JP2004140129A - Method and apparatus for detecting fault of insulating film - Google Patents

Method and apparatus for detecting fault of insulating film Download PDF

Info

Publication number
JP2004140129A
JP2004140129A JP2002302441A JP2002302441A JP2004140129A JP 2004140129 A JP2004140129 A JP 2004140129A JP 2002302441 A JP2002302441 A JP 2002302441A JP 2002302441 A JP2002302441 A JP 2002302441A JP 2004140129 A JP2004140129 A JP 2004140129A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
plating
solution
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302441A
Other languages
Japanese (ja)
Inventor
Yoshiki Yonamoto
与名本 欣樹
Naoki Kanda
神田 直樹
Kiyoshi Ogata
尾形 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002302441A priority Critical patent/JP2004140129A/en
Publication of JP2004140129A publication Critical patent/JP2004140129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for identifying the position of fine fault of an insulating film within an 8-inch wafer surface. <P>SOLUTION: After a silicon wafer having the insulating film at the front surface thereof is uniformly sprayed with the Na<SB>3</SB>Au(SO<SB>3</SB>)<SB>2</SB>electrolytic solution discharged from a spray nozzle, the Pt electrode is soaked to the electrolytic solution, and a voltage is impressed across a silicon substrate and the Pt electrode to precipitate the Au particles of the diameter of 10 nm or less on the fault of insulating film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,絶縁膜中の微小欠陥を検出する技術に関するものである。
【0002】
【従来の技術】
LSIの高集積化に伴い,ゲート絶縁膜やDRAM,フラシュメモリのキャパシタ絶縁膜の薄膜化が進んでいる。それに伴い,絶縁膜中の欠陥による信頼性低下が問題となっている。絶縁膜欠陥評価は,一般的に金属(M)―絶縁膜(I)―半導体(S)構造でキャパシタの電気特性を測定する方法がある。この方法は欠陥箇所の特定が困難であった。
そこで絶縁膜の欠陥個所を顕在化する技術として、非特許文献1に電気化学反応を用いた銅析出法(Cuデコレーション法)が提案されている。また、メチルアルコールを溶媒として銅陽極を用い,陰極である酸化膜を有するシリコン基板上に銅を電解析出させる、つまりリーク電流により、銅イオンが還元し、析出する現象を利用して欠陥箇所のマーカーとさせる方法として、非特許文献2にゲート絶縁膜に発生するCOP(Crystal Originated Particles)による欠陥の検出方法が述べられている。
【0003】
近年,FIB(Focused Ion Beam)を用いてCu析出箇所の断面TEM観察をする技術や,レーザー散乱法と組み合わせた欠陥分布評価技術が提案され,さらに注目を集めている。
【0004】
Cuデコレーション法には、様々な課題があり、改善方法が提案されてきた。第1に、Cu析出の面内分布が悪い点である。特に電解液にメチルアルコールを用いる場合,溶液抵抗による電圧降下が大きく,絶縁膜の表面電位を一定に保つのが困難であるために析出量がウエハ位置により異なってしまう。これに対しては溶液抵抗の小さな銅の強酸塩を含む電解液を用いた銅析出法が特許文献3に述べられている。
【0005】
また、第2は微小なリークの場合には銅析出の析出頻度が小さいために、検出されない欠陥があることである。これを解決するために、電着精度を上げ、かつ析出後の消失を防止するため,Au等の貴金属の電解液を用いた方法が特許文献4に提案されている。
【0006】
更に、第3に、検出できる銅析出粒径が欠陥に比べて大きく、欠陥位置の検出精度が悪い点である。そこで銅析出後,逆電圧を印加し,絶縁膜欠陥付近の銅を溶出させ,さらに貴金属イオン水溶液中でその箇所に貴金属を析出させて,欠陥位置精度を0.1μmに向上させる方法が特許文献5に提案されている。
【0007】
【非特許文献1】
Werner Kern, RCA Review Vol.34 p655−690 (1973)
【非特許文献2】
応用物理 第66巻7号、P728−731(1997)
【特許文献1】
特開平8−261957号公報
【特許文献2】
特開平11−195685号公報
【特許文献3】
特開昭52−132682号公報
【特許文献4】
特開平11−248608号公報
【特許文献5】
特開平10−275840号公報
【0008】
【発明が解決しようとする課題】
電解析出を用いた絶縁膜欠陥評価は、リーク電流を用いて欠陥箇所に金属を析出させ欠陥箇所を調べるのに有効な方法である。しかし以下の課題がある。
(1)6インチウエハ以上のサイズではウエハ面内の表面電位を均一にすることが難しく、微小リークの面内位置依存性を評価できない。またウエハ裏面から給電するため、僅かな接触抵抗差で析出量が不均一になる。
(2)従来の電解析出評価に用いる印加電圧は10V以上と大きく、絶縁膜にダメージを与えており、非破壊で欠陥状態を観察できない。電解析出において印加電圧を閾値電圧以下に下げると電解液中の金属イオンの析出が起こらなくなる。また電流密度が下がり金属の析出速度が下がるため電子顕微鏡で検出可能な大きさである数10nmに成長するのに時間がかかる。さらに、電流密度を下げると析出した金属粒子の絶縁膜との付着力が低下し、洗浄により流失する。
(3)メッキ液をウェハ表面に供給する際、メッキ液が表面に同時に均一に到達しないと金属の析出量に偏りが生じてしまい、欠陥を検出できない箇所が生ずる。
【0009】
本発明は,このような課題を解決するためのものであり,低ダメージで絶縁膜欠陥を検出する方法及び検出用メッキ装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、表面に絶縁膜を有する導電性基板又は導電性膜付きの基板と、アノード電極との間に電圧を印加し、電気化学反応により絶縁膜表面に金属を析出させて絶縁膜中の欠陥を検出する方法において,金属膜の成分を高流速で供給することにより金属膜が基板全面に均一に析出するようにできる。
【0011】
また、メッキ液を噴出させることによりメッキ液を絶縁膜基板表面に均一に高流速で供給することができる。さらにまた、メッキ液を少なくとも基板表面への噴出の初期段階において流速30L/min以上で噴出させると好適である。
そしてまた、メッキ液の噴出角度が120°以上であると良い。また、メッキ液をガスの圧力で噴出させるように設定されている。さらに、ガス噴出時の圧力は1kg/cm以上であると良い。
【0012】
本発明では、表面に絶縁膜を有する導電性基板又は導電性膜付きの基板と、アノード電極と、電解液を入れる容器と、電源とからなる絶縁膜中の欠陥を評価する方法において,印加電圧を2V以下とすることにより電解析出をする際に絶縁膜の受けるダメージを低減することができる。また,電気化学反応により絶縁膜表面に金属を析出させて、さらに無電解で金属を成長させる行程を有するよう設定されている。さらに,電解液としては亜硫酸金塩を、無電解液として該亜硫酸塩とシラノールを含むと好適である。
【0013】
本発明では、少なくとも基板を固定するホルダーと、アノード電極と、メッキ容器と、液配管と、循環用ポンプと、電源を有する電気化学メッキ装置において、スプレーノズルを有するように設定されている。さらに、スプレーノズル手前の循環用配管にバルブがついているように設定されている。また、電解液と電解液に還元剤を添加した無電解液を基板に独立に供給できる様に設定されている。
【0014】
さらにまた、電解液で電解析出処理するための電解液槽と、電解液に還元剤を添加した無電解液で無電解析出処理するための無電解槽を有していると好適である。
本発明では、基板とカソード電極との間に導電ゴムを挟みこむことにより、面内で均一な電気的コンタクトを確保することができる。
【0015】
【発明の実施の形態】
(実施例1)
以下本発明の大面積ウェハ対応の電解析出欠陥検出方法の実施形態を、図を用いて具体的に説明する。
図1は本実施例で用いたメッキ装置の概略図である。電解槽101、メッキ液保管槽102、小型保管槽103、メッキ液循環装置104、メッキ液循環配管105、基板支え冶具106から構成されている。図2は本実施例で用いたフェイスアップ式の電解槽を示している。下向きカップ状の電解槽101とカソード電極201とPtプレート等のアノード電極202で構成されている。通常のメッキ装置とは異なりメッキ液導入用にスプレーノズル203がついている。
【0016】
本発明ではメッキ液をノズルより直接吹き付ける点で従来のメッキ方式とは異なる。カップ状の電解槽101下部にリング状のカソード電極201が固定されており、メッキ液に処理面が接触するように上向きに表面が5nmの酸化膜で被覆されたシリコン基板ウエハ204を設置する。基板ウエハは絶縁膜表面の有機汚染を除去するため、有機洗浄又はUV照射処理を行ってある。またシリコン基板204は裏面と周辺が電解液に触れないようにシリコンゴム205でシールされている。カソード201とウェハ204裏面の間には導電ゴム206が挟んであり、電気的なコンタクトを確保している。
【0017】
ノズルには小型保管槽103が接続してあり、小型保管槽103の後ろにはメッキ液循環配管105とNガス配管207が接続されている。まずメッキ液保管槽102からメッキ液を小型保管槽103に入れて、次にNガスで小型保管槽中103のメッキ液をスプレーノズル203から噴出する。スプレーノズル203とウエハ204面までの距離が長いと装置が大きくなるため、液噴出角度は120°以上が良い。
【0018】
メッキ液保管槽202には温度調節用ヒーターが設置されており一定温度、例えば40±1℃に制御されている。メッキ液はメッキ液保管槽202から液循環装置104によって電解槽101に供給され、電解槽101から液回収配管208を通ってメッキ液保管槽102に戻る。メッキ液循環装置104はポンプと流量センサから成り、一定流量で制御して循環可能である。メッキ液には亜硫酸ナトリウム金水溶液(0.1〜1g/L)を用いている。
【0019】
次に電解槽101にメッキ液保管槽102から亜硫酸ナトリウム金電解液を流し,アノード電極202を電解液に浸す。次に電源の正極をアノード202電極に、負極をカソード電極201に接続する。電源から電圧を印加し,試料表面に金を析出させる。
【0020】
また本実施例では,シリコン基板を用いた場合について説明しているが,金属基板又は,導電膜付の絶縁基板を用いても良い。但し,絶縁基板の場合には,基板表面側の導電膜に直接電流を流せば良い。
【0021】
ここでメッキ液照射のシーケンスを図3のフローを用いて具体的に説明する。図2に示すように本装置ではメッキ液保管槽102と電解槽101の間に約0.2Lの小型保管槽103が設置されている。小型保管槽103はここに一度貯めたメッキ液を電解槽内101のシリコン基板204表面に照射するためのものである。小型保管槽103にはメッキ液回収配管208とNガス導入配管207がついており、さらに小型保管槽103にはメッキ液供給用バルブ301、メッキ液回収用バルブ302、Nガス導入用バルブ303、メッキ液照射用バルブ304の4つの電磁式又はエアー式のバルブが取りつけてある。
【0022】
図3に示すように、まずメッキ液供給用バルブ301とメッキ液回収用バルブ302を開に、メッキ液照射用バルブ304、Nガス導入用バルブ303を閉にしてメッキ液保管槽102からメッキ液を循環する。メッキ液が小型保管槽103に補充されたら、メッキ液供給用バルブ301とメッキ液回収用302バルブを閉にする。
【0023】
次にNガス導入用バルブ303を開にして小型保管槽103に圧力をかける。最後にメッキ液照射用バルブ304を開にして小型保管槽103に貯めておいたメッキ液をスプレーノズル203からシリコン基板204に均一に照射する。メッキ液をウエハ204面内に均一に照射するためにはNガス圧力は1Kg/cm以上が望ましい。
【0024】
メッキ液導入後、Nガス導入用バルブ303を閉じ、メッキ液供給用バルブ301を開にしてメッキ液を循環させる。10min間電圧を印加後、メッキ液を回収してシリコン基板ウエハ204を取り出し、水洗乾燥後、SEM観察を行う。
【0025】
図4は8インチウエハで処理した金粒子析出の面内分布を示している。スプレーノズル203を用いない場合には図4(a)に示すようにウエハ中心付近のみに見られ周囲には析出していない。一方、図4(b)に示すようにスプレーノズル203を用いた場合にはウエハ全面に均一に析出している。これは最初に導入したメッキ液が酸化膜表面に付着してより析出しやすくなっているためである。スプレーノズル203を用いることにより、メッキ液がウエハ204全面に同時に付着するため、均一な金析出が可能である。
【0026】
本実施例ではメッキ液の流速をあげるため、小型保管槽103に貯めたメッキ液をNガスで押し出す方式を用いているが、メッキ液と窒素ガスを混合した2流体状態でウエハ処理面に噴出させる方法も有効である。
【0027】
シリコンウエハ基板は電気的コンタクトを確保するために、カソード電極201との間に導電ゴム206を挟みこみネジで押さえつけており、メッキ液に触れるのはウエハ204表面のみとなっている。
【0028】
電気的コンタクトの面内均一性を評価するために、ウエハの中心とカソード電極201、また、端部(ウエハ外周からおよそ10mmの距離)とカソード電極201との間の抵抗を比較した結果を図5(a)および(b)に示す。(a)はシリコンウエハ基板204と裏面カソード電極201の間に導電ゴム206を挟まずに抵抗を測定したものである。実線は中心とカソード電極201、点線は端部とカソード電極201との間の抵抗に対応している。
【0029】
荷重が増えるにつれてウエハ204裏面とカソード電極201との密着がよくなるので抵抗値はしだいに減少していく。しかし、中央と端では非常にばらつきが大きく、面内で均一な電気的コンタクトがとれていないことを示している。これは、基板裏面にある自然酸化膜が、基板204裏面とカソード201電極間の接触抵抗増大の要因となっており、均一な電気的コンタクトの妨げとなるためである。
(b)は導電ゴム206を挟んで行った結果である。一定以上の加重により、中央と端の抵抗値はほぼ一致しており、電気的コンタクトが均一にとれていることが分かる。また、抵抗の大きさそのものも(a)に比べて大きく減少しており、良好なコンタクトがとれていることを示している。
【0030】
次に、図6にそれぞれ、導電ゴム206を用いずに1nmの酸化膜を有するシリコンウエハ基板204にメッキ処理した場合の金微粒子析出量の面内分布と再現性、導電ゴム206を用いて同様の測定を行った場合の結果を示す。アノード電極202材料としてPtを、メッキ液としては亜硫酸ナトリウム金水溶液1g/Lを用いている。析出の際には10Vの電圧を両電極間にかけ、析出時間は10秒とした。析出後には純水で洗浄し、析出量の評価方法は3mm×5mmの範囲にある金粒子の量を直接同定できる蛍光X線分析装置を用いた。
【0031】
実線のグラフは導電ゴム206を用いていない場合、点線のグラフは用いて方法は析出を行った場合に対応する。明らかに導電ゴム206を用いた場合のほうが析出粒子量の面内分布が大きく向上していることが見て取れる。
【0032】
(実施例2)
以下本発明の低ダメージ欠陥検出方法の実施形態を、図を用いて具体的に説明する。図7は本実施例で用いたメッキ装置の概略図である。実施例1に加えて無電解メッキ液保管槽701、無電解メッキ液循環装置702と無電解メッキ液循環配管703が設置されている。メッキ槽101は実施例1と同じフェイスアップ式のメッキカップを示しているので説明は省略する。
【0033】
無電解メッキ液保管槽701は電解メッキ液保管槽102とは接続されておらず温度調節用ヒーターが設置されており、電解メッキ液保管槽102とは異なる一定温度、例えば60±1℃に制御されている。メッキ液には亜硫酸ナトリウム金水溶液(0.1〜1g/L)を用い、無電解メッキ液にはシラノール添加した亜硫酸ナトリウム金水溶液を用いている。
【0034】
実施例1と同様な手順で電解メッキ液導入用バルブ706から電解槽101にメッキ液を導入して10min間電圧を印加する。ただしこの際、無電解メッキ液導入用バルブ704と無電解メッキ液排出用バルブ705は閉じておく。電解メッキ完了後に、メッキ液の循環を停止し、電解槽101内のメッキ液を電解メッキ液排出用バルブ707を通して回収する。次に、電解メッキ液導入用バルブ706と電解メッキ液排出用バルブ707を閉じ、無電解メッキ液導入用バルブ704を通して無電解メッキ液保管槽701から無電解液を電解槽101内に導入して循環させる。その状態で30min保持する。最後にシリコン基板ウエハ204を水洗乾燥後、SEM観察を行う。
【0035】
もしくは電解槽を電解メッキ用と無電解メッキ槽の2つ用意することも考えられる。この場合は図8のように、まず(a)のように基板支え治具106に基板ウェハ204をセットして電解メッキを施す。その後、(b)のようにウェハ移送用アーム801にて基板ウェハ204を無電解メッキ用ウェハ支え冶具802に移送し、無電解メッキを施すことになる。
【0036】
図9は亜硫酸ナトリウム金水溶液の電気化学解析結果を示す。横軸は印加電圧で縦軸は電流を示している。1.3V付近にAu析出によるピークが見られる。つまり2Vでは十分に金析出が可能であることを示している。
【0037】
次に異なる条件で金析出した酸化膜表面のSEM像を図10に示す。図10(a)は10V、1min、(b)は2V、10min、(c)2V、60min処理したサンプルである。10V、1minでは粒径20nm程度のAu粒子が点在していることが確認できる。本サンプルは均一な熱酸化膜であるためリーク電流量は面内で一定であるが、局所的に金析出閾値を超えたところだけにAu粒子が析出する。もちろん大リーク欠陥が存在する場合にはその箇所に金析出が起こる。
【0038】
一方、2V、10minでは金粒子は観測されない。しかし2V、60minでは10V、1minと同様に金粒子が見られる。2Vではリーク電流が小さく、金粒子の成長速度が遅いために金粒子は観測されない。しかし2V、10min処理後に無電解液30min処理することにより金粒子が観測される。
【0039】
図11は、従来の電解析出をさせた場合の試料表面の模式図を示す。基板1003上の絶縁膜1002中には欠陥が存在する。電流密度50mA/cmで5秒間処理すると析出する金粒子1001の粒径は電子顕微鏡で検出可能な10nm以上になる。しかし、大きな電流1004を流すことにより絶縁膜中にダメージ1005を与える。
【0040】
一方、図12に示すように電解析出の電流密度を2V(0.1mA/cm)で30秒間処理した場合には(a)のように数nmの金粒子1001が析出する。この場合、電流密度が低いため、絶縁膜中にダメージを与えない。次に無電解槽に30分間浸し、(b)のように無電解金粒子1006を電子顕微鏡で検出可能な10nm以上に成長させる。
【0041】
低電圧ではリーク電流が小さいので観測できるまで金粒子を析出させるのに時間がかかるが、無電解析出と組み合わせることにより、短時間で観測可能である。
【0042】
【発明の効果】
以上述べてきたように,本発明の,スプレー式メッキ方により、8インチウエハ以上の大面積での絶縁膜欠陥検出が、さらに電解析出と無電解析出を組み合わせた方法により,低ダメージで絶縁膜欠陥検出が可能である。そしてウエハ面内での微小欠陥位置の特定が可能となり,信頼性の高いLSIが形成できる。
【図面の簡単な説明】
【図1】本発明に用いたメッキ装置の概略図である。
【図2】本発明に用いたスプレーノズルを有するメッキカップの概略図である。
【図3】本発明におけるスプレーメッキ液照射のバルブ開閉シーケンスである。
【図4】8インチウエハに処理した金粒子析出の面内分布(a)スプレーノズル無、(b)スプレーノズル有。
【図5】電気的コンタクトの面内均一性を評価結果(a)導電ゴム無、(b)導電ゴム有。両図とも、実線は中心部、点線は端部に対応している。
【図6】8インチウエハに処理した金粒子析出の面内分布。実線は導電性ゴム無、点線は導電性ゴム有に対応する。
【図7】本発明に用いた電解メッキと無電解複合メッキ装置の概略図である。
【図8】本発明に用いた電解メッキと無電解メッキ装置の概略図である。
【図9】亜硫酸ナトリウム金水溶液の電気化学解析結果。
【図10】電解析出処理した酸化膜表面のSEM像(a)10V、10sec、(b)2V、10min、(c)2V、60min
【図11】10Vで電解析出させた場合の試料表面の模式図である。
【図12】2Vで電解析出させてから、無電解析出させた場合の試料表面の模式図である。
【符号の説明】
101…電解槽、102…メッキ液保管槽、103…小型保管槽、104…メッキ液循環装置、105…メッキ液循環配管、106…基板支え冶具、201…カソード電極,202…アノード電極,203…スプレーノズル,204…シリコン基板ウェハ,205…シリコンゴム,206…導電ゴム、207…N2ガス配管,208…メッキ液回収配管,301…メッキ液供給用バルブ、302…メッキ液回収用バルブ、303…N2導入用バルブ、304…メッキ液照射用バルブ、401…金が析出している領域、402…金が析出していない領域、701…無電解メッキ液保管槽,702…無電解メッキ液循環装置、703…無電解メッキ液循環配管、704…無電解メッキ液導入用バルブ、705…無電解メッキ液排出用バルブ、706…電解メッキ液導入用バルブ、707…電解メッキ液排出用バルブ、801…ウェハ移送用アーム、802…無電解メッキ用ウェハ支え冶具、1001…析出金粒子、1002…絶縁膜、1003…基板シリコンウェハ、1004…電流、1005…ダメージ、1006…無電解金粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for detecting minute defects in an insulating film.
[0002]
[Prior art]
With the increase in the degree of integration of LSIs, the thickness of gate insulating films and capacitor insulating films of DRAMs and flash memories has been reduced. Along with this, there is a problem that reliability is reduced due to defects in the insulating film. Insulating film defect evaluation generally includes a method of measuring electrical characteristics of a capacitor in a metal (M) -insulating film (I) -semiconductor (S) structure. In this method, it was difficult to specify a defective portion.
Therefore, Non-Patent Document 1 proposes a copper deposition method (Cu decoration method) using an electrochemical reaction as a technique for revealing a defect portion of an insulating film. In addition, a copper anode is used as a solvent with methyl alcohol as a solvent, and copper is electrolytically deposited on a silicon substrate having an oxide film serving as a cathode. Non-Patent Document 2 describes a method of detecting a defect caused by COP (Crystal Originated Particles) generated in a gate insulating film.
[0003]
In recent years, a technique for observing a cross-sectional TEM of a Cu deposition portion using an FIB (Focused Ion Beam) and a defect distribution evaluation technique combined with a laser scattering method have been proposed, and have attracted much attention.
[0004]
The Cu decoration method has various problems, and an improvement method has been proposed. First, the in-plane distribution of Cu precipitation is poor. In particular, when methyl alcohol is used as the electrolytic solution, the voltage drop due to the solution resistance is large, and it is difficult to keep the surface potential of the insulating film constant, so that the deposition amount varies depending on the wafer position. On the other hand, Patent Document 3 discloses a copper deposition method using an electrolytic solution containing a strong acid salt of copper having a small solution resistance.
[0005]
Secondly, in the case of a minute leak, there is a defect that cannot be detected because the frequency of copper deposition is low. In order to solve this problem, Patent Document 4 proposes a method using an electrolyte of a noble metal such as Au in order to increase electrodeposition accuracy and prevent disappearance after deposition.
[0006]
Third, the copper particle size that can be detected is larger than that of a defect, and the accuracy of detecting a defect position is poor. Therefore, after depositing copper, a method of applying a reverse voltage to elute copper in the vicinity of the insulating film defect and further depositing a noble metal at that location in a noble metal ion aqueous solution to improve the defect position accuracy to 0.1 μm is disclosed in Patent Document 1. 5 is proposed.
[0007]
[Non-patent document 1]
Werner Kern, RCA Review Vol. 34 p655-690 (1973)
[Non-patent document 2]
Applied Physics Vol.66, No.7, P728-731 (1997)
[Patent Document 1]
JP-A-8-261957 [Patent Document 2]
Japanese Patent Application Laid-Open No. H11-195885 [Patent Document 3]
JP-A-52-132682 [Patent Document 4]
JP-A-11-248608 [Patent Document 5]
JP 10-275840 A
[Problems to be solved by the invention]
The insulating film defect evaluation using electrolytic deposition is an effective method for investigating a defective portion by depositing a metal at a defective portion using a leak current. However, there are the following problems.
(1) It is difficult to make the surface potential in the wafer plane uniform when the size of the wafer is 6 inches or more, and the in-plane position dependence of the minute leak cannot be evaluated. In addition, since power is supplied from the back surface of the wafer, the amount of deposition becomes nonuniform due to a slight difference in contact resistance.
(2) The applied voltage used in the conventional electrolytic deposition evaluation is as large as 10 V or more, damaging the insulating film, and the defect state cannot be observed without destruction. If the applied voltage is lowered to the threshold voltage or less in the electrolytic deposition, deposition of metal ions in the electrolytic solution does not occur. In addition, since the current density decreases and the metal deposition rate decreases, it takes time to grow to a size of several tens of nm, which is a size detectable by an electron microscope. Further, when the current density is reduced, the adhesion of the deposited metal particles to the insulating film is reduced, and the metal particles are washed away by washing.
(3) When supplying the plating solution to the wafer surface, if the plating solution does not reach the surface simultaneously and uniformly, the amount of deposited metal will be biased, and there will be places where defects cannot be detected.
[0009]
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a method for detecting an insulating film defect with low damage and a plating apparatus for detection.
[0010]
[Means for Solving the Problems]
The present invention provides a method for applying a voltage between a conductive substrate or a substrate with a conductive film having an insulating film on the surface and an anode electrode, to deposit a metal on the insulating film surface by an electrochemical reaction, In the method of detecting defects, the metal film can be uniformly deposited on the entire surface of the substrate by supplying the components of the metal film at a high flow rate.
[0011]
Further, by ejecting the plating solution, the plating solution can be uniformly supplied to the surface of the insulating film substrate at a high flow rate. Further, it is preferable that the plating solution is jetted at a flow rate of 30 L / min or more at least at an initial stage of jetting onto the substrate surface.
Further, the jetting angle of the plating solution is preferably 120 ° or more. Further, it is set so that the plating solution is ejected at the pressure of the gas. Further, the pressure at the time of gas ejection is preferably 1 kg / cm 2 or more.
[0012]
According to the present invention, in a method for evaluating defects in an insulating film comprising a conductive substrate having a surface with an insulating film or a substrate with a conductive film, an anode electrode, a container for containing an electrolytic solution, and a power supply, Is set to 2 V or less, it is possible to reduce damage to the insulating film during electrolytic deposition. Further, it is set to have a process of depositing a metal on the surface of the insulating film by an electrochemical reaction and further growing the metal in an electroless manner. Further, it is preferable that the electrolytic solution contains a gold sulfite, and the electroless solution contains the sulfite and silanol.
[0013]
In the present invention, an electrochemical plating apparatus having at least a holder for fixing a substrate, an anode electrode, a plating container, a liquid pipe, a circulation pump, and a power supply is set to have a spray nozzle. Furthermore, it is set so that a valve is attached to the circulation pipe in front of the spray nozzle. Further, it is set so that the electrolytic solution and an electroless solution obtained by adding a reducing agent to the electrolytic solution can be independently supplied to the substrate.
[0014]
Furthermore, it is preferable to have an electrolytic solution tank for performing an electrolytic deposition treatment with an electrolytic solution, and an electroless tank for performing an electroless deposition treatment with an electroless solution obtained by adding a reducing agent to the electrolytic solution.
According to the present invention, a uniform electrical contact can be secured in the plane by sandwiching the conductive rubber between the substrate and the cathode electrode.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
Hereinafter, an embodiment of a method for detecting an electrolytic deposition defect corresponding to a large-area wafer according to the present invention will be specifically described with reference to the drawings.
FIG. 1 is a schematic diagram of a plating apparatus used in this embodiment. It comprises an electrolysis tank 101, a plating solution storage tank 102, a small storage tank 103, a plating solution circulation device 104, a plating solution circulation pipe 105, and a substrate support jig 106. FIG. 2 shows a face-up type electrolytic cell used in this embodiment. It comprises a downwardly facing cup-shaped electrolytic cell 101, a cathode electrode 201, and an anode electrode 202 such as a Pt plate. Unlike a normal plating apparatus, a spray nozzle 203 is provided for introducing a plating solution.
[0016]
The present invention differs from the conventional plating method in that the plating solution is sprayed directly from the nozzle. A ring-shaped cathode electrode 201 is fixed below the cup-shaped electrolytic bath 101, and a silicon substrate wafer 204 whose surface is covered with an oxide film having a thickness of 5 nm is placed upward so that the processing surface comes into contact with the plating solution. The substrate wafer is subjected to organic cleaning or UV irradiation treatment to remove organic contamination on the surface of the insulating film. The silicon substrate 204 is sealed with silicon rubber 205 so that the back surface and the periphery do not come into contact with the electrolytic solution. A conductive rubber 206 is interposed between the cathode 201 and the back surface of the wafer 204 to secure electrical contact.
[0017]
A small storage tank 103 is connected to the nozzle, and a plating solution circulation pipe 105 and an N 2 gas pipe 207 are connected behind the small storage tank 103. First, the plating solution is put into the small storage tank 103 from the plating solution storage tank 102, and then the plating solution in the small storage tank 103 is jetted from the spray nozzle 203 with N 2 gas. If the distance between the spray nozzle 203 and the surface of the wafer 204 is long, the size of the apparatus becomes large. Therefore, the liquid ejection angle is preferably 120 ° or more.
[0018]
The plating solution storage tank 202 is provided with a heater for controlling temperature, and is controlled at a constant temperature, for example, 40 ± 1 ° C. The plating liquid is supplied from the plating liquid storage tank 202 to the electrolytic tank 101 by the liquid circulation device 104, and returns from the electrolytic tank 101 to the plating liquid storage tank 102 through the liquid recovery pipe 208. The plating solution circulating device 104 includes a pump and a flow rate sensor, and can be controlled and circulated at a constant flow rate. An aqueous solution of sodium sulfite gold (0.1 to 1 g / L) is used as a plating solution.
[0019]
Next, a sodium sulfite-gold electrolytic solution is passed from the plating solution storage tank 102 to the electrolytic tank 101, and the anode electrode 202 is immersed in the electrolytic solution. Next, the positive electrode of the power supply is connected to the anode 202 electrode, and the negative electrode is connected to the cathode electrode 201. A voltage is applied from a power supply to deposit gold on the sample surface.
[0020]
In this embodiment, the case where a silicon substrate is used is described, but a metal substrate or an insulating substrate provided with a conductive film may be used. However, in the case of an insulating substrate, a current may be passed directly to the conductive film on the substrate surface side.
[0021]
Here, the sequence of plating solution irradiation will be specifically described with reference to the flow of FIG. As shown in FIG. 2, in this apparatus, a small storage tank 103 of about 0.2 L is provided between the plating solution storage tank 102 and the electrolytic tank 101. The small storage tank 103 is for irradiating the plating solution once stored here to the surface of the silicon substrate 204 in the electrolytic tank 101. The small storage tank 103 is provided with a plating solution recovery pipe 208 and a N 2 gas introduction pipe 207, and the small storage tank 103 is further provided with a plating solution supply valve 301, a plating solution recovery valve 302, and an N 2 gas introduction valve 303. And four electromagnetic or pneumatic valves 304 for plating solution irradiation.
[0022]
As shown in FIG. 3, first, the plating solution supply valve 301 and the plating solution collection valve 302 are opened, the plating solution irradiation valve 304 and the N 2 gas introduction valve 303 are closed, and the plating solution is stored in the plating solution storage tank 102. Circulate liquid. When the plating solution is replenished into the small storage tank 103, the plating solution supply valve 301 and the plating solution recovery valve 302 are closed.
[0023]
Next, the N 2 gas introduction valve 303 is opened to apply pressure to the small storage tank 103. Finally, the plating solution irradiation valve 304 is opened, and the plating solution stored in the small storage tank 103 is uniformly irradiated from the spray nozzle 203 onto the silicon substrate 204. In order to uniformly irradiate the surface of the wafer 204 with the plating solution, the N 2 gas pressure is desirably 1 kg / cm 2 or more.
[0024]
After the plating liquid inlet, close the N 2 gas inlet valve 303, the plating solution is circulated by a plating solution supply valve 301 to open. After applying a voltage for 10 minutes, the plating solution is recovered, the silicon substrate wafer 204 is taken out, washed with water and dried, and then subjected to SEM observation.
[0025]
FIG. 4 shows the in-plane distribution of gold particle deposition processed on an 8-inch wafer. When the spray nozzle 203 is not used, as shown in FIG. 4A, it is observed only near the center of the wafer and does not precipitate around the wafer. On the other hand, when the spray nozzle 203 is used as shown in FIG. This is because the plating solution introduced first adheres to the oxide film surface and is more likely to be precipitated. By using the spray nozzle 203, the plating solution adheres to the entire surface of the wafer 204 at the same time, so that uniform gold deposition is possible.
[0026]
In this embodiment, in order to increase the flow rate of the plating solution, a method of extruding the plating solution stored in the small storage tank 103 with N 2 gas is used. However, the two-fluid state in which the plating solution and the nitrogen gas are mixed is applied to the wafer processing surface. The method of spouting is also effective.
[0027]
In order to secure electrical contact, the silicon wafer substrate is sandwiched between the conductive rubber 206 and the cathode electrode 201 and held down by screws, and only the surface of the wafer 204 is in contact with the plating solution.
[0028]
In order to evaluate the in-plane uniformity of the electrical contact, the result of comparing the resistance between the center of the wafer and the cathode electrode 201 and the resistance between the end (a distance of about 10 mm from the outer periphery of the wafer) and the cathode electrode 201 is shown. 5 (a) and 5 (b). (A) shows the resistance measured without sandwiching the conductive rubber 206 between the silicon wafer substrate 204 and the back surface cathode electrode 201. The solid line corresponds to the resistance between the center and the cathode electrode 201, and the dotted line corresponds to the resistance between the end and the cathode electrode 201.
[0029]
As the load increases, the adhesion between the back surface of the wafer 204 and the cathode electrode 201 improves, so that the resistance value gradually decreases. However, there is a large variation between the center and the end, which indicates that uniform electrical contact cannot be made in the plane. This is because the natural oxide film on the back surface of the substrate causes an increase in contact resistance between the back surface of the substrate 204 and the cathode 201 electrode, and hinders uniform electrical contact.
(B) is a result obtained by sandwiching the conductive rubber 206. By applying a certain load or more, the resistance values at the center and at the end are almost the same, and it can be seen that the electrical contact is uniform. In addition, the magnitude of the resistance itself is greatly reduced as compared with (a), indicating that good contact is obtained.
[0030]
Next, FIG. 6 shows the in-plane distribution and reproducibility of the deposition amount of the fine gold particles when the silicon wafer substrate 204 having the oxide film of 1 nm is plated without using the conductive rubber 206. The result when the measurement was performed is shown. Pt is used as the material of the anode electrode 202, and 1 g / L of an aqueous solution of sodium sulfite is used as a plating solution. At the time of deposition, a voltage of 10 V was applied between both electrodes, and the deposition time was 10 seconds. After the precipitation, the precipitate was washed with pure water, and the amount of the deposited particles was evaluated using an X-ray fluorescence spectrometer capable of directly identifying the amount of gold particles in a range of 3 mm × 5 mm.
[0031]
The solid line graph corresponds to the case where the conductive rubber 206 is not used, and the dotted line graph corresponds to the case where the deposition is performed. It is apparent that the in-plane distribution of the amount of precipitated particles is significantly improved when the conductive rubber 206 is used.
[0032]
(Example 2)
Hereinafter, an embodiment of the low damage defect detection method of the present invention will be specifically described with reference to the drawings. FIG. 7 is a schematic diagram of the plating apparatus used in this embodiment. In addition to the first embodiment, an electroless plating solution storage tank 701, an electroless plating solution circulation device 702, and an electroless plating solution circulation pipe 703 are provided. The plating tank 101 is the same face-up type plating cup as that of the first embodiment, and thus the description is omitted.
[0033]
The electroless plating solution storage tank 701 is not connected to the electrolytic plating solution storage tank 102 and is provided with a heater for controlling the temperature, and is controlled at a constant temperature different from the electrolytic plating solution storage tank 102, for example, 60 ± 1 ° C. Have been. An aqueous solution of sodium sulfite (0.1 to 1 g / L) is used as a plating solution, and an aqueous solution of sodium sulfite with addition of silanol is used as an electroless plating solution.
[0034]
A plating solution is introduced into the electrolytic bath 101 from the electrolytic plating solution introduction valve 706 in the same procedure as in Example 1, and a voltage is applied for 10 minutes. However, at this time, the valve 704 for introducing the electroless plating solution and the valve 705 for discharging the electroless plating solution are kept closed. After the completion of the electrolytic plating, the circulation of the plating solution is stopped, and the plating solution in the electrolytic bath 101 is collected through the electrolytic plating solution discharging valve 707. Next, the valve 706 for introducing the electrolytic plating solution and the valve 707 for discharging the electrolytic plating solution are closed, and the electroless solution is introduced into the electrolytic bath 101 from the electroless plating solution storage tank 701 through the valve 704 for introducing the electroless plating solution. Circulate. Hold for 30 minutes in this state. Finally, the silicon substrate wafer 204 is washed with water and dried, and then subjected to SEM observation.
[0035]
Alternatively, it is conceivable to prepare two electrolytic baths, one for electrolytic plating and the other for electroless plating. In this case, as shown in FIG. 8, first, the substrate wafer 204 is set on the substrate support jig 106 as shown in FIG. Thereafter, the substrate wafer 204 is transferred to the wafer support jig 802 for electroless plating by the wafer transfer arm 801 as shown in FIG.
[0036]
FIG. 9 shows the results of an electrochemical analysis of the aqueous sodium sulfite solution. The horizontal axis indicates the applied voltage and the vertical axis indicates the current. A peak due to Au precipitation is seen around 1.3 V. In other words, it indicates that gold deposition is sufficiently possible at 2 V.
[0037]
Next, FIG. 10 shows SEM images of the oxide film surface on which gold was deposited under different conditions. FIG. 10A shows a sample processed at 10 V for 1 min, and FIG. 10B shows a sample processed at 2 V, 10 min and (c) 2 V for 60 min. At 10 V and 1 min, it can be confirmed that Au particles having a particle size of about 20 nm are scattered. Since this sample is a uniform thermal oxide film, the amount of leak current is constant in the plane, but Au particles are deposited only where the gold deposition threshold is exceeded locally. Of course, if a large leak defect exists, gold deposition occurs at that location.
[0038]
On the other hand, no gold particles were observed at 2 V and 10 min. However, gold particles can be seen at 2 V and 60 min as in 10 V and 1 min. At 2 V, no gold particles are observed because the leakage current is small and the growth rate of the gold particles is low. However, gold particles are observed by treating the electroless solution for 30 min after the treatment at 2 V for 10 min.
[0039]
FIG. 11 shows a schematic view of a sample surface when conventional electrolytic deposition is performed. A defect exists in the insulating film 1002 over the substrate 1003. When the treatment is performed at a current density of 50 mA / cm 2 for 5 seconds, the particle diameter of the gold particles 1001 deposited becomes 10 nm or more, which can be detected by an electron microscope. However, flowing a large current 1004 causes damage 1005 in the insulating film.
[0040]
On the other hand, when the current density of the electrolytic deposition is 2 V (0.1 mA / cm 2 ) for 30 seconds as shown in FIG. 12, gold particles 1001 of several nm are deposited as shown in FIG. In this case, since the current density is low, the insulating film is not damaged. Next, it is immersed in an electroless bath for 30 minutes, and the electroless gold particles 1006 are grown to 10 nm or more which can be detected by an electron microscope as shown in FIG.
[0041]
At a low voltage, it takes a long time to deposit gold particles until it can be observed because the leak current is small, but it can be observed in a short time by combining it with electroless deposition.
[0042]
【The invention's effect】
As described above, according to the spray plating method of the present invention, it is possible to detect an insulating film defect in a large area of an 8-inch wafer or more, and to perform insulation with low damage by a method combining electrolytic deposition and electroless deposition. Film defect detection is possible. Then, the position of the minute defect in the wafer surface can be specified, and a highly reliable LSI can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a plating apparatus used in the present invention.
FIG. 2 is a schematic view of a plating cup having a spray nozzle used in the present invention.
FIG. 3 is a valve opening / closing sequence of spray plating solution irradiation in the present invention.
FIG. 4 shows in-plane distribution of gold particles deposited on an 8-inch wafer (a) without spray nozzle, and (b) with spray nozzle.
FIG. 5 shows the results of evaluating the in-plane uniformity of electrical contacts (a) without conductive rubber, and (b) with conductive rubber. In both figures, the solid line corresponds to the center and the dotted line corresponds to the end.
FIG. 6 is an in-plane distribution of gold particle deposition processed on an 8-inch wafer. The solid line corresponds to no conductive rubber, and the dotted line corresponds to conductive rubber.
FIG. 7 is a schematic view of an electrolytic plating and electroless composite plating apparatus used in the present invention.
FIG. 8 is a schematic view of an electroplating and electroless plating apparatus used in the present invention.
FIG. 9 shows the results of an electrochemical analysis of an aqueous solution of sodium sulfite gold.
FIG. 10 is an SEM image of an oxide film surface subjected to electrolytic deposition treatment (a) 10 V, 10 sec, (b) 2 V, 10 min, (c) 2 V, 60 min
FIG. 11 is a schematic diagram of a sample surface when electrolytic deposition is performed at 10V.
FIG. 12 is a schematic view of a sample surface in a case where an electrolytic deposition is performed at 2 V and then an electroless deposition is performed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Electrolysis tank, 102 ... Plating solution storage tank, 103 ... Small storage tank, 104 ... Plating solution circulation apparatus, 105 ... Plating solution circulation piping, 106 ... Substrate support jig, 201 ... Cathode electrode, 202 ... Anode electrode, 203 ... Spray nozzle, 204: silicon substrate wafer, 205: silicon rubber, 206: conductive rubber, 207: N2 gas pipe, 208: plating solution collection pipe, 301: plating solution supply valve, 302: plating solution collection valve, 303 ... N2 introduction valve, 304: plating solution irradiation valve, 401: area where gold is deposited, 402: area where gold is not deposited, 701: electroless plating solution storage tank, 702: electroless plating solution circulation device 703: Electroless plating solution circulation pipe, 704: Electroless plating solution introduction valve, 705: Electroless plating solution discharge valve, 70 ... Electrolytic plating solution introduction valve, 707 ... Electroplating solution discharge valve, 801 ... Wafer transfer arm, 802 ... Electroless plating wafer support jig, 1001 ... Precipitated gold particles, 1002 ... Insulating film, 1003 ... Substrate silicon wafer , 1004 ... current, 1005 ... damage, 1006 ... electroless gold particles

Claims (14)

表面に絶縁膜を有する導電性基板又は導電性膜付きの基板と、アノード電極との間に電圧を印加し、電気化学反応により該絶縁膜表面に金属を析出させて絶縁膜中の欠陥を検出する方法において,該金属膜が該基板全面に均一に析出するように該金属膜の成分を高流速で供給することを特徴とする絶縁膜欠陥検出方法。A voltage is applied between a conductive substrate having a surface with an insulating film or a substrate with a conductive film and an anode electrode, and a metal is deposited on the surface of the insulating film by an electrochemical reaction to detect defects in the insulating film. A method for detecting a defect in an insulating film, wherein a component of the metal film is supplied at a high flow rate so that the metal film is uniformly deposited on the entire surface of the substrate. 請求項1記載の絶縁膜欠陥検出方法において、該金属膜の成分を該絶縁膜基板表面に均一に高流速で供給するために、メッキ液をスプレーノズルを用いて噴出させることを特徴とする絶縁膜欠陥検出方法。2. The insulating film defect detecting method according to claim 1, wherein a plating solution is jetted using a spray nozzle in order to uniformly supply a component of said metal film to said insulating film substrate surface at a high flow rate. Film defect detection method. 請求項2記載の絶縁膜欠陥検出方法において、該金属膜の成分を高流速で供給するために、該金属膜の成分を少なくとも該メッキ液噴出の初期段階において流速30L/min以上で噴出させることを特徴とする絶縁膜欠陥検出方法。3. The method according to claim 2, wherein the components of the metal film are jetted at a flow rate of 30 L / min or more at least at an initial stage of jetting the plating solution in order to supply the components of the metal film at a high flow rate. A method for detecting defects in an insulating film. 請求項2記載の絶縁膜欠陥検出方法において、該メッキ液の噴出角度が120°以上であることを特徴とする絶縁膜欠陥検出方法。3. The method according to claim 2, wherein the jetting angle of the plating solution is 120 [deg.] Or more. 請求項2記載の絶縁膜欠陥検出方法において、該金属膜の成分を高流速で供給するために、該メッキ液をガスの圧力で噴出させることを特徴とする絶縁膜欠陥検出方法。3. The method according to claim 2, wherein the plating solution is jetted at a gas pressure in order to supply the components of the metal film at a high flow rate. 請求項5記載の絶縁膜欠陥検出方法において、該ガス噴出時の圧力が1kg/cm以上であることを特徴とする絶縁膜欠陥検出方法。6. The method according to claim 5, wherein the pressure at which the gas is ejected is 1 kg / cm 2 or more. 表面に絶縁膜を有する導電性基板又は導電性膜付きの基板と、アノード電極との間に電圧を印加し、電気化学反応により該絶縁膜表面に金属を析出させて絶縁膜中の欠陥を検出する方法において,該電解析出をする際に該絶縁膜の受けるダメージを低減するため印加電圧が2V以下であることを特徴とする絶縁膜欠陥検出方法。A voltage is applied between a conductive substrate having a surface with an insulating film or a substrate with a conductive film and an anode electrode, and a metal is deposited on the surface of the insulating film by an electrochemical reaction to detect defects in the insulating film. A method for detecting a defect in an insulating film, wherein an applied voltage is 2 V or less to reduce damage to the insulating film during the electrolytic deposition. 請求項7記載の絶縁膜欠陥検出法において,電気化学反応により該絶縁膜表面に金属を電解析出させて、さらに無電解で金属を成長させる行程を有することを特徴とする絶縁膜欠陥評価方法。8. The method according to claim 7, further comprising the steps of: electrolytically depositing a metal on the surface of the insulating film by an electrochemical reaction, and growing the metal in an electroless manner. . 上記請求項8の絶縁膜中の欠陥を検出する方法において,電解液として亜硫酸金塩を、無電解液として該亜硫酸塩とシラノールを含むことを特徴とする絶縁膜欠陥検出方法。9. The method for detecting defects in an insulating film according to claim 8, wherein gold sulfite is used as an electrolyte and said sulfite and silanol are used as an electroless solution. 少なくとも基板を固定するホルダーと、アノード電極と、メッキ容器と、液循環用配管と、循環用ポンプと、電源を有する電気化学メッキ装置において、スプレーノズルを有することを特徴とする電気化学メッキ装置。An electrochemical plating apparatus having at least a holder for fixing a substrate, an anode electrode, a plating container, a liquid circulation pipe, a circulation pump, and a power supply, comprising a spray nozzle. 請求項10記載の電気化学メッキ装置において、該スプレーノズル手前の該液循環用配管にバルブがついていることを特徴とする電気化学メッキ装置。11. The electrochemical plating apparatus according to claim 10, wherein a valve is provided in the liquid circulation pipe in front of the spray nozzle. 少なくとも基板を固定するホルダーと、アノード電極と、メッキ容器と、液配管と、循環用ポンプと、電源を有する電気化学メッキ装置において、電解液と電解液に還元剤を添加した無電解液を基板に独立に供給できることを特徴とする電気化学メッキ装置。In an electrochemical plating apparatus having at least a holder for fixing a substrate, an anode electrode, a plating container, a liquid pipe, a circulation pump, and a power supply, an electrolytic solution and an electroless solution obtained by adding a reducing agent to the electrolytic solution are used as substrates. An electrochemical plating apparatus characterized in that it can be supplied independently to the apparatus. 少なくとも基板を固定するホルダーと、アノード電極と、メッキ容器と、液配管と、循環用ポンプと、電源を有する電気化学メッキ装置において、電解液で電解析出処理するための電解液槽と電解液に還元剤を添加した無電解液で無電解析出処理するための無電解槽を有することを特徴とする電気化学メッキ装置。In an electrochemical plating apparatus having at least a holder for fixing a substrate, an anode electrode, a plating container, a liquid pipe, a circulation pump, and a power supply, an electrolytic bath and an electrolytic solution for performing electrolytic deposition with an electrolytic solution. An electrochemical plating apparatus comprising an electroless bath for performing an electroless deposition treatment with an electroless solution obtained by adding a reducing agent to a plating solution. 少なくとも基板を固定するホルダーと、カソード電極と、アノード電極と、メッキ容器と、電源を有するメッキ装置において、基板とカソード電極との間に導電性を有するゴムを挟みこみ、面内で均一な電気的コンタクトを確保できることを特徴とする電気化学メッキ装置。In a plating apparatus having at least a holder for fixing a substrate, a cathode electrode, an anode electrode, a plating container, and a power supply, a conductive rubber is sandwiched between the substrate and the cathode electrode, and a uniform electric power is formed in the plane. Electrochemical plating equipment characterized in that it can secure a proper contact.
JP2002302441A 2002-10-17 2002-10-17 Method and apparatus for detecting fault of insulating film Pending JP2004140129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302441A JP2004140129A (en) 2002-10-17 2002-10-17 Method and apparatus for detecting fault of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302441A JP2004140129A (en) 2002-10-17 2002-10-17 Method and apparatus for detecting fault of insulating film

Publications (1)

Publication Number Publication Date
JP2004140129A true JP2004140129A (en) 2004-05-13

Family

ID=32450498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302441A Pending JP2004140129A (en) 2002-10-17 2002-10-17 Method and apparatus for detecting fault of insulating film

Country Status (1)

Country Link
JP (1) JP2004140129A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780824B2 (en) 2005-06-20 2010-08-24 Yamamoto-Ms Co., Ltd. Electroplating jig
JP2012517714A (en) * 2009-02-17 2012-08-02 ハンスマシン インク Wafer defect analysis apparatus, ion extraction apparatus used therefor, and wafer defect analysis method using the wafer defect analysis apparatus
JP2014196540A (en) * 2013-03-29 2014-10-16 Dowaメタルテック株式会社 Electroplating method and mask member using the same
CN106024662A (en) * 2015-03-31 2016-10-12 朗姆研究公司 Fault Detection Using Showerhead Voltage Variation
WO2020137652A1 (en) * 2018-12-28 2020-07-02 東京エレクトロン株式会社 Substrate liquid processing apparatus and substrate liquid processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780824B2 (en) 2005-06-20 2010-08-24 Yamamoto-Ms Co., Ltd. Electroplating jig
JP2012517714A (en) * 2009-02-17 2012-08-02 ハンスマシン インク Wafer defect analysis apparatus, ion extraction apparatus used therefor, and wafer defect analysis method using the wafer defect analysis apparatus
JP2014196540A (en) * 2013-03-29 2014-10-16 Dowaメタルテック株式会社 Electroplating method and mask member using the same
CN106024662A (en) * 2015-03-31 2016-10-12 朗姆研究公司 Fault Detection Using Showerhead Voltage Variation
WO2020137652A1 (en) * 2018-12-28 2020-07-02 東京エレクトロン株式会社 Substrate liquid processing apparatus and substrate liquid processing method
JPWO2020137652A1 (en) * 2018-12-28 2021-11-04 東京エレクトロン株式会社 Substrate liquid treatment equipment and substrate liquid treatment method
JP7114744B2 (en) 2018-12-28 2022-08-08 東京エレクトロン株式会社 SUBSTRATE LIQUID PROCESSING APPARATUS AND SUBSTRATE LIQUID PROCESSING METHOD

Similar Documents

Publication Publication Date Title
US7169705B2 (en) Plating method and plating apparatus
TWI411043B (en) System for modifying small structures
US7736474B2 (en) Plating apparatus and plating method
US20090000549A1 (en) Substrate processing method and apparatus
KR20100067072A (en) Wafer electroplating apparatus for reducing edge defects
WO2004107422A2 (en) Plating apparatus and plating method
US20060086618A1 (en) Method and apparatus for forming interconnects
TWI638069B (en) Electrical plating equipment
JP2004140129A (en) Method and apparatus for detecting fault of insulating film
US20040219298A1 (en) Substrate processing method and substrate processing apparatus
US20230386824A1 (en) Apparatus for electro-chemical plating
US6848457B2 (en) Liquid treatment equipment, liquid treatment method, semiconductor device manufacturing method, and semiconductor device manufacturing equipment
US20050173253A1 (en) Method and apparatus for infilm defect reduction for electrochemical copper deposition
JP2022118256A (en) Substrate holder, plating device, plating method, and memory medium
Chee et al. 12 Applications of Liquid Cell TEM in Corrosion Science
JP4003032B2 (en) Semiconductor wafer evaluation method
JP2005194585A (en) Method for treating substrate in wet process and apparatus for treating substrate
KR100865448B1 (en) Electro chemical plating apparatus and method thereof
JP4423358B2 (en) Plating apparatus and plating method
JP2004304021A (en) Manufacturing method and manufacturing device of semiconductor device
TWI790526B (en) Substrate holder, plating device, plating method, and memory medium
US7204920B2 (en) Contact ring design for reducing bubble and electrolyte effects during electrochemical plating in manufacturing
WO2002001626A1 (en) Method and apparatus for evaluating semiconductor wafer
US20040074777A1 (en) Method for removing electrolyte from electrical contacts and wafer touching areas
JP4423355B2 (en) Plating equipment