent
wafer
evaluation
Prior art date
Application number
PCT/JP2001/005399
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Kobayashi
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000286580A external-priority patent/JP4003032B2/en
Priority claimed from JP2000286591A external-priority patent/JP3968768B2/en
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2002001626A1 publication Critical patent/WO2002001626A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2806Means for preparing replicas of specimens, e.g. for microscopal analysis

Definitions

  • the present invention relates to a method for evaluating a defect of a semiconductor wafer such as a silicon wafer (hereinafter sometimes simply referred to as “a wafer”).
  • a wafer such as a silicon wafer
  • the present invention relates to a semiconductor wafer evaluation method and apparatus using a Cu deposition method for accurately analyzing the distribution and density of surface defects.
  • ⁇ ⁇ ⁇ ⁇ Defects in wafers are mainly caused by crystal defects that occur during silicon ingot growth and crystal defects. It can be broadly divided into processing damage to be formed and defects due to external contamination sources.
  • the wafer processing step includes a slicing step of slicing a single crystal ingot to obtain a wafer having a thin disk shape, and preventing cracking and chipping of the wafer obtained by the slicing step.
  • the above e-wafer processing step shows the main steps, and other steps such as a heat treatment step are added or the order of the steps is changed.
  • Defects such as COP continue to affect the oxide film breakdown voltage characteristic, that is, the process of forming a semiconductor device on a semiconductor wafer, and are factors that reduce the yield and reliability of the semiconductor device. Become. Therefore, it is very important to confirm the accurate distribution and density of these defects before forming the semiconductor elements on the wafer in the device manufacturing process, in terms of controlling the yield of the semiconductor elements.
  • the laser scattering method was mainly used to analyze surface crystal defects of wafers immediately after mirror polishing.
  • the laser liked Yattaringu particle counter machine (Laser Scattering Particle Counter) using The surface of the wafer is irradiated with a laser having a certain wavelength, and the scattered signal is sensed to analyze defects on the wafer surface.
  • the conventional method has the following problems. That is, when a conventional laser scattering particle counter is used, the detection limit for defects is about 0. Therefore, COPs smaller than this size cannot be detected. However, even a small defect of 0.12 or less that is not detected affects the quality such as the oxide film breakdown voltage.
  • the Cu deposition method is an wafer evaluation method that accurately measures the position of defects in semiconductor wafers, improves the detection limit for defects in semiconductor wafers, and can accurately measure and analyze even finer defects. is there.
  • a specific wafer evaluation method is to form an insulating film of a predetermined thickness on the wafer surface, break the insulating film on the defective portion formed near the wafer surface, and place Cu or the like on the defective portion. This is to deposit (deposition) the electrolyte.
  • the Cu deposition method when a potential is applied to the oxygen film formed on the surface of the wafer in a liquid (for example, methanol) in which the Cu ions are dissolved, a current is applied to a portion where the oxide film is deteriorated.
  • a liquid for example, methanol
  • This is an evaluation method that utilizes the fact that the Cu ions precipitate as Cu ions. It is known that defects such as COP exist in the area where the oxide film deteriorates.
  • the Cu-deposited defect site of the wafer can be analyzed under the condensing light or directly with the naked eye to evaluate its distribution and density.Furthermore, it can be observed by microscope, transmission electron microscope (TEM) or scanning electron microscope (TEM). (SEM) etc. Disclosure of the invention In the Cu deposition method described above, it takes a long time to season, and in order to use methanol efficiently, it is necessary to process multiple wafers using the same methanol. And the sensitivity was good, but the stability of the measured values was difficult. In particular, there were large variations in the values immediately after the start of the evaluation and between devices.
  • the first object of the present invention is to control and evaluate the copper concentration, thereby enabling stable observation of defects, accurate analysis of defect distribution and density, suppression of variations between devices, patches, and the like, and stable operation.
  • a second object of the present invention is to enable the solvent to be exchanged for each wafer and to efficiently process the solvent, to evaluate the wafer in a short time, and to evaluate the wafer due to contamination. It is an object of the present invention to provide a semiconductor wafer evaluation apparatus and method using a Cu deposition method, which can accurately evaluate a wafer defect by eliminating an instability factor.
  • a first aspect of the method for evaluating a semiconductor wafer according to the present invention includes: a step of forming an insulating film having a predetermined thickness on a surface of the semiconductor wafer; A step of destroying an insulating film on a defective portion formed in the vicinity and depositing copper in a solvent at the defective portion using a Cu deposition method.
  • the semiconductor wafer is evaluated by adjusting it to the range of ⁇ 30 ppm. With the current method, it was found that the measured values were large and fluctuate early in the patch, and that very few defects were detected. This is thought to be due to insufficient concentration of copper in the solvent, for example methanol.
  • the present inventors have conducted intensive studies and have found that it is preferable that 0.4 ppm or more of copper is present in methanol. When the concentration of copper in methanol exceeded 30 ppm, electric field concentration occurred in some defects, and other defects became difficult to see. Therefore, a Cu concentration of about 0.4 to 30 ppm is preferable.
  • This concentration can also be adjusted by adjusting the seeding time using a dummy wafer.
  • a dummy wafer is a wafer used to start up the equipment (especially cleaning the electrodes) before processing the wafer (evaluated wafer) to be actually evaluated.
  • Oxide film is formed on the wafer before the oxide film is formed.
  • processing (seasoning) of a dummy wafer has been performed for the purpose of cleaning electrodes and ionizing Cu.
  • the degree to which Cu was ionized in the solvent is not normally controlled, and it is usually treated by treating for a certain period of time (for example, about 1 hour).
  • the measured values fluctuated greatly and sometimes became unstable. This fluctuated significantly between the effect of the container being measured, the differences in the measuring equipment and the repeated measurements. In such a situation, accurate evaluation could not be performed, and measures to stabilize the evaluation value were urgently needed. According to the study of the present inventors, it has been found that the Cu ion concentration in the solvent is particularly important, and that stable evaluation can be performed by setting the Cu concentration within a certain concentration range. is there.
  • This concentration can be dealt with by confirming how much eluted, taking into account the size of the container (evaluation container), etc., by processing the dummy wafer (seasoning) described above and then processing.
  • the processing time in the dummy wafer may be adjusted for each evaluation device and managed so as to be within the above-mentioned concentration range.
  • this method requires a particularly long time for the treatment of the dummy wafer (ionization of Cu), and a quick evaluation is performed. It ’s difficult. Seasoning for about one hour may not be enough and may require longer processing.
  • the present inventor has found that the Cu ion concentration in the solvent is more important than the time for treating the dummy wafer to stabilize the evaluation. Therefore, in order to shorten the evaluation time, a Cu standard solution with a known copper concentration such as copper sulfate or copper nitrate is added in advance to the solvent methanol without performing dummy-amber treatment (seasoning). It was confirmed that it could be done. Thus, it is preferable to adjust the copper concentration because quick evaluation can be performed. The measured values are also stable.
  • the concentration is initially higher than a certain level by adding the Cu standard solution, there is almost no need to adjust thereafter, but the evaluation may be performed while controlling the conductivity in the solvent. Since the conductivity changes depending on the Cu concentration, it is necessary to maintain the conductivity above a certain value. However, care must be taken because metals (ions) other than Cu may change the conductivity.
  • An apparatus for evaluating a semiconductor wafer by a conventional Cu deposition method includes a processing container, a lower electrode provided in the processing container, and an upper electrode provided at a predetermined distance from the lower electrode. And an external power supply for generating an electric field between these electrodes.
  • a semiconductor wafer is placed on the upper surface of the lower electrode, a solvent is injected into the processing vessel, and copper ions are removed from the target wafer. ⁇ Evaluate the ⁇ ha.
  • an upper electrode made of copper to which an external voltage can be applied was used.
  • the use of copper electrodes required seasoning to clean the copper electrodes.
  • a Cu standard solution is added to a solvent, a glass electrode, an electrode formed by plating gold on copper, a platinum electrode, a gold electrode or a carbon electrode is used as an upper electrode. It is possible to use electrodes.
  • a glass electrode is a glass substrate with a transparent electrode film made of tin oxide, ITO (indium-tin oxide), or the like. In this case, there is an advantage that it is not necessary to use an electrode, and it is not necessary to perform seasoning for cleaning the electrode.
  • An i-th embodiment of the semiconductor wafer evaluation apparatus of the present invention includes a processing container, a lower electrode provided in the processing container, an upper electrode provided at a predetermined distance from the lower electrode, An external power supply for generating an electric field is provided between these electrodes, a semiconductor wafer is placed on the upper surface of the lower electrode, a solvent is injected into the processing vessel, and the semiconductor wafer is evaluated by a Cu deposition method.
  • the upper electrode is a glass electrode, an electrode plated with gold on copper, a platinum electrode, a gold electrode or a carbon electrode.
  • a second aspect of the semiconductor wafer evaluation apparatus of the present invention is an apparatus for evaluating a semiconductor wafer by a Cu deposition method, wherein an upper electrode is provided at a predetermined distance from the upper electrode.
  • the distance between the upper electrode and the lower electrode can be adjusted and maintained by an electrode distance adjusting member.
  • This interval may be appropriately adjusted in consideration of the range within which the solvent can be maintained at the surface tension, the thickness of the sheet, and the like. In other words, it can be set according to the properties of the solvent used and the measurement environment (room temperature, etc.). For example, when methanol whose Cu concentration is adjusted is used as a solvent, it is preferable to adjust the distance from the wafer surface by about 0.3 mm to 1.5 mm. If the distance is more than 1.5 mm, it is difficult to maintain the surface tension, and the solvent may spill due to slight inclination.
  • the distance between the upper electrode and the lower electrode may be set to about lmm to 2.3 mm. Further, even a large diameter wafer may be appropriately set in consideration of its thickness.
  • the entire apparatus can be maintained horizontal, and good wafer evaluation can be realized.
  • a glass electrode provided with a transparent electrode film such as tin oxide or ITO (indium tin oxide) on a glass substrate, or an electrode plated with copper.
  • a transparent electrode film such as tin oxide or ITO (indium tin oxide)
  • a second aspect of the method for evaluating a semiconductor wafer according to the present invention includes a step of forming an insulating film having a predetermined thickness on the surface of the semiconductor wafer, and a step of forming an insulating film on a defect portion formed near the surface of the semiconductor wafer. And depositing copper in a solvent on the defect site using a Cu deposition method, and depositing copper while holding the solvent on the semiconductor wafer surface by surface tension. It is characterized by the following.
  • the basic process flow of the second embodiment of the method of the present invention can be said to be the same as that of the conventional method.
  • seasoning is not required, and the solvent is applied to the wafer surface by surface tension. Because it is kept, the configuration of the equipment used in the Cu deposition process is different from the conventional one and the procedure is also different.
  • FIG. 1 is a flowchart showing an example of a process order of the first embodiment of the semiconductor wafer evaluation method of the present invention.
  • FIG. 2 is a schematic explanatory view showing one embodiment of the first aspect of the semiconductor wafer evaluation apparatus of the present invention.
  • FIG. 3 is a flowchart showing another example of the process order of the first embodiment of the semiconductor wafer evaluation method of the present invention.
  • FIG. 4 is a schematic explanatory view showing one embodiment of the second aspect of the semiconductor wafer evaluation apparatus of the present invention.
  • FIG. 5 is a graph showing the change in the Cu concentration in methanol and the change in evaluation according to the number of processed sheets in Experimental Example 1.
  • FIG. 6 is a photograph showing the result of the first microscope observation in Experimental Example 1.
  • FIG. 7 is a photograph showing the result of the second and third microscope observations in Experimental Example 1.
  • Fig. 8 shows the evaluation of Cu standard solution added in Experimental Example 2 (Cu concentration in methanol). 0. 383 ppm).
  • FIG. 9 is a photograph showing the results of microscopic observation of the evaluation (Cu concentration in methanol: 4.45 ppm) obtained by adding the Cu standard solution in Experimental Example 2.
  • FIG. 10 is a photograph showing the results of microscopic observation of the evaluation (Cu concentration in methanol: 34. Oppm) of adding Cu standard solution in Experimental Example 2.
  • FIG. 11 is a photograph showing the results of microscopic observation evaluated in Experimental Example 3 at a Cu concentration of 0.857 ppm in methanol.
  • FIG. 12 is a photograph showing the results of microscopic observation in which the Cu concentration in methanol of 0.857 ppn ⁇ Ni200ppb in Experimental Example 3 was added and evaluated.
  • FIG. 13 is a photograph showing the results of microscopic observation in which the Cu concentration in methanol of 0.857 ppn: Fe 200 pppb was added and evaluated in Experimental Example 3.
  • FIG. 14 is a photograph showing the results of microscopic observation of the copper precipitate on the sample C in Example 2.
  • FIG. 1 is a flowchart showing one example of the process order of the first embodiment of the semiconductor wafer evaluation method using the Cu deposition method according to the present invention.
  • an evaluation target wafer w to be evaluated is prepared [Step 100 in FIG. 1].
  • Necessary pre-processing is performed on this wafer W.
  • the wafer is cleaned (step 102 in FIG. 1), and then the wafer W is put into an oxidation furnace, and thermal oxidation is performed to form an oxide film F on the wafer [FIG. Step 104 of 1).
  • the thickness of this oxide film is not particularly limited, but is usually about 25 nm.
  • a part of the backside of the wafer is etched (step 106 in FIG. 1).
  • the entire pack side of the wafer can be etched, but in the evaluation method of the present invention, it is sufficient to secure the minimum electric passage. Normally, this etching may be performed using hydrogen fluoride (HF) vapor.
  • HF hydrogen fluoride
  • the wafer is then washed with pure water to remove residues such as etching gas (step 108 in FIG. 1). Thereafter, Cu deposition is performed on the wafer to be evaluated on which the oxide film is formed [Step 1 12 in FIG. 1].
  • FIG. 2 is a schematic explanatory view showing one embodiment of the first aspect of the semiconductor wafer evaluation apparatus of the present invention.
  • reference numeral 10 denotes an apparatus for evaluating a semiconductor wafer according to the first embodiment of the present invention, which is used as an apparatus for performing Cu deposition.
  • the evaluation device 10 has a processing container 12.
  • a lower electrode (plate) 14 made of gold plating on copper and an upper electrode (plate) 16 made of a material described later are arranged at predetermined intervals.
  • the wafer W whose surface is covered with the oxide film F is set in the wafer holding part 18 so as to be located between the lower electrode 14 and the upper electrode 16.
  • a copper electrode was used as the upper electrode, and seasoning was indispensable for cleaning the copper electrode.
  • seasoning was indispensable for cleaning the copper electrode.
  • the upper electrode 1 As the electrode 6, a non-copper electrode such as a glass electrode, an electrode plated with gold on copper, a platinum electrode, a gold electrode or a carbon electrode can be used. This eliminates the need to use a copper electrode, eliminates the need to perform seasoning for cleaning the electrode, and has the advantage of greatly reducing the processing time.
  • Connection terminals 14a and 16a are connected to the lower electrode 14 and the upper electrode 16, respectively.
  • the connection terminals 14 a and 16 a are connected to a DC external power supply 20.
  • the 2 A voltage is applied to the lower and upper electrodes 14 and 16 in a variable state by the external power supply 20 so that a constant electric field is formed between the electrodes 14 and 16.
  • a solvent (electrolytic agent) 22 is injected into the processing container 12. Methanol is suitably used as the solvent 22.
  • Methanol is suitably used as the solvent 22.
  • the copper concentration can be adjusted by adjusting the time of the series jung, but is preferably adjusted by adding a Cu standard solution to the solvent.
  • a glass electrode or the like can be used as the upper electrode 16 as described above, so that it is not necessary to use a copper electrode and seasoning is not required.
  • seasoning is performed with dummy # 18 at the stage of starting Cu deposition. Seasoning is usually performed for about one hour (step 110 in FIG. 1). The reason why such a long time is required is to clean the electrodes and to secure enough time for the copper to ionize.
  • methanol is injected as a solvent (electrolytic agent), and a copper plate immersed in methanol is negatively biased to ionize the copper.
  • the target wafer (evaluated wafer) W is mounted on the wafer holder 18.
  • an external voltage is applied to the lower electrode 14 and the upper electrode 16 to deposit copper ions on the target defect portion of the wafer W [step 112 in FIG. 1].
  • the strength of the electric field applied at the stage of depositing the prison is usually in the range of 3 to 1 O MVZ cm.
  • the wafer after such Cu deposition is washed, dried, and [Step 1 14 in FIG. 1]
  • the wafer is visually inspected with a microscope (for example, 50-fold, one-horizontal scanning of about 3.5 mm field of view). Evaluate the number and distribution of deposited copper (precipitated at the defect location) formed in [Step 1 16 in Fig. 1].
  • FIG. 3 is a flowchart showing another example of the process order of the first embodiment of the evaluation method of the present invention.
  • a solution obtained by adding a Cu standard solution to solvent 22 is used.
  • an electrode other than copper is used as the upper electrode 16, for example, a glass electrode, an electrode plated with copper, a platinum electrode, a gold electrode, or carbon.
  • An electrode or the like can be used.
  • seasoning step 110 in FIG. 1 becomes unnecessary, and the processing time can be greatly reduced.
  • FIG. 4 is a schematic explanatory view showing one embodiment of the second aspect of the semiconductor wafer evaluation apparatus of the present invention.
  • reference numeral 30 denotes a semiconductor wafer evaluation device according to the second embodiment of the present invention, which is used as a device for performing Cu deposition.
  • the evaluation device 30 has a lower electrode 32.
  • As the lower electrode 32 copper-plated copper is used.
  • an upper electrode 34 is provided so as to face a predetermined interval. The facing distance between the lower electrode 32 and the upper electrode 34 is maintained by the electrode spacing adjusting member 36 provided at the edge of the electrodes 32 and 34 and can be adjusted as appropriate.
  • the electrode gap adjusting member 36 is made of glass or the like.
  • connection terminals 32 a and 34 a are connected to the lower electrode 32 and the upper electrode 34.
  • the connection terminals 32a and 34a are connected to a DC external power supply 20.
  • a voltage is applied to the lower and upper electrodes 32, 34 in a variable state by the external power source 20, so that a constant electric field is formed between the electrodes 32, 34.
  • the wafer W whose surface is covered with the oxide film F is set on the upper surface of the lower electrode 32 so as to be located between the lower electrode 32 and the upper electrode 34.
  • Reference numeral 38 denotes a wafer holder made of silicone rubber or the like, which is provided on the upper surface of the lower electrode 32 between the wafer W and the electrode gap adjusting member 36 so as to support the side surface of the wafer W.
  • the wafer holder 38 is formed on a flat plate, and the upper side of the wafer holder 38 is the lower surface of the upper electrode 34, the side surface of the electrode gap adjusting member 36, and the wafer. It is a space 4 4 surrounded by the side of W. This space 4 4 does not need to be formed entirely above the wafer holder 38, for example, as shown in FIG.
  • Auxiliary supports 45 made of fluororesin or the like are arranged as shown by the line 4 to support the wafer W and the upper electrode 34 in an auxiliary manner.
  • a protection cover (not shown) may be provided so as not to touch the electrodes 34, 36 and the like.
  • Reference numeral 40 denotes a solvent injection hole formed in the upper electrode 34. There is no particular limitation on the position of the solvent injection port 40, but it is preferable that the solvent injection port 40 is formed at the center as shown in the illustrated example.
  • the solvent 22 is injected from the solvent injection port 40 onto the surface of the wafer W.
  • the injected solvent 22 is applied to the surface of the wafer W by the force of the surface tension as shown in FIG. 4 by setting the distance between the surface of the wafer W and the upper electrode 34 to a suitable close interval. The solvent 22 can be maintained.
  • a horizontal holder 42 is attached to the lower surface of the lower electrode 32.
  • the horizontal holder 42 has a horizontal adjustment function so that the lower electrode 32 can be held horizontally, in other words, the entire evaluation device 30 can be held horizontally.
  • the solvent 22 since the solvent 22 is held on the surface of the wafer W by surface tension, when the evaluation device 30 is tilted, the solvent 22 becomes Although the evaluation device 30 is held horizontally by the horizontal holders 42, the accident that the solvent 22 spills from the surface of the wafer W can be prevented. it can. Therefore, in the present invention, it is important to start Cu deposition in a state where the evaluation device 30 is in the horizontal position in advance.
  • the wafer fixing means for fixing the wafer W placed on the upper surface of the lower electrode 32 may be used.
  • a suction mechanism 46 for holding the rear surface of the wafer W by vacuum suction so that the wafer W can be fixed.
  • the processing container (reference numeral 12 in FIG. 2) described above is used. Do not use containers to store solvents. For this reason, since unnecessary contact with a container or the like is not required, metal contamination caused by contamination of the container or the like can be avoided.
  • a solvent methanol
  • a constant concentration of Cu standard solution is added is used. As a result, it is not necessary to use a Cu electrode as the upper electrode 34, so that it is possible to save time for seasoning such as a step of cleaning the Cu electrode.
  • a solvent whose concentration is controlled to a constant Cu concentration is used, and as the upper electrode 34, a glass electrode or an electrode plated with gold on copper can be used. By using a solvent with a constant Cu concentration in this manner, the upper electrode 34 does not need to be particularly limited.
  • the upper electrode 34 the same electrode as the lower electrode 32 obtained by plating copper on gold, a glass electrode, a gold electrode, a platinum electrode, a carbon electrode, and other electrodes can be used.
  • the seasoning time for cleaning the electrode which has conventionally taken a long time, can be omitted. That is, the electrode is easier to clean than the Cu electrode, which is preferable.
  • the surface of the Cu electrode is oxidized during use, and becomes a non-conductive state.
  • the solvent can be supplied stably, and ultraviolet rays can be passed through the electrode to the wafer surface.
  • optical effects can be used to increase sensitivity.
  • the glass electrode is obtained by attaching a transparent electrode film to a glass substrate such as a quartz plate. This electrode may be one in which an electrode film is formed on a transparent substrate other than glass.
  • a second embodiment of the semiconductor wafer evaluation method of the present invention will be described. The order of the steps in the second embodiment of the semiconductor wafer evaluation method of the present invention is not specifically described. 6 is the same as the flowchart of the other example of the process order of the first embodiment of the evaluation method of the present invention shown in FIG. 3 described above, but the drawing is not repeated, and FIG. 3 is omitted. It will be described using FIG.
  • a second aspect of the semiconductor wafer evaluation method of the present invention is characterized in that copper is deposited while a solvent is held on the wafer surface by surface tension.
  • the evaluation method for semiconductor wafers is basically the same as the method shown in Fig. 1 before seasoning.
  • an evaluation target wafer W to be evaluated is prepared (step 100 in FIG. 3), and necessary preprocessing is performed on this wafer W.
  • the wafer is cleaned (step 102 in FIG. 3), and then the wafer W is put into an acid furnace and subjected to thermal oxidation to form an oxide film F on the wafer. (Step 104 in FIG. 3).
  • a part of the back side of the wafer W is etched with hydrogen fluoride (HF) vapor or the like (step in FIG. 3). 1 0 6) 0 then washed with pure water residues such as etching gas to divided (step 1 0 8 in FIG. 3), then to be evaluated Ueha this acid I arsenide film is formed Cu deposition is carried out (step 1 1 2 in FIG. 3).
  • the method of performing Cu deposition is different from that of the first embodiment of the method of the present invention, and the Cu deposition apparatus used in the second embodiment of the method of the present invention (FIG. 4).
  • the wafer to be evaluated W is set, and the upper electrode 34 and the surface of the wafer to be evaluated W Set to mm. This interval is appropriately adjusted depending on the thickness of the wafer W, the surface tension of the solvent 22 and the amount of the solvent required for Cu deposition.
  • a methanol solution (solvent) 22 whose Cu concentration is controlled is injected from the solvent injection port 44 of the upper electrode 34.
  • methanol (solvent) 22 gradually spreads along the surface of the wafer W and the electrodes 32, 34. ⁇ Hold so that methanol (solvent) 22 exists only on the surface of wafer W. 7
  • ⁇ AW may stick to (float) the upper electrode 34 side due to the surface tension of methanol (solvent) 22, and ⁇
  • the back surface of ⁇ W may rise due to the surface tension. It is preferable to hold by suction by a vacuum suction mechanism 46 or the like so as not to cause the problem.
  • Step 1 1 2 in Figure 3 the upper electrode 3 4 and by applying an external electrode to the lower electrode 3 2 thereby depositing a copper Ion on the defect site Ueha W is 0
  • ⁇ Copper is deposited on the surface of the wafer.
  • the wafer subjected to such Cu deposition is washed and dried (steps 114 in FIG. 3), and the number of copper deposits (deposited at defect locations) formed on the wafer by a visual microscope. And the distribution (steps 1 and 16 in Fig. 3).
  • the method of the present invention can be said to be an evaluation method using methanol (solvent) in a single wafer.
  • methanol (solvent) is present only on the wafer W by making good use of the surface tension as described above, so that there is little external contamination.
  • methanol (solvent) is discarded each time Cu deposition is performed once, there is an advantage that there is no accumulation of impurities.
  • wafers having different diameters can be easily processed by the same apparatus because a conventional processing vessel is not used.
  • processing vessels are prepared for each diameter, or the processing vessels are adjusted to large diameters beforehand. 8
  • the solvent had to be used and wasted.
  • the apparatus of the present invention since only the solvent is retained on the wafer surface, there is basically no need to change the size of the apparatus itself. For example, if the apparatus is made for an 8-inch wafer, Electrode spacing adjusting member ⁇ ⁇ A wafer of other diameter can be easily evaluated with a slight adjustment of the wafer holding (fixing) means.
  • the second embodiment of the method of the present invention by using a solvent in which the Cu concentration is adjusted in advance, it is possible to omit the time for seeding, such as cleaning of the electrode and ionization of the Cu electrode, which have conventionally taken a long time. This allows for efficient and short-time wafer evaluation.
  • the thickness of the oxide film formed in the thermal oxidation was 25 nm
  • the etching in the backside etching was hydrogen fluoride (HF).
  • the applied electric field in Cu deposition was performed at 5 MVZ cm for 5 minutes.
  • seasoning was performed for 1 hour in advance under 5 MVZ cm.
  • test wafers were processed one by one, and the number of defects appearing in Cu deposition and the copper concentration in methanol were confirmed.
  • the number of defects is determined by observing the defects by scanning them in a straight line in the diameter direction of the wafer by microscopic observation (50 ⁇ , about 3.5 mm field of view), and the number of precipitated copper (defects) per unit area. (Piece Zcm 2 ) was calculated.
  • the copper concentration in methanol was evaluated by ICP-MS after sampling 100 ⁇ l of the solvent and placing it in 100 ml of 1% nitric acid.
  • FIG. 5 shows the results. As the number of substrates increased, the Cu concentration increased, and defects in Cu deposition were clearly observed. Although there is some variation, it can be seen that the evaluation was stable after the fourth sheet.
  • Figures 6 and 7 show the results of microscopic observations of typical defect states.
  • Fig. 6 shows the observation result of the first sheet
  • Fig. 7 shows the observation result of the 23rd sheet. No defect can be observed on the first sheet, but a permanent defect can be observed on the 23rd sheet. Defects similar to those in Fig. 7 are seen from the fourth sheet onward. From this, it can be seen that in order to stabilize the Cu deposition, the initial Cu concentration has an effect on the copper concentration in methanol, especially on the dispersion at the start of the evaluation.
  • the critical concentration is considered to be about 0.4 ppm, below which defects are not clearly observed and the measurement becomes unstable.
  • the actual Cu concentration in methanol was 0.383 ppm, 0.886, 4.45, and 34 ppm.
  • the defect appeared only in a thin state, and the defect was not counted in some cases.
  • clear defects can be observed as shown in Figure 9.
  • a Cu standard solution with a very high concentration of 34 ppm is added, abnormal defects as shown in Fig. 10 may be observed. This is thought to be caused by the electric field concentration. Even in such a state, the evaluation value may vary, so the upper limit is preferably about 30 ppm.
  • the Cu concentration when the Cu concentration is less than 0.4 ppm, it is clear that the measurement varies, and a higher Cu concentration is required.
  • the Cu concentration may be adjusted by seasoning or by adding a Cu standard solution from outside. Such a method is particularly effective because the pre-processing (seasoning) time for evaluation is reduced.
  • the evaluation was performed by setting the Cu concentration in methanol to 0.857 ppm. To this, Fe and Z or Ni were added for evaluation. Using the same apparatus as in Experimental Example 1, the basic Cu deposition method is also the same as in Experimental Example 1.
  • the wafer to be inspected As the wafer to be inspected, a 6-inch CZ mirror-polished wafer was used.
  • the wafer to be inspected was processed and evaluated according to the procedure shown in FIG. 3 using the apparatus shown in FIG. 2 in which the upper electrode was a glass electrode.
  • the glass electrode is made by attaching a transparent electrode film to a quartz plate.
  • a part of the pack side of the wafer is etched with hydrofluoric acid vapor.
  • the substrate was washed with pure water to remove a residue such as an etching gas.
  • Cu deposition was performed on the wafer to be evaluated on which the oxide film was formed.
  • the outer periphery of the wafer to be evaluated is first held with silicone rubber or the like so as not to be displaced, and the electrodes are spaced about 1.6 mm apart from each other. Set at about lmm from the evaluation surface. Adjustment of this interval may be performed by holding glass having a constant thickness through which no current flows between the upper and lower electrodes. Next, a solvent having a controlled Cu concentration (in this example, a methanol solution) is injected into the center of the wafer from a solvent injection port formed in the upper electrode.
  • a solvent having a controlled Cu concentration in this example, a methanol solution
  • Cu standard solution Specifically, for example, a commercially available Cu S0 4 '5H 2 0 (manufactured by Kanto Chemical Co., Ltd.) was prepared by adding the solvent. It is preferable to use this standard solution to adjust the Cu concentration to be about 0.4 to 30 ⁇ .
  • methanol having a Cu concentration of about 1 ppm was used. This methanol was dropped using a pipette, and was dropped by using surface tension to such an extent that the methanol did not spill out of the wafer. Methanol spreads across the wafer between the wafer and the upper electrode. In this example, approximately 18 milliliters of solvent was dropped per wafer.
  • the inspection time was significantly reduced because seasoning was not performed.
  • the above operation was repeated to evaluate a plurality of wafers. As a result of the repeated measurement, a defect was stably observed.
  • the process is performed without using a processing container for storing the solvent, external contamination is reduced, and the solvent is exchanged and processed for each sheet.
  • the accumulation of contamination brought in from other wafers is reduced, and the instability factors due to contamination can be significantly reduced. Also, the amount of solvent can be reduced.
  • the use of the Cu standard solution has the effect that the pretreatment time can be shortened and the evaluation can be performed quickly.
  • the first aspect of the present invention using a Cu standard solution as a solvent and using an electrode other than copper such as a glass electrode as an upper electrode is described.
  • the copper concentration can be easily controlled, stable defects can be observed, and the distribution and density of defects can be accurately and quickly analyzed.
  • the wafer can be evaluated in a short time, and further, the instability factor of the wafer evaluation due to contamination can be eliminated, and the wafer defect can be accurately evaluated. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method and an apparatus for evaluating a semiconductor wafer by Cu deposition which enable a stable observation of defects and an accurate analysis of the distribution and density of defects, a suppression of variation of devices, batches, etc., and a stable evaluation by controlling and evaluating the Cu concentration and enables a shortening of the pretreatment time and a rapid evaluation by using a Cu reference liquid. The Cu deposition method comprises a step of forming an insulating film of a predetermined thickness on the surface of a semiconductor wafer and a step of breaking the insulating film on a defective part formed close to the surface of the semiconductor wafer and depositing Cu in a solvent on the defective part. The Cu concentration in the solvent is adjusted to a range of 0.4-30ppm and evaluation is performed.

Description

明 細 書 半導体ゥエーハの評価方法及ぴ装置  Description Semiconductor wafer evaluation method and equipment
技術分野 Technical field
本発明はシリコンゥエーハ等のような半導体ゥエーハ (以下単にゥエーハと称 することがある) の欠陥評価装置おょぴ方法に関するもので、 より詳しくは銅を ゥエーハ表面に析出させることにより半導体ゥエーハの表面欠陥の分布、 密度な どを正確に分析する C uデポジション法を用いる半導体ゥエーハの評価方法およ び装置に関する。 背景技術  The present invention relates to a method for evaluating a defect of a semiconductor wafer such as a silicon wafer (hereinafter sometimes simply referred to as “a wafer”). The present invention relates to a semiconductor wafer evaluation method and apparatus using a Cu deposition method for accurately analyzing the distribution and density of surface defects. Background art
半導体素子の集積度が増加することにより、 ゥエーハの品質が半導体素子の収 率と信頼性に大きな影響を及ぼしている。半導体ゥエーハの品質は結晶成長工程、 ゥヱーハ加工工程及びデバイス製造工程の全工程を通じて決められるものである ヽ ゥエーハにおける欠陥は、 主にシリコンのインゴット成長中に発生する結晶 欠陥 (crystal defect) と加工時に形成される加工ダメージ及び外部汚染源によ る欠陥とに大きく分けられる。  As the degree of integration of semiconductor devices increases, the quality of wafers has a significant effect on the yield and reliability of semiconductor devices. The quality of semiconductor wafers is determined throughout the crystal growth process, wafer processing process, and device manufacturing process. に お け る Defects in wafers are mainly caused by crystal defects that occur during silicon ingot growth and crystal defects. It can be broadly divided into processing damage to be formed and defects due to external contamination sources.
一般に、 シリコンゥエーハの製造は、 チヨクラルスキー (Czochralski; CZ) 法 や浮遊帯域溶融 (Floating Zone; FZ) 法を使用して単結晶ィンゴットを製造する 結晶成長工程、 この単結晶インゴッ トをスライスし、 少なくとも一主面が鏡面状 に加工されるゥエーハ加工工程を経て行われるものである。 更に詳しくその工程 を示すと、 ゥエーハ加工工程は、 単結晶インゴットをスライスして薄円板状のゥ ェーハを得るスライス工程と、該スライス工程によつて得られたゥエーハの割れ、 欠けを防止するためにその外周部を面取りする面取り工程と、 このゥエーハを平 ±且化するラッビング工程と、 面取り及ぴラッビングされたゥエーハに残留する加 ェ歪みを除去するエッチング工程と、 そのゥエーハ表面を鏡面ィヒする研磨 (ポリ ッシング) 工程と、 研磨されたゥヱーハを洗浄して、 これに付着した研磨剤ゃ異 物を除去する洗浄工程を有している。 上記ゥエーハ加工工程は、 主な工程を示し たもので、 他に熱処理工程等の工程が加わったり、 工程順が入れ換えられたりす る。 In general, silicon wafers are manufactured using the Czochralski (CZ) method or the floating zone (FZ) method, a single crystal ingot is manufactured using a crystal growth process, and the single crystal ingot is sliced. However, at least one principal surface is processed into a mirror surface. More specifically, the wafer processing step includes a slicing step of slicing a single crystal ingot to obtain a wafer having a thin disk shape, and preventing cracking and chipping of the wafer obtained by the slicing step. A chamfering step for chamfering the outer peripheral portion thereof, a rubbing step for flattening the wafer, and a chamfering process for chamfering and remaining the wafer. There is an etching process to remove the distortion, a polishing (polishing) process to mirror the wafer surface, and a cleaning process to clean the polished wafer and remove the abrasive and foreign matter adhering to it. are doing. The above e-wafer processing step shows the main steps, and other steps such as a heat treatment step are added or the order of the steps is changed.
一般的にゥエーハの欠陥の中で、埃などの外部の汚染源(contamination) はェ ツチングゃ洗浄工程により容易に除去されるが、 C u等の金属の場合、 ゥエーハ 内部に取り込まれて除去しにくい汚染源もある。 この汚染が欠陥を誘発すること がある。 また成長された単結晶内に存在する欠陥、 酸素析出物、 積層欠陥、 金属 析出物などの結晶欠陥 (crystal defect) は主に単結晶の成長過程中に発生する もので洗浄工程によっては除去されない。 特に、 この中で半導体ゥヱーハの表面 欠陥 (surface defect) として、 マイクロピットとして知られる C O P (Crystal Originated Particle)等の欠陥は従来の一般的な洗浄工程によつては除去されな いので、 結晶成長工程又はゥェーハ加工工程でその発生を抑制しなければならな い。  Generally, among the defects in wafers, external contamination such as dust is easily removed by the etching and cleaning process, but in the case of metals such as Cu, they are hardly removed by being taken into the inside of the wafer. There are also sources of pollution. This contamination can cause defects. In addition, crystal defects such as defects, oxygen precipitates, stacking faults, and metal precipitates existing in the grown single crystal mainly occur during the process of growing the single crystal and are not removed by the cleaning process. . In particular, among these, defects such as COPs (Crystal Originated Particles) known as micropits, which are surface defects of semiconductor wafers, are not removed by a conventional general cleaning process, and therefore, crystal growth. Its generation must be suppressed in the process or wafer processing process.
このような C O P等の欠陥は酸ィヒ膜耐圧特性、 つまり半導体ゥエーハ上に半導 体素子を形成する工程においても継続して影響を与え、 半導体素子の収率や信頼 性を低下させる要因となる。 従って、 デバイス製造工程でゥヱーハ上に半導体素 子を形成する前に、 これらの欠陥の正確な分布、 密度を確認することは半導体素 子の収率管理の面において非常に重要なことになる。  Defects such as COP continue to affect the oxide film breakdown voltage characteristic, that is, the process of forming a semiconductor device on a semiconductor wafer, and are factors that reduce the yield and reliability of the semiconductor device. Become. Therefore, it is very important to confirm the accurate distribution and density of these defects before forming the semiconductor elements on the wafer in the device manufacturing process, in terms of controlling the yield of the semiconductor elements.
従来、 鏡面研磨直後のゥエーハの表面結晶欠陥を分析するためには主にレーザ ースキヤッタリング法を使用していた。 例えば、 S C 1組成といわれる N H40 H: H202: H20 = 1 : 1 : 8の薬液等でゥエーハを洗浄した後、 レーザースキ ャッタリング粒子計数機 (Laser Scattering Particle Counter) を用い、 ゥエー ハの表面に一定の波長をもつレーザーを照射し、 その散乱された信号を感知して ゥヱーハの表面の欠陥を分析するものである。 しかし、 前記従来の方法によると次のような問題点がある。 すなわち、 従来の レーザースキヤッタリング粒子計数機を使用する場合、 欠陥に対する検出限界が 0 . 程度なので、 この大きさ以下の C O Pは検出することはできない。 しかし、 0 . 1 2 以下の検出されない微細な欠陥でも酸化膜耐圧等の品質に 影響を与える。 Conventionally, the laser scattering method was mainly used to analyze surface crystal defects of wafers immediately after mirror polishing. For example, NH 4 0 H is said SC 1 Composition: H 2 0 2: H 2 0 = 1: 1: After washing the Ueha with 8 chemical solution, the laser liked Yattaringu particle counter machine (Laser Scattering Particle Counter) using The surface of the wafer is irradiated with a laser having a certain wavelength, and the scattered signal is sensed to analyze defects on the wafer surface. However, the conventional method has the following problems. That is, when a conventional laser scattering particle counter is used, the detection limit for defects is about 0. Therefore, COPs smaller than this size cannot be detected. However, even a small defect of 0.12 or less that is not detected affects the quality such as the oxide film breakdown voltage.
つまり、 ゥエーハの表面の欠陥についての正確な情報を得ることができなかつ たので、 後続する工程によつて製造される半導体素子の収率管理ができなかつた ばかりでなく、 ゥ ーハの製造に際して欠陥の発生を抑制する効果的な方法を見 出すこともできなかった。 これを解決する評価法として、 C uデポジション法が 考えられた。  In other words, since accurate information on surface defects of wafers could not be obtained, not only could the yield of semiconductor devices manufactured by the subsequent processes be controlled, but also Nor could we find an effective way to control the occurrence of defects. The Cu deposition method was considered as an evaluation method to solve this.
C uデポジション法は、 半導体ゥエーハの欠陥の位置を正確に測定し、 半導体 ゥエーハの欠陥に対する検出限界を向上させ、 より微細な欠陥に対しても正確に 測定し、 分析できるゥエーハの評価法である。  The Cu deposition method is an wafer evaluation method that accurately measures the position of defects in semiconductor wafers, improves the detection limit for defects in semiconductor wafers, and can accurately measure and analyze even finer defects. is there.
具体的なゥェーハの評価方法はゥューハ表面上に所定の厚さの絶縁膜を形成さ せ、 前記ゥエーハの表面近くに形成された欠陥部位上の絶縁膜を破壊して欠陥部 位に C uなどの電解物質を析出 (デポジション) するものである。 つまり、 C u デポジション法は、 C uイオンが溶存する液体 (例えばメタノール) の中で、 ゥ エーハ表面に形成した酸ィヒ膜に電位を印可すると、 酸化膜が劣化している部位に 電流が流れ、 C uイオンが C uとなって析出することを利用した評価法である。 酸化膜が劣化しゃすい部分には C O Pなどの欠陥が存在していることが知られて レ、る。  A specific wafer evaluation method is to form an insulating film of a predetermined thickness on the wafer surface, break the insulating film on the defective portion formed near the wafer surface, and place Cu or the like on the defective portion. This is to deposit (deposition) the electrolyte. In other words, in the Cu deposition method, when a potential is applied to the oxygen film formed on the surface of the wafer in a liquid (for example, methanol) in which the Cu ions are dissolved, a current is applied to a portion where the oxide film is deteriorated. This is an evaluation method that utilizes the fact that the Cu ions precipitate as Cu ions. It is known that defects such as COP exist in the area where the oxide film deteriorates.
C uデポジションされたゥエーハの欠陥部位は集光灯下や直接的に肉眼で分析 してその分布や密度を評価することができ、更に顕微鏡観察、透過電子顕微鏡 (T E M) または走査電子顕微鏡 ( S E M) などでも確認することができる。 発明の開示 上記した C uデポジション法においては、 シーズニングの時間がかかる他、 メ タノール等を効率的に使うには、 同じメタノールを用い複数枚のゥヱーハを処理 する必要があり、 全体的に評価する測定時間が大変かかってしまう上、 感度は良 いものの測定値の安定性に難点があった。 特に評価開始直後の値のバラツキや、 装置間のバラツキが大きかった。 The Cu-deposited defect site of the wafer can be analyzed under the condensing light or directly with the naked eye to evaluate its distribution and density.Furthermore, it can be observed by microscope, transmission electron microscope (TEM) or scanning electron microscope (TEM). (SEM) etc. Disclosure of the invention In the Cu deposition method described above, it takes a long time to season, and in order to use methanol efficiently, it is necessary to process multiple wafers using the same methanol. And the sensitivity was good, but the stability of the measured values was difficult. In particular, there were large variations in the values immediately after the start of the evaluation and between devices.
この安定性については、 C uデポジションに用いる溶媒中の C u濃度が重要で あることがわかった。 し力 し、 この他にも、 F eや N iなどが存在する場合に評 価が不安定になることが確認された。 複数枚のゥヱーハを処理する時、 同じメタ ノールを使用すると不純物の持ち込みや蓄積があり、 このような不安定性要因の 金属が混入してしまうなどの問題があった。  It was found that the Cu concentration in the solvent used for Cu deposition is important for this stability. However, it was confirmed that the evaluation became unstable when Fe, Ni, etc. were present. When processing multiple wafers, the use of the same methanol may bring in or accumulate impurities, causing a problem such as the incorporation of such instability-causing metals.
本発明の第 1の目的は、 銅濃度を管理し評価することで、 安定した欠陥の観察 ができ、 欠陥の分布や密度を正確に分析でき、 装置間、 パッチ間等のバラツキを 抑え、 安定した評価ができる上、 C u標準液を用いることにより、 前処理時間の 短縮を可能とし迅速な評価ができるようにした C uデポジション法による半導体 ゥエーハの評価方法及び装置を提供することにある。  The first object of the present invention is to control and evaluate the copper concentration, thereby enabling stable observation of defects, accurate analysis of defect distribution and density, suppression of variations between devices, patches, and the like, and stable operation. In addition, it is an object of the present invention to provide a method and an apparatus for evaluating semiconductor wafers by the Cu deposition method, which can shorten the pretreatment time and enable quick evaluation by using a Cu standard solution by using a Cu standard solution. .
本発明の第 2の目的は、 溶媒をゥ ーハ 1枚毎に交換し効率よく処理すること を可能とし、 短時間でゥエーハの評価を行うことができ、 更に汚染起因のゥエー ハの評価の不安定性要因を排除し、 精度良くゥエーハの欠陥の評価を行うことが できる C uデポジション法による半導体ゥェーハの評価装置及び方法を提供する ことを目的とする。  A second object of the present invention is to enable the solvent to be exchanged for each wafer and to efficiently process the solvent, to evaluate the wafer in a short time, and to evaluate the wafer due to contamination. It is an object of the present invention to provide a semiconductor wafer evaluation apparatus and method using a Cu deposition method, which can accurately evaluate a wafer defect by eliminating an instability factor.
上記した課題を解決するために、 本発明の半導体ゥエーハの評価方法の第 1の 態様は、 半導体ゥニーハの表面上に所定の厚さの絶縁膜を形成させる工程と、 該 半導体ゥ ーハの表面近くに形成された欠陥部位上の絶縁膜を破壊し、 該欠陥部 位に溶媒中の銅をデポジションする工程とからなる C uデポジション法を用い、 該溶媒中の銅濃度を 0 · 4〜 3 0 p p mの範囲に調節し半導体ゥエーハを評価す るものである。 現行の方法では、 パッチ初期においては測定値が大きくパラツキ、 検出される 欠陥が非常に少ない事が分かった。 これは溶媒、 例えばメタノール中の銅の濃度 が足らないために生じているものと考えられる。 本発明者が鋭意調査したところ 0 . 4 p p m以上の銅がメタノール中に存在していることが好ましいことが明ら かになつた。またメタノール中の銅濃度が 3 0 p p mを超える濃い状態になると、 一部の欠陥に電界集中が起きて、 他の欠陥部分が見えづらくなるという問題も発 生した。 したがって、 0 . 4〜 3 0 p p m程度の C u濃度が好ましい。 In order to solve the above-described problems, a first aspect of the method for evaluating a semiconductor wafer according to the present invention includes: a step of forming an insulating film having a predetermined thickness on a surface of the semiconductor wafer; A step of destroying an insulating film on a defective portion formed in the vicinity and depositing copper in a solvent at the defective portion using a Cu deposition method. The semiconductor wafer is evaluated by adjusting it to the range of ~ 30 ppm. With the current method, it was found that the measured values were large and fluctuate early in the patch, and that very few defects were detected. This is thought to be due to insufficient concentration of copper in the solvent, for example methanol. The present inventors have conducted intensive studies and have found that it is preferable that 0.4 ppm or more of copper is present in methanol. When the concentration of copper in methanol exceeded 30 ppm, electric field concentration occurred in some defects, and other defects became difficult to see. Therefore, a Cu concentration of about 0.4 to 30 ppm is preferable.
この濃度は、 ダミーゥヱーハを用いたシーズエングの時間を調節することでも 可能である。 ダミーゥヱーハとは、実際に評価したいゥヱーハ(被評価ゥヱーハ) を処理する前に装置の立ち上げ (特に電極の掃除) に使用するゥユーハで、 特別 なゥェーハを使用するものではなく、 被評価ゥエーハと同じ酸化膜が形成された ゥェーハゃ酸化膜を形成する前のゥエーハでよレ、。従来ダミーゥエーハの処理 (シ ーズニング) は電極の清浄化及ぴ C uのイオン化を目的に行われてきている。 但 し、 溶媒中に C uがどの程度イオン化したかなどは通常管理されておらず、 通常 一定の時間 (例えば 1時間程度) 処理することで処理されていた。  This concentration can also be adjusted by adjusting the seeding time using a dummy wafer. A dummy wafer is a wafer used to start up the equipment (especially cleaning the electrodes) before processing the wafer (evaluated wafer) to be actually evaluated. Oxide film is formed on the wafer before the oxide film is formed. Conventionally, processing (seasoning) of a dummy wafer has been performed for the purpose of cleaning electrodes and ionizing Cu. However, the degree to which Cu was ionized in the solvent is not normally controlled, and it is usually treated by treating for a certain period of time (for example, about 1 hour).
しかし、 1時間程度の処理を行っても、 測定値にパラツキが大きく安定しない ことがあった。 これは測定する容器の影響及び測定装置の違い及び操り返し測定 している間で大きく変動した。 このような状態では正確な評価が行えないため、 評価値を安定させる対策が急務となった。 本発明者の検討によれば、 溶媒中の C uイオン濃度が特に重要であり、 C u濃度をある濃度範囲にすることで安定した 評価が行えることを発見し、 本発明に達したものである。  However, even if the treatment was performed for about one hour, the measured values fluctuated greatly and sometimes became unstable. This fluctuated significantly between the effect of the container being measured, the differences in the measuring equipment and the repeated measurements. In such a situation, accurate evaluation could not be performed, and measures to stabilize the evaluation value were urgently needed. According to the study of the present inventors, it has been found that the Cu ion concentration in the solvent is particularly important, and that stable evaluation can be performed by setting the Cu concentration within a certain concentration range. is there.
この濃度は先に示したダミーゥヱーハの処理(シーズニング)により、容器(評 価用の容器) の大きさ等を考慮に入れ、 どの程度溶出しているか確認し処理する ことで対応は可能である。 つまり評価装置毎にダミーゥヱーハでの処理時間を調 節し上記濃度範囲に納まるように管理すればよい。 しかし、 この方法では、 ダミ ーゥエーハの処理 (C uのイオン化) に特に長時間が必要となり迅速な評価が行 いづらい。 1時間程度のシーズニングでも不十分な場合があり更に長時間の処理 を必要とすることがある。 This concentration can be dealt with by confirming how much eluted, taking into account the size of the container (evaluation container), etc., by processing the dummy wafer (seasoning) described above and then processing. In other words, the processing time in the dummy wafer may be adjusted for each evaluation device and managed so as to be within the above-mentioned concentration range. However, this method requires a particularly long time for the treatment of the dummy wafer (ionization of Cu), and a quick evaluation is performed. It ’s difficult. Seasoning for about one hour may not be enough and may require longer processing.
本発明者は、 評価を安定化するためにはダミーゥエーハを処理する時間より、 むしろ溶媒中の C uイオン濃度が重要であることを見出した。 従って評価時間を 短縮するには、 ダミーゥエーハ処理 (シーズニング) を行わなくても溶媒のメタ ノール中に予め硫酸銅や硝酸銅などの銅濃度が既知である C u標準液を添加する ことによつても行えることが確認できた。 これにより銅濃度を調節すると迅速な 評価が行えて好ましい。 また測定値も安定している。  The present inventor has found that the Cu ion concentration in the solvent is more important than the time for treating the dummy wafer to stabilize the evaluation. Therefore, in order to shorten the evaluation time, a Cu standard solution with a known copper concentration such as copper sulfate or copper nitrate is added in advance to the solvent methanol without performing dummy-amber treatment (seasoning). It was confirmed that it could be done. Thus, it is preferable to adjust the copper concentration because quick evaluation can be performed. The measured values are also stable.
また、 C u標準液の添加で、 初めにある一定濃度以上にすればその後調節する 事はほとんど必要ないが、 前記溶媒中の導伝率を管理しながら評価してもよい。 C u濃度により導伝率は変化するため、 ある一定の導伝率以上になるように維持 すればよレ、。 但し、 C u以外の金属 (イオン) などでも導伝率を変化させる可能 性があるので注意を要する。  In addition, if the concentration is initially higher than a certain level by adding the Cu standard solution, there is almost no need to adjust thereafter, but the evaluation may be performed while controlling the conductivity in the solvent. Since the conductivity changes depending on the Cu concentration, it is necessary to maintain the conductivity above a certain value. However, care must be taken because metals (ions) other than Cu may change the conductivity.
さらに、 C uデポジションを行う上で、 F eや N iが銅の析出を妨害し、 正確 な欠陥の評価の妨げになっていることが確認できた。 特に、 F e、 N iが溶媒中 に 1 0 p p b以上含まれるようになると顕著である。 従って溶媒中の F e濃度及 びノ又は N i濃度を 5 p p b以下に管理し評価することが好ましい。  In addition, in performing Cu deposition, it was confirmed that Fe and Ni hindered copper deposition and hindered accurate defect evaluation. In particular, it is remarkable when Fe and Ni are contained in the solvent at 10 ppb or more. Therefore, it is preferable to control and evaluate the Fe concentration and the concentration of Ni or Ni in the solvent to be 5 ppb or less.
従来の C uデポジション法によって半導体ゥヱーハを評価する装置は、 処理容 器と、 該処理容器内に設けられた下部電極と、 該下部電極に対して所定の間隔に おいて設けられた上部電極と、 これらの電極間に電界を発生せしめる外部電源と を有し、 該下部電極の上面に半導体ゥエーハを载置するとともに該処理容器内に 溶媒を注入し、 銅イオンを目的のゥエーハの欠陥部位上にデポジションさせ、 ゥ エーハの評価を行うものである。  An apparatus for evaluating a semiconductor wafer by a conventional Cu deposition method includes a processing container, a lower electrode provided in the processing container, and an upper electrode provided at a predetermined distance from the lower electrode. And an external power supply for generating an electric field between these electrodes. A semiconductor wafer is placed on the upper surface of the lower electrode, a solvent is injected into the processing vessel, and copper ions are removed from the target wafer.デ Evaluate the ゥ ha.
この従来の評価装置においては、 外部電圧を印加できる銅でできた上部電極を 使用していた。 従来の C uデポジション法においては、 シーズニング (ダミーゥ エーハの処理) により、 上部電極から銅をイオン化させることが必須であつたた め、 上部電極としては、 銅電極を使う必要があった。 し力 し、 一方では銅電極を 用いることによって、 銅電極を掃除するためのシーズニングが必要であった。 上記した本発明の評価方法の第 1の態様において、 溶媒中に、 C u標準液を添 加する場合には、上部電極としてガラス電極、銅に金メツキした電極、白金電極、 金電極又は炭素電極を使用することが可能となる。 ガラス電極とは、 ガラス基板 に酸化スズ、 I T O (インジウム -スズ酸化物) などの透明電膜を付けたもので ある。 この場合、 鲖電極を用いる必要がなくなり、 その電極の掃除のためのシー ズニングを行う必要がないという利点がある。 In this conventional evaluation device, an upper electrode made of copper to which an external voltage can be applied was used. In the conventional Cu deposition method, it was essential to ionize copper from the upper electrode by seasoning (dummy wafer processing). Therefore, it was necessary to use a copper electrode as the upper electrode. On the other hand, the use of copper electrodes required seasoning to clean the copper electrodes. In the first aspect of the evaluation method of the present invention described above, when a Cu standard solution is added to a solvent, a glass electrode, an electrode formed by plating gold on copper, a platinum electrode, a gold electrode or a carbon electrode is used as an upper electrode. It is possible to use electrodes. A glass electrode is a glass substrate with a transparent electrode film made of tin oxide, ITO (indium-tin oxide), or the like. In this case, there is an advantage that it is not necessary to use an electrode, and it is not necessary to perform seasoning for cleaning the electrode.
本発明の半導体ゥヱーハの評価装置の第 iの態様は、 処理容器と、 該処理容器 内に設けられた下部電極と、 該下部電極に対して所定の間隔をおいて設けられた 上部電極と、 これらの電極間に電界を発生せしめる外部電源とを有し、 該下部電 極の上面に半導体ゥエーハを載置するとともに該処理容器内に溶媒を注入し、 C uデポジション法によって半導体ゥヱーハを評価する装置において、 上部電極が ガラス電極、 銅に金メッキした電極、 白金電極、 金電極又は炭素電極であること を特 ί敷とする。  An i-th embodiment of the semiconductor wafer evaluation apparatus of the present invention includes a processing container, a lower electrode provided in the processing container, an upper electrode provided at a predetermined distance from the lower electrode, An external power supply for generating an electric field is provided between these electrodes, a semiconductor wafer is placed on the upper surface of the lower electrode, a solvent is injected into the processing vessel, and the semiconductor wafer is evaluated by a Cu deposition method. In the apparatus, the upper electrode is a glass electrode, an electrode plated with gold on copper, a platinum electrode, a gold electrode or a carbon electrode.
この装置は、 溶媒中に C u標準液を添加する場合に使用するものであるが、 上 記した銅以外の材料による電極を用いると、 洗浄が容易であり、 時間のかかるシ ーズニングを省略することができ、 処理時間を大幅に短縮することができる。 特 に、 ガラス電極等の透明な電極を用いることにより、 電極を通し、 ゥエーハ表面 に紫外線をあてるなど、光学的効果を利用し感度の向上を図ることが可能となる。 本発明の半導体ゥエーハの評価装置の第 2の態様は、 C uデポジション法によ つて半導体ゥエーハを評価する装置であり、 上部電極と、 該上部電極に対して所 定の間隔をおいて設けられた下部電極と、 これらの電極間に電界を発生せしめる 外部電源と、 該下部電極の上面に載置された半導体ゥエーハの表面に溶媒を注入 し、 該注入された溶媒を表面張力により該半導体ゥ ーハ表面に保持することが できるようにしたことを特徴とする。 具体的には、 ゥエーハと上部電極との距離 を近付けることによつて表面張力によってゥエーハ表面に溶媒を溜めるようにし たものである。 This device is used when adding a Cu standard solution to a solvent.If an electrode made of a material other than the above-mentioned copper is used, cleaning is easy and time-consuming seasoning is omitted. Processing time can be greatly reduced. In particular, by using a transparent electrode such as a glass electrode, it is possible to improve the sensitivity by using an optical effect, such as applying ultraviolet light to the surface of the wafer through the electrode. A second aspect of the semiconductor wafer evaluation apparatus of the present invention is an apparatus for evaluating a semiconductor wafer by a Cu deposition method, wherein an upper electrode is provided at a predetermined distance from the upper electrode. A lower electrode, an external power supply for generating an electric field between these electrodes, and a solvent injected into the surface of the semiconductor wafer mounted on the upper surface of the lower electrode. It is characterized in that it can be held on the wafer surface. Specifically, the distance between the wafer and the upper electrode The solvent is stored on the surface of the wafer by the surface tension by bringing the surface closer.
上記上部電極に溶媒注入口を穿設し、 該溶媒注入口より溶媒を注入するように すれば、 注入作業が容易となる便利さがある。  If a solvent injection port is formed in the upper electrode and the solvent is injected from the solvent injection port, there is the convenience that the injection operation is facilitated.
上記上部電極及び下部電極間の間隔を電極間隔調整部材により調整及び維持す ることがで'きるようにするのが好適である。 この間隔は溶媒を表面張力で維持で きる範囲内及びゥ 一ハの厚さ等を考慮に入れ適宜調整すれば良レ、ものである。 つまり、 用いる溶媒の性質や測定環境 (室温等) により設定すれば良いものであ る。 例えば、 C u濃度を調節したメタノールを溶媒とした場合、 ゥヱーハ表面よ り 0 . 3 mm〜 l . 5 mm程度の間隔が空くように調整すると好ましい。 1 . 5 mmより間隔を空けると表面張力による保持が難しくなり、 わずかな傾斜等で溶 媒がこぼれてしまう事がある。 また 0 . 3 mmより間隔が狭いとメタノール中の C u濃度 (C uの絶対量) が少なくなり十分な析出が起こらなくなる可能性があ るためである。 ゥエーハの大きさによりゥエーハ厚さが異なる力 6インチゥェ —ハゃ 8インチウヱーハでは、上部電極と下部電極の間隔は、およそ l mm〜 2 . 3 mm程度に設定すれば良い。 また更に大口径のゥエーハでもその厚さを考慮に 入れ適宜設定すれば良い。  It is preferable that the distance between the upper electrode and the lower electrode can be adjusted and maintained by an electrode distance adjusting member. This interval may be appropriately adjusted in consideration of the range within which the solvent can be maintained at the surface tension, the thickness of the sheet, and the like. In other words, it can be set according to the properties of the solvent used and the measurement environment (room temperature, etc.). For example, when methanol whose Cu concentration is adjusted is used as a solvent, it is preferable to adjust the distance from the wafer surface by about 0.3 mm to 1.5 mm. If the distance is more than 1.5 mm, it is difficult to maintain the surface tension, and the solvent may spill due to slight inclination. On the other hand, if the interval is smaller than 0.3 mm, the Cu concentration (absolute amount of Cu) in methanol decreases, and sufficient precipitation may not occur. The force at which the thickness of the wafer varies depending on the size of the wafer 6 inch wafer — For 8 inch wafer, the distance between the upper electrode and the lower electrode may be set to about lmm to 2.3 mm. Further, even a large diameter wafer may be appropriately set in consideration of its thickness.
上記下部電極を水平な状態に維持するための調整機能を具備した水平保持具を さらに設けることにより装置全体を水平に維持することができ、 良好なゥエーハ 評価を実現することができる。  By further providing a horizontal holder having an adjustment function for maintaining the lower electrode in a horizontal state, the entire apparatus can be maintained horizontal, and good wafer evaluation can be realized.
上記上部電極に、 ガラス基板に酸化スズ、 I T O (インジウムースズ酸化物) 等の透明電極膜を付けたガラス電極又は銅に金メツキした電極を使用することが 可能である。  As the above-mentioned upper electrode, it is possible to use a glass electrode provided with a transparent electrode film such as tin oxide or ITO (indium tin oxide) on a glass substrate, or an electrode plated with copper.
上記下部電極の上面に載置された半導体ゥエーハを固定するための手段をさら に設けることにより、 表面張力によりゥ: —ハが浮き上がってしまうなどの不都 合が皆無となる。 · 本発明の半導体ゥエーハの評価方法の第 2の態様は、 半導体ゥエーハの表面上 に所定の厚さの絶縁膜を形成させる工程と、 該半導体ゥエーハの表面近くに形成 された欠陥部位上の絶縁膜を破壊し、 該欠陥部位に溶媒中の銅をデポジションす る工程とからなる C uデポジション法を用い、 該溶媒を表面張力により半導体ゥ ヱーハ表面に保持した状態で、 銅をデポジションすることを特徴とする。 By additionally providing a means for fixing the semiconductor wafer mounted on the upper surface of the lower electrode, there is no inconvenience such as floating of the wafer due to surface tension. · A second aspect of the method for evaluating a semiconductor wafer according to the present invention includes a step of forming an insulating film having a predetermined thickness on the surface of the semiconductor wafer, and a step of forming an insulating film on a defect portion formed near the surface of the semiconductor wafer. And depositing copper in a solvent on the defect site using a Cu deposition method, and depositing copper while holding the solvent on the semiconductor wafer surface by surface tension. It is characterized by the following.
本発明方法の第 2の態様の基本的な工程の流れは、 従来の方法と同じと言える 力 本発明方法の第 2の態様ではシーズニングが必要なくなり、 また、 溶媒を表 面張力によりゥエーハ表面に保持するようにしたので C uデポジション工程にお いて使用する装置の構成が従来とは異なるとともに手順も異なる。  The basic process flow of the second embodiment of the method of the present invention can be said to be the same as that of the conventional method. In the second embodiment of the method of the present invention, seasoning is not required, and the solvent is applied to the wafer surface by surface tension. Because it is kept, the configuration of the equipment used in the Cu deposition process is different from the conventional one and the procedure is also different.
本発明方法の第 2の態様においては、 上記溶媒中に、 C u標準液を添加するこ とにより銅濃度を調節するのが好ましい。 図面の簡単な説明  In the second embodiment of the method of the present invention, it is preferable to adjust the copper concentration by adding a Cu standard solution to the above solvent. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の半導体ゥエーハの評価方法の第 1の態様の工程順の 1例を示 すフローチャートである。  FIG. 1 is a flowchart showing an example of a process order of the first embodiment of the semiconductor wafer evaluation method of the present invention.
図 2は、 本発明の半導体ゥエーハの評価装置の第 1の態様の一つの実施の形態 を示す概略説明図である。  FIG. 2 is a schematic explanatory view showing one embodiment of the first aspect of the semiconductor wafer evaluation apparatus of the present invention.
図 3は、 本発明の半導体ゥエーハの評価方法の第 1の態様の工程順の他の例を 示すフローチャートである。  FIG. 3 is a flowchart showing another example of the process order of the first embodiment of the semiconductor wafer evaluation method of the present invention.
図 4は、 本発明の半導体ゥエーハの評価装置の第 2の態様の一つの実施の形態 を示す概略説明図である。  FIG. 4 is a schematic explanatory view showing one embodiment of the second aspect of the semiconductor wafer evaluation apparatus of the present invention.
図 5は、 実験例 1における処理枚数によるメタノール中の C u濃度の変化と評 価値の変化を示すグラフである。  FIG. 5 is a graph showing the change in the Cu concentration in methanol and the change in evaluation according to the number of processed sheets in Experimental Example 1.
図 6は、 実験例 1における 1枚目の顕微鏡観察結果を示す写真である。  FIG. 6 is a photograph showing the result of the first microscope observation in Experimental Example 1.
図 7は、 実験例 1における 2 3枚目の顕微鏡観察結果を示す写真である。 図 8は、 実験例 2における C u標準液を添カ卩した評価 (メタノール中 C u濃度 0. 383 p p m) の顕微鏡観察結果を示す写真である。 FIG. 7 is a photograph showing the result of the second and third microscope observations in Experimental Example 1. Fig. 8 shows the evaluation of Cu standard solution added in Experimental Example 2 (Cu concentration in methanol). 0. 383 ppm).
図 9は、 実験例 2における Cu標準液を添カ卩した評価 (メタノール中 Cu濃度 4. 45 p pm) の顕微鏡観察結果を示す写真である。  FIG. 9 is a photograph showing the results of microscopic observation of the evaluation (Cu concentration in methanol: 4.45 ppm) obtained by adding the Cu standard solution in Experimental Example 2.
図 10は、 実験例 2における Cu標準液を添カ卩した評価 (メタノール中 Cu濃 度 34. O p pm) の顕微鏡観察結果を示す写真である。  FIG. 10 is a photograph showing the results of microscopic observation of the evaluation (Cu concentration in methanol: 34. Oppm) of adding Cu standard solution in Experimental Example 2.
図 1 1は、 実験例 3におけるメタノール中 Cu濃度 0. 857 p pmで評価し た顕微鏡観察結果を示す写真である。  FIG. 11 is a photograph showing the results of microscopic observation evaluated in Experimental Example 3 at a Cu concentration of 0.857 ppm in methanol.
図 12は、 実験例 3におけるメタノール中 Cu濃度 0. 857 p pn^ N i 2 00 p p b添加し評価した顕微鏡観察結果を示す写真である。  FIG. 12 is a photograph showing the results of microscopic observation in which the Cu concentration in methanol of 0.857 ppn ^ Ni200ppb in Experimental Example 3 was added and evaluated.
図 13は、 実験例 3におけるメタノール中 Cu濃度 0. 857 p pn :F e 2 00 p p b添加し評価した顕微鏡観察結果を示す写真である。  FIG. 13 is a photograph showing the results of microscopic observation in which the Cu concentration in methanol of 0.857 ppn: Fe 200 pppb was added and evaluated in Experimental Example 3.
図 14は、 実施例 2におけるゥ: —ハ上の銅析出物の顕微鏡観察結果を示す写 真である。 発明を実施するための最良の形態  FIG. 14 is a photograph showing the results of microscopic observation of the copper precipitate on the sample C in Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を添付図面中、 図 1〜図 4に基づいて説明するが、 本発明の技術思想から逸脱しない限り図示例以外に種々の変形が可能なことはい うまでもなレ、。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4 in the accompanying drawings, but it goes without saying that various modifications other than the illustrated examples are possible without departing from the technical idea of the present invention. ,.
図 1は本発明に係る Cuデポジション法を用いる半導体ゥエーハの評価方法の 第 1の態様の工程順の 1例を示すフローチャートである。 まず、 評価の対象とな る被評価ゥエーハ wを準備する 〔図 1の工程 100〕。 このゥヱーハ Wに対して、 必要な前処理が行われる。 前処理としては、 このゥエーハを洗浄して (図 1のェ 程 102)、続いてゥェ ハ Wを酸化炉に投入し、熱酸化を行ってゥエーハ上に酸 化膜 Fを形成する〔図 1の工程 104〕。この酸化膜の厚さは特別の限定はないが、 通常、 25 nm程度である。  FIG. 1 is a flowchart showing one example of the process order of the first embodiment of the semiconductor wafer evaluation method using the Cu deposition method according to the present invention. First, an evaluation target wafer w to be evaluated is prepared [Step 100 in FIG. 1]. Necessary pre-processing is performed on this wafer W. As a pretreatment, the wafer is cleaned (step 102 in FIG. 1), and then the wafer W is put into an oxidation furnace, and thermal oxidation is performed to form an oxide film F on the wafer [FIG. Step 104 of 1). The thickness of this oxide film is not particularly limited, but is usually about 25 nm.
次に、 表面が熱酸化膜という絶縁膜 Fで覆われた上記ゥエーハ Wに対して、 ゥ 1 ヱーハと下部電極との間に電気的な通路を確保するために、 ゥエーハのバックサ ィドの一部をエッチングする (図 1の工程 1 0 6 )。 ゥエーハのパックサイド全体 をエッチングすることもできるが、 本発明の評価方法においては、 最小の電気的 な通路を確保するだけで十分である。 なお、 通常、 このエッチングはフッ化水素 (H F ) の蒸気を用いて行えばよい。 Next, with respect to the wafer W whose surface is covered with an insulating film F called a thermal oxide film, 1 To secure an electrical path between the wafer and the lower electrode, a part of the backside of the wafer is etched (step 106 in FIG. 1). The entire pack side of the wafer can be etched, but in the evaluation method of the present invention, it is sufficient to secure the minimum electric passage. Normally, this etching may be performed using hydrogen fluoride (HF) vapor.
このゥヱーハは、 次に、 エッチングガス等の残留物を除去するために純水で洗 浄される (図 1の工程 1 0 8 )。 その後、 この酸化膜が形成された被評価ゥヱーハ に対して C uデポジションが実施される 〔図 1の工程 1 1 2〕。  The wafer is then washed with pure water to remove residues such as etching gas (step 108 in FIG. 1). Thereafter, Cu deposition is performed on the wafer to be evaluated on which the oxide film is formed [Step 1 12 in FIG. 1].
図 2は本発明の半導体ゥ ーハの評価装置の第 1の態様の一つの実施の形態を 示す概略説明図である。 図 2において、 1 0は本発明の第 1の態様の半導体ゥヱ ーハの評価装置であり、 C uデポジションを行う装置として使用される。  FIG. 2 is a schematic explanatory view showing one embodiment of the first aspect of the semiconductor wafer evaluation apparatus of the present invention. In FIG. 2, reference numeral 10 denotes an apparatus for evaluating a semiconductor wafer according to the first embodiment of the present invention, which is used as an apparatus for performing Cu deposition.
該評価装置 1 0は処理容器 1 2を有している。 該処理容器 1 2には銅に金メッ キした下部電極(プレート) 1 4及び後述する材質からなる上部電極(プレート) 1 6が所定の間隔をおいて配置されている。 表面が酸化膜 Fで覆われたゥエーハ Wは該下部電極 1 4と上部電極 1 6との間に位置するようにゥエーハ保持部 1 8 にセットされる。  The evaluation device 10 has a processing container 12. In the processing container 12, a lower electrode (plate) 14 made of gold plating on copper and an upper electrode (plate) 16 made of a material described later are arranged at predetermined intervals. The wafer W whose surface is covered with the oxide film F is set in the wafer holding part 18 so as to be located between the lower electrode 14 and the upper electrode 16.
なお、 従来の C uデポジション装置においては、 上部電極としては銅電極を用 いるとともにシーズニングもその銅電極の掃除のために必須とされていた。 しか し、 後述するように、 本発明方法の第 1の態様において、 銅濃度を調節するため に C u標準液を用いる場合には、 シーズニングによって C u濃度を調節する必要 はなくなり、上部電極 1 6としてガラス電極、銅に金メッキした電極、白金電極、 金電極又は炭素電極等の銅以外の電極を用いることができる。 これによつて、 銅 電極を用いる必要がなくなり、 その電極の掃除のためのシーズニングを行う必要 がなくなり、 処理時間の大幅な短縮を図ることができるという利点がある。  In the conventional Cu deposition apparatus, a copper electrode was used as the upper electrode, and seasoning was indispensable for cleaning the copper electrode. However, as will be described later, in the first embodiment of the method of the present invention, when a Cu standard solution is used to adjust the copper concentration, it is not necessary to adjust the Cu concentration by seasoning, and the upper electrode 1 As the electrode 6, a non-copper electrode such as a glass electrode, an electrode plated with gold on copper, a platinum electrode, a gold electrode or a carbon electrode can be used. This eliminates the need to use a copper electrode, eliminates the need to perform seasoning for cleaning the electrode, and has the advantage of greatly reducing the processing time.
該下部電極 1 4及ぴ上部電極 1 6には各々接続端子 1 4 a及ぴ 1 6 aが接続さ れている。 該接続端子 1 4 a , 1 6 aは直流外部電源 2 0に接続されている。 該 2 外部電源 2 0によつて変動可能状態で電圧が該下部及び上部電極 1 4 , 1 6に印 加され、これらの電極 1 4 , 1 6間で一定な電界が形成されるようになっている。 該処理容器 1 2には溶媒 (電解剤) 2 2が注入されている。 該溶媒 2 2として はメタノールが好適に用いられる。 本発明方法においては、 この溶媒 2 2中の銅 濃度を 0 . 4〜 3 0 p p mの範囲に調節することが必要である。 この銅濃度は、シ ーズユングの時間を調節することによって行うこともできるが、 C u標準液を溶 媒中に添加することによって調節するのが好適である。 この C u標準液を用いる 場合には、 上述したように上部電極 1 6としてガラス電極等を使用することがで きるので、 銅電極を用いる必要がなく、 シーズニングは不要となる。 Connection terminals 14a and 16a are connected to the lower electrode 14 and the upper electrode 16, respectively. The connection terminals 14 a and 16 a are connected to a DC external power supply 20. The 2 A voltage is applied to the lower and upper electrodes 14 and 16 in a variable state by the external power supply 20 so that a constant electric field is formed between the electrodes 14 and 16. I have. A solvent (electrolytic agent) 22 is injected into the processing container 12. Methanol is suitably used as the solvent 22. In the method of the present invention, it is necessary to adjust the copper concentration in the solvent 22 in the range of 0.4 to 30 ppm. The copper concentration can be adjusted by adjusting the time of the series jung, but is preferably adjusted by adding a Cu standard solution to the solvent. When the Cu standard solution is used, a glass electrode or the like can be used as the upper electrode 16 as described above, so that it is not necessary to use a copper electrode and seasoning is not required.
通常、 C uデポジションを開始する段階で、 ダミーゥヱ一八でシーズニングを 行う。 シーズニングは通常約 1時間程度行われる (図 1の工程 1 1 0 )。 このよう に長時間を要する理由は、 電極を清掃するためや、 銅がィオン化するために十分 な時間を確保するためである。 具体的には、 溶媒 (電解剤) として、 例えばメタ ノールを注入し、 メタノールに浸されている銅のプレートに負のバイアスを加え 銅をイオン化する。  Usually, seasoning is performed with dummy # 18 at the stage of starting Cu deposition. Seasoning is usually performed for about one hour (step 110 in FIG. 1). The reason why such a long time is required is to clean the electrodes and to secure enough time for the copper to ionize. Specifically, for example, methanol is injected as a solvent (electrolytic agent), and a copper plate immersed in methanol is negatively biased to ionize the copper.
その次にダミーゥエーハを脱着した後、 目的のゥヱーハ (被評価ゥエーハ) W をゥエーハ保持部 1 8に装着する。 次に前記下部電極 1 4及び上部電極 1 6に外 部電圧を印加して銅のィオンを目的のゥエーハ Wの欠陥部位上にデポジシヨンさ せる 〔図 1の工程 1 1 2〕。前記錮をデポジションさせる段階で印加する電界の強 度は、 通常は 3ないし 1 O MVZ c mの範囲内である。  Then, after detaching the dummy wafer, the target wafer (evaluated wafer) W is mounted on the wafer holder 18. Next, an external voltage is applied to the lower electrode 14 and the upper electrode 16 to deposit copper ions on the target defect portion of the wafer W [step 112 in FIG. 1]. The strength of the electric field applied at the stage of depositing the prison is usually in the range of 3 to 1 O MVZ cm.
このような C uデポジションを行つたゥエーハを洗浄、乾燥し、 〔図 1の工程 1 1 4〕 目視ゃ顕微鏡 (例えば、 5 0倍、 約 3 . 5 mm視野で横一文字スキャン) によりゥヱーハ上に形成された析出銅 (欠陥のある場所に析出する) の数や分布 を評価する 〔図 1の工程 1 1 6〕。  The wafer after such Cu deposition is washed, dried, and [Step 1 14 in FIG. 1] The wafer is visually inspected with a microscope (for example, 50-fold, one-horizontal scanning of about 3.5 mm field of view). Evaluate the number and distribution of deposited copper (precipitated at the defect location) formed in [Step 1 16 in Fig. 1].
図 3は本発明の評価方法の第 1の態様の工程順の他の例を示すフローチヤ一ト である。 図 3の場合は、 溶媒 2 2に C u標準液を添加したものを用いるものであ 3 り、 これによつて、 図 2の C uデポジション装置 1 0において、 上部電極 1 6と して銅以外の電極、 例えば、 ガラス電極、 銅に金メッキした電極、 白金電極、 金 電極又は炭素電極等を用いることができる。 その結果、 シーズニング (図 1のェ 程 1 1 0 ) が不要となり、 処理時間を大幅に短縮することが可能となる。 FIG. 3 is a flowchart showing another example of the process order of the first embodiment of the evaluation method of the present invention. In the case of Fig. 3, a solution obtained by adding a Cu standard solution to solvent 22 is used. Accordingly, in the Cu deposition apparatus 10 shown in FIG. 2, an electrode other than copper is used as the upper electrode 16, for example, a glass electrode, an electrode plated with copper, a platinum electrode, a gold electrode, or carbon. An electrode or the like can be used. As a result, seasoning (step 110 in FIG. 1) becomes unnecessary, and the processing time can be greatly reduced.
図 4は本発明の半導体ゥエーハの評価装置の第 2の態様の一つの実施の形態を 示す概略説明図である。 図 4において、 3 0は本発明の第 2の態様の半導体ゥェ ーハの評価装置であり、 C uデポジションを行う装置として使用されるものであ る。  FIG. 4 is a schematic explanatory view showing one embodiment of the second aspect of the semiconductor wafer evaluation apparatus of the present invention. In FIG. 4, reference numeral 30 denotes a semiconductor wafer evaluation device according to the second embodiment of the present invention, which is used as a device for performing Cu deposition.
該評価装置 3 0は、 下部電極 3 2を有している。 該下部電極 3 2としては銅に 金メッキをしたものが用いられる。 該下部電極 3 2の上方には所定の間隔をおい て上部電極 3 4が対向して設けられている。 下部電極 3 2及び上部電極 3 4の対 向間隔は、 該電極 3 2 , 3 4の端縁部に設置される電極間隔調整部材 3 6によつ て維持されかつ適宜調整可能とされている。 該電極間隔調整部材 3 6はガラス等 によって作製されている。  The evaluation device 30 has a lower electrode 32. As the lower electrode 32, copper-plated copper is used. Above the lower electrode 32, an upper electrode 34 is provided so as to face a predetermined interval. The facing distance between the lower electrode 32 and the upper electrode 34 is maintained by the electrode spacing adjusting member 36 provided at the edge of the electrodes 32 and 34 and can be adjusted as appropriate. . The electrode gap adjusting member 36 is made of glass or the like.
該下部電極 3 2及び上部電極 3 4には各接続端子 3 2 a及ぴ 3 4 aが接続され ている。 該接続端子 3 2 a及ぴ 3 4 aは直流外部電源 2 0に接続されている。 該 外部電源 2 0によって変動可能状態で電圧が該下部及び上部電極 3 2、 3 4に印 加され、これらの電極 3 2、 3 4間で一定な電界が形成されるようになっている。 表面が酸化膜 Fで覆われたゥヱーハ Wは該下部電極 3 2と上部電極 3 4との間 に位置するように該下部電極 3 2の上面にセッ トされる。 3 8はシリコーンゴム 等から作成されるゥエーハ保持具で、 ゥエーハ Wの側面を支持するようにゥエー ハ Wと電極間隔調整部材 3 6との間の下部電極 3 2の上面に設けられる。  The connection terminals 32 a and 34 a are connected to the lower electrode 32 and the upper electrode 34. The connection terminals 32a and 34a are connected to a DC external power supply 20. A voltage is applied to the lower and upper electrodes 32, 34 in a variable state by the external power source 20, so that a constant electric field is formed between the electrodes 32, 34. The wafer W whose surface is covered with the oxide film F is set on the upper surface of the lower electrode 32 so as to be located between the lower electrode 32 and the upper electrode 34. Reference numeral 38 denotes a wafer holder made of silicone rubber or the like, which is provided on the upper surface of the lower electrode 32 between the wafer W and the electrode gap adjusting member 36 so as to support the side surface of the wafer W.
図 4の例では、 該ゥエーハ保持具 3 8は平板上に形成されており、 該ゥヱーハ 保持具 3 8の上方は、 上部電極 3 4の下面、 電極間隔調整部材 3 6の側面及ぴゥ エーハ Wの側面によって包囲された空間 4 4となっている。 し力 し、 この空間 4 4はゥエーハ保持具 3 8の上方全体に形成する必要はなく、 例えば、 図 4に仮想 4 線で示したようにフッ素樹脂等で形成された補助支持具 4 5を配置し、 ゥエーハ Wや上部電極 3 4を補助的に支持させることもでき、 また、 外部からの汚れの侵 入や電極 3 4、 3 6等に触れることがないように不図示の保護用のカバーを設け ることもできる。 In the example of FIG. 4, the wafer holder 38 is formed on a flat plate, and the upper side of the wafer holder 38 is the lower surface of the upper electrode 34, the side surface of the electrode gap adjusting member 36, and the wafer. It is a space 4 4 surrounded by the side of W. This space 4 4 does not need to be formed entirely above the wafer holder 38, for example, as shown in FIG. Auxiliary supports 45 made of fluororesin or the like are arranged as shown by the line 4 to support the wafer W and the upper electrode 34 in an auxiliary manner. A protection cover (not shown) may be provided so as not to touch the electrodes 34, 36 and the like.
4 0は上部電極 3 4に穿設された溶媒注入口である。 該溶媒注入口 4 0の穿設 位置は特別の限定はないが、 図示例に示したように中央部に穿設するのが好まし い。 該溶媒注入口 4 0から溶媒 2 2がゥヱーハ Wの表面上に注入される。 この注 入された溶媒 2 2は、 該ゥエーハ Wの表面と上部電極 3 4との間隔を適度な近接 間隔とすることによって、 図 4に示すように、 ゥエーハ Wの表面に表面張力の力 により溶媒 2 2を保持した状態とすることができる。  Reference numeral 40 denotes a solvent injection hole formed in the upper electrode 34. There is no particular limitation on the position of the solvent injection port 40, but it is preferable that the solvent injection port 40 is formed at the center as shown in the illustrated example. The solvent 22 is injected from the solvent injection port 40 onto the surface of the wafer W. The injected solvent 22 is applied to the surface of the wafer W by the force of the surface tension as shown in FIG. 4 by setting the distance between the surface of the wafer W and the upper electrode 34 to a suitable close interval. The solvent 22 can be maintained.
上記下部電極 3 2の下面には水平保持具 4 2が取りつけられている。 該水平保 持具 4 2は、 該下部電極 3 2を水平に保持でき、 換言すれば、 評価装置 3 0の全 体を水平に保持できるように水平調整機能を具備している。 上述したように、 本 発明の評価装置 3 0においては、 表面張力によってゥヱーハ Wの表面に溶媒 2 2 を保持するようにしているため、 この評価装置 3 0が傾いたりすると溶媒 2 2が ゥエーハ Wの表面からこぼれてしまうが、 上記水平保持具 4 2によって評価装置 3 0の全体が水平となるように保持することによって、 溶媒 2 2がゥエーハ Wの 表面からこぼれてしまうという事故を防ぐことができる。 したがって、 本発明に おいては、 予め評価装置 3 0の水平を出した状態で、 C uデポジションを開始す ることが重要である。  A horizontal holder 42 is attached to the lower surface of the lower electrode 32. The horizontal holder 42 has a horizontal adjustment function so that the lower electrode 32 can be held horizontally, in other words, the entire evaluation device 30 can be held horizontally. As described above, in the evaluation device 30 of the present invention, since the solvent 22 is held on the surface of the wafer W by surface tension, when the evaluation device 30 is tilted, the solvent 22 becomes Although the evaluation device 30 is held horizontally by the horizontal holders 42, the accident that the solvent 22 spills from the surface of the wafer W can be prevented. it can. Therefore, in the present invention, it is important to start Cu deposition in a state where the evaluation device 30 is in the horizontal position in advance.
なお、 上部電極 3 4とゥヱーハ Wの間で働く表面張力の影響でゥヱーハ Wが浮 いてしまう可能性があるため、 下部電極 3 2の上面に載置されるゥヱーハ Wを固 定するゥエーハ固定手段、 例えば、 図 4に仮想線で示したように、 ゥヱーハ Wの 裏面を真空吸着保持する吸引機構 4 6を設けて、 ゥエーハ Wを固定できる構成と しておくのが好ましい。  Since the wafer W may float under the influence of the surface tension acting between the upper electrode 34 and the wafer W, the wafer fixing means for fixing the wafer W placed on the upper surface of the lower electrode 32 may be used. For example, as shown by a virtual line in FIG. 4, it is preferable to provide a suction mechanism 46 for holding the rear surface of the wafer W by vacuum suction so that the wafer W can be fixed.
このように本評価装置 3 0では、 前述した処理容器 (図 2の符号 1 2 ) のよう な溶媒を溜めておく容器を使わない。 このため、 余計な容器等との接触をしなく て済むため、 容器などの汚れ等から生じる金属汚染を避けることができる。 また、 本評価装置 3 0においては、 一定濃度の C u標準液を添加した溶媒 (メ タノール) を使用する。 これにより、 上部電極 3 4として C u電極を使用する必 要がなくなり、 したがって、 C u電極の洗浄工程等のシーズニングの時間を省く ことができる。 Thus, in the present evaluation apparatus 30, the processing container (reference numeral 12 in FIG. 2) described above is used. Do not use containers to store solvents. For this reason, since unnecessary contact with a container or the like is not required, metal contamination caused by contamination of the container or the like can be avoided. In this evaluation device 30, a solvent (methanol) to which a constant concentration of Cu standard solution is added is used. As a result, it is not necessary to use a Cu electrode as the upper electrode 34, so that it is possible to save time for seasoning such as a step of cleaning the Cu electrode.
一定の濃度の C u濃度に制御された溶媒を用い、 更に上部電極 3 4としてはガ ラス電極、 または銅に金メッキした電極を使うことができる。 このように C u濃 度を一定にした溶媒を用いたことで、 上部電極 3 4は、 特に限定される必要がな くなつた。  A solvent whose concentration is controlled to a constant Cu concentration is used, and as the upper electrode 34, a glass electrode or an electrode plated with gold on copper can be used. By using a solvent with a constant Cu concentration in this manner, the upper electrode 34 does not need to be particularly limited.
つまり、 上部電極 3 4として、 銅に金メッキをしたような下部電極 3 2と同じ 電極や、 ガラス電極、 金電極、 白金電極、 炭素電極及びその他の電極が使用可能 である。  That is, as the upper electrode 34, the same electrode as the lower electrode 32 obtained by plating copper on gold, a glass electrode, a gold electrode, a platinum electrode, a carbon electrode, and other electrodes can be used.
このように、 上部電極 3 4として、 銅以外の電極を用いることで、 従来時間の かかっていた電極の清浄化の為のシーズニング時間が省略できる。 つまり、 C u 電極に比べ、 電極の洗浄が容易であり好ましい。 また、 C u電極は使用するうち に表面が酸ィヒされ、 不導体の状態になってしまう。 これらをガラス電極や銅に金 メツキした電極を用いることで酸化されることなく安定して長時間評価すること ができる。  As described above, by using an electrode other than copper as the upper electrode 34, the seasoning time for cleaning the electrode, which has conventionally taken a long time, can be omitted. That is, the electrode is easier to clean than the Cu electrode, which is preferable. In addition, the surface of the Cu electrode is oxidized during use, and becomes a non-conductive state. By using a glass electrode or an electrode in which gold is coated on copper, long-term evaluation can be performed stably without oxidation.
特に、 上部電極 3 4として、 ガラス電極を用いることにより、 注入した溶媒が ゥエーハ上に広がる状態が観察でき、 安定して溶媒の供給ができ、 また電極を通 し、 ゥ ーハ表面に紫外線を当てるなど、 高感度化に向け光学効果を利用するこ とができる。 ガラス電極は石英板等のガラス基板に透明電極膜を付けたものであ る。なお、この電極はガラス以外の透明な基板に電極膜を形成したものでもよい。 次に、 本発明の半導体ゥエーハの評価方法の第 2の態様について説明する。 な お、 本発明の半導体ゥエーハの評価方法の第 2の態様の工程順は、 具体的に使用 6 する評価装置が異なるものの、 前述した図 3に示した本発明の評価方法の第 1の 態様の工程順の他の例のフローチャートと同様であるので、 再度の作図は省略し て図 3を用いて説明する。 In particular, by using a glass electrode as the upper electrode 34, the state in which the injected solvent spreads over the wafer can be observed, the solvent can be supplied stably, and ultraviolet rays can be passed through the electrode to the wafer surface. For example, optical effects can be used to increase sensitivity. The glass electrode is obtained by attaching a transparent electrode film to a glass substrate such as a quartz plate. This electrode may be one in which an electrode film is formed on a transparent substrate other than glass. Next, a second embodiment of the semiconductor wafer evaluation method of the present invention will be described. The order of the steps in the second embodiment of the semiconductor wafer evaluation method of the present invention is not specifically described. 6 is the same as the flowchart of the other example of the process order of the first embodiment of the evaluation method of the present invention shown in FIG. 3 described above, but the drawing is not repeated, and FIG. 3 is omitted. It will be described using FIG.
本発明の半導体ゥエーハの評価方法の第 2の態様は、 表面張力でゥエーハ表面 に溶媒を保持した状態で、 銅をデポジションすることを特徴とするものである。 全体的な、 半導体ゥエーハの評価方法としては、 シーズニング前までは基本的 に図 1に示した方法と同じ処理をする。 つまり、 評価の対象となる被評価ゥエー ハ Wを準備し(図 3の工程 1 0 0 )、 このゥエーハ Wに対して、必要な前処理が行 われる。 前処理としては、 このゥエーハを洗浄して (図 3の工程 1 0 2 )、続いて ゥエーハ Wを酸ィヒ炉に投入し、 熱酸化を行ってゥ ーハ上に酸化膜 Fを形成する (図 3の工程 1 0 4 )。次に、 ゥエーハ Wの上部と下部との間に電気的な通路を確 保するために、 ゥエーハ Wのバックサイドの一部をフッ化水素 (H F ) 蒸気等に よってエッチングする (図 3の工程 1 0 6 ) 0次にエッチングガス等の残留物を除 去するために純水で洗浄し (図 3の工程 1 0 8 )、その後、 この酸ィヒ膜が形成され た被評価ゥエーハに対して C uデポジションが実施される (図 3の工程 1 1 2 )。 本発明方法の第 2の態様では、 C uデポジションを行う手法が本発明方法の第 1の態様とは異なっており、 本発明方法の第 2の態様で用いる C uデポジション 装置 (図 4 ) は図 1の C uデポジション装置とは全く異なるものである。 本発明 方法の第 2の態様においては、 図 4に示した本発明の C uデポジション装置を用 い、 まず被評価ゥエーハ Wをセットし、 上部電極 3 4と被評価ゥヱーハ W表面を 約 l mmにセットする。 この間隔はゥエーハ Wの厚さや溶媒 2 2の表面張力、 C uデポジションに必要な溶媒の量により適宜調整する。 A second aspect of the semiconductor wafer evaluation method of the present invention is characterized in that copper is deposited while a solvent is held on the wafer surface by surface tension. As a whole, the evaluation method for semiconductor wafers is basically the same as the method shown in Fig. 1 before seasoning. In other words, an evaluation target wafer W to be evaluated is prepared (step 100 in FIG. 3), and necessary preprocessing is performed on this wafer W. As a pretreatment, the wafer is cleaned (step 102 in FIG. 3), and then the wafer W is put into an acid furnace and subjected to thermal oxidation to form an oxide film F on the wafer. (Step 104 in FIG. 3). Next, in order to secure an electrical path between the upper and lower parts of the wafer W, a part of the back side of the wafer W is etched with hydrogen fluoride (HF) vapor or the like (step in FIG. 3). 1 0 6) 0 then washed with pure water residues such as etching gas to divided (step 1 0 8 in FIG. 3), then to be evaluated Ueha this acid I arsenide film is formed Cu deposition is carried out (step 1 1 2 in FIG. 3). In the second embodiment of the method of the present invention, the method of performing Cu deposition is different from that of the first embodiment of the method of the present invention, and the Cu deposition apparatus used in the second embodiment of the method of the present invention (FIG. 4). ) Is completely different from the Cu deposition system in Fig. 1. In the second embodiment of the method of the present invention, using the Cu deposition apparatus of the present invention shown in FIG. 4, first, the wafer to be evaluated W is set, and the upper electrode 34 and the surface of the wafer to be evaluated W Set to mm. This interval is appropriately adjusted depending on the thickness of the wafer W, the surface tension of the solvent 22 and the amount of the solvent required for Cu deposition.
次に、 C u濃度がコント口ールされたメタノール溶液 (溶媒) 2 2を上部電極 3 4の溶媒注入口 4 4から注入する。 この時、 メタノール (溶媒) 2 2はゥエー ハ W表面と電極 3 2, 3 4の間を伝わり徐々に広がる。 ゥエーハ Wの表面のみに メタノール (溶媒) 2 2が存在するように保持する。 7 この時、 メタノール (溶媒) 2 2の表面張力の影響でゥエーハ Wが上部電極 3 4側に吸い付く (浮かんでしまう) 可能性があるため、 ゥユーハ W裏面は表面張 力の影響で浮き上がったりしないように真空吸着機構 4 6等によって吸着保持す ることが好ましい。 Next, a methanol solution (solvent) 22 whose Cu concentration is controlled is injected from the solvent injection port 44 of the upper electrode 34. At this time, methanol (solvent) 22 gradually spreads along the surface of the wafer W and the electrodes 32, 34.保持 Hold so that methanol (solvent) 22 exists only on the surface of wafer W. 7 At this time, there is a possibility that ゥ AW may stick to (float) the upper electrode 34 side due to the surface tension of methanol (solvent) 22, and 裏面 The back surface of ハ W may rise due to the surface tension. It is preferable to hold by suction by a vacuum suction mechanism 46 or the like so as not to cause the problem.
この状態で、 上部電極 3 4及び下部電極 3 2に外部電極を印加して銅ィオンを ゥエーハ Wの欠陥部位上にデポジションさせる (図 3の工程 1 1 2 ) 0 このように することで、 ゥエーハ表面に銅が析出する。 In this state, (Step 1 1 2 in Figure 3) the upper electrode 3 4 and by applying an external electrode to the lower electrode 3 2 thereby depositing a copper Ion on the defect site Ueha W is 0 By doing this,銅 Copper is deposited on the surface of the wafer.
このような C uデポジションを行ったゥエーハを洗浄、 乾燥し (図 3の工程 1 1 4 )、 目視ゃ顕微鏡によりゥエーハ上に形成された析出銅(欠陥のある場所に析 出する) の数や分布を評価する (図 3の工程 1 1 6 )。  The wafer subjected to such Cu deposition is washed and dried (steps 114 in FIG. 3), and the number of copper deposits (deposited at defect locations) formed on the wafer by a visual microscope. And the distribution (steps 1 and 16 in Fig. 3).
なお、 C uデポジション後、 溶媒 2 2は捨ててしまい、 新しい溶媒を用い、 順 次被検查ゥヱーハを評価する。 つまり、 本発明方法はメタノール (溶媒) を枚葉 で使う評価方法ということができるものである。  After Cu deposition, the solvent 22 was discarded, and the test wafer was evaluated sequentially using a new solvent. That is, the method of the present invention can be said to be an evaluation method using methanol (solvent) in a single wafer.
本努明方法の第 2の態様では、 このように表面張力をうまく使いゥヱーハ W上 だけに、 メタノール (溶媒) が存在するので、 外部からの汚染が少ない。 また、 C uデポジションを一回実施する毎にメタノール (溶媒) は捨てるので、 不純物 の蓄積がない等の利点がある。  In the second aspect of the present effort method, methanol (solvent) is present only on the wafer W by making good use of the surface tension as described above, so that there is little external contamination. In addition, since methanol (solvent) is discarded each time Cu deposition is performed once, there is an advantage that there is no accumulation of impurities.
従来方法では、 初めから大量のメタノール (溶媒) を使用していた。 被評価ゥ ヱーハが多数ある場合には、 メタノール (溶媒) の使用量については、 特に問題 とならないが、 数枚のゥヱーハを評価したい時にも、 同様に大量のメタノールを 必要とするために溶媒が無駄となることが多い。 本発明方法 . (装置) の第 2の態 様では、 溶媒 (メタノール) は表面張力で維持できる量だけゥヱーハ上に供給す るだけで良く、 溶媒の削減になるという利点もある。  In the conventional method, a large amount of methanol (solvent) was used from the beginning. When there are many wafers to be evaluated, the amount of methanol (solvent) used is not particularly problematic. However, when evaluating several wafers, a large amount of methanol is required as well. Often wasted. In the second mode of the method (apparatus) of the present invention, the solvent (methanol) only needs to be supplied onto the wafer in an amount that can be maintained at the surface tension, and there is an advantage that the solvent is reduced.
また、 本発明方法 (装置) の第 2の態様では、 従来のような処理容器を使用し ないため、 異なる口径のゥヱーハを同じ装置で処理しやすい。 従来は、 それぞれ の径に合わせた処理容器を準備したり、 あらかじめ大口径に合わせ処理容器を大 8 きくする必要があり無駄な溶媒を使用する事があった。 本発明の装置では、 ゥェ ーハ表面上に溶媒を保持しているだけなので、 基本的に装置そのものの大きさを 変更する必要はなく、 例えば 8インチウエーハ用に装置を作っておけば、 電極間 隔調整部材ゃゥエーハ保持 (固定) 手段のわずかな調整で容易に他の口径のゥェ ーハも評価できる。 Further, in the second embodiment of the method (apparatus) of the present invention, wafers having different diameters can be easily processed by the same apparatus because a conventional processing vessel is not used. Conventionally, processing vessels are prepared for each diameter, or the processing vessels are adjusted to large diameters beforehand. 8 In some cases, the solvent had to be used and wasted. In the apparatus of the present invention, since only the solvent is retained on the wafer surface, there is basically no need to change the size of the apparatus itself. For example, if the apparatus is made for an 8-inch wafer, Electrode spacing adjusting member ゃ ゥ A wafer of other diameter can be easily evaluated with a slight adjustment of the wafer holding (fixing) means.
また、 本発明方法の第 2の態様においては C u濃度をあらかじめ調整した溶媒 を用いることで、 従来時間のかかっていた電極の清浄化や C u電極のイオン化な どのシーズエングの時間を省略することができ、 効率のょレ、短時間のゥェーハ評 価を行うことができる。  Further, in the second embodiment of the method of the present invention, by using a solvent in which the Cu concentration is adjusted in advance, it is possible to omit the time for seeding, such as cleaning of the electrode and ionization of the Cu electrode, which have conventionally taken a long time. This allows for efficient and short-time wafer evaluation.
実施例 Example
以下に本発明方法を実施例をあげてさらに具体的に説明するが、 これらは例示 的に示されるもので限定的に解釈されるべきものでないことはいうまでもない。 Hereinafter, the method of the present invention will be described in more detail with reference to examples. However, it is needless to say that these are mere examples and should not be construed as limiting.
(実験例 1 ) (Experimental example 1)
(メタノール中 C u濃度と C uデポジション測定結果の安定性の確認) 被検査ゥエーハとして、 6インチ C Z鏡面研磨ゥエーハを用いた。 図 2の装置 (但し、 上部電極として銅電極を使用) を用い、 2 3枚のゥエーハを図 1に示し た上記手順で処理し評価した。  (Confirmation of the stability of the Cu concentration and Cu deposition measurement results in methanol) A 6-inch CZ mirror-polished wafer was used as the wafer to be inspected. Using the apparatus shown in Fig. 2 (however, a copper electrode was used as the upper electrode), 23 wafers were processed according to the above procedure shown in Fig. 1 and evaluated.
但し、 熱酸化 (図 1の工程 1 0 4 ) において形成される酸化膜の厚さを 2 5 n mとし、 バックサイドエッチング (図 1の工程 1 0 6 ) におけるエッチングはフ ッ化水素 (H F ) の蒸気を用い、 C uデポジション (図 1の工程 1 1 2 ) におけ る印加電界は 5 MVZ c m、 5分で行った。 また、 本実験例では、 5 MVZ c m の下で予め 1時間のシーズニングを行なった。  However, the thickness of the oxide film formed in the thermal oxidation (step 104 in FIG. 1) was 25 nm, and the etching in the backside etching (step 106 in FIG. 1) was hydrogen fluoride (HF). The applied electric field in Cu deposition (steps 11 and 12 in FIG. 1) was performed at 5 MVZ cm for 5 minutes. In this experimental example, seasoning was performed for 1 hour in advance under 5 MVZ cm.
シーズニング後、 上記被検查ゥエーハを 1枚毎に処理し、 C uデポジションで 現われる欠陥の数と、 メタノール中の銅濃度を確認した。  After seasoning, the test wafers were processed one by one, and the number of defects appearing in Cu deposition and the copper concentration in methanol were confirmed.
欠陥の数は、 顕微鏡観察 (5 0倍、 約 3 . 5 mm視野) でゥヱーハの直径方向 に一直線上にスキャンし欠陥を観察し、 析出銅 (欠陥) の単位面積当たりの個数 (個 Zcm2) を算出した。 The number of defects is determined by observing the defects by scanning them in a straight line in the diameter direction of the wafer by microscopic observation (50 ×, about 3.5 mm field of view), and the number of precipitated copper (defects) per unit area. (Piece Zcm 2 ) was calculated.
メタノール中の銅濃度は、 溶媒を 100マイクロリットルサンプリングし、 1 00ミリリットルの 1 %硝酸に入れ I C P一 MSで評価した。  The copper concentration in methanol was evaluated by ICP-MS after sampling 100 μl of the solvent and placing it in 100 ml of 1% nitric acid.
その結果を図 5に示す。 処理枚数が増えるにつれ、 Cu濃度は増加し、 Cuデ ポジションの欠陥もはっきりと観察されるようになった。 若干のバラツキがある ものの 4枚目以降安定して評価できている事がわかる。  Figure 5 shows the results. As the number of substrates increased, the Cu concentration increased, and defects in Cu deposition were clearly observed. Although there is some variation, it can be seen that the evaluation was stable after the fourth sheet.
代表的な、 欠陥の状態についての顕微鏡観察の結果を図 6及び図 7に示す。 図 6は 1枚目の観察結果、 図 7は 23枚目の観察結果を示す。 1枚目では欠陥が観 察できないが、 23枚目でははつきりした欠陥が観察することができる。 4枚目 以降から図 7と同様な欠陥が見られる。 このことから Cuデポジションを安定ィ匕 させるためにはメタノール中の銅濃度、 特に評価開始時のパラツキについては初 期 C u濃度が影響していることがわかる。  Figures 6 and 7 show the results of microscopic observations of typical defect states. Fig. 6 shows the observation result of the first sheet, and Fig. 7 shows the observation result of the 23rd sheet. No defect can be observed on the first sheet, but a permanent defect can be observed on the 23rd sheet. Defects similar to those in Fig. 7 are seen from the fourth sheet onward. From this, it can be seen that in order to stabilize the Cu deposition, the initial Cu concentration has an effect on the copper concentration in methanol, especially on the dispersion at the start of the evaluation.
伹し、 Cu濃度がある程度以上になると、 Cuデポジションの数自体は変化せ ずに安定して測定できると考えられる。 この臨界の濃度はおよそ 0. 4 p pm程 度と考えられ、 これ以下では欠陥がはっきり観察されず測定が不安定になってし まう。  However, when the Cu concentration exceeds a certain level, it is considered that the number of Cu deposition itself can be stably measured without change. The critical concentration is considered to be about 0.4 ppm, below which defects are not clearly observed and the measurement becomes unstable.
(実験例 2)  (Experimental example 2)
(C u標準液を添加したメタノールを用いた C uデポジションの確認) 上記した実験例 1により、 測定を安定化させるためには、 メタノール中の銅濃 度の管理が重要であることがあきらかになった。 しかし上記のように、 測定を繰 り返し行いまたはシーズ二ングの時間を延ばし、 メタノール中の銅濃度を上昇さ せたのでは、 たいへんな時間がかかってしまう。 そこで、 被検査サンプルを評価 する前に、 C u濃度が既知の溶液を添加することで評価ができないか確認した。  (Confirmation of Cu deposition using methanol with Cu standard solution added) According to Experimental Example 1 above, it is clear that control of the copper concentration in methanol is important to stabilize the measurement. Became. However, as mentioned above, it takes a lot of time if the measurement is repeated or the time of seasoning is increased and the concentration of copper in methanol is increased. Therefore, before evaluating the test sample, it was confirmed whether the evaluation could be performed by adding a solution having a known Cu concentration.
Cu標準液として市販の Cu S04 · 5H20 (関東化学社製) を用いた。 この 標準液を用い、 メタノール中の C u濃度が約 0. 3 p pm、 0. 8 p pm、 4. 0 p pm, 30 p pmとなるように調整し実験例 1と同様の装置及び手順で評価 を行った。 この実験例 2ではシーズニング (電極を清掃するための処理) を 30 分で行った。 Using a commercially available Cu S0 4 · 5H 2 0 (manufactured by Kanto Chemical Co., Inc.) as a Cu standard solution. Using this standard solution, the concentration and concentration of Cu in methanol were adjusted to about 0.3, 0.8, 4.0, and 30 ppm, and the same apparatus and procedure as in Experimental Example 1 were used. Rated by Was done. In this experimental example 2, seasoning (processing for cleaning the electrode) was performed in 30 minutes.
この結果、実際にはメタノール中の Cu濃度は 0. 383 p pm、 0. 886、 4. 45、 34 p pmとなっていた。 Cuデポジションの結果は 0. 383では、 図 8に示すように欠陥は薄い状態でしかみえず、 欠陥がカウントされないことが あった。 0. 886、 4. 45 p pmでは、 図 9のようなはっきりした欠陥が観 察できる。 34 p pmと大変濃い Cu標準液を添加すると、 図 10のような異常 な欠陥が観察される事がある。 これは電界集中が起きてしまい現われたものと考 えられる。 このような状態でも評価値はばらつく原因となるので、 上限について は 30 p p m程度が好ましい。  As a result, the actual Cu concentration in methanol was 0.383 ppm, 0.886, 4.45, and 34 ppm. With the result of Cu deposition of 0.383, as shown in Fig. 8, the defect appeared only in a thin state, and the defect was not counted in some cases. At 0.886 and 4.45 ppm, clear defects can be observed as shown in Figure 9. When a Cu standard solution with a very high concentration of 34 ppm is added, abnormal defects as shown in Fig. 10 may be observed. This is thought to be caused by the electric field concentration. Even in such a state, the evaluation value may vary, so the upper limit is preferably about 30 ppm.
以上のように C u濃度が 0. 4 p p m未満であると測定がばらつく事が明らか となり、 これ以上の Cu濃度が必要である。 Cu濃度はシーズニングで調整する 他に、 外部から Cu標準液を添加して調整しても良く。 このような方法だと評価 の前処理 (シーズニング) 時間が短縮され特に効果的である。  As described above, when the Cu concentration is less than 0.4 ppm, it is clear that the measurement varies, and a higher Cu concentration is required. The Cu concentration may be adjusted by seasoning or by adding a Cu standard solution from outside. Such a method is particularly effective because the pre-processing (seasoning) time for evaluation is reduced.
次に、 Cuデポジションの不安定要素には、 別な要因があることも明らかとな つた。 上記した実験例 1からも明らかなように Cu濃度が 0. 4 p pm以上で、 測定値が安定する事は明らかになつたが、 安定したデータの中でも若干パラツキ が見られる。 その原因について、 鋭意調査したところ、 Cuの析出を妨害する物 質が存在する事が明らかになった。 これは、 Cu以外の重金属、 例えば F eや N iである。  Next, it became clear that there were other factors in the instability factor of Cu deposition. As is clear from the experimental example 1 described above, it was clear that the measured values were stable when the Cu concentration was 0.4 ppm or more, but there was some variation among the stable data. A close investigation into the cause revealed that there were substances that hindered Cu deposition. This is a heavy metal other than Cu, such as Fe or Ni.
(実験例 3)  (Experimental example 3)
メタノール中の C u濃度を 0. 857 p pmとして評価を行った。 これに F e 及ぴ Z又は N iを添カ卩し評価を行った。 実験例 1と同様の装置を用い、 基本的な C uデポジションの方法も実験例 1と同様である。  The evaluation was performed by setting the Cu concentration in methanol to 0.857 ppm. To this, Fe and Z or Ni were added for evaluation. Using the same apparatus as in Experimental Example 1, the basic Cu deposition method is also the same as in Experimental Example 1.
(1) 何も添加しない場合、 図 1 1に示すように欠陥ははつきりと観察する事が できる。 2 (1) When nothing is added, the defect can be observed as shown in FIG. Two
(2) N iを 200 p p b添加した場合、 図 12に示すように欠陥が観察されな い。 (2) When Ni was added at 200 ppb, no defect was observed as shown in FIG.
(3) F eを 200 p p b添加した場合、 図 13に示すように欠陥が観察されな い。  (3) When Fe was added at 200 ppb, no defect was observed as shown in FIG.
(4) ?^ 1を89. 78 p p b及ぴ F eを 57. .36 p p b添カ卩した場合、 図 1 1や図 12と同様に欠陥が観察されない。  (4) When? ^ 1 is 89.78 ppb and Fe is 57.36 ppb, no defects are observed as in FIGS. 11 and 12.
(5) Cu濃度 1. 17 p pm、 N i濃度 20 p p b、 F e濃度 10 p p bの場 合、 図 1 1や図 12と同様に欠陥が観察されない。  (5) When the Cu concentration is 1.17 ppm, the Ni concentration is 20 ppm, and the Fe concentration is 10 ppm, no defects are observed as in FIGS.
従って、 メタノール中の F e、 N i濃度を管理し、 特に 5 p p b以下になるよ うに管理する事でさらに安定した Cuデポジションの評価ができることがわかつ た。  Therefore, it was found that more stable evaluation of Cu deposition can be achieved by controlling the concentrations of Fe and Ni in methanol, and in particular, controlling the concentration to be 5 ppb or less.
(実施例 1 :本発明方法の第 1の態様)  (Example 1: First embodiment of the method of the present invention)
被検査ゥヱーハとして、 6インチ CZ鏡面研磨ゥエーハを用いた。 本実施例で は、 上部電極をガラス電極とした図 2の装置を用い、 図 3に示した手順で被検査 ゥエーハを処理し評価した。 ガラス電極は、 石英板に透明な電極膜を貼ったもの である。  As the wafer to be inspected, a 6-inch CZ mirror-polished wafer was used. In this example, the wafer to be inspected was processed and evaluated according to the procedure shown in FIG. 3 using the apparatus shown in FIG. 2 in which the upper electrode was a glass electrode. The glass electrode is made by attaching a transparent electrode film to a quartz plate.
溶媒として Cu標準液を 10 p pm添加したメタノールを用い、 すぐに (シー ズニングすることなしに) 銅をデポジションし、 ゥヱーハの欠陥を評価した。 つ まり、 Cu電極を用いた時に実施した 5MV/ cmの下で予め 1時間又は 30分 のシーズニングは行っていない。 銅をデポジションさせる条件や欠陥の評価法は 上記実験例 1と同様である。  Using methanol containing 10 ppm of a Cu standard solution as a solvent, copper was immediately deposited (without seasoning), and wafer defects were evaluated. In other words, seasoning for 1 hour or 30 minutes under 5 MV / cm, which was performed when a Cu electrode was used, was not performed. The conditions for depositing copper and the method of evaluating defects are the same as those in Experimental Example 1 above.
その結果、 上部電極に銅電極を用いずかつシーズニングを行わなくても、 図 9 と同様なはっきりした欠陥が観察できた。  As a result, a clear defect similar to that shown in FIG. 9 was observed without using a copper electrode as the upper electrode and without performing seasoning.
(実施例 2 :本発明方法の第 2の態様)  (Example 2: Second embodiment of the method of the present invention)
評価の対象となる被評価ゥエーハとして、 6インチの CZシリコンゥヱーハ 6-inch CZ silicon wafer as the wafer to be evaluated
(鏡面研磨後のゥヱーハ) を準備した。 このゥエーハに対し、 前処理としては、 ゥエーハを洗浄して、続いてゥエーハを酸化炉に投入し、酸素雰囲気中、 900°C 95分の熱処理を行い、 熱酸化膜を 25 nm形成する。 (Mirror-polished wafer) was prepared. For this wafer, as pre-processing, After washing the wafer, the wafer is put into an oxidation furnace, and then heat-treated at 900 ° C for 95 minutes in an oxygen atmosphere to form a 25 nm thermal oxide film.
次に、 ゥヱーハと下部電極との間に電気的な通路を確保するために、 ゥエーハ のパックサイドの一部をフッ酸蒸気によりエッチングする。 次にエッチングガス 等の残留物を除去するために純水で洗浄した。 その後、 この酸化膜が形成された 被評価ゥェーハに対して C uデポジションを実施した。  Next, in order to secure an electrical path between the wafer and the lower electrode, a part of the pack side of the wafer is etched with hydrofluoric acid vapor. Next, the substrate was washed with pure water to remove a residue such as an etching gas. Then, Cu deposition was performed on the wafer to be evaluated on which the oxide film was formed.
本実施例では、 図 4に示す C uデポジション装置を用い、 まず被評価ゥエーハ の外周部を、 シリコーンゴム等で位置がずれないように保持し、 電極を約 1. 6 mmの間隔 (被評価ゥヱーハ表面から約 lmm) でセットする。 この間隔の調整 は、 電流が流れない一定厚さのガラスを上部電極と下部電極の間に挟むような形 で保持すれば良い。 次に、 Cu濃度がコントロールされた溶媒 (本実施例ではメ タノール溶液) を上部電極に開けられた溶媒注入口から、 ゥエーハ中央部に注入 する。  In this embodiment, using the Cu deposition apparatus shown in FIG. 4, the outer periphery of the wafer to be evaluated is first held with silicone rubber or the like so as not to be displaced, and the electrodes are spaced about 1.6 mm apart from each other. Set at about lmm from the evaluation surface. Adjustment of this interval may be performed by holding glass having a constant thickness through which no current flows between the upper and lower electrodes. Next, a solvent having a controlled Cu concentration (in this example, a methanol solution) is injected into the center of the wafer from a solvent injection port formed in the upper electrode.
このようにすることで、 表面張力の影響で、 ゥエーハ表面のみメタノールが存 在するように保持することができる。  By doing so, it is possible to maintain the presence of methanol only on the surface of the wafer under the influence of surface tension.
メタノール溶液は、 予め Cu濃度を制御したものを使用する。 具体的には Cu 標準液、 例えば、 市販の Cu S04' 5H20 (関東化学社製) 等を溶媒中に添加 することにより準備した。 この標準液を用い Cu濃度が 0. 4〜30 ρ ρπι程度 になるように調整するのが好ましい。 Use a methanol solution whose Cu concentration is controlled in advance. Cu standard solution Specifically, for example, a commercially available Cu S0 4 '5H 2 0 (manufactured by Kanto Chemical Co., Ltd.) was prepared by adding the solvent. It is preferable to use this standard solution to adjust the Cu concentration to be about 0.4 to 30 ρρπι.
本実施例では、 約 1 p pmの Cu濃度としたメタノールを用いた。 このメタノ ールを、 ピペットを用い滴下し、 表面張力を利用してゥエーハ上からこぼれださ ない程度に滴下した。 メタノールはゥ-ーハと上部電極の間でゥヱーハ全体に広 がる。 本実施例では、 1枚のゥエーハあたり、 およそ 18ミリリツトルの溶媒を 滴下した。  In this example, methanol having a Cu concentration of about 1 ppm was used. This methanol was dropped using a pipette, and was dropped by using surface tension to such an extent that the methanol did not spill out of the wafer. Methanol spreads across the wafer between the wafer and the upper electrode. In this example, approximately 18 milliliters of solvent was dropped per wafer.
そして、 上部電極と下部電極の間に印加電界を 5 MVZcm 5分で行った。 Cuデポジション後、 純水で洗浄、 自然乾燥しゥエーハ上の銅析出物を顕微鏡観 察 (5 0倍、 約 3 . 5 mmの視野) でゥエーハの直径方向に一直線上にスキャン し、 欠陥を観察し、 析出銅の単位面積当たりの個数 (個 / c m2) を算出した。 顕 微鏡観察の結果を図 1 4に示す。 図 1 4から明らかなように、 ドーナツ状の析出 銅が観察された。 Then, an applied electric field was applied between the upper electrode and the lower electrode at 5 MVZcm for 5 minutes. After Cu deposition, wash with pure water, air dry, and observe the copper deposit on the wafer under a microscope. The wafer was scanned in a straight line in the diameter direction of the wafer at a magnification of 50 times (field of view of about 3.5 mm), defects were observed, and the number of precipitated copper per unit area (pieces / cm 2 ) was calculated. Figure 14 shows the results of microscopic observation. As is clear from FIG. 14, donut-shaped precipitated copper was observed.
以上のように、 本発明方法の第 2の態様によれば、 シーズニングは行わないた め、 検査時間を著しく短くすることが確認できた。 また、 上記操作を繰り返し、 複数のゥエーハを評価したが、 繰り返し測定の結果、 安定して欠陥を観察するこ とができた。  As described above, according to the second embodiment of the method of the present invention, it was confirmed that the inspection time was significantly reduced because seasoning was not performed. In addition, the above operation was repeated to evaluate a plurality of wafers. As a result of the repeated measurement, a defect was stably observed.
(比較例 1 )  (Comparative Example 1)
従来の C uデポジション装置を用い、 処理容器に溶媒を 1リツトル入れ、 C uデポジションを行った。 なお、 評価したいゥエーハにデポジションする前に、 シーズニングを 1時間行っている。 C uデポジションを行った結果、 この従来の 装置でも図 1 4と同様の欠陥が検出された。  Using a conventional Cu deposition system, one liter of solvent was placed in the processing vessel and Cu deposition was performed. In addition, seasoning is performed for one hour before depositing at the eha you want to evaluate. As a result of Cu deposition, defects similar to those shown in Fig. 14 were detected in this conventional device.
溶媒 (メタノール) を交換することなく、 この操作を繰り返し、 複数のゥエー ハを評価したが、 繰り返し測定の結果、 欠陥が見えづらくなることがあった。 こ の原因を調べたところ、 F e及ぴ N iの濃度が増えていることがわかった。 被評 価ゥヱーハからこれらの金属が持ち込まれ、 または処理容器に付着していたもの が溶出してきたものと考えられる。  This operation was repeated without changing the solvent (methanol), and multiple wafers were evaluated. As a result of the repeated measurement, defects were sometimes hard to see. Examination of the cause revealed that the concentrations of Fe and Ni increased. It is probable that these metals were brought in from the evaluated wafers, or that those that had adhered to the processing vessel were eluted.
以上のように、 本発明方法の第 2の態様では、 溶媒を溜めるための処理容器を 用いずに実施するので、 外的な汚染がすくなく、 また一枚毎に溶媒を交換し、 処 理することにより、 他のゥエーハから持ち込んだ汚染等の蓄積も少なくなり、 汚 染による不安定要因を著しく少なくすることができる。 また、 溶媒の量も削減可 能である。  As described above, in the second embodiment of the method of the present invention, since the process is performed without using a processing container for storing the solvent, external contamination is reduced, and the solvent is exchanged and processed for each sheet. As a result, the accumulation of contamination brought in from other wafers is reduced, and the instability factors due to contamination can be significantly reduced. Also, the amount of solvent can be reduced.
更に、 C u濃度をあらかじめ調整した溶媒を用いることにより、 電極の清掃お ょぴ C u電極のイオン化などのシーズユングの時間が必要なくなり、 迅速な評価 が可能となった。 また上部電極としてガラス電極ゃ金メツキした銅電極を用いる こともでき、 電極の劣化や汚染源が更に少なくなった。 産業上の利用可能性 Furthermore, by using a solvent whose Cu concentration has been adjusted in advance, it is not necessary to clean the electrodes or to have a time for seeding jungling such as ionization of the Cu electrodes, thus enabling quick evaluation. Also, use a glass electrode and a gold plated copper electrode as the upper electrode The electrode degradation and contamination sources were further reduced. Industrial applicability
上述したごとく、 本発明方法の第 1の態様によると、 銅濃度を管理し評価する 事で、安定した欠陥の観察ができ、欠陥の分布や密度を正確に分析でき、装置間、 バッチ間などのパラツキを抑え、 安定した評価ができるという効果がある。 また、 本発明方法の第 1の態様によると、 C u標準液を用いる事により前処理 時間の短縮が可能となり迅速な評価ができるという効果がある。  As described above, according to the first aspect of the method of the present invention, by controlling and evaluating the copper concentration, stable defects can be observed, the distribution and density of defects can be accurately analyzed, and between devices, between batches, etc. This has the effect of minimizing the fluctuations in the evaluation and ensuring a stable evaluation. Further, according to the first embodiment of the method of the present invention, the use of the Cu standard solution has the effect that the pretreatment time can be shortened and the evaluation can be performed quickly.
さらに、 本発明方法の第 1の態様によれば、 溶媒に C u標準液を添加するとと もに上部電極としてガラス電極等の銅以外の電極を用いた本発明装置の第 1の態 様を用いることで、 銅濃度を管理しやすく、 安定した欠陥の観察ができ、 欠陥の 分布や密度を正確かつ迅速に分析できる。  Further, according to the first aspect of the method of the present invention, the first aspect of the present invention using a Cu standard solution as a solvent and using an electrode other than copper such as a glass electrode as an upper electrode is described. By using it, the copper concentration can be easily controlled, stable defects can be observed, and the distribution and density of defects can be accurately and quickly analyzed.
一方、 本発明方法 (装置) の第 2の態様によると、 ゥエーハを短時間で評価で き、 更に汚染起因のゥエーハ評価の不安定性要因を排除し、 精度良くゥ ーハの 欠陥の評価ができる。  On the other hand, according to the second aspect of the method (apparatus) of the present invention, the wafer can be evaluated in a short time, and further, the instability factor of the wafer evaluation due to contamination can be eliminated, and the wafer defect can be accurately evaluated. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体ゥ工ーハの表面上に所定の厚さの絶縁膜を形成させる工程と、 該半導 体ゥエーハの表面近くに形成された欠陥部位上の絶縁膜を破壊し、 該欠陥部位に 溶媒中の銅をデポジションする工程とからなる C uデポジション法を用い、 該溶 媒中の銅濃度を 0 . 4 ~ 3 0 p p mの範囲に調節し評価することを特徴とする半 導体ゥエー八の評価方法。 1. a step of forming an insulating film having a predetermined thickness on the surface of the semiconductor wafer; and destroying the insulating film on a defective portion formed near the surface of the semiconductor wafer. Using a Cu deposition method comprising the step of depositing copper in a solvent, adjusting the copper concentration in the solvent to a range of 0.4 to 30 ppm for evaluation. Eight evaluation methods.
2 . 前記溶媒として、 メタノールを用いることを特徴とする請求項 1に記載の半 導体ゥエーハの評価方法。  2. The method for evaluating semiconductors and wafers according to claim 1, wherein methanol is used as the solvent.
3 . 前記溶媒中の F e濃度及びノ又は N i濃度を 5 p p b以下に管理し評価する ことを特徴とする請求項 1又は 2に記載の半導体ゥ ーハの評価方法。 3. The method for evaluating a semiconductor wafer according to claim 1, wherein the Fe concentration and the Ni or Ni concentration in the solvent are controlled and evaluated to be 5 ppb or less.
4 . 前記溶媒中に、 C u標準液を添加することにより銅濃度を調節することを特 徴とする請求項 1 ~ 3のいずれか 1項に記載の半導体ゥエーハの評価方法。 4. The method for evaluating a semiconductor wafer according to any one of claims 1 to 3, wherein the copper concentration is adjusted by adding a Cu standard solution to the solvent.
5 . 処理容器と、 該処理容器内に設けられた下部電極と、 該下部電極に対して所 定の間隔をおいて設けられた上部電極と、 これらの電極間に電界を発生せしめる 外部電源とを有し、 該下部電極の上面に半導体ゥエーハを載置するとともに該処 理容器内に溶媒を注入し、 C uデポジション法によって半導体ゥヱーハを評価す る装置において、 該上部電極がガラス電極、 銅に金メッキした電極、 白金電極、 金電極又は炭素電極である半導体ゥェーハの評価装置を用いて、 シーズニングを 行うことなく評価することを特徴とする請求項 4記載の半導体ゥエーハの評価方 法。 5. A processing container, a lower electrode provided in the processing container, an upper electrode provided at a predetermined distance from the lower electrode, and an external power supply for generating an electric field between these electrodes. An apparatus for placing a semiconductor wafer on the upper surface of the lower electrode, injecting a solvent into the processing vessel, and evaluating the semiconductor wafer by a Cu deposition method, wherein the upper electrode is a glass electrode, 5. The method for evaluating a semiconductor wafer according to claim 4, wherein the evaluation is performed without performing seasoning using a semiconductor wafer evaluation apparatus that is an electrode plated with gold on a copper, a platinum electrode, a gold electrode, or a carbon electrode.
6 . 処理容器と、 該処理容器内に設けられた下部電極と、 該下部電極に対して所 定の間隔をおいて設けられた上部電極と、 これらの電極間に電界を発生せしめる 外部電源とを有し、 該下部電極の上面に半導体ゥエーハを載置するとともに該処 理容器内に溶媒を注入し、 C uデポジション法によって半導体ゥヱーハを評価す る装置において、 該上部電極がガラス電極、 銅に金メッキした電極、 白金電極、 金電極又は炭素電極であることを特徴とする半導体ゥェ一ハの評価装置。 6. A processing container, a lower electrode provided in the processing container, an upper electrode provided at a predetermined distance from the lower electrode, and an external power supply for generating an electric field between these electrodes. An apparatus for placing a semiconductor wafer on the upper surface of the lower electrode, injecting a solvent into the processing vessel, and evaluating the semiconductor wafer by a Cu deposition method, wherein the upper electrode is a glass electrode, Gold-plated copper electrode, platinum electrode, An apparatus for evaluating a semiconductor wafer, which is a gold electrode or a carbon electrode.
7 . C uデポジション法によって半導体ゥヱ一ハを評価する装置であり、 上部電 極と、 該上部電極に対して所定の間隔をおいて設けられた下部電極と、 これらの 電極間に電界を発生せしめる外部電源とを有し、 該下部電極の上面に載置された 半導体ゥ工一ハの表面に溶媒を注入し、 該注入された溶媒を該半導体ゥエーハ表 面に表面張力により保持することができるようにしたことを特徴とする半導体ゥ エーハの評価装置。  7. An apparatus for evaluating a semiconductor device by a Cu deposition method, comprising an upper electrode, a lower electrode provided at a predetermined distance from the upper electrode, and an electric field between these electrodes. And an external power supply for generating electric power, injecting a solvent into the surface of the semiconductor wafer mounted on the upper surface of the lower electrode, and holding the injected solvent on the surface of the semiconductor wafer by surface tension. A semiconductor wafer evaluation apparatus characterized in that it can be used.
8 . 前記上部電極に溶媒注入口を穿設し、 該溶媒注入口より溶媒を注入すること を特徴とする請求項 7記載の半導体ゥェ一ハの評価装置。  8. The apparatus for evaluating a semiconductor wafer according to claim 7, wherein a solvent injection port is formed in the upper electrode, and a solvent is injected from the solvent injection port.
9 . 前記上部電極及び下部電極間の間隔を調整及び維持する電極間隔調整部材を さらに設けたことを特徴とする請求項 7又は 8記載の半導体ゥエーハの評価装置 c 1 0 . 前記下部電極を水平な状態に維持するための調整機能を具備した水平保持 具をさらに設けたことを特徴とする請求項 7〜 9のいずれか 1項記載の半導体ゥ エーハの評価装置。  9. The semiconductor wafer evaluation apparatus c10 according to claim 7 or 8, further comprising an electrode gap adjusting member for adjusting and maintaining the gap between the upper electrode and the lower electrode. 10. The apparatus for evaluating a semiconductor wafer according to claim 7, further comprising a horizontal holder having an adjusting function for maintaining a stable state.
1 1 . 前記上部電極に、 ガラス電極又は銅に金メッキした電極を使用することを 特徴とする請求項 7〜 1 0のいずれか 1項に記載の半導体ゥェ一八の評価装置。 1 2 . 前記下部電極の上面に載置された半導体ゥエーハを固定するための手段を さらに設けたことを特徴とする請求項 7〜 1 1のいずれか 1項に記載の半導体ゥ エー八の評価装置。  11. The apparatus for evaluating a semiconductor layer according to claim 7, wherein a glass electrode or an electrode plated with copper is used as the upper electrode. 12. The evaluation of the semiconductor wafer according to any one of claims 7 to 11, further comprising means for fixing the semiconductor wafer mounted on the upper surface of the lower electrode. apparatus.
1 3 . 半導体ゥエー八の表面上に所定の厚さの絶縁膜を形成させる工程と、 該半 導体ゥエーハの表面近くに形成された欠陥部位上の絶縁膜を破壊し、 該欠陥部位 に溶媒中の銅をデポジションする工程とからなる C uデポジション法を用い、 該 溶媒を表面張力により半導体ゥエーハ表面に保持した状態で、 銅をデポジション することを特徴とする半導体ゥエー八の評価方法。  13. A step of forming an insulating film having a predetermined thickness on the surface of the semiconductor wafer; breaking the insulating film on a defect site formed near the surface of the semiconductor wafer; Using the Cu deposition method comprising the step of depositing copper, and depositing copper while holding the solvent on the surface of the semiconductor wafer by surface tension.
1 4 . 前記溶媒中に、 C u標準液を添加することにより銅濃度を調節すること特 徴とする請求項 1 3に記載の半導体ゥエーハの評価方法。  14. The method for evaluating a semiconductor wafer according to claim 13, wherein the copper concentration is adjusted by adding a Cu standard solution to the solvent.
PCT/JP2001/005399 2000-06-27 2001-06-25 Method and apparatus for evaluating semiconductor wafer WO2002001626A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000192910 2000-06-27
JP2000-192910 2000-06-27
JP2000-286580 2000-09-21
JP2000286580A JP4003032B2 (en) 2000-06-27 2000-09-21 Semiconductor wafer evaluation method
JP2000-286591 2000-09-21
JP2000286591A JP3968768B2 (en) 2000-09-21 2000-09-21 Semiconductor wafer evaluation apparatus and evaluation method

Publications (1)

Publication Number Publication Date
WO2002001626A1 true WO2002001626A1 (en) 2002-01-03

Family

ID=27343859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005399 WO2002001626A1 (en) 2000-06-27 2001-06-25 Method and apparatus for evaluating semiconductor wafer

Country Status (2)

Country Link
TW (1) TW516245B (en)
WO (1) WO2002001626A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061225B2 (en) 2006-06-07 2011-11-22 Sumco Corporation Method for determining COP generation factors for single-crystal silicon wafer
CN112129825A (en) * 2019-06-25 2020-12-25 深圳市裕展精密科技有限公司 Oxide film detection method and oxide film detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466876B (en) * 2006-06-09 2014-12-03 上睦可株式会社 Single-crystal silicon wafer COP evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132682A (en) * 1976-04-28 1977-11-07 Nec Corp Detection method of insulating film
JPH08213439A (en) * 1995-02-08 1996-08-20 Nippon Steel Corp Method of evaluating defect of silicon substrate with insulation film
JPH11195685A (en) * 1997-12-26 1999-07-21 Sumitomo Metal Ind Ltd Pattern defect inspection system and method of inspecting pattern defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132682A (en) * 1976-04-28 1977-11-07 Nec Corp Detection method of insulating film
JPH08213439A (en) * 1995-02-08 1996-08-20 Nippon Steel Corp Method of evaluating defect of silicon substrate with insulation film
JPH11195685A (en) * 1997-12-26 1999-07-21 Sumitomo Metal Ind Ltd Pattern defect inspection system and method of inspecting pattern defect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061225B2 (en) 2006-06-07 2011-11-22 Sumco Corporation Method for determining COP generation factors for single-crystal silicon wafer
US8316727B2 (en) 2006-06-07 2012-11-27 Sumco Corporation Method for determining COP generation factors for single-crystal silicon wafer
US8549937B2 (en) 2006-06-07 2013-10-08 Sumco Corporation Method for determining COP generation factors for single-crystal silicon wafer
US8978494B2 (en) 2006-06-07 2015-03-17 Sumco Corporation Method for determining COP generation factors for single-crystal silicon wafer
CN112129825A (en) * 2019-06-25 2020-12-25 深圳市裕展精密科技有限公司 Oxide film detection method and oxide film detection device

Also Published As

Publication number Publication date
TW516245B (en) 2003-01-01

Similar Documents

Publication Publication Date Title
Baumann et al. Surface cleaning, electronic states and electron affinity of diamond (100),(111) and (110) surfaces
US5980720A (en) Methods of treating crystal-grown wafers for surface defect analysis
CN102687260A (en) Method for monitoring the amount of contamination imparted into semiconductor wafers during wafer processing
JP2007078373A (en) pH SENSOR COMPRISING ISFET AND METHOD OF MANUFACTURING SAME
CN104246971A (en) Method of manufacturing bonded wafer
JP4003032B2 (en) Semiconductor wafer evaluation method
WO2002001626A1 (en) Method and apparatus for evaluating semiconductor wafer
JP2020083671A (en) METHOD FOR REMOVING DEFECT AND METHOD FOR MANUFACTURING SiC EPITAXIAL WAFER
JP3558818B2 (en) Method and apparatus for evaluating defect of insulating film
CN112701072B (en) Wafer processing apparatus and wafer defect evaluation method
JP3968768B2 (en) Semiconductor wafer evaluation apparatus and evaluation method
US9245809B2 (en) Pin hole evaluation method of dielectric films for metal oxide semiconductor TFT
JP4784253B2 (en) Wafer inspection method and apparatus
KR100901823B1 (en) Method of testing defect of silicon wafer
JP2004140129A (en) Method and apparatus for detecting fault of insulating film
KR20000037745A (en) Method for measuring a vacancy fault of a silicon wafer by using cu decoration technique
KR100883028B1 (en) Defect delineation apparatus by the electrochemical cu decoration and defect delineation method using the same
KR100872958B1 (en) Method of error detection for analyzing system of wafer defect using copper decoration device
US7525327B2 (en) Apparatus for evaluating semiconductor wafer
JP5152165B2 (en) Inspection method of silicon wafer
KR20030030634A (en) Method for analysing surface defect of a wafer
JP2004253720A (en) Inspection method of silicon wafer and apparatus therefor
JPH09283495A (en) Electrode and discharge-generating device
KR100862312B1 (en) Method for measuring wafer defect in semiconductor device
JP5373364B2 (en) Silicon wafer carrier lifetime measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase