JPS63213629A - Zirconium based alloy - Google Patents

Zirconium based alloy

Info

Publication number
JPS63213629A
JPS63213629A JP62046709A JP4670987A JPS63213629A JP S63213629 A JPS63213629 A JP S63213629A JP 62046709 A JP62046709 A JP 62046709A JP 4670987 A JP4670987 A JP 4670987A JP S63213629 A JPS63213629 A JP S63213629A
Authority
JP
Japan
Prior art keywords
zirconium
based alloy
corrosion
weight
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62046709A
Other languages
Japanese (ja)
Inventor
Kazuyuki Komatsu
和志 小松
Masaaki Ozawa
小沢 正明
Toshimichi Takahashi
利通 高橋
Yoshiaki Kondo
近藤 吉明
Narimitsu Suzuki
鈴木 成光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP62046709A priority Critical patent/JPS63213629A/en
Publication of JPS63213629A publication Critical patent/JPS63213629A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve corrosion resistance and mechanical strength, by specifying the contents of Sn, Fe and Cr in a Zr based alloy as well as the total amount thereof and incorporating proper quantity of Nb into said alloy. CONSTITUTION:The contents of the Zr based alloy contg. Sn, Fe, Cr and Nb are regulated, by weight, to 0.4-1.2% Sn, 0.2-0.4% Fe and 0.1-0.6% Cr, and the total amount of Sn, Fe and Cr is regulated to 0.9-1.5%; the content of Nb is further regulated to <=0.5%. Since the compounded ratios of the elements to be added in said Zr alloy are regulated, the lowering of the amount of corrosive reaction by high-temp. water or high-temp. steam is improved at the time of using said alloy as the constitutional member in a nuclear reactor of an atomic power generation plant.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子力発電プラントの原子炉内構成部材等に
用いられるジルコニウム基合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a zirconium-based alloy used for internal reactor components of nuclear power plants.

[従来の技術] 原子力発電プラントの原子炉で使用される燃料集合体は
、以下の説明のようになっている。
[Prior Art] A fuel assembly used in a nuclear reactor of a nuclear power plant is as explained below.

第1図は、従来ならびに本発明の原子力発電プラン1へ
の原子炉で使用する燃料要素の概略を説明する断面図で
、第2図は、第1図の燃料要素を複数個格子状に配列し
た燃料集合体の断面図である。第1図、第2図において
、ウラン酸化物の柱状焼結体(以下ペレットと呼ぶ)l
を被覆管2で被覆し、被覆管両端をコイルバネ3を介し
て端栓4.5で封Iヒした棒状の燃料要素7、及びこれ
らの燃料要素7を格子状に配列する支持格子6等から構
成されている。また、8はL部ノズル、9は下部ノズル
、lOは板バネ、11は制御棒クラスタである。
FIG. 1 is a cross-sectional view illustrating the outline of fuel elements used in nuclear power reactors according to conventional nuclear power generation plan 1 and the present invention, and FIG. 2 shows a plurality of fuel elements shown in FIG. 1 arranged in a grid pattern. FIG. In Figures 1 and 2, columnar sintered bodies (hereinafter referred to as pellets) of uranium oxide are shown.
A rod-shaped fuel element 7 is covered with a cladding tube 2 and both ends of the cladding tube are sealed with end plugs 4.5 via a coil spring 3, and a support lattice 6 in which these fuel elements 7 are arranged in a lattice pattern. It is configured. Further, 8 is an L section nozzle, 9 is a lower nozzle, IO is a leaf spring, and 11 is a control rod cluster.

従来の燃料要素7の被覆管2及び支持格子6の材料とし
ては、−aに、ASTM (アメリカ材料試験協会)B
2S3で定められているUNS(Unified  N
umbering  System  For  Me
tals  andAlloys)ナンバーR6080
2またはR60804のジルコニウム基合金、即ち、前
者は錫、鉄、クロム。
Materials for the cladding tube 2 and support grid 6 of the conventional fuel element 7 include -a, ASTM (American Society for Testing and Materials) B
UNS (Unified N) defined in 2S3
Umbering System For Me
tals and Alloys) number R6080
2 or R60804, i.e. the former is tin, iron, chromium.

ニッケルな微N添加したジルコニウム基合金か使用され
ている。また、このジルコニウム基合金は特に核分裂に
は影響していないのて、無視てきる程度の微量不純物−
へ文、B、Cd、C等を含んでいる。
A zirconium-based alloy with a small amount of N added, such as nickel, is used. Furthermore, since this zirconium-based alloy does not particularly affect nuclear fission, it contains negligible trace impurities.
Contains B, Cd, C, etc.

原子力発電プラントの運転中においては、これらプラン
トの原子炉内構成部材の外表面は高温・高圧の冷却水と
接触しており、被覆v2及び支持格子6の材料であるジ
ルコニウム基合金は高−水または高温水蒸気との腐食反
応により酸化ジルコニウムの−・様あるいは局所的な被
膜が形成され、腐食反応により発生ずる水素はその一部
か被膜を通ってジルコニウム基合金中に吸収される。
During the operation of a nuclear power plant, the outer surfaces of the reactor internal components of these plants are in contact with high-temperature, high-pressure cooling water, and the zirconium-based alloy that is the material of the coating v2 and the support grid 6 is exposed to high-temperature and high-pressure cooling water. Alternatively, a corrosive reaction with high-temperature steam forms a zirconium oxide-like or localized film, and a portion of the hydrogen generated by the corrosion reaction is absorbed into the zirconium-based alloy through the film.

腐食反応が進み、外表面の酸化ジルコニウムの被膜が厚
くなるにしたがい、その内側のジルコニウム基合金の厚
さが減少し、ジルコニウム基合金から成る被覆管2及び
支持格子6の強度が低下する。また、腐食反応により発
生する水素のジルコニウム基合金中への吸収量が多くな
るにしたがいシルコニラムノ、(合金の強度、延性が低
下する。
As the corrosion reaction progresses and the zirconium oxide coating on the outer surface becomes thicker, the thickness of the zirconium-based alloy on the inside thereof decreases, and the strength of the cladding tube 2 and support grid 6 made of the zirconium-based alloy decreases. Furthermore, as the amount of hydrogen generated by corrosion reactions absorbed into the zirconium-based alloy increases, the strength and ductility of the zirconium-based alloy decrease.

前述の理由で、被覆管2及び支持格子6の腐食による強
度及び延性の低下により、これらの部材の健全性か損な
われるM Tks性かあるか、現行の原子カプラントの
運転条件においては、被覆管2及び支持格子6の外表面
の腐食量は小さく、これらの部材の健全性を損なうまで
には至らない。
For the reasons mentioned above, the strength and ductility of the cladding tube 2 and the supporting grid 6 are reduced due to corrosion, which may impair the integrity of these members. The amount of corrosion on the outer surfaces of the support grid 2 and the support grid 6 is small and does not reach the level of impairing the integrity of these members.

[発明が解決しようとする問題点] に記のように従来のジルコニウム基合金を使用した被覆
管及び支持格子では、原子燃料の効率的運用をI]的と
して、燃料の燃焼度を高め、原子炉内滞在時間を長期化
する場合には、外表面での腐食反応が進み、酸化ジルコ
ニウムの被覆か厚くなり、強度部材としてのジルコニウ
ム基合金の厚みが減少するとともに腐食反応により発生
する水素か多ψに吸収され、ジルコニウム基合金部材の
健全性が損なわれる危険性があるという問題かあった。
[Problems to be solved by the invention] As described in the above, conventional cladding tubes and support grids using zirconium-based alloys aim to improve the efficiency of nuclear fuel operation by increasing the burn-up of the fuel and increasing the atomic energy efficiency. When staying in the furnace for a long time, the corrosion reaction progresses on the outer surface, the zirconium oxide coating becomes thicker, the thickness of the zirconium-based alloy as a strength member decreases, and the hydrogen generated by the corrosion reaction increases. There was a problem that there was a risk that the zirconium-based alloy member would be absorbed by the ψ and the integrity of the zirconium-based alloy member would be impaired.

本発明はかかる問題点を解決するためになされたもので
、燃料要素の被覆管及び支持格子等の原子炉内構成部材
に用いることのできる、耐食性に富んだ機械的強度の高
い材料であるジルコニウム基合金を提供することを目的
とするものである。
The present invention has been made to solve these problems, and is made of zirconium, which is a material with high corrosion resistance and high mechanical strength that can be used for internal reactor components such as fuel element cladding tubes and support grids. The purpose is to provide a base alloy.

[問題点を解決するための手段] 上記の目的を達成するために、この発明のジルコニウム
基合金は、錫と鉄とクロムからなる3つの金属または錫
と鉄とクロムからなる3つの金属とニオブを含むジルコ
ニウム基合金であって、錫を0.4乃至1.2微量%、
鉄を0.2乃至0.4重量%、クロムを0.1乃至0.
6重量%含み、かつ錫と鉄とクロムの合計が0.9乃至
1.5重量%の含有量を有するものである。
[Means for Solving the Problems] In order to achieve the above object, the zirconium-based alloy of the present invention contains three metals consisting of tin, iron and chromium or three metals consisting of tin, iron and chromium and niobium. A zirconium-based alloy containing 0.4 to 1.2 trace% of tin,
0.2 to 0.4% by weight of iron and 0.1 to 0.0% of chromium.
6% by weight, and the total content of tin, iron, and chromium is 0.9 to 1.5% by weight.

[作用] 本発明においては、ジルコニウム基合金の主な添加元素
の配合割合を適宜に調整したことにより、原子力発電プ
ラントの原子炉内J111部材として用いた場合にも、
高温水あるいは高温水蒸気による腐食反応量の低下が図
られる、また、燃料の原子炉内滞在時間を長期化した場
合においても。
[Function] In the present invention, by appropriately adjusting the blending ratio of the main additive elements of the zirconium-based alloy, even when used as a J111 member in the reactor of a nuclear power plant,
It aims to reduce the amount of corrosion reaction caused by high-temperature water or high-temperature steam, and even when the fuel stays in the reactor for a long time.

被覆管及び支持格子の健全性が損なわれないようにする
ことかできる。
The integrity of the cladding and support grid can be prevented from being compromised.

[実施例] 現在、原子カプラントの運転条件における加圧木型原子
炉では、被覆管及び支持格子の外表面に一様な腐食が生
じているか、今後さらに炉心出力の増大化とともに局所
的な沸騰が生じ、現在の沸遣水型原子炉で多く見られる
局所的な腐食が多くなると推定されている。そこで、こ
れらの原子炉内の一様な腐食及び局所的な腐食を模擬す
るために、原子炉外ではそれぞれ400℃及び500℃
の高温水蒸気中でのオートクレーブによる試験か広く用
いられている。
[Example] Currently, in a pressurized wooden reactor under the operating conditions of a nuclear couplant, uniform corrosion is occurring on the outer surface of the cladding tube and support grid, and local boiling may occur as the core power increases further in the future. It is estimated that this will result in increased localized corrosion, which is often seen in current boiling water reactors. Therefore, in order to simulate uniform corrosion and local corrosion inside the reactor, temperatures outside the reactor were heated to 400°C and 500°C, respectively.
Autoclave tests in high-temperature steam are widely used.

次に、本発明のジルコニウム基合金を原子力発電プラン
トの原子炉内構成部材に用いた一実施例について、添付
図面によって詳細に説明する。
Next, an example in which the zirconium-based alloy of the present invention is used in a reactor internal component of a nuclear power plant will be described in detail with reference to the accompanying drawings.

第1表は、本発明の原子力発電プラントの原子炉内4I
成部材として試作した、ジルコニウム基合金に含まれる
錫及び鉄、クロム、ニオブの含有量の配合割合を示した
もので、含有量の配合割合の異なるジルコニウム基合金
によるサンプルは、全部て12.9l顕示されている。
Table 1 shows the 4I inside the reactor of the nuclear power plant of the present invention.
This figure shows the blending ratios of tin, iron, chromium, and niobium contained in zirconium-based alloys that were trial-produced as component parts.The samples made of zirconium-based alloys with different content ratios totaled 12.9L. It is revealed.

(注)不純物はA−5TM  B553 R60804
と同等第1表 例えば、第1表のサンプル1において、ジルコニウム基
合金中に錫1.58屯量%、鉄0.21重量%。
(Note) Impurities are A-5TM B553 R60804
Equivalent to Table 1 For example, in sample 1 of Table 1, the zirconium-based alloy contains 1.58 tonne weight percent tin and 0.21 weight percent iron.

クロムロ、tz4.H%金含有ることを示す、また、こ
のサンプルとしてのジルコニウム基合金は、熱間圧延、
β熱処理後、冷間圧延と焼鈍とを繰り返し、それぞれ最
終焼鈍温度470℃の冷間加工歪取り焼鈍材及び600
℃の完全焼鈍材として試作したものである。
Kurumuro, tz4. This sample zirconium-based alloy, which shows H% gold content, was hot-rolled,
After the β heat treatment, cold rolling and annealing were repeated, and the final annealing temperature was 470°C for the cold-worked strain relief annealed material and the final annealing temperature for the material was 600°C.
This was prototyped as a completely annealed material at ℃.

そして、これらジルコニウム基合金の各サンプルを、4
00℃及び500℃の高温水蒸気でそれぞれ1150間
及び24時間保持し、腐食増量を測定した。但し、この
腐食増量とは従来公知の材料(例えばASTM  B5
53 UNS  R60804,サンプル1に相当)の
腐食の程度を1としたとき、この実施例のジルコニウム
基合金の腐食の程度を表わしたものである。
Then, each sample of these zirconium-based alloys was
The samples were held in high-temperature steam at 00°C and 500°C for 1150 hours and 24 hours, respectively, and the corrosion weight increase was measured. However, this corrosion weight increase is based on conventionally known materials (for example, ASTM B5
53 UNS R60804 (corresponding to Sample 1) is set as 1, and represents the degree of corrosion of the zirconium-based alloy of this example.

第3図(a)、(b)は、本発明のジルコニウム基合金
に含まれる錫の含有量と、400℃高温水蒸気中でii
s日間保持した場合の腐食増量との関係を示した線図で
あり、第3図(a)は、第1表に示す12種類の冷間加
工歪取り焼鈍したジルコニウム基合金のデータ、第3図
(b)は、同様に完全焼鈍したジルコニウム基合金のデ
ータである。
Figures 3(a) and (b) show the tin content contained in the zirconium-based alloy of the present invention and the ii
FIG. 3(a) is a diagram showing the relationship between corrosion weight increase when held for s days, and FIG. Figure (b) shows data for a zirconium-based alloy that was similarly completely annealed.

次に、第3図(a)、(b)に示したジルコニウム基合
金の錫含有量と腐食増量との試験データから、試験温度
400℃において、ジルコニウム基合金に含まれる鉄、
クロムの添加量が、鉄:0.2〜0.4重量%、クロム
=0.1〜0.6重量%の範囲であれば、鉄あるいはク
ロムと腐食#lI量との相関は弱く、腐食増量への影響
はない、また、ジルコニウム基合金に含まれる二オフの
添加量が0.16〜0.5重量%の範囲では、ニオブの
添加量とともに腐食増9は増加するが、 0.01i重
研%ではニオブを含まない無添加より腐食¥1量は減少
する。
Next, from the test data of the tin content and corrosion weight increase of the zirconium-based alloy shown in FIGS. 3(a) and (b), at a test temperature of 400°C,
If the amount of chromium added is in the range of iron: 0.2 to 0.4% by weight and chromium = 0.1 to 0.6% by weight, the correlation between iron or chromium and the amount of corrosion #lI is weak, and corrosion There is no effect on the increase in weight.Also, when the amount of niobium added in the zirconium-based alloy is in the range of 0.16 to 0.5% by weight, the corrosion increase 9 increases with the amount of niobium added, but 0.01i At Jyuken%, the amount of corrosion decreases by 1 yen compared to the non-additive which does not contain niobium.

そして、ジルコニウム基合金に含まれる錫の含有量が0
.3〜1.6重?%の範囲では、腐食増量は錫の含有量
とともに減少する。
And the tin content contained in the zirconium-based alloy is 0.
.. 3 to 1.6 layers? % range, the corrosion weighting decreases with the tin content.

上記のように、第31M(a)、(b)に示した7に文
明のジルコニウム基合金に含まれる錫の含有量の範囲は
0.4〜1.2 i[%なので、従来のジルコニウム基
合金ASTM  B:153 R60804”t’規定
されている錫含有量1.2〜1.7 i1%の場合より
も低く、従って、腐食増量も少く耐食性に優れている。
As mentioned above, the range of tin content in the civilized zirconium-based alloy shown in No. 31M (a) and (b) is 0.4 to 1.2 i[%, so the conventional zirconium-based alloy The tin content is lower than the stipulated tin content of 1.2 to 1.7 i1% for the alloy ASTM B:153 R60804''t', and therefore the corrosion weight increase is small and the corrosion resistance is excellent.

’54図(a ) 、(b )は、本発明のジルコニウ
ム基合金に含まれる錫及び鉄、クロムの含有量と、50
0℃高温水蒸気中で24時間保持した場合の腐食増量の
関係とを示した線図であり、第4図(a)は、冷間加工
歪取り焼鈍したジルコニウム基合金のデータ、第4図(
b)は、完全焼鈍したジルコニウム基合金のデータであ
る。
'54 Figures (a) and (b) show the contents of tin, iron, and chromium contained in the zirconium-based alloy of the present invention, and the
Fig. 4(a) is a diagram showing the relationship between corrosion weight increase when held in high-temperature steam at 0°C for 24 hours;
b) is data for a fully annealed zirconium-based alloy.

次に、第4図(a)、(b)に示したジルコニウム基合
金の錫及び鉄、クロムの含有量と腐食増量との試験デー
タから、試験温度500 ”Cにおいてジルコニウム基
合金に含まれる錫、鉄、あるいはクロムの含有量か錫二
〇、4〜1.6重量%。
Next, from the test data of tin, iron, and chromium contents and corrosion weight increase of the zirconium-based alloy shown in Fig. 4(a) and (b), we can determine the amount of tin contained in the zirconium-based alloy at a test temperature of 500''C. The content of iron, or chromium or tin is 20,4-1.6% by weight.

鉄: 0.2〜0.44171%、 クロム: 0.1
〜0.5 g(量%の範囲であれば、錫、鉄あるいはク
ロムと腐食増量との相関は弱く、腐食増量への影響はな
い、また、ジルコニウム基合金に含まれる錫及び鉄、ク
ロムの和の範囲か0.9〜1.5重量%てあれば、従来
のジルコニウム基合金ASTMB353R60804の
腐食増量に比較して、腐食増量が大幅に減少し、耐食性
に優れている。尚、ジルコニウム基合金に含まれるニオ
ブの添加量が0.05〜0.5重量%の範囲では、腐食
I?I量はニオブの添加量とともに減少する。
Iron: 0.2-0.44171%, Chromium: 0.1
~0.5 g (%), the correlation between tin, iron, or chromium and corrosion weight gain is weak, and there is no effect on corrosion weight gain. If it is within the range of 0.9 to 1.5% by weight, the corrosion weight gain will be significantly reduced compared to the corrosion weight gain of the conventional zirconium-based alloy ASTM B353R60804, and the zirconium-based alloy will have excellent corrosion resistance. When the amount of niobium added is in the range of 0.05 to 0.5% by weight, the amount of corrosion I?I decreases with the amount of niobium added.

以上、第3図(a)、(b)、第4図(a)。Above, Figures 3(a), (b), and Figure 4(a).

(b)に示した腐食増にの試験データの結果から、冷間
加工歪取り焼鏝あるいは完全焼鈍に依らず、ジルコニウ
ム基合金に含まれる錫の含有量が0.4〜1.2重級%
、鉄の含有量か0,2〜0.4セリ%、クロムの含有量
か0.1〜0.6正−i%、そして、錫、鉄、クロムの
含有量の和が0.9〜185重槍%である本発明のジル
コニウム基合金は、従来のジルコニウム基合金ASTM
  B:15コR60804に比較して、腐食の抑制に
優れている。
From the test data on increased corrosion shown in (b), the tin content in the zirconium-based alloy is between 0.4 and 1.2 heavy grade, regardless of the cold working strain relief trowel or complete annealing. %
, the iron content is 0.2 to 0.4 seri%, the chromium content is 0.1 to 0.6 seri%, and the sum of the tin, iron, and chromium contents is 0.9 to 0.9%. The zirconium-based alloy of the present invention, which is 185% heavier than conventional zirconium-based alloy ASTM
B: 15 Excellent corrosion inhibition compared to R60804.

また、ニオブの添加量は1本発明のジルコニウム基合金
の使用目的に応じて、一様な腐食の抑制には0〜0.0
6m1%、局所的な腐食の抑制には0.06〜0.5重
量%、一様及び局所的な腐食の抑制には約06061墳
%を添加することにより、さらに腐食を抑制することか
できる。
In addition, the amount of niobium added is 1 to 0.0 to 0.0 to uniformly suppress corrosion depending on the purpose of use of the zirconium-based alloy of the present invention.
Corrosion can be further suppressed by adding 6m1%, 0.06 to 0.5% by weight to suppress local corrosion, and about 06061% by weight to suppress uniform and local corrosion. .

[発明の効果] 以上説明したように、本発明のジルコニウム基合金によ
れば、原子炉材料として使用されている従来のジルコニ
ウム基合金ASTM  B3E3R60804に比較し
て一様な腐食及び局所的な腐食を著しく抑制することが
でき、その結果、原子炉内ar#、?A材として用いた
場合にも、ジルコニウム基合金を材料とする部材の信頼
性か向ヒし、原子炉内滞在時間を長期化できるとともに
、原子燃料の高燃焼度化が可濠となる。
[Effects of the Invention] As explained above, the zirconium-based alloy of the present invention prevents uniform corrosion and localized corrosion compared to the conventional zirconium-based alloy ASTM B3E3R60804 used as a nuclear reactor material. As a result, the inside of the reactor ar#,? can be significantly suppressed. When used as material A, the reliability of members made of zirconium-based alloys is improved, the time spent in the reactor can be extended, and the burnup of nuclear fuel can be increased.

【図面の簡単な説明】 第1図は、従来ならびに本発明の原子力発電プラントの
原子炉で使用される燃料要素を示す断面図、第2図は、
第1図の燃料要素を複数個格子状に配列した燃料集合体
の断面図、第3図(a)。 (b)は、本発明のジルコニウム基合金の腐食増量を縦
軸にしたときの錫含有賃との関係を示す線図、第4図(
a)、(b)は、本発明のジルコニウム基合金の腐食増
量を縦軸にしたときの錫及び鉄、クロムの含有量との関
係を示す線区である。 図中。 l:ベレット    2:被覆管 3:コイルバネ   4,5:端柱 6:支持格子    7:燃料要素 8:上部ノズル   9:下部ノズル Iロ:板バネ     11:制」棒クラスタ代理人 
弁理上 1)北 嵩 晴 第2図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing fuel elements used in reactors of conventional and inventive nuclear power plants, and FIG.
FIG. 3(a) is a cross-sectional view of a fuel assembly in which a plurality of fuel elements shown in FIG. 1 are arranged in a lattice pattern. (b) is a diagram showing the relationship with the tin content when the vertical axis is the corrosion weight increase of the zirconium-based alloy of the present invention, and FIG.
a) and (b) are line sections showing the relationship between the corrosion weight increase of the zirconium-based alloy of the present invention and the contents of tin, iron, and chromium, when the vertical axis is taken as the vertical axis. In the figure. l: Bellet 2: Cladding tube 3: Coil spring 4, 5: End column 6: Support grid 7: Fuel element 8: Upper nozzle 9: Lower nozzle Iro: Leaf spring 11: Control rod cluster agent
Patent Attorney 1) Haru Kitatake Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)原子力発電プラントの原子炉内構成部材等に用い
られる錫と鉄とクロムからなる3つの金属または錫と鉄
とクロムからなる3つの金属とニオブを含むジルコニウ
ム基合金であって、錫を0.4乃至1.2重量%、鉄を
0.2乃至0.4重量%、クロムを0.1乃至0.6重
量%含み、かつ錫と鉄とクロムの合計が0.9乃至1.
5重量%の含有量であることを特徴とするジルコニウム
基合金。
(1) A zirconium-based alloy containing three metals consisting of tin, iron, and chromium or three metals consisting of tin, iron, and chromium, and niobium, used for internal reactor components of nuclear power plants, etc. 0.4 to 1.2% by weight, 0.2 to 0.4% by weight of iron, 0.1 to 0.6% by weight of chromium, and the total of tin, iron, and chromium is 0.9 to 1.
A zirconium-based alloy characterized by a content of 5% by weight.
(2)ニオブを0.5重量%以下含有することを特徴と
する特許請求の範囲第(1)項記載のジルコニウム基合
金。
(2) The zirconium-based alloy according to claim (1), which contains 0.5% by weight or less of niobium.
JP62046709A 1987-03-03 1987-03-03 Zirconium based alloy Pending JPS63213629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046709A JPS63213629A (en) 1987-03-03 1987-03-03 Zirconium based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046709A JPS63213629A (en) 1987-03-03 1987-03-03 Zirconium based alloy

Publications (1)

Publication Number Publication Date
JPS63213629A true JPS63213629A (en) 1988-09-06

Family

ID=12754885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046709A Pending JPS63213629A (en) 1987-03-03 1987-03-03 Zirconium based alloy

Country Status (1)

Country Link
JP (1) JPS63213629A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306535A (en) * 1988-06-06 1989-12-11 Mitsubishi Atom Power Ind Inc Zirconium base alloy and its manufacture
US5017336A (en) * 1988-01-22 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Zironium alloy for use in pressurized nuclear reactor fuel components
JP2006028553A (en) * 2004-07-13 2006-02-02 Toshiba Corp Zirconium alloy and channel box utilizing the same
JP2009092620A (en) * 2007-10-12 2009-04-30 Global Nuclear Fuel-Japan Co Ltd Zirconium-based alloy, fuel assembly for water cooling type nuclear reactor using it, and channel box
JP2014518330A (en) * 2011-06-16 2014-07-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment
US9285172B2 (en) 2009-04-29 2016-03-15 Westinghouse Electric Company Llc Modular plate and shell heat exchanger
US9725791B2 (en) 2004-03-23 2017-08-08 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
US10221475B2 (en) 2004-03-23 2019-03-05 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017336A (en) * 1988-01-22 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Zironium alloy for use in pressurized nuclear reactor fuel components
JPH01306535A (en) * 1988-06-06 1989-12-11 Mitsubishi Atom Power Ind Inc Zirconium base alloy and its manufacture
US9725791B2 (en) 2004-03-23 2017-08-08 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
US10221475B2 (en) 2004-03-23 2019-03-05 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance
JP2006028553A (en) * 2004-07-13 2006-02-02 Toshiba Corp Zirconium alloy and channel box utilizing the same
JP2009092620A (en) * 2007-10-12 2009-04-30 Global Nuclear Fuel-Japan Co Ltd Zirconium-based alloy, fuel assembly for water cooling type nuclear reactor using it, and channel box
US9285172B2 (en) 2009-04-29 2016-03-15 Westinghouse Electric Company Llc Modular plate and shell heat exchanger
US10175004B2 (en) 2009-04-29 2019-01-08 Westinghouse Electric Company Llc Method of servicing modular plate and shell heat exchanger
JP2014518330A (en) * 2011-06-16 2014-07-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment

Similar Documents

Publication Publication Date Title
Sabol et al. Development of a cladding alloy for high burnup
CN101270426B (en) Zirconium based alloy for nuclear reactor
US5254308A (en) Zirconium alloy with improved post-irradiation properties
KR100187539B1 (en) Zirconium alloy with superior corrosion resistance
Nikulina Zirconium-niobium alloys for core elements of pressurized water reactors
CN103898366B (en) A kind of zirconium-base alloy for power producer fuel assembly
US5366690A (en) Zirconium alloy with tin, nitrogen, and niobium additions
Adamson et al. Properties of zirconium alloys and their applications in light water reactors (LWRs)
Garde et al. Corrosion behavior of Zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors
CN101285140B (en) Zirconium based alloy as structural material of nuclear reactor core
JPS63213629A (en) Zirconium based alloy
CN103898367A (en) Zirconium-based alloy for nuclear reactor core
CN103898368A (en) Zirconium-based alloy for nuclear fuel assembly
Johnson et al. A study of zirconium alloy corrosion parameters in the advanced test reactor
CN103898360B (en) A kind of nuclear reactor core zircaloy
Lemaignan Corrosion of zirconium alloy components in light water reactors
LeSurf The corrosion behavior of 2.5 Nb zirconium alloy
JPH01301830A (en) High corrosion-resistant zirconium alloy
JPS63290234A (en) Corrosion resistant zirconium alloy containing bismuth
Ghosal et al. Corrosion of zirconium alloys in nuclear applications-a review
Besch et al. Corrosion behavior of duplex and reference cladding in NPP Grohnde
Castaldelli et al. Long-term test results of promising new zirconium alloys
JPH03505127A (en) A method for predicting relative hydrogenation in a group of zirconium alloys under nuclear radiation irradiation
Gadiyar Corrosion and hydriding of fuel cladding materials
Farina et al. Current status of Zirconium alloys for fission cladding