JP2001004769A - High-corrosion-resistance zirconium alloy for nuclear reactor - Google Patents

High-corrosion-resistance zirconium alloy for nuclear reactor

Info

Publication number
JP2001004769A
JP2001004769A JP11178052A JP17805299A JP2001004769A JP 2001004769 A JP2001004769 A JP 2001004769A JP 11178052 A JP11178052 A JP 11178052A JP 17805299 A JP17805299 A JP 17805299A JP 2001004769 A JP2001004769 A JP 2001004769A
Authority
JP
Japan
Prior art keywords
zirconium
iron
alloy
nickel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11178052A
Other languages
Japanese (ja)
Inventor
Yoshio Nonaka
善夫 野中
Yoshinori Eito
良則 栄藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Nuclear Fuel Development Co Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP11178052A priority Critical patent/JP2001004769A/en
Publication of JP2001004769A publication Critical patent/JP2001004769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To prevent the use of an alloy whose corrosion resistance is bad and from which an oxide film is exfoliated by a method wherein the corrosion resistance of the alloy is judged by using a correlation between a solid solubility constant as a characteristic by which the component of a precipitate is eluted due to irradiation and the corrosion resistance of the alloy. SOLUTION: The corrosion resistance of this zirconium alloy for a nuclear reactor is judged, e.g. in the production process of a fuel cladding tube. First, a sample for an electron microscope is prepared from a remainder material or the like generated in a final process for the manufacture of the cladding tube, and the average composition and the average particle size of an iron-chromium-based precipitate and an iron-nickel-based precipitate are found. The average composition, the average particle side and a weighed and mixed chemical composition are substituted into a prescribed numerical formula. A solid solubility constant as a material-inherent constant which expresses the concentration or iron and nickel in a base material which is increased when the iron and the nickel in the precipitate are eluted due to fast neutrons at a unit dose from the alloy is at a prescribed value or higher is judged, and the corrosion resistance of a product is evaluated. When the solid solubility constant becomes larger than a certain value, the corrosion susceptibility of the alloy becomes very small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子炉用高耐食性ジ
ルコニウム合金に係わり、特に実質的に鉄、クロム、ニ
ッケル、ジルコニウムからなるジルコニウム合金、ある
いは実質的に鉄、クロム、ニッケル、錫、ジルコニウム
からなるジルコニウム合金に関するものである。
The present invention relates to a high corrosion resistant zirconium alloy for a nuclear reactor, and more particularly to a zirconium alloy consisting essentially of iron, chromium, nickel and zirconium, or a zirconium alloy consisting essentially of iron, chromium, nickel, tin and zirconium. To a zirconium alloy.

【0002】[0002]

【従来の技術】燃料被覆管や燃料部材には、核分裂反応
に必要な熱中性子とウランを効率良く反応させるため、
熱中性子の吸収断面積の小さなジルコニウムが選ばれ、
耐食性や強度を考慮してジル力口イやジルコニウム−ニ
オブ合金などが開発された。その中でも、沸騰水型軽水
炉、加圧水型軽水炉などで燃料被覆管および炉心構造材
料として広く使用されている合金が、ジル力口イ−2、
およびジル力口イ−4である。表1にJIS H4751に規定
されているジル力口イ−2とジル力口イ−4の合金組成
を示す。
2. Description of the Related Art In order to efficiently react thermal neutrons and uranium required for fission reactions with fuel cladding tubes and fuel members,
Zirconium with a small thermal neutron absorption cross section is selected,
In consideration of corrosion resistance and strength, a zircon alloy and a zirconium-niobium alloy have been developed. Among them, alloys widely used as fuel cladding tubes and core structural materials in boiling water light water reactors, pressurized water light water reactors, etc.
And Jill force opening a-4. Table 1 shows the alloy compositions of Jirokuto A-2 and Jirokuto A-4 specified in JIS H4751.

【0003】[0003]

【表1】 [Table 1]

【0004】これらのジルコニウム合金を沸騰水型軽水
炉で使用すると、原子炉運転中にノジュラー腐食と呼ば
れるレンズ状の局部腐食が発生することが問題になって
いた。しかし、ジルコニウム合金をα+β相あるいはβ
相の温度範囲に短時間加熱し、その後急冷する熱処理方
法の導入や合金組成の変更によって、現行仕様のジルコ
ニウム合金ではノジュラー腐食の発生は抑制され、一様
腐食となりつつある。
When these zirconium alloys are used in a boiling water type light water reactor, there has been a problem that lens-shaped local corrosion called nodular corrosion occurs during operation of the reactor. However, when the zirconium alloy is converted to α + β phase or β
With the introduction of a heat treatment method of short-time heating to the temperature range of the phase and then quenching, and the change of the alloy composition, the occurrence of nodular corrosion is suppressed in the current specification zirconium alloy, and the corrosion is becoming uniform.

【0005】しかし、ノジュラー腐食を抑制するような
合金組成でジルコニウム合金を製造した場合でも、製造
条件によって腐食挙動が異なり酸化膜が厚く成長するこ
とがある。厚く成長した酸化膜は剥離することがあり、
これが炉水に浮遊すると炉水の放射能濃度が高められ定
期検査時に作業者の被曝量が増加する恐れがある。
[0005] However, even when a zirconium alloy is manufactured with an alloy composition that suppresses nodular corrosion, the corrosion behavior varies depending on the manufacturing conditions, and an oxide film may grow thick. Thick oxide film may peel off,
If this floats on the reactor water, the radioactivity concentration of the reactor water is increased, and there is a possibility that the worker's exposure dose will increase during periodic inspections.

【0006】[0006]

【発明が解決しようとする課題】ノジュラー腐食を抑制
するような合金組成でジルコニウム合金を製造した場合
でも、製造条件によって腐食挙動が異なり、酸化膜が厚
く成長することがある。これは、ジルコニウム合金の腐
食挙動が合金組成だけではなく、合金中に析出する金属
間化合物の大きさや組成の影響をうけるためで、これら
の影響をすべて考慮した耐食性のジルコニウム合金、ま
たその判定方法が必要となった。
Even when a zirconium alloy is manufactured with an alloy composition that suppresses nodular corrosion, the corrosion behavior varies depending on the manufacturing conditions, and an oxide film may grow thick. This is because the corrosion behavior of zirconium alloys is affected not only by the alloy composition, but also by the size and composition of intermetallic compounds that precipitate in the alloy. Was needed.

【0007】本発明はこれに鑑みなされたもので、その
目的とするところは、耐食性の優れたジルコニウム合金
を提供することにある。すなわち、本発明は、これらの
影響を高速中性子単位照射量あたりに金属間化合物から
鉄やニッケルが母材に溶け出すことで増加した母材中の
鉄、ニッケル濃度で整理し、これと耐食性との強い相関
を利用してジルコニウム合金の耐食性を判定することを
特徴とする。この発明によって耐食性が悪く酸化膜が剥
離する恐れがあるようなジルコニウム合金を原子炉で使
用することを防止できるため、炉水中の放射能濃度が低
く保たれ定期検査時の作業者の被曝量を抑制することが
できる。
The present invention has been made in view of the above, and an object of the present invention is to provide a zirconium alloy having excellent corrosion resistance. In other words, the present invention sorts out these effects by increasing the iron and nickel concentrations in the base metal due to the dissolution of iron and nickel from the intermetallic compound into the base material per unit dose of fast neutrons. The corrosion resistance of the zirconium alloy is determined using the strong correlation of The present invention can prevent the use of a zirconium alloy having low corrosion resistance and the risk of oxide film peeling in a nuclear reactor, so that the radioactivity concentration in the reactor water is kept low and the exposure of workers during periodic inspections is reduced. Can be suppressed.

【0008】[0008]

【課題を解決するための手段】沸騰水型軽水炉用燃料に
は、主に、重量%で0.07〜0.20%の鉄、0.0
5〜0.15%のクロム、0.03〜0.08%のニッ
ケル、1.20〜1.70%の錫、残部が実質的にジル
コニウムから成るジル力口イ−2が使用されている。
Means for Solving the Problems Fuels for boiling water reactors are mainly composed of 0.07 to 0.20% by weight of iron, 0.0% to 0.20%.
A zirco-2 is used which consists of 5 to 0.15% chromium, 0.03 to 0.08% nickel, 1.20 to 1.70% tin and the balance substantially zirconium. .

【0009】最近の研究で、沸騰水型原子炉用燃料被覆
管の腐食挙動は一様腐食やノジュラー腐食の腐食形態に
よらず、合金中に析出する金属間化合物の鉄やニッケル
が高速中性子の照射によって溶け出すことで単位時間あ
たりに増加する母材中の鉄+ニツケル濃度と腐食量とに
強い相関があることがわかった(後頁*1参照)。
According to recent studies, the corrosion behavior of fuel cladding for boiling water reactors does not depend on the uniform corrosion or nodular corrosion, and the intermetallic compounds, iron and nickel, which precipitate in the alloy, form fast neutrons. It was found that there is a strong correlation between the iron + nickel concentration in the base material, which increases per unit time due to melting out by irradiation, and the amount of corrosion (see * 1 on the following page).

【0010】図2にジル力口イ−2に析出する金属間化
合物の鉄やニッケルが高速中性子の照射によって溶け出
す様子が示されている。ジル力口イ−2には実質的には
鉄、ニッケル、ジルコニウムからなる金属間化合物と
鉄、クロム、ジルコニウムからなる金属間化合物が析出
している。
FIG. 2 shows how iron and nickel, which are intermetallic compounds precipitated in the Jirikiguchi A-2, are melted out by irradiation with fast neutrons. The intermetallic compound substantially composed of iron, nickel, and zirconium and the intermetallic compound composed of iron, chromium, and zirconium are deposited in the zirikiguchi a-2.

【0011】以下、それぞれを鉄・ニッケル系析出物と
鉄・クロム系析出物と呼称する。鉄・ニッケル系析出物
からは鉄とニッケルがほとんど同じ速度で母材中に溶け
出し、また、鉄・クロム系析出物からは鉄が優先的に母
材中に溶け出す。このように照射によって析出物の成分
が母材中に溶け出す現象を照射誘起固溶と呼び、析出物
が小さいほど、また高速中性子束が大きいほど生じ易い
ことがわかっている。
Hereinafter, these are referred to as an iron / nickel-based precipitate and an iron / chromium-based precipitate, respectively. From the iron / nickel-based precipitate, iron and nickel dissolve into the base material at almost the same rate, and from the iron / chromium-based precipitate, iron preferentially dissolves into the base material. Such a phenomenon that the components of the precipitates dissolve into the base material by irradiation is called irradiation-induced solid solution, and it is known that the smaller the precipitates and the larger the fast neutron flux, the more easily they occur.

【0012】図3に燃料被覆管の燃料スタック部の最大
酸化膜厚さと固溶定数との相関が示されている。固溶定
数とは、合金が単位照射量(1n/m2)の高速中性子
照射によって析出物の鉄とニッケルが溶け出すことによ
り増加した母材の鉄、ニッケル濃度を表す材料固有の定
数である。ここで用いた最大酸化膜厚さは析出物の粒径
や組成、合金の組成、製造メ一力、腐食環境の異なるジ
ルカロイ−2製燃料被覆管を金相観察して求められた実
測値、固溶定数は母材や析出物の鉄、ニッケル、クロム
濃度の分析結果から式を作りそれを使って求めた計算値
である。この結果から、固溶定数が小さいほど最大酸化
膜厚さにばらつきがあり、環境による腐食感受性が大き
いことがわかる。
FIG. 3 shows the correlation between the maximum oxide film thickness of the fuel stack portion of the fuel cladding tube and the solid solution constant. The solid solution constant is a material-specific constant representing the iron and nickel concentration of the base metal increased by the fact that iron and nickel of the precipitates are melted out by high-speed neutron irradiation of the alloy at a unit irradiation dose (1 n / m 2 ). . The maximum oxide film thickness used here is a measured value obtained by observing the gold phase of a Zircaloy-2 fuel cladding tube having a different particle size and composition of the precipitate, the composition of the alloy, the manufacturing capability, and the corrosion environment, The solid solution constant is a calculated value obtained by using an equation based on the analysis results of the iron, nickel and chromium concentrations of the base material and the precipitate. From this result, it can be seen that the smaller the solid solution constant, the more the maximum oxide film thickness varies, and the greater the corrosion sensitivity due to the environment.

【0013】また固溶定数が大きいほど最大酸化膜のば
らつきは小さくなり、約1.2×10~26(at%/
(n/m2))以上では腐食感受性が非常に小さいこと
がわかる。1.2×10~26(at%/(n/m2))以
上の固溶定数をもつジルコニウム合金で腐食感受性が小
さい性質を利用して、原子炉で使用するジルコニウム合
金の耐食性を判定することができる。
The larger the solid solution constant is, the smaller the variation of the maximum oxide film is, and it is about 1.2 × 10 to 26 (at% /
Above (n / m 2 )), it can be seen that the corrosion sensitivity is very small. The corrosion resistance of a zirconium alloy used in a nuclear reactor is determined by utilizing the property of low corrosion sensitivity of a zirconium alloy having a solid solution constant of 1.2 × 10 to 26 (at% / (n / m 2 )) or more. be able to.

【0014】固溶定数を求めるには、次の2つの方法が
考えられる。一つは、母材中の鉄とニッケル濃度と合金
組成、析出物粒径、析出物組成、高速中性子照射量との
経験式をつくり、それから固溶定数を求める方法であ
る。合金組成、析出物粒径、析出物組成の異なるジルコ
ニウム合金を原子炉で多数照射させ母材の元素濃度を分
析し、その分析結果と計算コードによる高速中性子照射
量の計算結果から経験式が作成でき、この経験式から単
位照射量の高速中性子をうけることで合金中に析出した
金属間化合物から溶け出して増加した母材の元素濃度を
表す固溶定数が求められる。
The following two methods can be considered to determine the solid solution constant. One is a method of formulating an empirical formula of the iron and nickel concentrations in the base material, the alloy composition, the precipitate particle size, the precipitate composition, and the fast neutron irradiation amount, and then calculating the solid solution constant. A number of zirconium alloys with different alloy composition, precipitate particle size, and precipitate composition are irradiated in a nuclear reactor to analyze the elemental concentration of the base metal, and an empirical formula is created from the analysis results and the calculation results of the fast neutron irradiation amount using a calculation code. From this empirical formula, the solid solution constant representing the increased elemental concentration of the base metal that has been melted out of the intermetallic compound precipitated in the alloy by receiving a unit dose of fast neutrons can be determined.

【0015】もう一つは、弾き出し損傷の理論(後頁*
2参照)を基につくった理論式から求める方法である。
まず、析出物の表面にある鉄やニッケルが高速中性子に
よって移行する様子を理論的に数式化し、鉄・ニッケル
系析出物1個から母材中に溶け出した鉄とニッケルの個
数や鉄・クロム系析出物から溶け出した鉄の個数と高速
中性子照射量との関係式を作成する。次に、実際に原子
炉で照射された合金の母材中の鉄とニッケル濃度分析、
析出物の組成分析、粒径測定の結果、コードによる高速
中性子照射量計算結果を使って式中の係数を求める。測
定や、照射前の合金の母材中に鉄とニッケルがほとんど
固溶していない事実と照射前の析出物の組成分析、粒径
測定、合金成分からジルコニウム合金単位体積あたりに
析出する金属間化合物の個数を求め、それと溶け出した
鉄やニッケルの個数と高速中性子照射量との関係式から
高速中性子照射によって析出物の鉄やニッケルが溶け出
すことで増加した母材中の鉄、ニッケル濃度と高速中性
子照射量の関係式が求められる。さらに、それを高速中
性子照射量で微分すれば、固溶定数を表す式が求められ
る。
Another is the theory of pop-out damage (see the following page *
2) based on a theoretical formula created based on this.
First, the manner in which iron and nickel on the surface of the precipitate are transferred by fast neutrons is theoretically expressed as a mathematical formula, and the number of iron and nickel dissolved in the base material from one iron / nickel-based precipitate and the amount of iron / chromium The relational expression between the number of iron dissolved from the system precipitate and the fast neutron irradiation dose is created. Next, the analysis of iron and nickel concentrations in the base metal of the alloy actually irradiated in the reactor,
The coefficients in the formula are obtained using the results of the composition analysis of the precipitates, the particle size measurement, and the calculation results of the fast neutron irradiation dose by the code. The fact that iron and nickel are hardly dissolved in the base material of the alloy before measurement and irradiation, the composition analysis of precipitates before irradiation, particle size measurement, and the intermetallic precipitation per unit volume of zirconium alloy from alloy components Determine the number of compounds, and from the relational expression between the number of iron and nickel dissolved and the amount of fast neutron irradiation, increase the concentration of iron and nickel in the base metal due to the dissolution of iron and nickel precipitates by fast neutron irradiation. And the relational expression of fast neutron dose is obtained. Further, if it is differentiated by the fast neutron irradiation dose, an equation representing the solid solution constant is obtained.

【0016】図3で用いた固溶定数は後者の方法で求め
た照射開始時の固溶定数である。
The solid solution constant used in FIG. 3 is the solid solution constant at the start of irradiation determined by the latter method.

【0017】[0017]

【数23】 (Equation 23)

【0018】照射前の合金の母材中には鉄、ニッケル、
クロムがほとんど固溶しないため、すべてが金属間化合
物として析出すると仮定し、A>1.2×10~26(a
t%/(n/m2))の関係を整理すると式3が求めら
れる。
[0018] Iron, nickel,
Since chromium hardly forms a solid solution, it is assumed that all precipitate as intermetallic compounds, and A> 1.2 × 10 to 26 (a
Equation 3 is obtained by rearranging the relationship of t% / (n / m 2 )).

【0019】[0019]

【数24】 (Equation 24)

【0020】これらの合金にニオブを添加した場合、α
−Zr中に溶けるニオブの量は0.6重量%である(後
記*3参照)ことから、この範囲における析出物の構造
は添加しない場合と同じであると考えられる。重量で
0.3%の鉄、ニッケル、クロムを含有するジルコニウ
ム合金に重量で0.5%のニオブを添加した合金中に析
出した析出物の構造と組成を調べたところ、析出物の構
造はニオブを添加しない場合と同じであったが、ニオブ
を含有していた。従って、ジルコニウム、鉄、クロム、
ニッケルあるいはジルコニウム、鉄、クロム、ニッケ
ル、錫からなるジルコニウム合金に析出物の結晶構造を
変えない程度のニオブを添加した合金における腐食感受
性の小さな微細組織の範囲は、
When niobium is added to these alloys, α
Since the amount of niobium dissolved in -Zr is 0.6% by weight (refer to * 3 described later), it is considered that the structure of the precipitate in this range is the same as in the case where no precipitate is added. The structure and composition of the precipitates deposited in an alloy obtained by adding 0.5% by weight of niobium to a zirconium alloy containing 0.3% by weight of iron, nickel and chromium were examined. Same as when no niobium was added, but contained niobium. Therefore, zirconium, iron, chromium,
Nickel or zirconium, iron, chromium, nickel, a small microstructure of corrosion susceptibility in an alloy obtained by adding niobium that does not change the crystal structure of the precipitate to a zirconium alloy consisting of tin,

【0021】[0021]

【数25】 (Equation 25)

【0022】[0022]

【数26】 (Equation 26)

【0023】また、式4の右辺の計算結果が0以下の場
合は、右辺を無限大とみなす。
When the calculation result on the right side of Equation 4 is 0 or less, the right side is regarded as infinity.

【0024】本発明は、原子炉で使用した場合も耐食性
に優れた高耐食性ジルコニウム合金を提供するものであ
る。
The present invention provides a highly corrosion-resistant zirconium alloy having excellent corrosion resistance even when used in a nuclear reactor.

【0025】*1、野中善夫;1997年度原子力学
会、秋の大会予稿集、 *2、原子力工学シリーズ8、照射損傷、東京大学出版
会、 *3、Massalki;Binary alloy Phase Diagrams,2nd e
dition, vol.3、
* 1, Yoshio Nonaka; 1997 Atomic Energy Society, Autumn Meeting Preprints, * 2, Nuclear Engineering Series 8, Irradiation Damage, University of Tokyo Press, * 3, Massalki; Binary alloy Phase Diagrams, 2nd e
dition, vol.3,

【0026】[0026]

【発明の実施の形態】本発明の原子炉用ジルコニウム合
金における耐食性判定法を、燃料被覆管の製造工程に適
用した実施例のフロー図を図1に示す。
FIG. 1 is a flow chart of an embodiment in which the method for determining corrosion resistance of a zirconium alloy for a nuclear reactor according to the present invention is applied to a fuel cladding tube manufacturing process.

【0027】(1)鉄、ニッケル、クロム、錫が所定の
濃度になるように、ジルコニウムスポンジ、添加元素を
秤量・配合する。
(1) Zirconium sponge and additional elements are weighed and blended so that iron, nickel, chromium and tin have a predetermined concentration.

【0028】(2)コンパクトプレス、電極溶解、多重
溶解工程を経て合金成分が均一に溶解したインゴットが
つくられる。
(2) An ingot in which alloy components are uniformly melted through a compact press, electrode melting, and multiple melting steps.

【0029】(3)インゴットを1000℃以上の高温
で加熱したのち、熱間鍛造されより細径の長尺棒に加工
する。
(3) After heating the ingot at a high temperature of 1000 ° C. or higher, it is hot forged and processed into a long rod having a smaller diameter.

【0030】(4)さらに、β相温度まで加熱したのち
水焼入れを行う。
(4) Further, after heating to the β-phase temperature, water quenching is performed.

【0031】(5)さらに、切断、表面削り、孔あけ加
工を施し押出し用ビレツトがつくられる。
(5) Further, cutting, surface shaving, and drilling are performed to produce an extruded billet.

【0032】(6)ビレツトを600〜700℃の温度
で押出し、押出し素管がつくられる。
(6) The billet is extruded at a temperature of 600 to 700 ° C. to produce an extruded raw tube.

【0033】(7)さらに、素管処理を行い素管がつく
られる。
(7) Further, a raw tube treatment is performed to produce a raw tube.

【0034】(8)素管を、β相温度まで加熱したのち
水焼入れを行う。
(8) After heating the raw tube to the β-phase temperature, water quenching is performed.

【0035】(9)さらに、冷間圧延、洗浄、真空焼鈍
を繰り返す。
(9) Further, cold rolling, washing and vacuum annealing are repeated.

【0036】(10)さらに、仕上冷間圧延によって最
終寸法に仕上げる。
(10) Further, the final dimensions are finished by cold rolling.

【0037】(11)脱脂と洗浄を行ったのち、最終焼
鈍を行う。
(11) After performing degreasing and cleaning, final annealing is performed.

【0038】(12)曲りの矯正、内外面を研磨した
後、定尺切断を行う。
(12) After straightening the bend and polishing the inner and outer surfaces, cut into fixed lengths.

【0039】(13)外観検査や超音波検査によって欠
陥がないか検査する。
(13) Inspect for defects by visual inspection or ultrasonic inspection.

【0040】(14)(12)の工程で発生した残材か
ら電子顕微鏡用試料を調整し、鉄・クロム系析出物と鉄
・ニッケル系析出物の観察、分析を行い、それぞれの平
均組成と平均粒径を求める。
(14) A sample for an electron microscope was prepared from the residual material generated in the step (12), and an iron / chromium-based precipitate and an iron / nickel-based precipitate were observed and analyzed. Determine the average particle size.

【0041】(15)平均組成、平均粒径、秤量・配合
の化学組成を式2や式3に代入して、製品がこれらを満
足しているかを判定する。図4と図5に本発明の耐食性
判定法を適用し、製品の耐食性を評価した結果を示す。
(15) The average composition, average particle size, and chemical composition of weighing and blending are substituted into Equations 2 and 3 to determine whether the product satisfies these. 4 and 5 show the results of evaluating the corrosion resistance of products by applying the corrosion resistance determination method of the present invention.

【0042】図4は、重量で0.05〜0.6%の鉄、
0.05〜0.15%のクロム、0.03〜0.20%
のニッケル、0%以上の錫、残部がジルコニウムからな
るジルコニウム合金の耐食性を式3を用いて判定した結
果である。プロットより左側が腐食感受性の小さかった
最大酸化膜厚さが20μm未満の一様腐食、右側が腐食
感受性の大きくノジュラー腐食や酸化膜の剥離が生じる
可能性があることを示し、前記(14)の工程で測定さ
れた平均粒径がプロットよりも左側にある場合、その製
品の耐食性が良好とみなす。
FIG. 4 shows 0.05 to 0.6% iron by weight;
0.05-0.15% chromium, 0.03-0.20%
Is a result of using Equation 3 to determine the corrosion resistance of a zirconium alloy comprising nickel, 0% or more tin, and zirconium as a balance. The left side of the plot indicates that uniform corrosion having a small corrosion sensitivity and a maximum oxide film thickness of less than 20 μm is on the left side, and the right side indicates that there is a possibility that nodular corrosion or oxide film exfoliation may occur due to high corrosion sensitivity and the above (14). If the average particle size measured in the process is on the left side of the plot, the product is considered to have good corrosion resistance.

【0043】図5は、重量で0.05〜0.6%の鉄、
0.05〜0.15%のクロム、0.03〜0.20%
のニッケル、0%以上の錫、ニオブ、残部がジルコニウ
ムからなるジルコニウム合金の耐食性を式4を用いて判
定した結果である。
FIG. 5 shows 0.05 to 0.6% iron by weight;
0.05-0.15% chromium, 0.03-0.20%
This is the result of using Equation 4 to determine the corrosion resistance of a zirconium alloy composed of nickel, 0% or more of tin, niobium, and the balance zirconium.

【0044】プロットより左側が腐食感受性の小さかっ
た最大酸化膜厚さが20μmの未満の一様腐食、右側が
腐食感受性の大きくノジュラー腐食や酸化膜の剥離が生
じる可能性があることを示し、(14)の工程で測定さ
れた平均粒径がプロットよりも左側にある場合、その製
品の耐食性が良好とみなす。
From the plot, the left side shows uniform corrosion with a small corrosion-sensitive maximum oxide film thickness of less than 20 μm on the left side, and the right side shows that nodular corrosion and oxide film peeling with large corrosion sensitivity are likely to occur. If the average particle size measured in step 14) is on the left side of the plot, the product is considered to have good corrosion resistance.

【0045】(16)(15)の工程を通過した製品が
燃料被覆管となる。
(16) The product that has passed through the steps (15) becomes a fuel cladding tube.

【0046】本製造方法で製造された燃料集合体を原子
炉燃料として適用した例を説明する。図6は沸騰水型軽
水炉に装荷される燃料被覆管の斜視図で、本製造方法に
よって得られた合金により耐食性に優れた燃料被覆管を
提供することができる。
An example in which the fuel assembly manufactured by the present manufacturing method is applied as a reactor fuel will be described. FIG. 6 is a perspective view of a fuel cladding tube loaded in a boiling water reactor, and it is possible to provide a fuel cladding tube having excellent corrosion resistance by using the alloy obtained by the present manufacturing method.

【0047】[0047]

【発明の効果】以上説明してきたように本発明によれ
ば、ジルコニウム合金を原子炉内で使用した場合の耐食
性を合金組成、析出物の粒径と組成から判定すること
で、耐食性の優れたジルコニウム合金を得ることができ
る。
As described above, according to the present invention, the corrosion resistance when a zirconium alloy is used in a nuclear reactor is determined from the alloy composition, the particle size of the precipitate and the composition, whereby the corrosion resistance is improved. A zirconium alloy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐食性判定方法を燃料被覆管の製造工
程に適用した実施例の概略図である。
FIG. 1 is a schematic view of an embodiment in which the corrosion resistance determination method of the present invention is applied to a fuel cladding tube manufacturing process.

【図2】ジル力口イ−2に析出する2種類の金属間化合
物の鉄やニッケルが高速中性子の照射によって溶け出す
様子を示した模式図である。
FIG. 2 is a schematic diagram showing a state in which two kinds of intermetallic compounds, iron and nickel, which precipitate on a Jirikiguchi a-2, are melted out by irradiation with fast neutrons.

【図3】本発明の固溶定数とジル力口イ−2燃料被覆管
の腐食量との相関を示した図である。
FIG. 3 is a diagram showing the correlation between the solid solution constant of the present invention and the amount of corrosion of the Jil power port A-2 fuel cladding tube.

【図4】本発明の耐食性判定法でZr−Sn−0.05
〜0.6重量%Fe−0.05〜0.15重量%Cr−
0.03〜0.2重量%Niの耐食性を評価した結果を
示す図である。
FIG. 4 shows Zr-Sn-0.05 according to the corrosion resistance determination method of the present invention.
-0.6% by weight Fe-0.05-0.15% by weight Cr-
It is a figure which shows the result of having evaluated the corrosion resistance of 0.03-0.2 weight% Ni.

【図5】本発明の耐食性判定法でZr−Sn−Nb−
0.05〜0.6重量%Fe−0.05〜0.15重量
%Cr−0.03〜0.2重量%Niの耐食性を評価し
た結果を示す図である。
FIG. 5 shows a method for determining corrosion resistance according to the present invention, in which Zr-Sn-Nb-
It is a figure which shows the result of having evaluated the corrosion resistance of 0.05-0.6 weight% Fe-0.05-0.15 weight% Cr-0.03-0.2 weight% Ni.

【図6】軽水炉で装荷される燃料被覆管の斜視図であ
る。
FIG. 6 is a perspective view of a fuel cladding tube loaded in a light water reactor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野中 善夫 茨城県東茨城郡大洗町成田町2163番地 日 本核燃料開発株式会社内 (72)発明者 栄藤 良則 茨城県東茨城郡大洗町成田町2163番地 日 本核燃料開発株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshio Nonaka 2163, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Japan Within (72) Inventor Yoshinori Eito 2163, Narita-cho, Oarai-cho, Higashiibaraki-gun, Ibaraki Japan Nuclear Fuel Development Co., Ltd.

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 実質的に鉄、クロム、ニッケル、ジルコ
ニウムからなるジルコニウム合金、あるいは実質的に
鉄、クロム、ニッケル、錫、ジルコニウムからなるジル
コニウム合金において、 【数1】
1. A zirconium alloy consisting essentially of iron, chromium, nickel and zirconium, or a zirconium alloy consisting essentially of iron, chromium, nickel, tin and zirconium.
【請求項2】 実質的に鉄、クロム、ニッケル、ジルコ
ニウムからなるジルコニウム合金、あるいは実質的に
鉄、クロム、ニッケル、錫、ジルコニウムからなるジル
コニウム合金にニオブを添加したジルコニウム合金おい
て、 【数2】
2. A zirconium alloy substantially composed of iron, chromium, nickel and zirconium, or a zirconium alloy obtained by adding niobium to a zirconium alloy substantially composed of iron, chromium, nickel, tin and zirconium. ]
【請求項3】 実質的に鉄、クロム、ニッケル、ジルコ
ニウムからなるジルコニウム合金、あるいは実質的に
鉄、クロム、ニッケル、錫、ジルコニウムからなるジル
コニウム合金において、 【数3】
3. A zirconium alloy consisting essentially of iron, chromium, nickel and zirconium, or a zirconium alloy consisting essentially of iron, chromium, nickel, tin and zirconium.
【請求項4】 重量で0.07〜0.6%の鉄、0.0
1〜0.20%のニッケル、0.05〜1.5%のクロ
ム、0〜2%の錫および残部が実質的にジルコニウムか
らなるジルコニウム合金において、 【数4】
4. The iron, 0.07-0.6% by weight,
In a zirconium alloy consisting of 1 to 0.20% nickel, 0.05 to 1.5% chromium, 0 to 2% tin and the balance substantially zirconium:
【請求項5】 重量で0.07〜0.6%の鉄、0.0
1〜0.20%のニッケル、0.05〜0.15%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金において、 【数5】
5. Iron, 0.07-0.6% by weight, 0.0
In a zirconium alloy consisting of 1 to 0.20% nickel, 0.05 to 0.15% chromium, 0 to 2% tin and the balance substantially zirconium:
【請求項6】 重量で0.07〜0.6%の鉄、0.0
1〜0.20%のニッケル、0.15〜1.5%のクロ
ム、0〜2%の錫および残部が実質的にジルコニウムか
らなるジルコニウム合金において、 【数6】
6. Iron in an amount of 0.07-0.6% by weight,
In a zirconium alloy consisting of 1 to 0.20% nickel, 0.15 to 1.5% chromium, 0 to 2% tin and the balance substantially zirconium:
【請求項7】 重量で0.2〜0.6%の鉄、0.08
〜0.20%のニッケル、0.05〜0.15%のクロ
ム、0〜2%の錫および残部が実質的にジルコニウムか
らなるジルコニウム合金において、 【数7】
7. Iron, 0.2-0.6% by weight, 0.08
In a zirconium alloy consisting of 0.20.20% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium:
【請求項8】 重量で0.07〜0.2%の鉄、0.0
8〜0.20%のニッケル、0.05〜0.15%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金において、 【数8】
8. Iron, 0.07-0.2% by weight, 0.0
In a zirconium alloy consisting of 8 to 0.20% nickel, 0.05 to 0.15% chromium, 0 to 2% tin and the balance substantially zirconium:
【請求項9】 重量で0.2〜0.6%の鉄、0.01
〜0.08%のニッケル、0.05〜0.15%のクロ
ム、0〜2%の錫および残部が実質的にジルコニウムか
らなるジルコニウム合金において、 【数9】
9. 0.2-0.6% iron by weight, 0.01
In a zirconium alloy consisting of 0.00.08% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium:
【請求項10】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、0〜2%の錫および残部が実質的にジルコニウ
ムからなるジルコニウム合金において、 【数10】
10. The iron, 0.07-0.2% by weight.
In a zirconium alloy consisting of 01-0.08% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium:
【請求項11】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、0〜1・2%の錫および残部が実質的にジルコ
ニウムからなるジルコニウム合金において、 【数11】
11. Iron, 0.07-0.2% by weight.
In a zirconium alloy consisting of 01-0.08% nickel, 0.05-0.15% chromium, 0-1.2% tin and the balance substantially zirconium,
【請求項12】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、1.2〜2%の錫および残部が実質的にジルコ
ニウムからなるジルコニウム合金において、 【数12】
12. Iron of 0.07 to 0.2% by weight, 0.1 to 0.2% by weight.
In a zirconium alloy consisting of 01-0.08% nickel, 0.05-0.15% chromium, 1.2-2% tin and the balance substantially zirconium:
【請求項13】 実質的に鉄、クロム、ニッケル、ジル
コニウムからなるジルコニウム合金、あるいは実質的に
鉄、クロム、ニッケル、錫、ジルコニウムからなるジル
コニウム合金にニオブを添加した合金において、 【数13】
13. A zirconium alloy substantially composed of iron, chromium, nickel and zirconium, or an alloy obtained by adding niobium to a zirconium alloy substantially composed of iron, chromium, nickel, tin and zirconium.
【請求項14】 重量で0.07〜0.6%の鉄、0.
01〜0.20%のニッケル、0.05〜1.5%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金に重量で0.6%以下のニオ
ブを添加した合金において、 【数14】
14. An iron, 0.07-0.6% by weight.
A zirconium alloy consisting of 01-0.20% nickel, 0.05-1.5% chromium, 0-2% tin and the balance substantially zirconium was added with up to 0.6% by weight of niobium. In the alloy,
【請求項15】 重量で0.07〜0.6%の鉄、0.
01〜0.20%のニッケル、0.05〜0.15%の
クロム、0〜2%の錫および残部が実質的にジルコニウ
ムからなるジルコニウム合金に重量で0.6%以下のニ
オブを添加した合金において、 【数15】
15. Iron, 0.07-0.6% by weight.
A zirconium alloy consisting of 01-0.20% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium, with up to 0.6% by weight niobium added. In the alloy,
【請求項16】 重量で0.07〜0.6%の鉄、0.
01〜0.20%のニッケル、0.15〜1.5%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金に重量で0.6%以下のニオ
ブを添加した合金において、 【数16】
16. Iron, 0.07-0.6% by weight.
A zirconium alloy consisting of 01-0.20% nickel, 0.15-1.5% chromium, 0-2% tin and the balance substantially zirconium, with up to 0.6% by weight niobium added. In the alloy,
【請求項17】 重量で0.2〜0.6%の鉄、0.0
8〜0.20%のニッケル、0.05〜0.15%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金に重量で0.6%以下のニオ
ブを添加した合金において、 【数17】
17. Iron at 0.2-0.6% by weight, 0.0
A zirconium alloy consisting of 8 to 0.20% nickel, 0.05 to 0.15% chromium, 0 to 2% tin and the balance substantially zirconium was added with up to 0.6% by weight niobium. In the alloy,
【請求項18】 重量で0.07〜0・2%の鉄、0.
08〜0.20%のニッケル、0.05〜0.15%の
クロム、0〜2%の錫および残部が実質的にジルコニウ
ムからなるジルコニウム合金に重量で0.6%以下のニ
オブを添加した合金において、 【数18】
18. The composition of claim 1 wherein the iron content is 0.07-0.2% by weight.
0.6% or less by weight of niobium is added to a zirconium alloy consisting of 08-0.20% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium. In the alloy,
【請求項19】 重量で0・2〜0.6%の鉄、0・0
1〜0.08%のニッケル、0.05〜0.15%のク
ロム、0〜2%の錫および残部が実質的にジルコニウム
からなるジルコニウム合金に重量で0.6%以下の二オ
フを添加した合金において、 【数19】
19. Iron, 0.2-0.6% by weight, 0.0
Zirconium alloys consisting of 1-0.08% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium with up to 0.6% by weight of di-off added to the zirconium alloy In the alloy obtained,
【請求項20】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、0〜2%の錫および残部が実質的にジルコニウ
ムからなるジルコニウム合金に重量で0.6%以下のニ
オブを添加した合金において、 【数20】
20. 0.07 to 0.2% iron by weight, 0.1 to 0.2% by weight.
A zirconium alloy consisting of 01-0.08% nickel, 0.05-0.15% chromium, 0-2% tin and the balance substantially zirconium was added with up to 0.6% by weight of niobium. In the alloy,
【請求項21】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、0〜1.2%の錫および残部が実質的にジルコ
ニウムからなるジルコニウム合金に重量で0.6%以下
のニオブを添加した合金において、 【数21】
21. Iron of 0.07-0.2% by weight, 0.1 to 0.2% by weight.
A zirconium alloy consisting of 01-0.08% nickel, 0.05-0.15% chromium, 0-1.2% tin and the balance substantially zirconium with up to 0.6% by weight niobium In the added alloy,
【請求項22】 重量で0.07〜0.2%の鉄、0.
01〜0.08%のニッケル、0.05〜0.15%の
クロム、1.2〜2%の錫および残部が実質的にジルコ
ニウムからなるジルコニウム合金に重量で0.6%以下
のニオブを添加した合金において、 【数22】
22. 0.07-0.2% iron by weight, 0.1-0.
A zirconium alloy comprising from 0.01 to 0.08% nickel, 0.05 to 0.15% chromium, 1.2 to 2% tin and the balance substantially zirconium with up to 0.6% by weight niobium In the added alloy,
JP11178052A 1999-06-24 1999-06-24 High-corrosion-resistance zirconium alloy for nuclear reactor Pending JP2001004769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178052A JP2001004769A (en) 1999-06-24 1999-06-24 High-corrosion-resistance zirconium alloy for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11178052A JP2001004769A (en) 1999-06-24 1999-06-24 High-corrosion-resistance zirconium alloy for nuclear reactor

Publications (1)

Publication Number Publication Date
JP2001004769A true JP2001004769A (en) 2001-01-12

Family

ID=16041771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178052A Pending JP2001004769A (en) 1999-06-24 1999-06-24 High-corrosion-resistance zirconium alloy for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2001004769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor
JP2008506039A (en) * 2004-07-06 2008-02-28 ウェスティングハウス エレクトリック スウェーデン アーベー Fuel channel box in boiling water reactor
JP2009092620A (en) * 2007-10-12 2009-04-30 Global Nuclear Fuel-Japan Co Ltd Zirconium-based alloy, fuel assembly for water cooling type nuclear reactor using it, and channel box
US8105448B2 (en) 2004-07-06 2012-01-31 Westinghouse Electric Sweden Ab Fuel box in a boiling water nuclear reactor
CN107385247A (en) * 2017-07-10 2017-11-24 中国核动力研究设计院 A kind of nuclear grade zirconium alloy cast ingot preparation method of the material containing return

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506039A (en) * 2004-07-06 2008-02-28 ウェスティングハウス エレクトリック スウェーデン アーベー Fuel channel box in boiling water reactor
US8105448B2 (en) 2004-07-06 2012-01-31 Westinghouse Electric Sweden Ab Fuel box in a boiling water nuclear reactor
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor
JP2009092620A (en) * 2007-10-12 2009-04-30 Global Nuclear Fuel-Japan Co Ltd Zirconium-based alloy, fuel assembly for water cooling type nuclear reactor using it, and channel box
CN107385247A (en) * 2017-07-10 2017-11-24 中国核动力研究设计院 A kind of nuclear grade zirconium alloy cast ingot preparation method of the material containing return

Similar Documents

Publication Publication Date Title
Whitmarsh Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design
US20060243358A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion
US5366690A (en) Zirconium alloy with tin, nitrogen, and niobium additions
JP2001004769A (en) High-corrosion-resistance zirconium alloy for nuclear reactor
Hur et al. Corrosion behavior of neutron absorbing Ti-Gd alloys in simulated spent nuclear fuel pool water
Grosse et al. In Situ investigations of the hydrogen uptake of zirconium alloys during steam oxidation
JP5367208B2 (en) Non-heat treated zirconium alloy fuel coating and method for producing the same
Ignat’ev et al. Investigation of the corrosion resistance of nickel-based alloys in fluoride melts
Massih et al. Effect of beta-to-alpha phase transition rate on corrosion behaviour of Zircaloy
Kido et al. PWR Zircaloy cladding corrosion behavior: quantitative analyses
Nordin et al. Corrosion and Deuterium Pickup in Zr-2.5 Nb: Twenty Years of In-Reactor Testing at the OECD Halden Boiling Water Reactor
JP2000329880A (en) Highly corrosion resistant zirconium alloy for nuclear reactor and determination method of corrosion resistance thereof
Besch et al. Corrosion behavior of duplex and reference cladding in NPP Grohnde
Tabenelli et al. Corrosion and inhibition of low-alloyed chromium steels in hydrofluoric acid solutions
JP3351719B2 (en) Evaluation method of corrosion behavior of zirconium alloy
JP2814981B2 (en) Fuel assembly
Petzow et al. STRUCTURE AND PROPERTIES OF SILVER-CADMIUM-ZINC ALLOYS. II
Cohen Development and Properties of silver-base alloys as control rod materials for pressurized water reactors
Bradley et al. Microstructure and properties of corrosion-resistant zirconium-tin-iron-chromium-nickel alloys
Puls Comments on the elastic interaction of hydrogen with precipitates
Akashi et al. photoelectrochemical protection of stainless alloys from the stress-corrosion cracking in BWR primary coolant environment
Abe Ninth International Symposium on Zirconium in the Nuclear Industry
Goldthorpe Analysis of hydride effects in Zr-2.5 Nb micro-pressure tube
Fleischer et al. Graphite-Stainless Steel Compatibility Studies
Przybycien et al. Thermal Conductivities of Gases, Metals, Liquid Metals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703