JP2000212663A - High corrosion resistance zirconium alloy - Google Patents

High corrosion resistance zirconium alloy

Info

Publication number
JP2000212663A
JP2000212663A JP11328717A JP32871799A JP2000212663A JP 2000212663 A JP2000212663 A JP 2000212663A JP 11328717 A JP11328717 A JP 11328717A JP 32871799 A JP32871799 A JP 32871799A JP 2000212663 A JP2000212663 A JP 2000212663A
Authority
JP
Japan
Prior art keywords
corrosion resistance
content
corrosion
alloy
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11328717A
Other languages
Japanese (ja)
Inventor
Kiyoko Takeda
貴代子 竹田
Hiroyuki Anada
博之 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11328717A priority Critical patent/JP2000212663A/en
Publication of JP2000212663A publication Critical patent/JP2000212663A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high corrosion resistance zirconium alloy combining uniform corrosion resistance and nodular corrosion resistance so as to correspond to the increase of the burnup of nuclear fuel and the prolongation of the residense time in a furnace and moreover combining high corrosion resistance-high nodular corrosion resistance small in hydrogen absorption and excellent hydrogen absorbing characteristics. SOLUTION: This zirconium alloy has a compsn. contg., by mass, 0.8 to 1.5% Sn, 0.15 to 0.35% Fe, <=0.15% Cr, 0.03 to 0.15% Ni, >0.006% to 0.018% Si, <=0.005% N, and the balance Zr with inevitable impurities, in which each content of Si, Sn and Ni also satisfies the inequality of -28<=0.33×Sn1/2-100×(Si/Ni) <=-8.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉燃料用の被
覆管材および構造部材として好適な優れた耐食性を備
え、水素吸収の少ないジルコニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconium alloy having excellent corrosion resistance and low hydrogen absorption, which is suitable as a cladding tube and a structural member for nuclear fuel.

【0002】[0002]

【従来の技術】ジルコニウム合金は、熱中性子吸収断面
積が小さくて耐食性に優れており、所定の機械的性質を
備えていることから、原子炉の燃料被覆管や核燃料集合
体の構造部材として使用されている。
2. Description of the Related Art Zirconium alloys have a small thermal neutron absorption cross-section, are excellent in corrosion resistance, and have predetermined mechanical properties. Therefore, they are used as structural members for fuel cladding tubes of nuclear reactors and nuclear fuel assemblies. Have been.

【0003】燃料被覆管は、その内部に核燃料物質が入
れられ、束にして核燃料集合体として原子炉に挿入され
る。核燃料を一定期間燃焼させた後、この燃料集合体は
取り出される。被覆管は、原子炉内で中性子照射を受
け、高温高圧の水または水蒸気に曝されるので、優れた
耐食性が要求される。
[0003] The fuel cladding tube is filled with a nuclear fuel material and bundled and inserted into a nuclear reactor as a nuclear fuel assembly. After burning the nuclear fuel for a certain period of time, the fuel assembly is removed. The cladding tube receives neutron irradiation in the nuclear reactor and is exposed to high-temperature and high-pressure water or water vapor, so that it is required to have excellent corrosion resistance.

【0004】一般的な被覆管用のジルコニウム合金に
は、SnのほかにFe、CrおよびNiを少量含有して
いるジルカロイ2(JIS−H−4751、ZrTN−
802−D相当合金)やジルカロイ4(JIS−H−4
751、ZrTN−804−D相当合金)がある。これ
らの合金は、現在稼働している沸騰水型軽水炉(BW
R)や加圧水型軽水炉(PWR)に適用されてきた。
A typical zirconium alloy for a cladding tube is Zircaloy 2 (JIS-H-4751, ZrTN-) containing a small amount of Fe, Cr and Ni in addition to Sn.
802-D equivalent alloy) and Zircaloy 4 (JIS-H-4)
751, ZrTN-804-D equivalent alloy). These alloys are currently in operation with boiling water light water reactors (BW
R) and pressurized water reactors (PWR).

【0005】近年、発電効率の向上のため、高燃焼度化
といわれる核燃料のサイクル毎の燃焼度アップならびに
燃料集合体の炉内滞在期間の長期化が図られている。燃
料被覆管や燃料集合体の構造部材用として、上記の一般
に使用されているジルコニウム合金は、従来の使用期間
であれば十分な耐食性を有する。
[0005] In recent years, in order to improve the power generation efficiency, the burnup of nuclear fuel has been increased in each cycle and the period of stay of fuel assemblies in the furnace has been increased, which is referred to as higher burnup. The above-mentioned zirconium alloys generally used for structural members of fuel cladding tubes and fuel assemblies have sufficient corrosion resistance during the conventional service period.

【0006】しかし、高燃焼度化や炉内滞在期間の長期
化により、より多くの中性子照射を受け、高温高圧の水
または水蒸気に曝される時間が長くなるため、より優れ
た耐食性や機械的性質を備えたジルコニウム合金が必要
となる。
However, the higher burnup and the longer stay period in the furnace, the longer the exposure time to high-temperature and high-pressure water or steam due to more neutron irradiation, resulting in better corrosion resistance and mechanical A zirconium alloy with properties is required.

【0007】ジルコニウム合金の表面は、黒色の均一な
酸化皮膜に覆われており、原子炉内の高温高圧の水もし
くは水蒸気に曝されると、この皮膜が一様に少しずつ成
長する、いわゆる一様腐食が生じる。
[0007] The surface of the zirconium alloy is covered with a uniform black oxide film. When the surface of the zirconium alloy is exposed to high-temperature and high-pressure water or water vapor in a nuclear reactor, this film grows little by little. Corrosion occurs.

【0008】BWRにおいては、ノジュラー腐食と呼ば
れる白色のこぶ状腐食生成物が局所的に発生することが
ある。腐食の進行は、部材の肉厚を減少させ使用寿命を
縮める。また、これらの腐食生成物が剥離すれば、一次
冷却水中に放射化した酸化物が混入してしまうおそれが
ある。さらに、腐食反応に伴い発生する水素を母材が吸
収することにより水素脆化が起こり、機械的性質が低下
する。
In the BWR, a white nodular corrosion product called nodular corrosion may locally occur. The progress of corrosion reduces the thickness of the member and shortens the service life. Further, if these corrosion products are separated, the activated oxide may be mixed into the primary cooling water. Furthermore, the base material absorbs hydrogen generated by the corrosion reaction, causing hydrogen embrittlement and lowering mechanical properties.

【0009】特開平8−199267号公報には、Zr
−Sn−Fe−Cr−Ni合金に含まれる不純物として
のSiを60ppm以下とすることにより、ノジュラー
腐食に対する耐食性を向上させた原子炉構造材用高耐食
性合金が開示されている。
Japanese Patent Application Laid-Open No. 8-199267 discloses Zr
A highly corrosion-resistant alloy for a nuclear reactor structural material in which the corrosion resistance to nodular corrosion is improved by reducing the content of Si as an impurity contained in a -Sn-Fe-Cr-Ni alloy to 60 ppm or less is disclosed.

【0010】特開平5−214500号公報には、焼入
れ処理や、Sn含有量を低減することによりノジュラー
腐食の発生を防止する方法が開示されている。しかし、
これらの公報に開示されている技術では、高燃焼度化に
対して重要視される耐一様腐食性の改善がなされていな
い。
Japanese Patent Application Laid-Open No. 5-214500 discloses a method for preventing the occurrence of nodular corrosion by quenching or reducing the Sn content. But,
The techniques disclosed in these publications do not improve the uniform corrosion resistance, which is regarded as important for increasing the burnup.

【0011】Zirconium in the nuclear industry(10t
h international symposium、 ASTM STP 1245、1994、
p709-723)には、Zr−Sn−Fe−Cr合金にSiを
添加して含有量を多くすると一様腐食量が少なくなるこ
とが示されている。しかし、この合金では、耐ノジュラ
ー腐食性の改善はなされておらず高燃焼度化に対応でき
る耐食性を十分備えているとは言えない。ジルコニウム
合金の一様腐食性の改善については、従来より種々の検
討がされている。
[0011] Zirconium in the nuclear industry (10t
h international symposium, ASTM STP 1245, 1994,
p709-723) shows that the addition of Si to a Zr-Sn-Fe-Cr alloy to increase the content reduces the uniform corrosion amount. However, this alloy has not been improved in nodular corrosion resistance and cannot be said to have sufficient corrosion resistance to cope with high burnup. Various studies have hitherto been made on the improvement of uniform corrosion properties of zirconium alloys.

【0012】例えば、特開平1−188643号公報に
は、Sn、FeおよびCrを含有したZr合金の窒素含
有量を0.006%以下に低減することにより、またN
bまたはTaを含有させることにより耐食性を改善した
原子炉燃料被覆管用Zr合金が開示されている。
[0012] For example, Japanese Patent Application Laid-Open No. 1-188643 discloses that the nitrogen content of a Zr alloy containing Sn, Fe and Cr is reduced to 0.006% or less,
A Zr alloy for a reactor fuel cladding tube having improved corrosion resistance by containing b or Ta is disclosed.

【0013】また、特開平1−191756号公報で
は、ジルカロイ2やジルカロイ4をベースとし、さらに
Cuを少量添加した合金が示されている。
JP-A-1-191756 discloses an alloy based on Zircaloy 2 or Zircaloy 4 and further containing a small amount of Cu.

【0014】しかし、これらの合金は、一様腐食に対す
る耐食性の改善は示されているが、耐ノジュラー腐食性
は改善されていない。
However, these alloys have been shown to have improved corrosion resistance to uniform corrosion, but not improved nodular corrosion resistance.

【0015】このように、一様腐食に対する耐食性と耐
ノジュラー腐食性との両方が同時に改善された合金はな
かった。
Thus, no alloy has simultaneously improved both the corrosion resistance to uniform corrosion and the nodular corrosion resistance.

【0016】特開平63−33535号公報では、S
n、Fe、CrおよびNiを含有した合金にNbを添加
したノジュラー腐食性、一様腐食性および水素吸収の少
ない原子炉用ジルコニウム合金が開示されている。
In JP-A-63-33535, S
There is disclosed a zirconium alloy for a nuclear reactor which has nodular corrosiveness, uniform corrosiveness, and low hydrogen absorption in which Nb is added to an alloy containing n, Fe, Cr and Ni.

【0017】しかし、このジルコニウム合金は、高燃焼
度化ならびに燃料集合体の炉内滞在期間の長期化に対す
る耐一様腐食および耐ノジュラー腐食は十分でなく、水
素吸収の抑制効果も十分とはいえない。
However, this zirconium alloy is not sufficiently resistant to uniform corrosion and nodular corrosion against high burnup and prolonged residence time of the fuel assembly in the furnace, and has a sufficient effect of suppressing hydrogen absorption. Absent.

【0018】[0018]

【発明が解決しようとする課題】本発明の課題は、核燃
料の高燃焼度化や炉内滞在期間の長期化に耐えうる耐一
様腐食性と耐ノジュラー腐食性とを兼ね備え、さらに水
素吸収の少ない高耐食性ジルコニウム合金を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide both uniform corrosion resistance and nodular corrosion resistance that can withstand high burn-up of nuclear fuel and prolonged residence time in a furnace, and furthermore, to prevent hydrogen absorption. An object of the present invention is to provide a low corrosion resistant zirconium alloy.

【0019】[0019]

【課題を解決するための手段】高耐食性ジルコニウム合
金に関わる本発明の要旨は以下の通りである。
The gist of the present invention relating to a high corrosion resistant zirconium alloy is as follows.

【0020】「質量%で、Sn:0.8〜1.5%、F
e:0.15〜0.35%、Cr:0.15%以下、N
i:0.03〜0.15%、Si:0.006%を超
え、0.018%以下、N:0,005%以下を含有
し、残部がZrおよび不純物からなり、かつSi、Sn
およびNiの各含有量が、下記式を満足している高耐食
性ジルコニウム合金。
"In mass%, Sn: 0.8-1.5%, F
e: 0.15 to 0.35%, Cr: 0.15% or less, N
i: 0.03 to 0.15%, Si: more than 0.006%, 0.018% or less, N: 0.005% or less, the balance consisting of Zr and impurities, and Si, Sn
A highly corrosion-resistant zirconium alloy in which the contents of Ni and Ni satisfy the following formula:

【0021】-28≦0.33×Sn1/2-100×(Si/Ni)≦-8.5 式中の元素記号は、合金中の含有量(質量%)を示す」
本発明者らは、まず既存のジルカロイ2合金の化学組成
を基本にして、耐一様腐食性と耐ノジュラー腐食性の改
善および水素吸収の抑制が可能なジルコニウム合金を開
発するため種々実験、検討をおこなった。その結果、下
記の知見を得て本発明を完成させるに至った。
-28 ≦ 0.33 × Sn 1/2 -100 × (Si / Ni) ≦ -8.5 The element symbol in the formula indicates the content (% by mass) in the alloy.
The present inventors first conducted various experiments and studies to develop a zirconium alloy capable of improving uniform corrosion resistance and nodular corrosion resistance and suppressing hydrogen absorption based on the chemical composition of existing Zircaloy-2 alloy. Was done. As a result, the following findings were obtained, and the present invention was completed.

【0022】a)Sn含有量を0.8〜1.5%の範囲
内とすると共に、微量のSiを含有させると耐一様食性
と耐ノジュラー腐食性の両者の向上に有効であり、かつ
水素吸収も抑制できる。
A) When the Sn content is in the range of 0.8 to 1.5% and a small amount of Si is contained, it is effective to improve both uniform corrosion resistance and nodular corrosion resistance, and Hydrogen absorption can also be suppressed.

【0023】b)ジルカロイ2合金は、Sn含有量が
1.2〜1.7%であるが、Snの添加は、不純物とし
て混入し耐食性を低下させるNの影響を低減させるのに
効果がある。しかし、最近の製造技術の向上により、N
の混入量は大幅に低減されており、必要以上にSnを含
有させると耐食性を悪化させる。
B) The Zircaloy 2 alloy has a Sn content of 1.2 to 1.7%, but the addition of Sn is effective in reducing the effect of N which is mixed in as an impurity and lowers the corrosion resistance. . However, due to recent improvements in manufacturing technology, N
Is significantly reduced, and if Sn is contained more than necessary, the corrosion resistance deteriorates.

【0024】c)しかし、Snを低くし過ぎると強度が
低下する傾向がある。
C) However, if Sn is too low, the strength tends to decrease.

【0025】d)ジルカロイ2合金中のSiは不純物と
して0.012%以下と規定されているが、最近の製造
技術では、Siの混入は0.005%以下に減少してい
る。しかし、Si含有量は少なすぎても多すぎても耐食
性が低下すると共に、水素吸収量が多くなる。
D) The content of Si in the Zircaloy-2 alloy is specified as 0.012% or less as an impurity. However, in recent manufacturing techniques, the incorporation of Si is reduced to 0.005% or less. However, if the Si content is too low or too high, the corrosion resistance decreases and the hydrogen absorption increases.

【0026】[0026]

【発明の実施の形態】本発明のジルコニウム合金の化学
組成を規定した理由を以下に詳述する。なお、以下の
「%」表示は「質量%」とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for defining the chemical composition of the zirconium alloy of the present invention will be described in detail below. The following “%” is expressed as “% by mass”.

【0027】Sn:Snは、不純物として混入してくる
Nの耐一様腐食性および耐ノジュラー腐食性への悪影響
を低減させるのに効果がある。その効果を得るために
は、0.8%以上含有させる必要がある。しかし、最近
の製造技術ではNの混入量が減少しているので多量に含
有量させる必要がなく、1.5%を超えると耐食性を損
なう。したがって、Snの含有量は、0.8〜1.5%
とした。望ましくは0.8〜1.35%である。
Sn: Sn is effective in reducing the adverse effect of N mixed as an impurity on the uniform corrosion resistance and the nodular corrosion resistance. In order to obtain the effect, the content needs to be 0.8% or more. However, in recent manufacturing techniques, the content of N has been reduced, so that it is not necessary to make the content large, and if it exceeds 1.5%, the corrosion resistance is impaired. Therefore, the content of Sn is 0.8 to 1.5%.
And Desirably, it is 0.8 to 1.35%.

【0028】FeおよびCr:Feは、耐食性を向上さ
せるとともに強度を向上させる効果があり、特にCrと
複合添加することにより、一層効果が大きくなる。これ
らの効果は、Crは微量であってもFeと複合すれば効
果があり、Feの効果は0.15%以上で得られる。し
かし、どちらの元素も多すぎると加工性が劣化し、耐食
性、特に耐一様腐食性が逆に劣化してくる。そこで、F
eは0.15〜0.35%、Crは0.15%以下の範
囲とした。望ましい含有量は、Feが0.15〜0.3
%、Crが0.008〜0.1%である。
Fe and Cr: Fe has the effect of improving the corrosion resistance and the strength, and in particular, the effect is further enhanced by the complex addition with Cr. These effects are effective if Cr is combined with Fe even if the amount of Cr is very small, and the effect of Fe can be obtained at 0.15% or more. However, if both elements are too large, the workability is deteriorated, and the corrosion resistance, particularly the uniform corrosion resistance, is deteriorated. Then, F
e is in the range of 0.15% to 0.35%, and Cr is in the range of 0.15% or less. Desirable content is 0.15-0.3 Fe.
% And Cr are 0.008 to 0.1%.

【0029】Ni:Niは、耐食性の改善に効果があ
る。ただし、Niはその含有量の増加につれて、腐食に
より発生する水素を合金中に取り込む量が増し、水素脆
化を促進させる傾向がある。したがって、従来のジルカ
ロイ4のように水素吸収を避ける必要があるような場合
は、含有量は少ない方がよい。含有量が0.03%未満
では耐食性の改善効果がなく、一方、0.15%を超え
ると水素吸収が顕著になるばかりでなく加工性を悪くす
るので、Ni含有量は0.03〜0.15%とした。望
ましくは0.07から0.1%である。
Ni: Ni is effective in improving corrosion resistance. However, as the content of Ni increases, the amount of hydrogen generated by corrosion taken into the alloy increases, which tends to promote hydrogen embrittlement. Therefore, when it is necessary to avoid hydrogen absorption like the conventional Zircaloy 4, the content should be small. If the content is less than 0.03%, there is no effect of improving the corrosion resistance. On the other hand, if it exceeds 0.15%, not only the hydrogen absorption becomes remarkable but also the workability is deteriorated, so that the Ni content is 0.03 to 0. .15%. Desirably, it is 0.07 to 0.1%.

【0030】Si:Siは、耐一様腐食性の改善および
水素吸収の抑制に効果がある。しかし、含有量が少なす
ぎても多すぎても耐食性や水素吸収抑制効果が低下す
る。既存のジルカロイ2およびジルカロイ4では不純物
として0.012%以下と規定されているが、最近の製
造技術では、Siの混入は0.005%以下に減少して
いる。しかし、上記効果を得るには、0.006%を超
える量を必要とする。一方、0.018%を超えると効
果が低下するので上限を0.018%とした。したがっ
て、Siの含有量は、0.006%を超え、0.018
%以下とした。望ましくは0.012〜0.018%で
ある。
Si: Si is effective in improving uniform corrosion resistance and suppressing hydrogen absorption. However, if the content is too small or too large, the corrosion resistance and the effect of suppressing hydrogen absorption decrease. In existing Zircaloy 2 and Zircaloy 4, the content is specified as 0.012% or less as an impurity. However, in recent manufacturing techniques, the incorporation of Si is reduced to 0.005% or less. However, to achieve the above effect, an amount exceeding 0.006% is required. On the other hand, if the content exceeds 0.018%, the effect decreases, so the upper limit is made 0.018%. Therefore, the content of Si exceeds 0.006% and is 0.018%.
% Or less. Desirably, it is 0.012 to 0.018%.

【0031】本発明の合金は、原料の原子力級のZrス
ポンジに合金元素を配合し、消耗電極式真空アーク溶解
炉にて溶製することにより得られる。原子炉の燃料被覆
管等は、溶製したインゴットを鍛造または分塊してスラ
ブとした後、溶体化処理を施し、ビレットやスラブに成
形し、熱間押し出しあるいは熱間圧延して、その後必要
に応じて焼入れ処理を施し、冷間圧延および焼鈍を繰り
返すことにより製造することができる。これらの各製造
条件等は、一般に実施されている条件と同様でよい。
The alloy of the present invention can be obtained by mixing an alloying element with a nuclear-grade Zr sponge as a raw material and melting it in a consumable electrode type vacuum arc melting furnace. Fuel cladding tubes of nuclear reactors are forged or lumped from molten ingots into slabs, subjected to solution treatment, formed into billets or slabs, hot extruded or hot rolled, and then required The quenching process is performed in accordance with the above, and cold rolling and annealing are repeated to manufacture. These manufacturing conditions and the like may be the same as those generally used.

【0032】N:Nは、不純物であり、耐一様腐食性お
よび耐ノジュラー腐食性を低下させるので含有量は少な
いほどよい。このNの悪影響を低める作用を有するSn
の含有量を0.8〜1.5%の範囲と比較的少なくする
場合には、N含有量を0.005%以下としなければ、
十分な耐一様腐食性および耐ノジュラー腐食性が得られ
ない。 -28≦0.33×Sn1/2-100×(Si/Ni)≦-8.5: Sn、SiおよびNiは、水素吸収量に影響する元素で
あり、含有量は上記した範囲内で、かつ下記式を満足す
る量にしなければ十分に水素の吸収を抑制することがで
きない。
N: N is an impurity and lowers the uniform corrosion resistance and the nodular corrosion resistance, so the smaller the content, the better. Sn having an effect of reducing the adverse effect of N
When the content of N is relatively small in the range of 0.8 to 1.5%, unless the N content is 0.005% or less,
Sufficient uniform corrosion resistance and nodular corrosion resistance cannot be obtained. -28 ≦ 0.33 × Sn 1/2 -100 × (Si / Ni) ≦ -8.5: Sn, Si and Ni are elements that affect the amount of hydrogen absorption, and the content is within the above range and the following formula Unless the amount is satisfied, the absorption of hydrogen cannot be sufficiently suppressed.

【0033】-28≦0.33×Sn1/2-100×(Si/Ni)≦-8.5 なお、この式は種々の実験結果を系統的に解析して求め
たものである。
-28 ≦ 0.33 × Sn 1/2 -100 × (Si / Ni) ≦ −8.5 This equation is obtained by systematically analyzing various experimental results.

【0034】[0034]

【実施例】表1に示す化学組成の合金をアルゴンアーク
溶解炉にて溶製した。得られた鋳片は、1050℃にて
30分間加熱した後で急冷するβ処理を施し、650℃
に加熱して熱間圧延した後、650℃で2時間焼鈍し、
次いで冷間圧延および577℃にて3時間の焼鈍をおこ
ない、厚さ1mmの板に仕上げた。
EXAMPLES Alloys having the chemical compositions shown in Table 1 were melted in an argon arc melting furnace. The obtained cast slab was subjected to β treatment of heating at 1050 ° C. for 30 minutes and then rapidly cooling, and then 650 ° C.
After hot rolling and annealing at 650 ° C. for 2 hours,
Next, cold rolling and annealing at 577 ° C. for 3 hours were performed to finish a plate having a thickness of 1 mm.

【0035】これらの板から、幅20mm、長さ35m
mの腐食試験片を切り出し、表面を#600番のエメリ
ー紙で湿式研磨後、エタノールで脱脂乾燥させて、一様
腐食試験およびノジュラー腐食試験に供した。
From these plates, a width of 20 mm and a length of 35 m
m, and the surface was wet-polished with # 600 emery paper, degreased and dried with ethanol, and subjected to a uniform corrosion test and a nodular corrosion test.

【0036】[0036]

【表1】 [Table 1]

【0037】腐食試験は、加速試験とし、400℃、1
0.3MPaの水蒸気中に360日間暴露し、試験前後
の試験片の重量変化を秤量することにより腐食増量を求
めて耐一様腐食性を評価した。
The corrosion test was an accelerated test at 400.degree.
The test piece was exposed to steam of 0.3 MPa for 360 days, and the change in weight of the test piece before and after the test was weighed to determine the increase in corrosion, and the uniform corrosion resistance was evaluated.

【0038】図1は、求めた腐食増量と本発明で規定す
る式との関係を図で示したものである。腐食増量190
mg/dm2 以下は、一様腐食性良好といえる。さら
に、一様腐食試験後の試験片を用いて水素吸収率を求め
た。
FIG. 1 is a diagram showing the relationship between the determined corrosion increase and the formula defined in the present invention. Corrosion increase 190
When it is not more than mg / dm 2 , it can be said that uniform corrosion is good. Further, the hydrogen absorption rate was determined using the test piece after the uniform corrosion test.

【0039】図2は、求めた水素吸収率と本発明で規定
する式との関係を示したものである。また、温度が53
0℃で、圧力が10.3MPaの水蒸気中に24時間曝
すノジュラー腐食試験をおこない、ノジュラー腐食発生
の有無を調べた。これらの結果を併せて表1に示す。
FIG. 2 shows the relationship between the determined hydrogen absorption rate and the formula defined in the present invention. When the temperature is 53
A nodular corrosion test was performed at 0 ° C. for 24 hours in water vapor at a pressure of 10.3 MPa to check for the occurrence of nodular corrosion. Table 1 also shows these results.

【0040】表1または図1から明らかなように、試験
番号1〜10は、本発明例の合金であり、耐一様腐食性
は良好で、ノジュラー腐食も発生しなかった。一方、試
験番号11〜19は、化学組成が本発明で規定する範囲
から外れている合金であが、いずれの合金も耐一様腐食
性が不芳で、試験番号15においてはノジュラー腐食が
発生していた。
As is clear from Table 1 or FIG. 1, Test Nos. 1 to 10 are the alloys of the present invention, and have good uniform corrosion resistance and no nodular corrosion. On the other hand, Test Nos. 11 to 19 are alloys whose chemical compositions are out of the range specified in the present invention. However, all alloys have poor uniform corrosion resistance, and in Test No. 15, nodular corrosion occurs. Was.

【0041】水素吸収率は、試験番号1の腐食試験片を
1としたときの値で表した。表1または図2から明らか
なように、本発明例(試験番号1〜10)の水素吸収率
は、比較例(試験番号11〜19)より低い値を示し良
好であった。
The hydrogen absorption rate was represented by a value when the corrosion test piece of test number 1 was set to 1. As is clear from Table 1 or FIG. 2, the hydrogen absorption rates of the present invention examples (test numbers 1 to 10) were lower than those of the comparative examples (test numbers 11 to 19) and were good.

【0042】[0042]

【発明の効果】本発明のジルコニウム合金は、耐一様腐
食性に優れているばかりでなく、耐ノジュラー腐食性に
も優れており、水素吸収量も少なく、高燃焼度化に要求
される炉内滞在期間の延長にも十分耐えうる優れた合金
であり、燃料被覆管や核燃料構造部材として優れた効果
を発揮する。
Industrial Applicability The zirconium alloy of the present invention is not only excellent in uniform corrosion resistance but also excellent in nodular corrosion resistance, has a small hydrogen absorption amount, and is a furnace required for high burnup. It is an excellent alloy that can withstand the extension of the internal stay period, and exhibits excellent effects as a fuel cladding tube and a nuclear fuel structural member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】腐食増量とSn、Ni、Siの関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the increase in corrosion and Sn, Ni, and Si.

【図2】水素吸収率とSn、Ni、Siの関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a hydrogen absorption rate and Sn, Ni, and Si.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 694 C22F 1/18 E 1/18 G21C 3/06 N ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 694 C22F 1/18 E 1/18 G21C 3/06 N

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】質量%で、Sn:0.8〜1.5%、F
e:0.15〜0.35%、Cr:0.15%以下、N
i:0.03〜0.15%、Si:0.006%を超
え、0.018%以下、N:0,005%以下を含有
し、残部がZrおよび不純物からなり、かつSi、Sn
およびNiの各含有量が、下記式を満足していることを
特徴とする高耐食性ジルコニウム合金。 -28≦0.33×Sn1/2-100×(Si/Ni)≦-8.5 式中の元素記号は、合金中の含有量(質量%)を示す
(1) Sn: 0.8 to 1.5% by mass%, F:
e: 0.15 to 0.35%, Cr: 0.15% or less, N
i: 0.03 to 0.15%, Si: more than 0.006%, 0.018% or less, N: 0.005% or less, the balance consisting of Zr and impurities, and Si, Sn
A highly corrosion-resistant zirconium alloy, wherein each content of Ni and Ni satisfies the following expression. -28 ≦ 0.33 × Sn 1/2 -100 × (Si / Ni) ≦ -8.5 The element symbol in the formula indicates the content (% by mass) in the alloy.
JP11328717A 1998-11-20 1999-11-18 High corrosion resistance zirconium alloy Pending JP2000212663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11328717A JP2000212663A (en) 1998-11-20 1999-11-18 High corrosion resistance zirconium alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33028898 1998-11-20
JP10-330288 1998-11-20
JP11328717A JP2000212663A (en) 1998-11-20 1999-11-18 High corrosion resistance zirconium alloy

Publications (1)

Publication Number Publication Date
JP2000212663A true JP2000212663A (en) 2000-08-02

Family

ID=26572955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11328717A Pending JP2000212663A (en) 1998-11-20 1999-11-18 High corrosion resistance zirconium alloy

Country Status (1)

Country Link
JP (1) JP2000212663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor

Similar Documents

Publication Publication Date Title
JP3407876B2 (en) Niobium-containing zirconium alloy suitable for nuclear fuel cladding
EP0227989B1 (en) Zirconium-based alloy with high corrosion resistance
US8882939B2 (en) Zirconium alloy resistant to corrosion in drop shadows for a fuel assembly component for a boiling water reactor, component produced using said alloy, fuel assembly, and use of same
EP1730318A2 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
SK17393A3 (en) Nuclear fuel cell and method of its production
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
CN110629128A (en) FeCrAlZr cladding material and preparation method thereof
JP2000212663A (en) High corrosion resistance zirconium alloy
JP3483804B2 (en) Manufacturing method of corrosion resistant zirconium based alloy tube
JP2003277859A (en) Zirconium alloy having excellent corrosion resistance and production method therefor
JP3741922B2 (en) Corrosion-resistant high-purity zirconium alloy and structural material for reactor core
JP3336561B2 (en) High corrosion resistant zirconium alloy
JP3235611B2 (en) Zirconium alloy excellent in corrosion resistance and low in hydrogen absorption and its production method
KR20080065749A (en) Zirconium alloys having excellent resistance property in both water and steam reaction
JP3692006B2 (en) High corrosion resistance zirconium alloy, structural material for reactor core, and method for producing the same
JPS6126738A (en) Zirconium alloy
JP2001220632A (en) Zirconium alloy small in hydrogen absorption and excellent in corrosion resistance and its producing method
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
JPH09257988A (en) Manufacture of inner structure material of core of nuclear reactor or zirconium alloy type excellent in corrosion resistance, especially in even corrosion resistance and hydrogen absorption resistance
JPH09111379A (en) Highly corrosion resistant zirconium alloy
JPH07120576A (en) Highly corrosion resistant zirconium alloy-coated pipe
KR101088111B1 (en) Zirconium alloy compositions having excellent corrosion resistance and creep resistance
JPH05163545A (en) Zr base alloy excellent in corrosion resistance
CN118222883A (en) Third-generation improved Zr-4 alloy and preparation method and application thereof