JP2000097843A - Corrosion evaluation method for zirconium-series metal and zirconium-based alloy - Google Patents

Corrosion evaluation method for zirconium-series metal and zirconium-based alloy

Info

Publication number
JP2000097843A
JP2000097843A JP10271161A JP27116198A JP2000097843A JP 2000097843 A JP2000097843 A JP 2000097843A JP 10271161 A JP10271161 A JP 10271161A JP 27116198 A JP27116198 A JP 27116198A JP 2000097843 A JP2000097843 A JP 2000097843A
Authority
JP
Japan
Prior art keywords
zirconium
temperature
water
temperature water
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10271161A
Other languages
Japanese (ja)
Inventor
Iwao Takase
磐雄 高瀬
Tadashi Fujieda
藤枝  正
Teruyoshi Abe
輝宜 阿部
Takayoshi Yasuda
隆芳 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10271161A priority Critical patent/JP2000097843A/en
Publication of JP2000097843A publication Critical patent/JP2000097843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion evaluation method for a zirconium-series metal, excellent in water quality impact assessment, in material selection of the zirconium- series material for being used in a high-temperature water environment. SOLUTION: A zirconium-series metal is given an initial oxidation treatment comprising a prescribed-time heating treatment (single-step treatment) at a constant temperature in high-temperature water or in high-temperature water and steam by using test water having a dissolved oxygen quantity of 2-100 ppb, or a step-wise prescribed- time heating treatment (plural-step treatment) at prescribed temperatures in high- temperature water or in high-temperature water and steam by using test water having a dissolved oxygen quantity of 2-100 ppb, and thereafter given a high-temperature water treatment for heating as long as a prescribed time at an actual machine using temperature by using test water having the same dissolved oxygen quantity as the dissolved oxygen quantity of the actual machine. After cooling the metal once, the metal is treated in high-pressure steam at 490-510 deg.C for 120-240 hours, and evaluated by measurement of the thickness of an oxide film formed on the surface of the zirconium-series metal and by the existence of a local accelerated corrosion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力プラント用の
燃料被覆管等に用いるジルコニウム系金属の耐食性評価
に係わり、特に、水質により広範囲に生じる局部加速腐
食を予測するジルコニウム系金属の腐食評価法およびジ
ルコニウム基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the evaluation of corrosion resistance of zirconium-based metals used in fuel cladding tubes for nuclear power plants and the like, and more particularly to a method of evaluating corrosion of zirconium-based metals for predicting localized accelerated corrosion caused by water quality over a wide range. It relates to a zirconium-based alloy.

【0002】[0002]

【従来の技術】従来のジルコニウム系金属の腐食評価方
法は、高温水中に長期間浸漬して腐食する高温水腐食試
験、あるいは、蒸気中で腐食する蒸気中腐食試験などが
知られている。
2. Description of the Related Art Conventional methods for evaluating the corrosion of zirconium-based metals include a high-temperature water corrosion test in which the metal is immersed in high-temperature water for a long period of time, and a corrosion test in steam which corrodes in steam.

【0003】高温水腐食試験では、試験の初期段階での
初期酸化処理は行われておらず、むしろ短時間に所定温
度に到達させて腐食し評価するものであった。また、蒸
気中腐食試験も、上記の初期酸化処理は行わずに短時間
で昇温するよう規定されている。また、蒸気中腐食試験
は、水質の影響を評価することができないと云う欠点が
ある。
[0003] In the high-temperature water corrosion test, an initial oxidation treatment is not performed in an initial stage of the test, but rather, a predetermined temperature is reached in a short time to evaluate corrosion. Further, the corrosion test in steam is also stipulated to raise the temperature in a short time without performing the above-described initial oxidation treatment. Further, the corrosion test in steam has a drawback that the effect of water quality cannot be evaluated.

【0004】最近、原子力プラント用の燃料被覆管等の
実製品において、上記腐食試験に合格した材料に局部加
速腐食が頻発した。この要因として、材料の製造条件や
適用条件が従来と異なる場合に生じ易いことが分かって
きた。こうした材料評価ができる試験法が要求されるよ
うになってきた。特に、こうした特異な局部加速腐食を
も予知できる、新しい腐食評価法が望まれている。
[0004] Recently, in actual products such as fuel cladding tubes for nuclear power plants, local accelerated corrosion frequently occurred in materials that passed the above corrosion test. It has been found that this is likely to occur when the manufacturing conditions and application conditions of the material are different from those in the related art. A test method capable of evaluating such materials has been required. In particular, a new corrosion evaluation method that can predict such unique localized accelerated corrosion is desired.

【0005】従来の腐食形態は局小部に選択的に進行す
るノジュラー腐食、あるいは、全面に進行する一様腐食
である。こうした材料選定のための腐食評価法として
は、ASTM G−2−74,ASTM G−2−8
0,ASTM B−353−95などがあるが、これら
の腐食試験法でも初期酸化処理についての規定はない。
[0005] Conventional forms of corrosion are nodular corrosion which selectively progresses to a small area or uniform corrosion which progresses to the entire surface. ASTM G-2-74 and ASTM G-2-8 are examples of corrosion evaluation methods for selecting such materials.
0, ASTM B-353-95, etc., but there is no provision for the initial oxidation treatment in these corrosion test methods.

【0006】また、ジルコニウム合金の耐食性の判定法
として特開昭60−242342号公報があるが、上記
と同様に特異な局部加速腐食を予知できるものではな
い。
As a method for determining the corrosion resistance of a zirconium alloy, there is Japanese Patent Application Laid-Open No. 60-242342, but it is not possible to predict peculiar local accelerated corrosion in the same manner as described above.

【0007】[0007]

【発明が解決しようとする課題】ジルコニウムやジルコ
ニウム合金の腐食が、水質に影響されることは指摘され
ているが、定量的な評価試験法がないのが現状である。
既述のように単純な蒸気中腐食試験ではこうした水質の
影響についての評価はできず、特に、定量的な評価試験
法ではなかった。
It has been pointed out that corrosion of zirconium and zirconium alloys is affected by water quality, but at present there is no quantitative evaluation test method.
As described above, the effect of water quality could not be evaluated by a simple corrosion test in steam, and in particular, it was not a quantitative evaluation test method.

【0008】また、実プラント運転温度での高温水浸漬
試験も重要な試験法ではあるが、その評価には長期間を
必要とするなどの問題があった。
[0008] A high-temperature water immersion test at an actual plant operating temperature is also an important test method, but its evaluation requires a long period of time.

【0009】本発明の目的は、ジルコニウム系金属材料
の局部加速腐食を事前に予測し、特に、水質の影響を評
価し得るジルコニウム系金属の腐食評価法を提供するこ
とにある。
It is an object of the present invention to provide a method for evaluating corrosion of a zirconium-based metal material in which local accelerated corrosion of a zirconium-based metal material is predicted in advance, and in particular, the influence of water quality can be evaluated.

【0010】[0010]

【課題を解決するための手段】ジルコニウムおよびジル
コニウム合金の初期酸化膜は、極めて低い温度から形成
し、その後の高温水あるいは水蒸気中での腐食で酸化膜
成長が継続する。該酸化膜はその成長過程において、あ
る時点で急激成長に移行し、加速腐食に転じる遷移点が
ある。この遷移点は材料組成等によって異なり、この遷
移点を定量評価することが腐食評価の基本となる。特
に、材料選定においては、水質影響を評価できる腐食評
価法が望まれていた。
An initial oxide film of zirconium and a zirconium alloy is formed at an extremely low temperature, and the growth of the oxide film is continued by the subsequent corrosion in high-temperature water or steam. In the growth process of the oxide film, there is a transition point at which the oxide film rapidly grows at a certain point and turns into accelerated corrosion. The transition point differs depending on the material composition and the like, and the quantitative evaluation of the transition point is the basis of the corrosion evaluation. In particular, in the selection of materials, a corrosion evaluation method capable of evaluating the influence of water quality has been desired.

【0011】本発明の基本原理は、ジルコニウム系金属
材料の保護皮膜となる初期酸化膜形成に際し、故意に不
安定皮膜の形成を助長させる低溶存酸素環境と、さら
に、その後に形成する保護酸化膜を、試薬添加等により
不安定にし、該材料の水質影響感受性を評価するもので
ある。本発明の要旨は次のとおりである。
The basic principle of the present invention is that a low dissolved oxygen environment which intentionally promotes formation of an unstable film when forming an initial oxide film serving as a protective film of a zirconium-based metal material, and a protective oxide film which is formed thereafter Is made unstable by the addition of a reagent or the like, and the water quality sensitivity of the material is evaluated. The gist of the present invention is as follows.

【0012】〔1〕 a.ジルコニウム系金属を溶存酸
素量が2〜100ppbの試験水を用いた高温水中また
は高温水と水蒸気中,一定温度で所定時間加熱処理(単
ステップ処理)、あるいは、溶存酸素量が2〜100p
pbの試験水を用いた高温水中または高温水と水蒸気
中,所定温度で段階的に所定時間加熱処理(複ステップ
処理)する初期酸化処理後、 b.溶存酸素量が実機の溶存酸素量(約150〜400
ppb)と同じ試験水を用いて実機使用温度で所定時間
加熱する高温水処理し、前記ジルコニウム系金属の表面
に形成された酸化膜の厚さの計測と、局部加速腐食の有
無で評価することを特徴とするジルコニウム系金属の腐
食評価法。
[1] a. Heat treatment of a zirconium-based metal in high-temperature water or high-temperature water and steam using test water having a dissolved oxygen content of 2 to 100 ppb at a constant temperature for a predetermined time (single-step treatment), or a dissolved oxygen content of 2 to 100 pb
After an initial oxidation treatment in which high-temperature water or high-temperature water and water vapor using pb test water are heated in a stepwise manner at a predetermined temperature for a predetermined time (multi-step processing), b. The dissolved oxygen amount is the dissolved oxygen amount of the actual machine (about 150 to 400
high-temperature water treatment using the same test water as in ppb) and heating at the actual operating temperature for a predetermined time, measuring the thickness of the oxide film formed on the surface of the zirconium-based metal, and evaluating the presence or absence of local accelerated corrosion A corrosion evaluation method for zirconium-based metals, characterized by the following.

【0013】〔2〕 a.ジルコニウム系金属を溶存酸
素量が2〜100ppbの試験水を用いた高温水中また
は高温水と水蒸気中,一定温度で所定時間加熱処理(単
ステップ処理)、あるいは、溶存酸素量が2〜100p
pbの試験水を用いた高温水中または高温水と水蒸気
中,所定温度で段階的に所定時間加熱処理(複ステップ
処理)する初期酸化処理後、 b.溶存酸素量が実機の溶存酸素量と同じ試験水を用い
て実機使用温度で所定時間加熱する高温水処理し、 c.一旦冷却後、高圧蒸気中490〜510℃,120
〜240時間処理し、前記ジルコニウム系金属の表面に
形成された酸化膜の厚さの計測と局部加速腐食の有無で
評価することを特徴とするジルコニウム系金属の腐食評
価法。
[2] a. Heat treatment of a zirconium-based metal in high-temperature water or high-temperature water and steam using test water having a dissolved oxygen content of 2 to 100 ppb at a constant temperature for a predetermined time (single-step treatment), or a dissolved oxygen content of 2 to 100 pb
After an initial oxidation treatment in which high-temperature water or high-temperature water and water vapor using pb test water are heated in a stepwise manner at a predetermined temperature for a predetermined time (multi-step processing), b. High-temperature water treatment using a test water having the same amount of dissolved oxygen as the amount of dissolved oxygen of the actual machine and heating at the actual machine operating temperature for a predetermined time; c. Once cooled, 490-510 ° C, 120
A method for evaluating the corrosion of a zirconium-based metal, which comprises treating the oxide film formed on the surface of the zirconium-based metal for up to 240 hours, and evaluating the thickness of the oxide film based on the presence or absence of localized accelerated corrosion.

【0014】〔3〕 前記初期酸化処理に用いる試験水
が、クロム酸ナトリウムあるいは硫酸ナトリウムを10
~6〜10~4mol/l含む前記のジルコニウム系金属の
腐食評価法。
[3] The test water used for the initial oxidation treatment is sodium chromate or sodium sulfate.
The method for evaluating corrosion of zirconium-based metals described above containing from 6 to 10 to 4 mol / l.

【0015】〔4〕 前記単ステップ処理は、加熱温度
80〜150℃,5〜50時間行う処理である前記のジ
ルコニウム系金属の腐食評価法。
[4] The method for evaluating corrosion of zirconium-based metals as described above, wherein the single-step treatment is a treatment performed at a heating temperature of 80 to 150 ° C. for 5 to 50 hours.

【0016】〔5〕 前記複ステップ処理は、50〜2
50℃まで50℃ステップ刻みに段階的に昇温し、各ス
テップにおける保持時間が5〜50時間である前記のジ
ルコニウム系金属の腐食評価法。
[5] The multi-step process is performed in the range of 50 to 2
The above-mentioned method for evaluating corrosion of zirconium-based metals, wherein the temperature is raised stepwise in steps of 50 ° C to 50 ° C, and the holding time in each step is 5 to 50 hours.

【0017】〔6〕 前記高温水処理は、高温水中もし
くは高温水と水蒸気の2相中で280〜340℃、24
〜240時間保持するものである前記のジルコニウム系
金属の腐食評価法。
[6] The high-temperature water treatment is performed at 280-340 ° C., 24 hours in high-temperature water or in two phases of high-temperature water and steam.
The above-mentioned method for evaluating corrosion of zirconium-based metals, which is maintained for up to 240 hours.

【0018】〔7〕 前記酸化膜の厚さの計測に換え
て、電気抵抗を計測する前記〔1〕のジルコニウム系金
属の腐食評価法。
[7] The method for evaluating corrosion of zirconium-based metals according to [1], wherein electric resistance is measured instead of measuring the thickness of the oxide film.

【0019】〔8〕 重量で、Sn:1〜2%,Fe:
0.05〜0.24%,Cr:0.05〜0.15%,N
i:0.03〜0.10%および残部が実質的にZrであ
るジルコニウム基合金において、溶存酸素量80ppb
で80℃,3.9MPaの高温水中24時間加熱後、溶
存酸素量200ppbで288℃,6.9MPaの高温
水中216時間加熱し、次いで、溶存酸素量200pp
bで500℃,10.3MPaの水蒸気中で120時間
加熱後の酸化被膜の厚さが5.5μm以下であることを
特徴とするジルコニウム基合金。
[8] Sn: 1-2% by weight, Fe:
0.05 to 0.24%, Cr: 0.05 to 0.15%, N
i: In a zirconium-based alloy in which 0.03 to 0.10% and the balance is substantially Zr, the amount of dissolved oxygen is 80 ppb.
After heating for 24 hours at 80 ° C. and 3.9 MPa in high-temperature water, heating at pp. 288 ° C. and 6.9 MPa in high-temperature water for 200 hours at 200 ppb of dissolved oxygen, and then 200 ppb for dissolved oxygen
b. A zirconium-based alloy characterized in that the thickness of the oxide film after heating in steam of 500 ° C. and 10.3 MPa for 120 hours is 5.5 μm or less.

【0020】[0020]

〔9〕 重量で、Sn:1〜2%,Fe:
0.05〜0.24%,Cr:0.05〜0.15%,N
i:0.03〜0.10%および残部が実質的にZrであ
るジルコニウム基合金において、溶存酸素量80ppb
で50℃,7時間、100℃で14時間、150℃で7
時間、200℃で14時間および250℃で7時間、順
次高温水にて加熱処理後、溶存酸素量200ppbで2
88℃,6.9MPaの高温水中216時間加熱し、次
いで、溶存酸素量200ppbで500℃,10.3M
Paの水蒸気中で216時間加熱後の酸化被膜の厚さが
10μm以下であることを特徴とするジルコニウム基合
金。
[9] By weight, Sn: 1-2%, Fe:
0.05 to 0.24%, Cr: 0.05 to 0.15%, N
i: In a zirconium-based alloy in which 0.03 to 0.10% and the balance is substantially Zr, the amount of dissolved oxygen is 80 ppb.
At 50 ° C for 7 hours, 100 ° C for 14 hours, 150 ° C for 7 hours
After heating at 200 ° C. for 14 hours and at 250 ° C. for 7 hours in sequence with high-temperature water, the dissolved oxygen content was 2
It is heated at 88 ° C. and 6.9 MPa in high-temperature water for 216 hours, and then at 500 ° C. and 10.3 M at a dissolved oxygen amount of 200 ppb.
A zirconium-based alloy, wherein the thickness of the oxide film after heating in water vapor of Pa for 216 hours is 10 μm or less.

【0021】[0021]

【発明の実施の形態】本発明の腐食評価法について説明
する。試験片として、シルコニウム被覆管を輪切りに切
断加工し、内面ジルコニウムライナー管については、ラ
イナー層を削除し、ヒータピン外径と摺合せ加工する。
試験片とヒータピンとの摺合せ加工は、両者のギヤップ
を最小限とし、沸騰場試験時に試験片表面が沸騰域とな
るよう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The corrosion evaluation method of the present invention will be described. As a test piece, a silconium cladding tube is cut into a round slice, and with respect to an inner zirconium liner tube, the liner layer is removed and the inner zirconium liner tube is rubbed with the outer diameter of the heater pin.
The sliding work between the test piece and the heater pin minimizes the gap between the two, so that the surface of the test piece is in the boiling range during the boiling field test.

【0022】本発明において最も重要な処理は初期酸化
処理にあり、図1に例示の単ステップ処理と、図2に例
示の複ステップ処理とがある。
The most important processing in the present invention is the initial oxidation processing, and includes a single-step processing shown in FIG. 1 and a multi-step processing shown in FIG.

【0023】単ステップ初期酸化処理の条件は80〜1
50℃で5〜50時間保持する。なお、雰囲気の圧力は
高温水環境が保つことができればよいが、沸騰場形成に
おいては各温度の蒸気臨界圧に設定する。加熱手段とし
ては、予熱器などの外部加熱またはヒータピンによる内
熱加熱でもよい。
The condition of the single-step initial oxidation treatment is 80 to 1
Hold at 50 ° C. for 5-50 hours. Note that the pressure of the atmosphere may be such that a high-temperature water environment can be maintained, but in the formation of a boiling field, it is set to the steam critical pressure at each temperature. The heating means may be external heating such as a preheater or internal heating using a heater pin.

【0024】試験水環境は循環式が望ましく、試験水
(純水)の溶存酸素は重要な要因であり、その濃度は2
〜100ppbが基本となる。
The test water environment is desirably a circulation type, and the dissolved oxygen in the test water (pure water) is an important factor.
100100 ppb is the basis.

【0025】また、水質試験の際の添加試薬の濃度は、
クロム酸ナトリウム(Na2CrO4)または硫酸ナトリ
ウム(Na2SO4)を1×10~5mol/l程度がよ
く、これにより試験片の初期酸化膜をより不安定とする
ことができ、結果的に腐食感受性を高感度で引き出すこ
とができる。
The concentration of the added reagent in the water quality test is as follows:
The amount of sodium chromate (Na 2 CrO 4 ) or sodium sulfate (Na 2 SO 4 ) is preferably about 1 × 10 to 5 mol / l, whereby the initial oxide film of the test piece can be made more unstable. Corrosion sensitivity can be extracted with high sensitivity.

【0026】次いで、上記の不安定な初期酸化膜を形成
した試験片を、実機製品の使用温度280〜340℃お
よび実機の溶存酸素量と同じ試験水を用いて高温水中ま
たは高温水と水蒸気を含む二相環境中で24〜240時
間処理する高温水処理を行う。
Next, the test piece on which the unstable initial oxide film was formed was subjected to hot water or high-temperature water or water vapor using test water having a working temperature of 280 to 340 ° C. and a dissolved oxygen amount of the real machine. High-temperature water treatment is performed in a two-phase environment for 24 to 240 hours.

【0027】次に、490℃〜510℃の高圧蒸気中で
120〜240時間処理する蒸気中処理を施す。
Next, an in-steam treatment is performed in a high-pressure steam at 490 ° C. to 510 ° C. for 120 to 240 hours.

【0028】上記処理による腐食試験片の外観を観察
し、図5に示すような局部加速腐食の有無を検査し、ま
た、その腐食増量並びに酸化膜の厚さを計測して、腐食
感受性を評価する。
The corrosion susceptibility was evaluated by observing the appearance of the corrosion test specimen by the above treatment, inspecting for the presence of localized accelerated corrosion as shown in FIG. 5, and measuring the increase in corrosion and the thickness of the oxide film. I do.

【0029】複ステップ初期酸化処理の条件は、室温か
ら50℃ステップ、各ステップの保持時間5〜50時間
で、段階的に250℃まで昇温し処理する。なお、雰囲
気の圧力は高温水環境で、一部、高温水と蒸気との二層
環境でもよい。加熱手段、試験水環境および水質は前記
単ステップ処理の場合と同じでよい。
The conditions of the multi-step initial oxidation treatment are as follows: the temperature is increased from room temperature to 250 ° C. in steps of 50 ° C., and the holding time of each step is 5 to 50 hours. The pressure of the atmosphere is a high-temperature water environment, and may be a two-layer environment of high-temperature water and steam. The heating means, test water environment and water quality may be the same as in the case of the single-step treatment.

【0030】次いで、上記の不安定な初期酸化膜を付与
後は、単ステップ処理の場合と同じ条件で、高温水処理
後、次いで、蒸気中処理を施し、図5に示すような局部
加速腐食の有無,腐食増量並びに酸化膜厚を計測して、
腐食感受性を評価する。
Next, after the formation of the unstable initial oxide film, a high-temperature water treatment and then a steam treatment are performed under the same conditions as in the case of the single-step treatment, and local accelerated corrosion as shown in FIG. By measuring the presence or absence of corrosion, the increase in corrosion, and the thickness of the oxide film,
Evaluate corrosion susceptibility.

【0031】また、初期酸化処理と高温水処理後、形成
された酸化膜の電気抵抗(比抵抗)を計測することによ
り、腐食の状況を判定することもできる。
After the initial oxidation treatment and the high-temperature water treatment, the corrosion state can be determined by measuring the electric resistance (specific resistance) of the formed oxide film.

【0032】次に、初期酸化処理における加熱温度、処
理時間および試験水の溶存酸素量の各範囲の設定理由を
記述する。
Next, the reasons for setting the respective ranges of the heating temperature, the treatment time, and the dissolved oxygen amount of the test water in the initial oxidation treatment will be described.

【0033】初期酸化処理の温度を50℃〜150℃と
するのは、50℃未満では初期酸化膜が形成できず、1
50℃を超えると材料全ての表面に緻密で安定な酸化膜
となるため、後の蒸気中処理で材料固有の腐食の程度を
引き出すことができず、材料を選定することができな
い。また、処理時間5時間未満では材料固有の初期酸化
膜が形成されず、材料の特性を引き出すことができな
い。処理時間は長いほどよいが50時間を超えると材料
選定の評価試験法としては、コスト高とまるため好まし
くない。
The reason for setting the temperature of the initial oxidation treatment to 50 ° C. to 150 ° C. is that if the temperature is lower than 50 ° C., an initial oxide film cannot be formed, and
If the temperature exceeds 50 ° C., a dense and stable oxide film is formed on the entire surface of the material, and the degree of corrosion inherent to the material cannot be brought out in the subsequent treatment in steam, and the material cannot be selected. If the processing time is less than 5 hours, an initial oxide film unique to the material is not formed, and the characteristics of the material cannot be brought out. The longer the processing time, the better, but if it exceeds 50 hours, it is not preferable because the cost increases as an evaluation test method for material selection.

【0034】溶存酸素量を2〜100ppbとしたの
は、2ppb未満では処理時間の短い場合は酸化膜形成
が不十分となり、100ppbを超えると材料全ての面
で緻密な酸化膜が形成されて、後の蒸気中処理で材料固
有の腐食の程度を引き出すことができず材料の選定と云
う観点から好ましくない。
The reason why the amount of dissolved oxygen is set to 2 to 100 ppb is that if the amount of dissolved oxygen is less than 2 ppb, the oxide film is insufficiently formed if the treatment time is short, and if it exceeds 100 ppb, a dense oxide film is formed on all surfaces of the material. The degree of corrosion inherent in the material cannot be derived in the subsequent treatment in steam, which is not preferable from the viewpoint of material selection.

【0035】また、複ステップ初期酸化処理の温度を5
0℃ステップで250℃までとした理由は、50℃未満
では初期酸化膜が形成できない。150℃までは所定の
効果は得られるが、200℃〜250℃では不安定酸化
膜の成長を抑制する作用がある。しかし、腐食感受性の
高い低耐食性材料には好適である。
The temperature of the multi-step initial oxidation treatment is set to 5
The reason why the temperature is set to 250 ° C. in the 0 ° C. step is that an initial oxide film cannot be formed at a temperature lower than 50 ° C. Although a predetermined effect can be obtained up to 150 ° C., there is an effect of suppressing the growth of an unstable oxide film at 200 ° C. to 250 ° C. However, it is suitable for low corrosion resistant materials having high corrosion sensitivity.

【0036】また、処理時間5時間未満では材料固有な
初期酸化膜が形成できない。一方、50時間以上でも特
性を引き出すことができるが、200℃以上における長
時間の処理は不安定酸化膜成長の抑制作用が大きくな
り、結果的に好ましくない。
If the processing time is less than 5 hours, an initial oxide film unique to the material cannot be formed. On the other hand, although the characteristics can be brought out even for 50 hours or more, a long-time treatment at 200 ° C. or more increases the effect of suppressing the growth of the unstable oxide film, which is not preferable as a result.

【0037】溶存酸素量2〜100ppbとした理由
は、単ステップ初期酸化処理と同じ理由である。
The reason why the amount of dissolved oxygen is 2 to 100 ppb is the same as that in the single-step initial oxidation treatment.

【0038】前記の複ステップ初期酸化処理の最大の利
点は、おおまかではあるが、一度の試験で水質影響評価
による材料選定ができることである。
The greatest advantage of the above-described multi-step initial oxidation treatment is that, roughly, the material can be selected by water quality influence evaluation in a single test.

【0039】初期酸化処理に引き続いて行う高温水処理
は、実機プラントの運転温度における腐食を開始させる
ことにある。処理時間24〜240時間とした理由は腐
食の安定にほぼ24時間が必要であり、さらに長時間の
保持でよりばらつきのない評価が可能となるが、240
時間処理すれば十分である。なお、水質は試薬無添加で
もできるが、試薬添加により、その影響をより明確に評
価することができる。
The high-temperature water treatment following the initial oxidation treatment is to initiate corrosion at the operating temperature of the actual plant. The reason for setting the treatment time to 24 to 240 hours is that approximately 24 hours are required for stabilization of corrosion, and evaluation with less variation is possible by holding for a longer time.
Time processing is enough. In addition, although the water quality can be added without adding a reagent, the effect can be more clearly evaluated by adding the reagent.

【0040】蒸気中処理は、初期酸化処理における水質
影響の不安定酸化膜を加速腐食させる処理である。温度
を490〜510℃とするのは、490℃未満では腐食
速度が小さく局部加速腐食とならない。一方、510℃
を超えるとノジュラー腐食が発生し易くなり、水質影響
評価の材料選定が困難になる。
The in-steam treatment is a treatment for accelerating corrosion of an unstable oxide film affected by water quality in the initial oxidation treatment. When the temperature is set to 490 to 510 ° C., if the temperature is lower than 490 ° C., the corrosion rate is low and local accelerated corrosion does not occur. On the other hand, 510 ° C
If it exceeds 300, nodular corrosion is likely to occur, and it becomes difficult to select materials for water quality impact assessment.

【0041】なお、本発明の腐食評価法におけるジルコ
ニウム系金属としては、重量で、Sn:1〜2%,F
e:0.05〜0.24%,Cr:0.05〜0.15%,
Ni:0.03〜0.10%および残部が実質的にZrで
あるジルコニウム基合金が好ましい。より好ましくは、
Sn:1.2〜1.7%,Fe:0.07〜0.20%,C
r:0.05〜0.15%,Ni:0.03〜0.10%お
よび残部が実質的にZrであるジルコニウム基合であ
る。次に本発明を実施例に基づき説明する。
The zirconium-based metal used in the corrosion evaluation method of the present invention is Sn: 1-2% by weight, F:
e: 0.05 to 0.24%, Cr: 0.05 to 0.15%,
Ni: a zirconium-based alloy in which 0.03 to 0.10% and the balance substantially Zr are preferable. More preferably,
Sn: 1.2 to 1.7%, Fe: 0.07 to 0.20%, C
r: 0.05 to 0.15%, Ni: 0.03 to 0.10%, and the balance is a zirconium group which is substantially Zr. Next, the present invention will be described based on examples.

【0042】[0042]

【実施例】〔実施例 1〕ジルカロイ−2で作製したZ
rライナー付き被覆管において、2種類(A材,B材と
呼ぶ)の材料組成の異なるものについて水質影響評価を
実施した。
[Example 1] Z made of Zircaloy-2
The effect of water quality was evaluated for two types (materials A and B) of the cladding tubes with the r liner having different material compositions.

【0043】A材の組成は、1.43%Sn,0.16%
Fe,0.10%Cr,0.05%Ni,残部Zrであ
る。B材の組成は、1.29%Sn,0.19%Fe,
0.10%Cr,0.07%Ni,残部Zrである。
The composition of material A is 1.43% Sn, 0.16%
Fe, 0.10% Cr, 0.05% Ni, and the balance Zr. The composition of material B is 1.29% Sn, 0.19% Fe,
0.10% Cr, 0.07% Ni, balance Zr.

【0044】試験片の構造は図3の模式図に示すよう
に、内径はヒータピン外径(10.85mm)に合わ
せ、かつ、長さ20mmに加工,形成した。この試験片
を図4の高温水腐食セル内にセットし、図1に示す処理
方法で、予熱器を用いた単ステップ処理による初期酸化
処理、高温水処理(溶存酸素DO:200ppb)およ
び蒸気中処理を行った。
As shown in the schematic diagram of FIG. 3, the structure of the test piece was processed and formed so that the inner diameter matched the outer diameter of the heater pin (10.85 mm) and the length was 20 mm. This test piece was set in the high-temperature water corrosion cell of FIG. 4, and the initial oxidation treatment by a single-step treatment using a preheater, the high-temperature water treatment (dissolved oxygen DO: 200 ppb), and Processing was performed.

【0045】本発明の評価法では、A材とB材とを比較
すると、図6に示すようにA材の腐食感受性は、その酸
化膜厚がB材の酸化膜厚に比べて厚いので腐食し易く、
80℃および150℃における水質影響の腐食感受性が
高いことが分かった。従って、水質変動のあるプラント
の被覆管としてはB材が適用でき、A材は不合格と判定
される。
In the evaluation method of the present invention, when the material A and the material B are compared, as shown in FIG. 6, the corrosion sensitivity of the material A is higher because the oxide film thickness of the material A is larger than the oxide film thickness of the material B. Easy to do,
It was found that the corrosion susceptibility of the effect of water quality at 80 ° C and 150 ° C was high. Therefore, the material B can be applied as the cladding pipe of the plant having the water quality fluctuation, and the material A is determined to be unacceptable.

【0046】また、比較処理方法(溶存酸素DO:40
0ppb)では、溶存酸素DOが本発明による評価法の
範囲よりも高く、A材,B材共にその酸化膜の厚さが同
程度で有意差がなく、材料選定ができなかった。
Further, a comparative treatment method (dissolved oxygen DO: 40)
At 0 ppb), the dissolved oxygen DO was higher than the range of the evaluation method according to the present invention, the thicknesses of the oxide films of the materials A and B were almost the same, there was no significant difference, and the material could not be selected.

【0047】なお、本発明による評価法で材料選定した
結果は、実炉試験結果でも同様な傾向を示し、良く一致
すことを確認した。
The results of material selection by the evaluation method according to the present invention show the same tendency in actual furnace test results, and it was confirmed that the results agreed well.

【0048】〔実施例 2〕図7は、実施例1で用いた
A材とB材の試験片を試薬添加した試験水で本発明の評
価法を適用した結果を示す図である。
Example 2 FIG. 7 is a diagram showing the results of applying the evaluation method of the present invention to test water to which test pieces of materials A and B used in Example 1 were added with reagents.

【0049】処理方法としては、図2の複ステップ初期
酸化処理、高温水処理(溶存酸素DO:200ppb)
および蒸気中処理を行った。
As a treatment method, a multi-step initial oxidation treatment and a high-temperature water treatment (dissolved oxygen DO: 200 ppb) shown in FIG.
And steam treatment.

【0050】初期酸化処理は、試験水として試薬無添加
と、クロム酸ナトリウム(Na2CrO4)と、硫酸ナト
リウム(Na2SO4)をそれぞれ添加したもので、溶存
酸素DOは80ppbとした。本発明による評価法では
A材がいずれの試薬添加でも加速腐食が識別された。
The initial oxidation treatment was performed without any reagent as test water, sodium chromate (Na 2 CrO 4 ), and sodium sulfate (Na 2 SO 4 ), and the dissolved oxygen DO was 80 ppb. In the evaluation method according to the present invention, accelerated corrosion was identified when the material A was added with any of the reagents.

【0051】図5は腐食試験後の試験片外観を示すもの
で、A材ではノジュラー腐食とは異なる灰色の局部加速
腐食8が生じた。なお、その他の地は黒色の一様腐食を
示した。比較評価法(DO:400ppb)では、局部
加速腐食は認められず、全面が黒色の一様腐食を呈し
た。
FIG. 5 shows the appearance of the test piece after the corrosion test. In the case of material A, a gray localized accelerated corrosion 8 different from nodular corrosion occurred. The other areas showed uniform black corrosion. In the comparative evaluation method (DO: 400 ppb), no localized accelerated corrosion was observed, and the entire surface exhibited uniform black corrosion.

【0052】図7から本発明の評価法で行ったA材は局
部加速腐食が生じたのが特徴で、該局部加速腐食部の酸
化膜の厚さは、試薬無添加、Na2SO4、Na2CrO4
の順で高くなった。本実施例は、製品の使用環境あるい
は耐用期間などを考慮した材料設計のデータとして極め
て有効である。
As shown in FIG. 7, the material A obtained by the evaluation method of the present invention is characterized by local accelerated corrosion. The thickness of the oxide film at the local accelerated corrosion portion is determined by adding no reagent, adding Na 2 SO 4 , Na 2 CrO 4
In the order. This embodiment is extremely effective as data of material design in consideration of the use environment or the service life of the product.

【0053】なお、比較評価法の高濃度溶存酸素(D
O:400ppb)条件では局部加速腐食は発生せず、
従って、材料選定ができないことを示している。
Incidentally, the high concentration dissolved oxygen (D
O: 400 ppb) under the condition, no localized accelerated corrosion occurs,
Therefore, it indicates that the material cannot be selected.

【0054】また、従来方法である500℃,10.3
MPa蒸気中,216時間の蒸気中処理による腐食試験
では局部加速腐食は検出できず、酸化膜の厚さもA材が
5.5μm,B材も5.0μmで、両者に有意差がないた
め材料選定ができないことが分かる。
The conventional method of 500 ° C., 10.3
Local accelerated corrosion could not be detected in a corrosion test by steam treatment in steam for 216 hours in MPa steam, and the thickness of the oxide film was 5.5 μm for material A and 5.0 μm for material B, and there was no significant difference between the two. It turns out that selection is not possible.

【0055】[0055]

【表1】 [Table 1]

【0056】表1に、本発明の評価法と従来の評価法と
の材料選定の特徴をまとめて示す。本発明法の最大の特
徴は、水質影響評価が高信頼度で評価できることであ
る。従来法の蒸気中腐食試験は、水質評価ができないこ
と、並びに高温水浸漬試験では評価に長期間を要する。
Table 1 summarizes the characteristics of material selection between the evaluation method of the present invention and the conventional evaluation method. The greatest feature of the method of the present invention is that water quality impact assessment can be performed with high reliability. The conventional corrosion test in steam cannot evaluate the water quality, and the high temperature water immersion test requires a long time for the evaluation.

【0057】〔実施例 3〕初期酸化処理と高温水処理
を行った試料の比抵抗(Ω・cm)を測定することで、
材料の選定を行うことができる。
Example 3 By measuring the specific resistance (Ω · cm) of the sample subjected to the initial oxidation treatment and the high-temperature water treatment,
Material selection can be performed.

【0058】比抵抗の小さい試料は、酸化膜中の電子の
移動が容易で、これによって酸素が母地界面に供給され
易くなり腐食が加速される。比抵抗の大きな試料は酸化
膜が緻密なために電子の移動が少ないことから、酸素が
母地界面に供給されにくく、従って腐食は加速されな
い。
In a sample having a small specific resistance, electrons in the oxide film can easily move, whereby oxygen is easily supplied to the interface between the host and the substrate, and the corrosion is accelerated. In a sample having a large specific resistance, since the oxide film is dense, the movement of electrons is small, so that oxygen is hardly supplied to the interface between the host and the substrate, so that the corrosion is not accelerated.

【0059】実施例1で用いたA材とB材について、同
様にして初期酸化処理と高温水処理のみを行なった試料
の比抵抗を測定した結果を図8に示す。図8から分かる
ようにA材に比べてB材の比抵抗が大きく、前記実施例
と同様の結果が得られた。
FIG. 8 shows the results of measuring the specific resistances of the samples A and B used in Example 1 which were similarly subjected to only the initial oxidation treatment and the high-temperature water treatment. As can be seen from FIG. 8, the specific resistance of the material B was larger than that of the material A, and the same result as in the above example was obtained.

【0060】なお、比抵抗の測定には交流インピーダン
ス法を用い、室温で電圧10〜200mV,周波数1m
Hz〜100kHzで測定した。
The specific resistance was measured by the AC impedance method at room temperature with a voltage of 10 to 200 mV and a frequency of 1 m.
Hz to 100 kHz.

【0061】[0061]

【発明の効果】本発明の腐食評価法によれば、ジルコニ
ウム系金属材料の局部加速腐食を事前に予測することが
できる。また、水質の影響についても評価できるので、
ジルコニウム系金属材料の選定に有力な評価試験法であ
る。
According to the corrosion evaluation method of the present invention, localized accelerated corrosion of a zirconium-based metal material can be predicted in advance. You can also evaluate the impact of water quality,
This is a powerful evaluation test method for selecting zirconium-based metal materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単ステップ昇温初期酸化処理の温度−
時間を示す図である。
FIG. 1 shows the temperature of the single-step temperature increasing initial oxidation treatment of the present invention.
It is a figure showing time.

【図2】本発明の複ステップ昇温初期酸化処理の温度−
時間を示す図である。
FIG. 2 shows the temperature of the multi-step heating initial oxidation treatment according to the present invention.
It is a figure showing time.

【図3】試験片とヒータピンとの関係を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a relationship between a test piece and a heater pin.

【図4】初期酸化処理用腐食セルの概略図である。FIG. 4 is a schematic view of a corrosion cell for initial oxidation treatment.

【図5】蒸気中処理後の試験片外観の模式図である。FIG. 5 is a schematic view of a test piece appearance after a treatment in steam.

【図6】単ステップ昇温初期酸化処理の試験片の酸化膜
の厚さを示すグラフである。
FIG. 6 is a graph showing a thickness of an oxide film of a test piece subjected to a single-step temperature raising initial oxidation treatment.

【図7】複ステップ昇温初期酸化処理の試験片の酸化膜
の厚さを示すグラフである。
FIG. 7 is a graph showing a thickness of an oxide film of a test piece in a multi-step temperature raising initial oxidation treatment.

【図8】初期酸化処理と高温水処理後の試験片の酸化膜
の電気比抵抗を示すグラフである。
FIG. 8 is a graph showing the electrical resistivity of an oxide film of a test piece after an initial oxidation treatment and a high-temperature water treatment.

【符号の説明】[Explanation of symbols]

1…試験片、2…ヒータピン、3…腐食セル、4…高温
水、5…高温水および水蒸気、6…ヒータ電源、7…試
験片表面の地、8…局部加速腐食部。
DESCRIPTION OF SYMBOLS 1 ... Test piece, 2 ... Heater pin, 3 ... Corrosion cell, 4 ... High temperature water, 5 ... High temperature water and steam, 6 ... Heater power supply, 7 ... Ground on test piece surface, 8 ... Local accelerated corrosion part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 輝宜 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 安田 隆芳 茨城県日立市幸町三丁目2番2号 日立ニ ュ−クリアエンジニアリング株式会社内 Fターム(参考) 2G050 AA01 AA04 BA01 BA10 CA02 DA01 EA01 EA05 EA06 EB07 EC03 EC05 2G075 AA02 BA20 CA38 CA45 DA14 DA15 EA10 FA01 FA10 FA20 FC06 FC13 FC16 GA21 GA34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruyoshi Abe 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. No. 2 F-term in Hitachi New Clear Engineering Co., Ltd. (Reference) 2G050 AA01 AA04 BA01 BA10 CA02 DA01 EA01 EA05 EA06 EB07 EC03 EC05 2G075 AA02 BA20 CA38 CA45 DA14 DA15 EA10 FA01 FA10 FA20 FC06 FC13 FC16 GA21 GA34

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 a.ジルコニウム系金属を溶存酸素量が
2〜100ppbの試験水を用いた高温水中または高温
水と水蒸気中,一定温度で所定時間加熱処理(単ステッ
プ処理)、あるいは、溶存酸素量が2〜100ppbの
試験水を用いた高温水中または高温水と水蒸気中,所定
温度で段階的に所定時間加熱処理(複ステップ処理)す
る初期酸化処理後、 b.溶存酸素量が実機の溶存酸素量と同じ試験水を用い
て実機使用温度で所定時間加熱する高温水処理し、 前記ジルコニウム系金属の表面に形成された酸化膜の厚
さの計測と、局部加速腐食の有無で評価することを特徴
とするジルコニウム系金属の腐食評価法。
1. A method comprising: a. Heat treatment of zirconium-based metal in test water with a dissolved oxygen content of 2 to 100 ppb in high-temperature water or high-temperature water and steam at a constant temperature for a predetermined time (single-step treatment), or test with a dissolved oxygen content of 2 to 100 ppb After an initial oxidation treatment in which high-temperature water using water or high-temperature water and steam is heated stepwise at a predetermined temperature for a predetermined time (multi-step processing), b. Using a test water having the same amount of dissolved oxygen as the dissolved oxygen of the actual machine, performing high-temperature water treatment by heating at the actual operating temperature for a predetermined time, measuring the thickness of the oxide film formed on the surface of the zirconium-based metal, and accelerating local acceleration A method for evaluating the corrosion of zirconium-based metals, characterized by evaluating the presence or absence of corrosion.
【請求項2】 a.ジルコニウム系金属を溶存酸素量が
2〜100ppbの試験水を用いた高温水中または高温
水と水蒸気中,一定温度で所定時間加熱処理(単ステッ
プ処理)、あるいは、溶存酸素量が2〜100ppbの
試験水を用いた高温水中または高温水と水蒸気中,所定
温度で段階的に所定時間加熱処理(複ステップ処理)す
る初期酸化処理後、 b.溶存酸素量が実機の溶存酸素量と同じ試験水を用い
て実機使用温度で所定時間加熱する高温水処理し、 c.一旦冷却後、高圧蒸気中490〜510℃,120
〜240時間処理し、 前記ジルコニウム系金属の表面に形成された酸化膜の厚
さの計測と局部加速腐食の有無で評価することを特徴と
するジルコニウム系金属の腐食評価法。
2. A method comprising: a. Heat treatment of zirconium-based metal in test water with a dissolved oxygen content of 2 to 100 ppb in high-temperature water or high-temperature water and steam at a constant temperature for a predetermined time (single-step treatment), or test with a dissolved oxygen content of 2 to 100 ppb After an initial oxidation treatment in which high-temperature water using water or high-temperature water and steam is heated stepwise at a predetermined temperature for a predetermined time (multi-step processing), b. High-temperature water treatment using a test water having the same amount of dissolved oxygen as the amount of dissolved oxygen of the actual machine and heating at the actual machine operating temperature for a predetermined time; c. Once cooled, 490-510 ° C, 120
A method for evaluating corrosion of a zirconium-based metal, characterized by measuring the thickness of an oxide film formed on the surface of the zirconium-based metal and evaluating the presence or absence of local accelerated corrosion.
【請求項3】 前記初期酸化処理に用いる試験水が、ク
ロム酸ナトリウムあるいは硫酸ナトリウムを10~6〜1
0~4mol/l含む請求項1または2に記載のジルコニ
ウム系金属の腐食評価法。
3. The test water used for the initial oxidation treatment is sodium chromate or sodium sulfate of 10 to 6 to 1
3. The method for evaluating corrosion of a zirconium-based metal according to claim 1, which contains 0 to 4 mol / l.
【請求項4】 前記単ステップ処理は、加熱温度80〜
150℃,5〜50時間行う処理である請求項1,2ま
たは3に記載のジルコニウム系金属の腐食評価法。
4. The method according to claim 1, wherein the single-step processing includes a heating temperature of 80 to
4. The method for evaluating corrosion of zirconium-based metals according to claim 1, wherein the treatment is performed at 150 [deg.] C. for 5 to 50 hours.
【請求項5】 前記複ステップ処理は、50〜250℃
まで50℃ステップ刻みに段階的に昇温し、各ステップ
における保持時間が5〜50時間である請求項1,2ま
たは3に記載のジルコニウム系金属の腐食評価法。
5. The multi-step process is performed at 50 to 250 ° C.
The method for evaluating corrosion of zirconium-based metals according to claim 1, 2 or 3, wherein the temperature is raised stepwise in steps of 50 ° C until the holding time in each step is 5 to 50 hours.
【請求項6】 前記高温水処理は、高温水中もしくは高
温水と水蒸気の2相中で280〜340℃、24〜24
0時間保持するものである請求項1,2または3に記載
のジルコニウム系金属の腐食評価法。
6. The high-temperature water treatment is performed at 280 to 340 ° C. and 24 to 24 in high-temperature water or two phases of high-temperature water and steam.
The zirconium-based metal corrosion evaluation method according to claim 1, wherein the zirconium-based metal is held for 0 hours.
【請求項7】 前記酸化膜の厚さの計測に換えて、電気
抵抗を計測する請求項1に記載のジルコニウム系金属の
腐食評価法。
7. The method for evaluating corrosion of a zirconium-based metal according to claim 1, wherein electric resistance is measured instead of measuring the thickness of the oxide film.
【請求項8】 重量で、Sn:1〜2%,Fe:0.0
5〜0.24%,Cr:0.05〜0.15%,Ni:0.
03〜0.10%および残部が実質的にZrであるジル
コニウム基合金において、溶存酸素量80ppbで80
℃,3.9MPaの高温水中24時間加熱後、溶存酸素
量200ppbで288℃,6.9MPaの高温水中2
16時間加熱し、次いで、溶存酸素量200ppbで5
00℃,10.3MPaの水蒸気中で120時間加熱後
の酸化被膜の厚さが5.5μm以下であることを特徴と
するジルコニウム基合金。
8. By weight, Sn: 1-2%, Fe: 0.0
5 to 0.24%, Cr: 0.05 to 0.15%, Ni: 0.2%
In a zirconium-based alloy containing 0.3 to 0.10% and the balance being substantially Zr, the dissolved oxygen amount is 80 ppb.
After heating for 24 hours at 3.9 MPa and 3.9 MPa in high-temperature water, the dissolved oxygen amount was 200 ppb and 288 ° C. and 6.9 MPa in high-temperature water.
Heat for 16 hours and then dissolve at 200 ppb
A zirconium-based alloy having a thickness of an oxide film after heating in steam of 00 ° C. and 10.3 MPa for 120 hours of 5.5 μm or less.
【請求項9】 重量で、Sn:1〜2%,Fe:0.0
5〜0.24%,Cr:0.05〜0.15%,Ni:0.
03〜0.10%および残部が実質的にZrであるジル
コニウム基合金において、溶存酸素量80ppbで50
℃,7時間、100℃で14時間、150℃で7時間、
200℃で14時間および250℃で7時間、順次高温
水にて加熱処理後、溶存酸素量200ppbで288
℃,6.9MPaの高温水中216時間加熱し、次い
で、溶存酸素量200ppbで500℃,10.3MP
aの水蒸気中で216時間加熱後の酸化被膜の厚さが1
0μm以下であることを特徴とするジルコニウム基合
金。
9. By weight, Sn: 1-2%, Fe: 0.0
5 to 0.24%, Cr: 0.05 to 0.15%, Ni: 0.2%
In a zirconium-based alloy having a concentration of 0.3 to 0.10% and the balance being substantially Zr, a dissolved oxygen amount of 50 ppb is 50%.
C, 7 hours, 100 ° C for 14 hours, 150 ° C for 7 hours,
After heat treatment with high temperature water for 14 hours at 200 ° C. and 7 hours at 250 ° C., 288 at 200 ppb of dissolved oxygen.
At 6.9 MPa in high-temperature water for 216 hours, and then at 500 ° C. and 10.3 MPa at 200 ppb of dissolved oxygen.
The thickness of the oxide film after heating for 216 hours in the water vapor of a is 1
A zirconium-based alloy having a thickness of 0 μm or less.
JP10271161A 1998-09-25 1998-09-25 Corrosion evaluation method for zirconium-series metal and zirconium-based alloy Pending JP2000097843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10271161A JP2000097843A (en) 1998-09-25 1998-09-25 Corrosion evaluation method for zirconium-series metal and zirconium-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10271161A JP2000097843A (en) 1998-09-25 1998-09-25 Corrosion evaluation method for zirconium-series metal and zirconium-based alloy

Publications (1)

Publication Number Publication Date
JP2000097843A true JP2000097843A (en) 2000-04-07

Family

ID=17496196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10271161A Pending JP2000097843A (en) 1998-09-25 1998-09-25 Corrosion evaluation method for zirconium-series metal and zirconium-based alloy

Country Status (1)

Country Link
JP (1) JP2000097843A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube
KR100932246B1 (en) 2008-02-27 2009-12-16 한국원자력연구원 Nuclear Fuel Cladding Tube Simulation Test Apparatus and Method
JP2013092432A (en) * 2011-10-25 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Life estimation of metallic material due to occurrence of stress corrosion crack, and inspection planning system for structure used under corrosive water environment
DE112010005938T5 (en) 2010-10-15 2013-10-02 Toyota Jidosha Kabushiki Kaisha antivibration
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod
CN104034651A (en) * 2014-06-26 2014-09-10 苏州热工研究院有限公司 Experiment device special for evaluating corrosion performance of nuclear station cladding material in high temperature steam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275620A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Accelerated corrosiveness test method for component material made of zirconium alloy for boiling water reactor
JP2009031148A (en) * 2007-07-27 2009-02-12 Nippon Nuclear Fuel Dev Co Ltd Method and device for testing fuel-cladding tube
KR100932246B1 (en) 2008-02-27 2009-12-16 한국원자력연구원 Nuclear Fuel Cladding Tube Simulation Test Apparatus and Method
DE112010005938T5 (en) 2010-10-15 2013-10-02 Toyota Jidosha Kabushiki Kaisha antivibration
JP2013092432A (en) * 2011-10-25 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Life estimation of metallic material due to occurrence of stress corrosion crack, and inspection planning system for structure used under corrosive water environment
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod
CN104034651A (en) * 2014-06-26 2014-09-10 苏州热工研究院有限公司 Experiment device special for evaluating corrosion performance of nuclear station cladding material in high temperature steam

Similar Documents

Publication Publication Date Title
Panter et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600
JP4042362B2 (en) Ni-base alloy product and manufacturing method thereof
Kain et al. Testing sensitization and predicting susceptibility to intergranular corrosion and intergranular stress corrosion cracking in austenitic stainless steels
Bellezze et al. Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing
Lee et al. Electrochemical characterization and corrosion behavior of an Fe‐Mn‐Si shape memory alloy in simulated concrete pore solutions
JP2000097843A (en) Corrosion evaluation method for zirconium-series metal and zirconium-based alloy
Cussac et al. Low-cycle fatigue crack initiation and propagation from controlled surface imperfections in nuclear steels
Gonzalez et al. Optimization of the double loop electrochemical potentiokinetic reactivation method for detecting sensitization of nickel alloy 690
US7175720B2 (en) Non-destructive testing method of determining the depletion of a coating
Ignatiev et al. Compatibility of selected Ni-based alloys in molten Li, Na, Be/F salts with PuF3 and tellurium additions
Osgerby et al. Tensile cracking of a chromia layer on a stainless steel during thermal cycling with hold periods
Bandyopadhyay et al. The Effect of phosphorus on intergranular caustic cracking of NiCr steel
JP2011179083A (en) Etching solution and etching method for high-chromium steel, replica sampling method and creep damage assessment method
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
EP1426760A1 (en) A non-destructive testing method of determining the service metal temperature of a component
JP4105911B2 (en) Metal element content prediction method and metal element content decrease timing prediction method
Lacerda et al. Pitting corrosion behavior of UNS S31803 and UNS S32304 duplex stainless steels in 3.5 wt% NaCl solution
Jiang et al. Irradiation-induced corrosion tendencies evolution at the phase boundaries containing carbides in duplex stainless steel
James Fatigue-crack propagation behavior of Incoloy 800 at elevated temperatures
Martin Investigation of long-term exposure effects under stress of two titanium structural alloys
Yonezawa et al. A mechanistic study of stress corrosion crack propagation in heavily cold worked TT alloy 690 exposed to simulated PWR primary water
Hua et al. General Corrosion Studies of Candidate Container Materials in Environments Relevant to Nuclear Waste Repository
Cuevas-Arteaga et al. Analysis of Electrochemical Impedance and Noise Data for AISI-310 Exposed to Lithium Bromide Solution
Almeraya-Calderon et al. Electrochemical studies of hot corrosion of type 347H stainless steel
Zhao et al. Study on Grain Boundary Sensitization in Heat Affected Zone of Austenitic Stainless Steel and its Evaluation Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026