JP4761803B2 - Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors - Google Patents

Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors Download PDF

Info

Publication number
JP4761803B2
JP4761803B2 JP2005092151A JP2005092151A JP4761803B2 JP 4761803 B2 JP4761803 B2 JP 4761803B2 JP 2005092151 A JP2005092151 A JP 2005092151A JP 2005092151 A JP2005092151 A JP 2005092151A JP 4761803 B2 JP4761803 B2 JP 4761803B2
Authority
JP
Japan
Prior art keywords
corrosion
test
water
test method
boiling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005092151A
Other languages
Japanese (ja)
Other versions
JP2006275620A (en
Inventor
良明 石井
茂樹 萩
貴代子 竹田
誠 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005092151A priority Critical patent/JP4761803B2/en
Publication of JP2006275620A publication Critical patent/JP2006275620A/en
Application granted granted Critical
Publication of JP4761803B2 publication Critical patent/JP4761803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、軽水炉、特に沸騰水型軽水炉に用いられるジルコニウム(Zr)合金製構成材料の腐食性評価に有効な加速試験方法に関する。   The present invention relates to an accelerated test method effective for evaluating the corrosiveness of a constituent material made of a zirconium (Zr) alloy used in a light water reactor, particularly a boiling water light water reactor.

原子力発電用の原子炉として軽水炉が汎用されるようになってきたが、この軽水炉には、加圧水型軽水炉(PWR)と沸騰水型軽水炉(BWR)があり、このうち日本で過半数を占めるものが後者の沸騰水型軽水炉(BWR)である。そして、周知のようにこの軽水炉の燃料被覆管などの構成要素としてジルコニウム合金が採用されている。   Light water reactors have come to be widely used as nuclear power reactors. These light water reactors include pressurized water light water reactors (PWR) and boiling water light water reactors (BWR), of which the majority occupies in Japan. The latter is a boiling water reactor (BWR). As is well known, a zirconium alloy is adopted as a constituent element of the fuel cladding tube of this light water reactor.

近年、発電コストの低減、放射性廃棄物の発生量の抑制、ウラン資源の有効活用のため、これら軽水炉の高燃焼度化が進められている。   In recent years, in order to reduce power generation costs, reduce the amount of radioactive waste generated, and effectively use uranium resources, these light water reactors have been increased in burnup.

従来、沸騰水型軽水炉(BWR)では、加圧水型軽水炉(PWR)の場合のように被覆管の腐食が急速に進行せず、燃焼度が増加(炉内滞在時間が増加)しても酸化膜厚の増加は僅かで、これまではジルカロイ−2被覆管の腐食について特に問題はないとされてきた。しかし、4サイクル、5サイクル照射した燃料被覆管の水素濃度を分析してみると、1〜3サイクルル照射した被覆管と比較して水素濃度が大きく増加していることが明らかになった。このため、BWRにおいては、高燃焼度側で燃料被覆管の水素吸収量が急激に増加し、被覆管の機械的特性が劣化する水素脆化が懸念されることから、耐食性に優れ、水素吸収量の少ない材料の開発が望まれている。   Conventionally, in a boiling water type light water reactor (BWR), the corrosion of the cladding tube does not proceed rapidly as in the case of a pressurized water type light water reactor (PWR), and even if the burnup increases (the residence time in the furnace), the oxide film The increase in thickness is slight, and until now it has been considered that there is no particular problem with the corrosion of Zircaloy-2 cladding. However, when the hydrogen concentration of the fuel cladding tube irradiated for 4 cycles and 5 cycles was analyzed, it was found that the hydrogen concentration was greatly increased compared to the cladding tube irradiated for 1 to 3 cycles. For this reason, in BWR, the hydrogen absorption amount of the fuel cladding tube rapidly increases on the high burnup side, and there is a concern about hydrogen embrittlement that degrades the mechanical properties of the cladding tube. Development of materials with a small amount is desired.

一般に、燃料被覆管の材料開発では、オートクレーブを用いた300℃〜360℃の高温水腐食試験や、400℃〜530℃の高温水蒸気腐食試験により材料のスクリーニングを行っている。しかし、300〜400℃の試験温度では評価結果が得られるまでに数千時間から数万時間の長期間の腐食試験が必要である。   In general, in the development of materials for fuel cladding tubes, materials are screened by a high temperature water corrosion test at 300 ° C. to 360 ° C. and a high temperature steam corrosion test at 400 ° C. to 530 ° C. using an autoclave. However, at a test temperature of 300 to 400 ° C., a long-term corrosion test of several thousand to several tens of thousands of hours is required until an evaluation result is obtained.

BWRでは、ノジュラー腐食と呼ばれる局部腐食と一様腐食の2種類の炉内腐食挙動が報告されている。ノジュラー腐食と呼ばれる局部腐食挙動に対しては、475℃〜530℃の比較的高温の水蒸気腐食試験により耐食性が評価されている。一方、一様腐食挙動に対しては、400℃の高温水蒸気試験により耐食性が評価されている。また、一度400〜425℃に数時間保持した後、500〜525℃に昇温する2ステップ腐食試験も実施されている。   BWR has reported two types of in-furnace corrosion behaviors called local corrosion and uniform corrosion called nodular corrosion. For local corrosion behavior called nodular corrosion, corrosion resistance is evaluated by a relatively high temperature steam corrosion test at 475 ° C to 530 ° C. On the other hand, the corrosion resistance is evaluated by a high temperature steam test at 400 ° C. for uniform corrosion behavior. Further, a two-step corrosion test in which the temperature is once increased to 500 to 525 ° C. after being held at 400 to 425 ° C. for several hours is also performed.

局部腐食挙動に対しては、上記炉外腐食試験に基づく評価と炉内の腐食挙動はほぼ良い一致を示すことが言われているが、一様腐食挙動に関しては、炉内の腐食特性と上記炉外加速腐食試験での腐食挙動とは必ずしも一致しておらず、現在実施されている炉外加速腐食試験法によっては炉内腐食特性を十分評価できず、材料を開発する上での大きな障害となっている。   For local corrosion behavior, it is said that the evaluation based on the out-of-furnace corrosion test and in-furnace corrosion behavior are in good agreement, but for uniform corrosion behavior, Corrosion behavior in the out-of-core accelerated corrosion test does not always match, and the in-core accelerated corrosion test method cannot be fully evaluated by the currently implemented out-of-core accelerated corrosion test method, which is a major obstacle in developing materials. It has become.

一般に、ジルコニウム合金の一様腐食特性は、JIS(JIS H 4751)にも規定されているように400℃・10.3MPaの高温・高圧の水蒸気条件で評価している。JISでは、400℃の水蒸気中に72時間(3日間)もしくは336時間(14日間)保持し、試料外観、腐食増量を評価する試験条件を採用しているが、一般的には、数千時間以上の長時間腐食試験が実施され、評価されているのが実情で、耐食性を評価するためには非常に長時間を必要とし、材料開発を進める際の障害となっている。   In general, the uniform corrosion characteristics of zirconium alloys are evaluated under high-temperature and high-pressure steam conditions of 400 ° C. and 10.3 MPa as specified in JIS (JIS H 4751). In JIS, test conditions for evaluating the sample appearance and corrosion weight increase are maintained for 72 hours (3 days) or 336 hours (14 days) in water vapor at 400 ° C. Generally, several thousand hours are used. The actual situation is that the long-time corrosion test described above has been conducted and evaluated, and it takes a very long time to evaluate the corrosion resistance, which is an obstacle to the progress of material development.

例えば、江藤らの報告(非特許文献1参照)では、そのFIG.4、FIG.3およびTABLE 1に示すように400℃の水蒸気腐食試験とBWRでの2サイクル照射後の腐食増量データが示されているが、400℃の試験結果はNbを0.2wt%添加した試料の腐食増量は無添加材と比較して同等以下の値を示している。つまり、400℃水蒸気腐食試験では0.2wt%程度のNb添加量では耐食性は同等以上であることが示されている。   For example, the report by Eto et al. (See Non-Patent Document 1) shows the data on the increase in corrosion after a water vapor corrosion test at 400 ° C and two cycles of irradiation with BWR, as shown in FIG. 4, FIG. 3 and TABLE 1. However, the test result at 400 ° C. shows that the increase in corrosion of the sample to which 0.2 wt% of Nb is added is equal to or less than that of the additive-free material. In other words, the 400 ° C. steam corrosion test shows that the corrosion resistance is equivalent or better at an Nb addition amount of about 0.2 wt%.

しかし、同じFIG.4に示されるように、炉内腐食データはNbの添加量の増加とともに腐食量は急激に増加する傾向を示しており、BWRにおける実際の操業環境下ではNbに耐食性改善効果は認められない。このNbの影響については、実炉における腐食状況を調査した福沢らの報告(非特許文献2)中でも、そのFigure 9及びTable 2によって明らかにされている
これらの相反する事実は、Feにおいても見い出されており、すなわち炉外加速腐食試験においてはFe添加量の増加とともにジルコニウム合金の腐食速度が増加する(耐食性が劣化する)傾向が報告されていたが、前出の江藤らの報告(非特許文献1:TABLE 2、FIG.6)によれば、実際のBWR環境ではジルコニウム合金の耐食性はFe濃度の増加とともに向上することが確認されている。
However, as shown in the same FIG.4, the corrosion data in the furnace shows a tendency for the corrosion amount to increase sharply as the amount of Nb added increases, and in the actual operating environment at BWR, Nb has an effect of improving corrosion resistance. It is not allowed. Regarding the influence of Nb, these contradictory facts revealed by Figure 9 and Table 2 in Fukuzawa et al.'S report (Non-patent Document 2) investigating the corrosion situation in the actual furnace were also found in Fe. In other words, in the accelerated corrosion test outside the furnace, the tendency of the corrosion rate of the zirconium alloy to increase (corrosion resistance deteriorates) was reported as the amount of Fe added increased, but the report by Eto et al. According to Reference 1: TABLE 2, FIG. 6), it has been confirmed that the corrosion resistance of zirconium alloys improves with increasing Fe concentration in an actual BWR environment.

上述のように、BWR環境での炉内腐食挙動は、JISで規定され、一般的に広く行われている400℃・水蒸気環境下の炉外加速腐食試験によって評価することが出来ないことが判明しつつあり、このため、BWR炉内腐食特性を模擬できる炉外加速腐食試験方法の開発が強く望まれている現状にある。   As described above, the in-reactor corrosion behavior in the BWR environment cannot be evaluated by the accelerated external corrosion test under the 400 ° C / steam environment, which is specified by JIS and generally performed. For this reason, development of an out-of-core accelerated corrosion test method capable of simulating BWR in-core corrosion characteristics is strongly desired.

かかる要請に対応する方法として、試験材を超臨界水に設置してこれに放射線を照射しながら腐食させる加速試験方法が提案されている(特許文献1参照)。   As a method corresponding to such a request, an accelerated test method has been proposed in which a test material is placed in supercritical water and corroded while being irradiated with radiation (see Patent Document 1).

しかしながら、この方法は、放射線を照射させる必要があるため、炉外の試験方法としては安全管理上の問題があり、試験装置としても大掛かりとなりコスト面でも不利を伴うため、実用に適した方法といえなかった。
[発明が解決しようとする課題]
ASTM STP 1294、pp.825−849(1996) ANS International Topical Meeting、pp.240−249(1997) 特開平11-352277号公報
However, since this method needs to be irradiated with radiation, there is a problem in safety management as a test method outside the furnace, and it becomes a large-scale test apparatus and is disadvantageous in terms of cost. I couldn't.
[Problems to be solved by the invention]
ASTM STP 1294, pp.825-849 (1996) ANS International Topical Meeting, pp.240-249 (1997) Japanese Patent Laid-Open No. 11-352277

そこで、本発明者らは、上記した従来の問題点を解消すると共に、BWR環境で長期間使用された場合の材料の腐食状況を、炉外で、かつ、比較的短期間で容易に再現、評価出来る加速試験方法を開発すべく、鋭意、調査・研究を行った結果、超臨界水環境を利用し、かつ、試験に用いる水の溶存酸素濃度(Do)を適正な範囲に制御することによって、炉内腐食を精度良く模擬できる事実を知見し、本発明を完成させるに至ったのである。   Therefore, the present inventors solved the above-mentioned conventional problems, and easily reproduced the corrosion status of the material when used for a long time in a BWR environment, outside the furnace and in a relatively short period of time. As a result of diligent research and research to develop an accelerated test method that can be evaluated, by using a supercritical water environment and controlling the dissolved oxygen concentration (Do) of the water used for the test to an appropriate range The inventors have found out the fact that the corrosion in the furnace can be accurately simulated, and have completed the present invention.

従って、本発明の目的(課題)は、原子炉で、特にBWRで用いられる燃料被覆管などのジルコニウム合金からなる構成部材又は要素の炉内一様腐食性を、放射線の照射を用いることなく比較的簡易且つ安全な手段により炉外で短期間に評価する手法を提供することである。 Accordingly, an object (issue) of the present invention is to compare the uniform corrosion characteristics in a reactor of a constituent member or element made of a zirconium alloy such as a fuel cladding tube used in a nuclear reactor, particularly in a BWR, without using radiation. It is to provide a method for evaluating in a short time outside the furnace by a simple and safe means.

そして、上記課題を解決するためになされた本発明とは、沸騰水型軽水炉に用いられるジルコニウム合金製構成材料の一様腐食性の試験を放射線の照射を用いることなく行なう試験方法において、前記ジルコニウム合金製構成材料の試験材を溶存酸素濃度が0.1ppb以上10ppb未満に調整された超臨界水に所定期間浸漬させてその一様腐食性を評価することを特徴とする沸騰水型軽水炉用ジルコニウム合金製構成材料の腐食性加速試験方法である。 The present invention was made to solve the above-mentioned problems in a test method for performing uniform corrosion test of a zirconium alloy constituent material used in a boiling water light water reactor without using radiation. Zirconium for boiling water type light water reactors, characterized by immersing a test material of an alloy constituent material in supercritical water whose dissolved oxygen concentration is adjusted to 0.1 ppb or more and less than 10 ppb for a predetermined period to evaluate its uniform corrosiveness This is a method for accelerating corrosive testing of alloy constituent materials.

本発明によれば、沸騰水型軽水炉に用いられるジルコニウム合金製構成材料の一様腐食性の評価を、比較的簡易で安全な方法により、沸騰水型軽水炉における実際の使用環境下と同様な精度において短期間に実施できるという優れた耐食性加速試験法を提供するものであり、また、これに伴って沸騰水型軽水炉における被覆管など主要な構成部材の開発、実用化に大いに貢献するものであって、その技術的、工業的価値大なる発明といえる。 According to the present invention, the evaluation of the uniform corrosiveness of a zirconium alloy constituent material used in a boiling water light water reactor is performed with a relatively simple and safe method, with the same accuracy as in an actual use environment in a boiling water light water reactor. In addition, it provides an excellent accelerated corrosion resistance test method that can be carried out in a short period of time, and contributes greatly to the development and commercialization of major components such as cladding tubes in boiling water reactors. It can be said that the invention has great technical and industrial value.

以下、本発明の腐食評価法すなわちジルコニウム合金製構成材料の腐食性加速試験方法の内容について具体的に説明する。   Hereinafter, the content of the corrosion evaluation method of the present invention, that is, the accelerated corrosion test method for constituent materials made of zirconium alloy will be described in detail.

まず、本方法では試験装置として、前記JIS(JIS H 4751)に規定されジルコニウム合金の一様腐食性評価に用いられているものと同様のオートクレーブ(一種の高圧釜)を用いる。このオートクレーブのタイプについては、バッチ式とループ式があり、ループ式の場合は試験水の水質の調整、制御が簡単であり炉水環境に、より近づけることが可能な意味でバッチ式に比べて有利であるが、本方法の実施に当ってはその何れを採用しても良い。   First, in this method, the same autoclave (a kind of high-pressure kettle) as that used in the uniform corrosion evaluation of zirconium alloy as defined in the above JIS (JIS H 4751) is used as a test apparatus. There are two types of autoclaves: the batch type and the loop type. In the case of the loop type, the adjustment and control of the water quality of the test water is simple and it is possible to bring it closer to the reactor water environment compared to the batch type. Although advantageous, any of them may be employed in carrying out the method.

本方法においてはオートクレーブを用いて、試験水の温度を約374℃以上、試験圧力が約218気圧以上の条件として超臨界状態に保ち、試験水中の溶存酸素濃度(Do)を0.1ppb以上10ppb未満、好ましくは4.5ppb以上8.5ppb未満に調整した状態で腐食性の評価を行うものである。この濃度が10ppb以上になると、BWRの実際の環境を模擬、再現できなくなり、腐食性の試験、評価の精度が不十分となり、0.1ppbよりも低くすることは実用的ではない。この溶存酸素濃度(Do)の調整、制御は本発明において極めて重要である。   In this method, using an autoclave, the temperature of the test water is about 374 ° C. or higher and the test pressure is about 218 atm or higher, and the oxygen concentration (Do) in the test water is 0.1 ppb or more and 10 ppb. The corrosion resistance is evaluated in a state adjusted to less than, preferably 4.5 ppb or more and less than 8.5 ppb. If this concentration exceeds 10 ppb, the actual environment of BWR cannot be simulated or reproduced, the accuracy of the corrosive test and evaluation becomes insufficient, and it is not practical to make it lower than 0.1 ppb. The adjustment and control of the dissolved oxygen concentration (Do) is extremely important in the present invention.

この、溶存酸素濃度(Do)の調整の仕方は特に制限されるものではないが、例えばバッチ式オートクレーブを採用した場合では、予め釜蓋に吊り下げられた試験材を試験水を入れた釜にセットして蓋を閉じ(閉ループ)た後、釜をヒータで加熱し、温度を上昇させ、110〜150℃以上に昇温後、釜に設けられたバルブを開いて試験水を沸騰させ、釜内の空気を脱気すると同時に試験水中の溶存酸素を除去し、溶存酸素濃度(Do)を10ppb未満に低減させる。一方、ループ式オートクレーブの場合では、予め別の試験水タンクにてArバブリングなどを行って溶存酸素除去し、やはり溶存酸素濃度(Do)を10ppb未満に調整した水を、オートクレーブのループに接続して、釜に循環させるようにすれば良い。   The method of adjusting the dissolved oxygen concentration (Do) is not particularly limited. For example, when a batch-type autoclave is adopted, a test material suspended in advance from a kettle lid is placed in a kettle containing test water. After setting and closing the lid (closed loop), the kettle is heated with a heater, the temperature is raised, the temperature is raised to 110-150 ° C. or higher, the valve provided in the kettle is opened, and the test water is boiled. At the same time as the air inside is degassed, dissolved oxygen in the test water is removed, and the dissolved oxygen concentration (Do) is reduced to less than 10 ppb. On the other hand, in the case of a loop type autoclave, the dissolved oxygen is removed by performing Ar bubbling or the like in advance in another test water tank, and water whose dissolved oxygen concentration (Do) is adjusted to less than 10 ppb is connected to the autoclave loop. And circulate in the hook.

この10ppb未満に調整された超臨界状態の試験水による腐食試験は、通常2000〜3000時間の比較的短期間で十分にBWRの操業環境を模擬することが可能である。   This corrosion test with supercritical test water adjusted to less than 10 ppb can sufficiently simulate the operating environment of BWR in a relatively short period of 2000 to 3000 hours.

次に、本発明の優れた効果を明確にするために実施例を挙げる。   Next, examples are given to clarify the excellent effects of the present invention.

(実施例1)
バッチ式オートクレーブにより、試験材(供試材)として高Fe-Zry-2、および0.18wt%のNbを含有する高Fe-Zry-2を対象として、溶存酸素濃度が8ppbの調整した試験水を用い、400℃・250atg.の超臨界水条件で腐食試験を実施した。この試験結果を表1及び図1に示す。なお、図1には試験時間が4200時間の場合について図示している。
Example 1
Test water with a dissolved oxygen concentration adjusted to 8 ppb for high Fe-Zry-2 as a test material (test material) and high Fe-Zry-2 containing 0.18 wt% Nb by batch autoclave The corrosion test was conducted under supercritical water conditions at 400 ° C. and 250 atg. The test results are shown in Table 1 and FIG. FIG. 1 shows the case where the test time is 4200 hours.

また、炉内データと比較するため、前述の非特許文献2のFigure 9に示された高Fe-Zry-2の1サイクル、2サイクル照射材のデータ、及び非特許文献1のFig.4に示されたNb添加Zry-2の腐食データを本図1に併せて示す。   For comparison with the in-furnace data, the high-Fe-Zry-2 1-cycle and 2-cycle irradiation data shown in Figure 9 of Non-Patent Document 2 and Fig. 4 of Non-Patent Document 1 are used. The corrosion data of the Nb-added Zry-2 shown is also shown in FIG.

表1及び図1から明らかなように、本試験法によれば試験時間が3000時間及び4200時間の何れの場合も、その腐食増量がNb濃度の増加に比例して増加する傾向が認められ、これは炉内のデータと同じ傾向であり、すなわち本試験法が炉内腐食挙動と一致する結果を生み出していることが分かる。  As is clear from Table 1 and FIG. 1, according to this test method, the corrosion increase tends to increase in proportion to the increase in the Nb concentration regardless of whether the test time is 3000 hours or 4200 hours. It can be seen that this is the same trend as in-furnace data, that is, this test method produces results consistent with in-furnace corrosion behavior.

Figure 0004761803
Figure 0004761803

(実施例2)
ループ式オートクレーブにより、試験材としてFe濃度レベルを3種類変化させたZry-2を対象として、溶存酸素濃度が5ppbの調整した試験水を用い、400℃・250atg.の超臨界水条件で腐食試験を実施した。この試験結果を表2及び図2に示す。なお、図2には試験時間が4200時間の場合について図示している。また、炉内データとの比較を行うために、前述の非特許文献1のFIG.6およびTABLE 2に示された照射データ(Zry-2組成でFe濃度を変化させた照射材のデータ:2サイクル照射、及び4サイクル照射)を同図2に併せて示す。
(Example 2)
Corrosion test under supercritical water conditions at 400 ° C and 250 atg. Using test water adjusted for dissolved oxygen concentration of 5 ppb for Zry-2 with three different Fe concentration levels as a test material using a loop autoclave Carried out. The test results are shown in Table 2 and FIG. FIG. 2 shows a case where the test time is 4200 hours. In addition, in order to compare with the in-furnace data, the irradiation data shown in FIG. 6 and TABLE 2 of Non-Patent Document 1 described above (data of irradiation material in which Fe concentration is changed with Zry-2 composition: 2 The cycle irradiation and the 4-cycle irradiation) are also shown in FIG.

Figure 0004761803
Figure 0004761803

(従来例)
バッチ式オートクレーブにより、試験材として実施例2と同様なFe濃度レベルを3種類変化させたZry-2を対象として、400℃・105atg.の水蒸気腐食試験を実施した。この結果を表3に示し、また図2に一緒に示す。
(Conventional example)
Using a batch type autoclave, a steam corrosion test at 400 ° C. and 105 atg. Was conducted on Zry-2 in which three types of Fe concentration levels similar to those in Example 2 were changed as test materials. The results are shown in Table 3 and are shown together in FIG.

表2及び図2から明らかな如く、本試験方法(実施例2)によれば、試験時間3000時間及び4200時間の何れもその腐食増量が、Fe濃度の増加とともに低下する傾向を示しており、これは炉内の照射データの傾向と一致し、炉内の挙動と同じ結果が得られることが判明する。  As is apparent from Table 2 and FIG. 2, according to this test method (Example 2), the increase in corrosion at both the test time 3000 hours and 4200 hours tends to decrease as the Fe concentration increases. This is consistent with the trend of irradiation data in the furnace, and it turns out that the same result as the behavior in the furnace is obtained.

一方、従来例の水蒸気腐食試験の結果では、表3及び図2から何れの試験時間の場合もFe濃度の増加とともに腐食増量が増加する傾向であり、これは炉内のデータとは逆の傾向を表し、炉内の挙動を正しく反映していないことが分かる。   On the other hand, in the results of the steam corrosion test of the conventional example, from Table 3 and FIG. 2, the increase in corrosion tends to increase with the increase in Fe concentration at any test time, which is the reverse trend to the data in the furnace. It can be seen that the behavior in the furnace is not correctly reflected.

Figure 0004761803
Figure 0004761803

本発明の実施例1にかかる試験法によるジルコニウム合金のNb濃度と腐食増量の関係を示すグラフ。同図には比較のため炉内データについても合せて示す。ここにおいて■の折れ線は本発明、○、□及び●の折れ線は炉内データをそれぞれ示している。The graph which shows the relationship between the Nb density | concentration of a zirconium alloy by the test method concerning Example 1 of this invention, and corrosion increase. The figure also shows the in-furnace data for comparison. Here, the ■ broken line indicates the present invention, and the ○, □, and ● broken lines indicate the in-furnace data, respectively. 本発明の実施例2にかかる試験法によるジルコニウム合金のFe濃度と腐食増量の関係を示すグラフ。同図には比較のため、従来例の試験法によるデータ及び炉内データについても併せて示す。ここにおいて□の折れ線は本発明、○の折れ線は従来例、●及び■の折れ線は炉内データをそれぞれ示している。The graph which shows the relationship between the Fe density | concentration of a zirconium alloy by the test method concerning Example 2 of this invention, and corrosion increase. For comparison, the figure also shows the data by the conventional test method and the in-furnace data. Here, the □ broken line indicates the present invention, the ○ broken line indicates the conventional example, and the ● and ■ broken lines indicate the in-furnace data.

Claims (1)

沸騰水型軽水炉に用いられるジルコニウム合金製構成材料の一様腐食性の試験を放射線の照射を用いることなく行なう試験方法において、前記ジルコニウム合金製構成材料の試験材を溶存酸素濃度が0.1ppb以上10ppb未満に調整された超臨界水に所定期間浸漬させてその一様腐食性を評価することを特徴とする沸騰水型軽水炉用ジルコニウム合金製構成材料の腐食性加速試験方法。 In a test method for performing a uniform corrosion test of a zirconium alloy constituent material used in a boiling water light water reactor without using radiation , the dissolved oxygen concentration of the test material of the zirconium alloy constituent material is 0.1 ppb or more. A corrosive acceleration test method for a constituent material made of a zirconium alloy for boiling water reactors, wherein the uniform corrosiveness is evaluated by immersing in supercritical water adjusted to less than 10 ppb for a predetermined period.
JP2005092151A 2005-03-28 2005-03-28 Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors Expired - Fee Related JP4761803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092151A JP4761803B2 (en) 2005-03-28 2005-03-28 Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092151A JP4761803B2 (en) 2005-03-28 2005-03-28 Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors

Publications (2)

Publication Number Publication Date
JP2006275620A JP2006275620A (en) 2006-10-12
JP4761803B2 true JP4761803B2 (en) 2011-08-31

Family

ID=37210553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092151A Expired - Fee Related JP4761803B2 (en) 2005-03-28 2005-03-28 Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors

Country Status (1)

Country Link
JP (1) JP4761803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901630B2 (en) * 2007-07-27 2012-03-21 日本核燃料開発株式会社 Method and apparatus for testing fuel cladding
CN109903865A (en) * 2019-01-24 2019-06-18 广东核电合营有限公司 The dress sampling device of high-temperature steam oxidation test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352277A (en) * 1998-06-10 1999-12-24 Hitachi Ltd Corrosion testing method of material for reactor
JP2000097843A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Corrosion evaluation method for zirconium-series metal and zirconium-based alloy
JP2000212663A (en) * 1998-11-20 2000-08-02 Sumitomo Metal Ind Ltd High corrosion resistance zirconium alloy
JP2001004769A (en) * 1999-06-24 2001-01-12 Hitachi Ltd High-corrosion-resistance zirconium alloy for nuclear reactor
JP2003277859A (en) * 2002-03-19 2003-10-02 Zirco Products Co Ltd Zirconium alloy having excellent corrosion resistance and production method therefor

Also Published As

Publication number Publication date
JP2006275620A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Scott A review of irradiation assisted stress corrosion cracking
US5211774A (en) Zirconium alloy with superior ductility
US5254308A (en) Zirconium alloy with improved post-irradiation properties
US4879093A (en) Ductile irradiated zirconium alloy
Birchley et al. Simulation of air oxidation during a reactor accident sequence: Part 1–Phenomenology and model development
US5108697A (en) Inhibiting stress corrosion cracking in the primary coolant circuit of a nuclear reactor
US5278882A (en) Zirconium alloy with superior corrosion resistance
Adamson et al. Properties of zirconium alloys and their applications in light water reactors (LWRs)
JP4761803B2 (en) Corrosion acceleration test method for components made of zirconium alloys for boiling water reactors
Lustman et al. Zircaloy cladding performs well in PWR
Johnson et al. A study of zirconium alloy corrosion parameters in the advanced test reactor
LeSurf The corrosion behavior of 2.5 Nb zirconium alloy
JP2926519B2 (en) Zirconium alloy containing tungsten and nickel
JPS63213629A (en) Zirconium based alloy
Andresen Stress corrosion cracking (SCC) of austenitic stainless steels in high temperature light water reactor (LWR) environments
Jacobs et al. High-temperature solution annealing as an IASCC mitigation technique
Kawamura Effect of low DH concentration on crud deposition on heated zircaloy-4 in simulated PWR primary water
Nikolaenko et al. Effect of gamma rays on crystalline materials during irradiation in a reactor
Rebak Advanced steels for accident tolerant fuel cladding in commercial nuclear reactors
Pylypenko et al. The current status of zirconium alloys fuel cladding
Kon'kov et al. Factors affecting out-of and in-reactor corrosion of Zr claddings of fuel rods
Rebak Characterization of Advanced Steels as Accident Tolerant Cladding for Light Water Reactor Nuclear Fuel
Pan et al. Advanced PWR Cladding Development through Extensive In-Reactor Testing
Kima et al. Fatigue Life Comparison of Stainless Steels with Strain Holding in PWR Environments
Abe Ninth International Symposium on Zirconium in the Nuclear Industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees