JP2006028553A - Zirconium alloy and channel box utilizing the same - Google Patents

Zirconium alloy and channel box utilizing the same Download PDF

Info

Publication number
JP2006028553A
JP2006028553A JP2004206147A JP2004206147A JP2006028553A JP 2006028553 A JP2006028553 A JP 2006028553A JP 2004206147 A JP2004206147 A JP 2004206147A JP 2004206147 A JP2004206147 A JP 2004206147A JP 2006028553 A JP2006028553 A JP 2006028553A
Authority
JP
Japan
Prior art keywords
iron
chromium
zirconium alloy
channel box
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206147A
Other languages
Japanese (ja)
Inventor
Fumihisa Kano
文寿 鹿野
Masaru Ukai
勝 鵜飼
Masashi Takahashi
雅士 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004206147A priority Critical patent/JP2006028553A/en
Publication of JP2006028553A publication Critical patent/JP2006028553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zirconium alloy whose growth by irradiation is suppressed, and which has high corrosion resistance and is utilizable for a channel box or the like. <P>SOLUTION: The zirconium alloy has a composition comprising, by weight, 1.20 to 1.70% tin, 0.18 to 0.24% iron, 0.07 to 0.13% chromium and 0.28 to 0.37% iron+chromium, also comprising at least one kind of element selected from niobium, tantalum and vanadium by ≤0.6% in total, and the balance zirconium with inevitable impurity elements. Alternatively, the other zirconium alloy has a composition comprising 1.20 to 1.70% tin, 0.24 to 0.55% iron, 0.07 to 0.13% chromium, 0.31 to 0.68% iron+chromium, and the balance zirconium with inevitable impurity elements. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジルコニウム合金、特に耐食性を高めることまたは照射成長を抑制することで変形特性の改善されたジルコニウム合金と、このジルコニウム合金を利用したチャンネルボックスに関する。   The present invention relates to a zirconium alloy, particularly a zirconium alloy having improved deformation characteristics by increasing corrosion resistance or suppressing irradiation growth, and a channel box using this zirconium alloy.

現在の通常の沸騰水型原子炉で、燃料集合体の周囲を囲んで冷却材流路を形成するチャンネルボックスの材料として、ジルカロイ−4(商標)が使用されている。ジルカロイ−4は、中性子経済や耐腐食性等を考慮して採用されたジルコニウム合金であって、その組成は、重量比で、錫1.20〜1.70%、鉄0.18〜0.24%、クロム0.07〜0.13%、鉄+クロム0.28〜0.37%を含有し、残部がジルコニウムおよび不可避的不純物元素からなる(特許文献1および2参照)。
特開平10−73690号公報 特開平6−317687号公報 Zirconium in the nuclear industry: Eleventh Symposium (1995)
In current normal boiling water reactors, Zircaloy-4 (trademark) is used as a material for a channel box that surrounds the fuel assembly and forms a coolant flow path. Zircaloy-4 is a zirconium alloy adopted in consideration of neutron economy, corrosion resistance, and the like, and its composition is 1.20 to 1.70% tin and 0.18 to 0.80 iron in terms of weight ratio. It contains 24%, chromium 0.07 to 0.13%, iron + chromium 0.28 to 0.37%, and the balance consists of zirconium and inevitable impurity elements (see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 10-73690 JP-A-6-317687 Zirconium in the nuclear industry: Eleventh Symposium (1995)

最近は、運転効率向上のために、チャンネルボックスを、高燃焼度利用、燃料交換サイクルをまたいだ長期運転に利用することが検討されている。しかし、こうした運転を行なうと、従来のチャンネルボックスは、照射成長などによって曲がりが生じることが知られており、最近では局部腐食による曲がりが懸念されている。   Recently, in order to improve operation efficiency, use of a channel box for long-term operation using a high burnup and refueling cycle has been studied. However, it is known that when such operation is performed, the conventional channel box is bent due to irradiation growth or the like, and recently, there is a concern about bending due to local corrosion.

そこで、この発明は、照射成長を抑制し、しかも耐食性を高めることにより水素吸収を抑制することで変形特性を改善した、チャンネルボックスなどに利用可能なジルコニウム合金およびこのジルコニウム合金からなるチャンネルボックスを提供することを目的とする。   Accordingly, the present invention provides a zirconium alloy that can be used for a channel box and the like and that is made of this zirconium alloy, which has improved deformation characteristics by suppressing irradiation growth and suppressing hydrogen absorption by enhancing corrosion resistance. The purpose is to do.

上記目的を達成するために、この発明の一つの態様に係るジルコニウム合金は、重量比で、錫1.20〜1.70%、鉄0.18〜0.24%、クロム0.07〜0.13%、鉄+クロム0.28〜0.37%を含有し、且つ、ニオブ、タンタル、バナジウムのうちの少なくとも1種類の元素を合計で0.6%以下含み、残部がジルコニウムおよび不可避的不純物元素からなることを特徴とする。   In order to achieve the above object, a zirconium alloy according to one embodiment of the present invention has a weight ratio of 1.20 to 1.70% tin, 0.18 to 0.24% iron, and 0.07 to 0 chromium. .13%, containing iron + chromium 0.28 to 0.37%, and containing at least one element of niobium, tantalum, vanadium in total of 0.6% or less, with the balance being zirconium and inevitable It consists of an impurity element.

ここで、錫、鉄、クロム、鉄+クロムの含有量はいずれも従来のジルカロイ-4と同等である。錫は機械的性質の改善と、溶解原料であるスポンジジルコニウム中に含まれている窒素が耐食性に及ぼす悪影響を抑制するため添加される。鉄およびクロムは主に耐食性改善のために添加される合金元素である。   Here, the contents of tin, iron, chromium, and iron + chromium are all equivalent to those of the conventional zircaloy-4. Tin is added in order to improve mechanical properties and to suppress the adverse effect of nitrogen contained in sponge zirconium as a raw material on corrosion resistance. Iron and chromium are alloying elements added mainly to improve corrosion resistance.

ここで、ニオブ、タンタル、バナジウムのうちの少なくとも1種類の元素を添加するのは、これにより照射成長が抑制されるからである。たとえばニオブを添加する場合の照射成長抑制効果の例を図2に示す。図2は、非特許文献1に開示されたものであって、縦軸を照射成長率(IIG; Irradiation-induced growth)(%)とし、横軸を中性子照射量とするグラフである。白丸(○)印、白三角(△)印、黒三角印はニオブ添加なしの一般的なジルカロイ材料、白星(☆)印は1.2Sn−0.35Fe−1Nb合金の330〜350℃環境における特性を表す。この図から、ニオブの添加によって照射成長が抑制されることがわかる。   Here, the reason why at least one element of niobium, tantalum, and vanadium is added is that irradiation growth is thereby suppressed. For example, FIG. 2 shows an example of the effect of suppressing irradiation growth when niobium is added. FIG. 2 is a graph disclosed in Non-Patent Document 1, in which the vertical axis represents irradiation growth rate (IIG) (%) and the horizontal axis represents neutron irradiation amount. White circle (○), white triangle (△), and black triangle are general zircaloy materials without niobium addition, and white star (☆) is a 1.2Sn-0.35Fe-1Nb alloy in a 330-350 ° C environment. Represents a characteristic. From this figure, it can be seen that irradiation growth is suppressed by the addition of niobium.

ニオブは、照射成長を抑制するとともに、中性子照射によって、それを主成分とする析出物が容易には固溶しないことを、発明者らは独自に確認している。チャンネルボックスの変形は、チャンネルボックス対面の照射量の違いによる照射成長の違いが主原因であることが知られている。照射成長は、照射によって生成するC成分転位と密接な関係があり、その動きや密度増加を抑制するために、照射に対して安定なニオブ系析出物を作り、その転位の動きを妨げることで、成長そのものを抑制することをねらったものである。したがって、中性子照射によって従来の析出物構成元素である鉄が固溶しても、ニオブがあることで析出物を維持することができる。ひいては照射成長を抑制できる。   The inventors have independently confirmed that niobium suppresses irradiation growth and that precipitates containing it as a main component are not easily dissolved by neutron irradiation. It is known that the deformation of the channel box is mainly caused by the difference in irradiation growth due to the difference in the irradiation amount of the channel box facing each other. Irradiation growth is closely related to the C component dislocations generated by irradiation, and in order to suppress the movement and increase in density, niobium-based precipitates that are stable to irradiation are formed and the movement of the dislocations is prevented. , Aimed at curbing growth itself. Therefore, even if iron, which is a conventional precipitate constituent element, is dissolved by neutron irradiation, the precipitate can be maintained by the presence of niobium. As a result, irradiation growth can be suppressed.

ニオブに代わるものとして、タンタル、バナジウムがありうる。ここで、これらの元素の含有量の合計を重量比で0.6%以下とするのは、ジルコニウムへの固溶限だからである。仮にこれ以上添加すると、現状のジルカロイの製造プロセスを変更しなければならなくなるので好ましくない。   Alternatives to niobium can be tantalum and vanadium. Here, the total content of these elements is 0.6% or less by weight because it is a solid solubility limit in zirconium. If it is added more than this, it is not preferable because the current manufacturing process of Zircaloy must be changed.

また、この発明の他の態様に係るジルコニウム合金は、重量比で、錫1.20〜1.70%、鉄0.24〜0.55%、クロム0.07〜0.13%、鉄+クロム0.31〜0.68%を含有し、残部がジルコニウムおよび不可避的不純物元素からなることを特徴とする。   In addition, the zirconium alloy according to another aspect of the present invention has a weight ratio of 1.20 to 1.70% tin, 0.24 to 0.55% iron, 0.07 to 0.13% chromium, iron + It contains 0.31 to 0.68% of chromium, and the balance is composed of zirconium and inevitable impurity elements.

チャンネルボックスの変形は、照射成長の抑制以外に、耐食性の改善で抑制できると提案者は考えている。一般に腐食と水素吸収は表裏の関係にある。腐食の原因である水を構成している酸素が腐食(酸化)に利用され、残った水素が水素固溶金属として知られているジルコニウム中に固溶する。すなわち、腐食量が大きいと水素固溶量も大きくなる。前述したように、照射前にある鉄系析出物は、照射によって次第に固溶し、照射によって生成したC成分転位が、自由に動くようになる。同時に水素固溶量がしだいに増加する。チャンネルボックスは、製造時に寸法精度をあげるためにローリングされており、その寸法矯正過程で局部的に微少なひずみを含有しており、自由に動けるC成分転位は、そのような場所にしだいに集まる。転位が動く時に、水素は掃き寄せられ、局部的に水素濃度が高い場所ができる。すなわち水素とC成分転位は、同じ場所に集まる傾向がある。C成分転位は、照射成長を促進するため、局所的に水素濃度が高い場所では、局所的な照射成長が生ずる。四角形の対面で照射成長が異なれば、その部分で局所的に曲がりが生ずる。   The proponent believes that the deformation of the channel box can be suppressed by improving the corrosion resistance in addition to the suppression of irradiation growth. In general, corrosion and hydrogen absorption are in a reverse relationship. Oxygen constituting the water that is the cause of corrosion is used for corrosion (oxidation), and the remaining hydrogen is dissolved in zirconium known as a hydrogen solute metal. That is, when the corrosion amount is large, the hydrogen solid solution amount is also increased. As described above, the iron-based precipitate before irradiation gradually dissolves by irradiation, and the C component dislocation generated by irradiation moves freely. At the same time, the amount of hydrogen solid solution gradually increases. The channel box is rolled to increase dimensional accuracy during manufacturing, and contains a small amount of local distortion during the dimensional correction process, and free-movable C component dislocations gradually gather at such locations. . When the dislocation moves, the hydrogen is swept away, creating a place where the hydrogen concentration is locally high. That is, hydrogen and C component rearrangement tend to gather at the same place. Since the C component dislocation promotes irradiation growth, local irradiation growth occurs in a place where the hydrogen concentration is locally high. If the irradiation growth is different at the opposite sides of the quadrangle, bending occurs locally at that portion.

そこで、水素の固溶(吸収)量を抑制することを目的とした耐食性の向上と、C成分転位の動きを長期間抑制することを目的として、ジルコニウム合金中の鉄成分を高くする。ここで、錫の含有量は従来のジルカロイ-4と同等であり、その効果も従来と同様である。鉄を重量比で0.24%以上としているのは、図3に示すように、鉄0.24%以上とすることにより腐食速度が著しく低下するからである。ここで、図3は、照射後のジルカロイ中の鉄の量と400℃での腐食速度の関係を示す図である。縦軸は照射後の腐食率(mg/dm・d)であり、横軸は鉄の含有量(%)である。この図より、鉄の含有量が、従来のジルカロイ-4に相当する鉄の含有量よりも多いと腐食速度が著しく低下することがわかる。 Therefore, the iron component in the zirconium alloy is increased for the purpose of improving the corrosion resistance for the purpose of suppressing the solid solution (absorption) amount of hydrogen and suppressing the movement of the C component dislocation for a long period of time. Here, the content of tin is equivalent to that of the conventional Zircaloy-4, and the effect is the same as that of the conventional one. The reason why iron is 0.24% or more by weight is that, as shown in FIG. 3, the corrosion rate is remarkably reduced by making iron 0.24% or more. Here, FIG. 3 is a diagram showing the relationship between the amount of iron in the zircaloy after irradiation and the corrosion rate at 400 ° C. FIG. The vertical axis represents the corrosion rate after irradiation (mg / dm 2 · d), and the horizontal axis represents the iron content (%). From this figure, it can be seen that when the iron content is higher than the conventional iron content corresponding to Zircaloy-4, the corrosion rate is significantly reduced.

また、前記ジルコニウム合金は、錫、鉄およびクロムを含む析出物の平均寸法が0.05〜0.35μmであるのが好ましい。   The zirconium alloy preferably has an average size of precipitates containing tin, iron and chromium of 0.05 to 0.35 μm.

一般に、図4に示すように、ジルカロイ−4の析出物のサイズが大きいほど腐食速度が大きくなって好ましくない。ここで図4は、ジルカロイ−4の析出物のサイズと腐食速度の関係を示す実験データであって、縦軸は最大酸化膜から計算した腐食速度(μm/GWD/T)、横軸は析出物平均サイズ(μm)である。前述のように鉄などの含有量を増やすことにより析出物のサイズが大きくなりがちであるが、この平均寸法を0.05〜0.35μmにすることにより腐食速度が抑制される。   In general, as shown in FIG. 4, the larger the size of the zircaloy-4 precipitate, the higher the corrosion rate, which is not preferable. Here, FIG. 4 is experimental data showing the relationship between the size of the precipitate of Zircaloy-4 and the corrosion rate, the vertical axis is the corrosion rate calculated from the maximum oxide film (μm / GWD / T), and the horizontal axis is the precipitation. The average size (μm). As described above, increasing the content of iron or the like tends to increase the size of the precipitate, but by setting the average dimension to 0.05 to 0.35 μm, the corrosion rate is suppressed.

一般に、中性子照射時間が長くなると鉄とクロムで構成された析出物中の鉄が固溶するため、鉄が減損した析出物となり、その後、クロムも固溶し、析出物は微少化または消失してしまう。耐食性は0.05μm程度以上のサイズの析出物によって保たれており、析出物サイズが大きくなると、低下することがわかる。一方、この析出物が固溶してしまうと耐食性が低下する。析出物は、製造プロセス、特に熱処理条件によって、そのサイズが決定される。そこで、照射によって固溶しやすい鉄を初めから多めに添加することが有効である。   In general, when the neutron irradiation time is long, iron in the precipitate composed of iron and chromium is solid-dissolved, resulting in iron-depleted precipitate, and then chromium is also solid-dissolved, and the precipitate is miniaturized or disappears. End up. It can be seen that the corrosion resistance is maintained by precipitates having a size of about 0.05 μm or more, and decreases as the precipitate size increases. On the other hand, if this precipitate is dissolved, the corrosion resistance is lowered. The size of the precipitate is determined by the manufacturing process, particularly the heat treatment conditions. Therefore, it is effective to add a large amount of iron which is easily dissolved by irradiation from the beginning.

この範囲の鉄の量は、固溶限を超えているので、固溶による上限の根拠はない。しかし、鉄の含有量が増加すると、従来と同じ製造プロセスでは、析出物サイズが大きめになって耐腐食性が低下し、また熱中性子吸収断面積が大きくなる懸念がある。そこで鉄の含有量の上限は、試験結果で得られた良好な範囲である0.55%とする。   Since the amount of iron in this range exceeds the solid solution limit, there is no basis for an upper limit due to solid solution. However, when the iron content increases, there is a concern that, in the same manufacturing process as the conventional one, the precipitate size becomes large, the corrosion resistance decreases, and the thermal neutron absorption cross section increases. Therefore, the upper limit of the iron content is set to 0.55% which is a good range obtained from the test results.

また、前記ジルコニウム合金は、ニオブ、タンタル、バナジウムのうちの少なくとも1種類の元素を合計で0.6%以下含むのが好ましい。ニオブ、タンタル、バナジウムを添加することによる効果は前記の発明の態様の場合と同様である。   The zirconium alloy preferably contains a total of 0.6% or less of at least one element selected from niobium, tantalum, and vanadium. The effect of adding niobium, tantalum, and vanadium is the same as that of the above-described aspect of the invention.

また、前記ジルコニウム合金は、錫、鉄およびクロムを含む析出物の平均寸法が0.05〜0.35μmであるのが好ましい。   The zirconium alloy preferably has an average size of precipitates containing tin, iron and chromium of 0.05 to 0.35 μm.

本発明ではさらに、前記ジルコニウム合金を利用して優れたチャンネルボックスを製造することができる。     In the present invention, an excellent channel box can be manufactured using the zirconium alloy.

本発明によれば、耐食性が高く照射成長が抑制されたジルコニウム合金と、このジルコニウム合金を利用したチャンネルボックスを提供することができる。   According to the present invention, it is possible to provide a zirconium alloy with high corrosion resistance and suppressed irradiation growth, and a channel box using this zirconium alloy.

図1は、本発明によるチャンネルボックスの一実施の形態を利用した燃料集合体の縦断面図である。この燃料集合体の形状は従来の沸騰水型原子炉用燃料集合体と同様であって、数十本の燃料棒2が正方格子状に配列され、上部タイプレート3および下部タイプレート4によって結束されている。上部タイプレート3の上部には燃料取り扱いのためのハンドル4が形成されている。上部タイプレート3と下部タイプレート4の間の複数箇所に燃料棒2相互の間隔を保持するための燃料スペーサ5が配置されている。そして、この燃料集合体の周囲は四角筒状のチャンネルボックス10によって囲まれている。   FIG. 1 is a longitudinal sectional view of a fuel assembly using an embodiment of a channel box according to the present invention. The shape of this fuel assembly is the same as that of a conventional boiling water nuclear reactor fuel assembly, and several tens of fuel rods 2 are arranged in a square lattice and are bound by an upper tie plate 3 and a lower tie plate 4. Has been. A handle 4 for fuel handling is formed on the upper portion of the upper tie plate 3. Fuel spacers 5 are disposed at a plurality of locations between the upper tie plate 3 and the lower tie plate 4 to maintain the mutual spacing between the fuel rods 2. The periphery of the fuel assembly is surrounded by a rectangular tubular channel box 10.

原子炉(図示せず)内で、下部タイプレート4から流入した冷却材は、チャンネルボックス10の内側の燃料棒2の周囲を上向きに流れながら熱せられて沸騰し、気液二相流となって上部タイプレート3から流出する。   In the nuclear reactor (not shown), the coolant flowing in from the lower tie plate 4 is heated and boiled while flowing upward around the fuel rod 2 inside the channel box 10 to form a gas-liquid two-phase flow. And flows out from the upper tie plate 3.

ここで、チャンネルボックス10の材料として前記ジルコニウム合金を利用する。これにより、チャンネルボックス10の照射成長を抑制してチャンネルボックス10の曲がりを抑制し、しかも耐腐食性を向上させることができる。さらに、この材料は、燃料スペーサ5に採用することも可能である。   Here, the zirconium alloy is used as the material of the channel box 10. Thereby, the irradiation growth of the channel box 10 can be suppressed, the bending of the channel box 10 can be suppressed, and the corrosion resistance can be improved. Further, this material can be used for the fuel spacer 5.

本発明に係るチャンネルボックスの実施の形態を用いた燃料集合体の縦断面図。The longitudinal section of the fuel assembly using the embodiment of the channel box concerning the present invention. 照射量と照射成長の関係を示すグラフ。The graph which shows the relationship between irradiation amount and irradiation growth. 燃焼後のジルカロイ中の鉄の量と腐食速度の関係を示すグラフ。The graph which shows the relationship between the quantity of iron in Zircaloy after combustion, and corrosion rate. 析出物サイズと腐食の関係を示すグラフ。The graph which shows the relationship between deposit size and corrosion.

符号の説明Explanation of symbols

2…燃料棒
3…上部タイプレート
4…下部タイプレート
5…燃料スペーサ
10…チャンネルボックス

2 ... Fuel rod 3 ... Upper tie plate 4 ... Lower tie plate 5 ... Fuel spacer 10 ... Channel box

Claims (5)

重量比で、錫1.20〜1.70%、鉄0.18〜0.24%、クロム0.07〜0.13%、鉄+クロム0.28〜0.37%を含有し、且つ、ニオブ、タンタル、バナジウムのうちの少なくとも1種類の元素を合計で0.6%以下含み、残部がジルコニウムおよび不可避的不純物元素からなることを特徴とするジルコニウム合金。 Containing, by weight, 1.20 to 1.70% tin, 0.18 to 0.24% iron, 0.07 to 0.13% chromium, 0.28 to 0.37% iron + chromium, and A zirconium alloy comprising at least one element of at least one of niobium, tantalum, and vanadium in a total amount of 0.6% or less, the balance being zirconium and inevitable impurity elements. 重量比で、錫1.20〜1.70%、鉄0.24〜0.55%、クロム0.07〜0.13%、鉄+クロム0.31〜0.68%を含有し、残部がジルコニウムおよび不可避的不純物元素からなることを特徴とするジルコニウム合金。 Contains, by weight, 1.20 to 1.70% tin, 0.24 to 0.55% iron, 0.07 to 0.13% chromium, 0.31 to 0.68% iron + chromium, and the balance Zirconium alloy characterized by comprising zirconium and inevitable impurity elements. 請求項2記載のジルコニウム合金において、ニオブ、タンタル、バナジウムのうちの少なくとも1種類の元素を合計で0.6%以下含むことを特徴とするジルコニウム合金。 The zirconium alloy according to claim 2, comprising at least one element of niobium, tantalum, and vanadium in a total amount of 0.6% or less. 請求項1ないし3いずれか記載のジルコニウム合金において、錫、鉄およびクロムを含む析出物の平均寸法が0.05〜0.35μmであることを特徴とするジルコニウム合金。 The zirconium alloy according to any one of claims 1 to 3, wherein the average size of the precipitate containing tin, iron and chromium is 0.05 to 0.35 µm. 請求項1ないし4いずれか記載のジルコニウム合金を利用したチャンネルボックス。

A channel box using the zirconium alloy according to claim 1.

JP2004206147A 2004-07-13 2004-07-13 Zirconium alloy and channel box utilizing the same Pending JP2006028553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206147A JP2006028553A (en) 2004-07-13 2004-07-13 Zirconium alloy and channel box utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206147A JP2006028553A (en) 2004-07-13 2004-07-13 Zirconium alloy and channel box utilizing the same

Publications (1)

Publication Number Publication Date
JP2006028553A true JP2006028553A (en) 2006-02-02

Family

ID=35895261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206147A Pending JP2006028553A (en) 2004-07-13 2004-07-13 Zirconium alloy and channel box utilizing the same

Country Status (1)

Country Link
JP (1) JP2006028553A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213629A (en) * 1987-03-03 1988-09-06 Mitsubishi Atom Power Ind Inc Zirconium based alloy
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy
JPH024937A (en) * 1988-01-22 1990-01-09 Mitsubishi Metal Corp Zr alloy for reactor fuel assembled body
JPH0867954A (en) * 1994-08-25 1996-03-12 Sumitomo Metal Ind Ltd Production of high corrosion resistant zirconium alloy
JPH08100231A (en) * 1994-09-30 1996-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant zirconium alloy and its production
JPH11133174A (en) * 1997-08-28 1999-05-21 Siemens Power Corp Corrosion-resistant reactor constituting member, nuclear fuel rod cover pipe, zirconium alloy used for aqueous environment, and structural member for reactor fuel assembly body
JPH11194189A (en) * 1997-10-13 1999-07-21 Mitsubishi Materials Corp Production for zr alloy tube for reactor fuel clad superior in corrosion resistivity and creep characteristic
JP2001074872A (en) * 1999-08-31 2001-03-23 Hitachi Ltd Method for manufacturing zirconium alloy for nuclear reactor
JP2001221878A (en) * 2000-02-09 2001-08-17 Hitachi Ltd Zirconium-based alloy and its manufacturing method and fuel assembly for light water reactor using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213629A (en) * 1987-03-03 1988-09-06 Mitsubishi Atom Power Ind Inc Zirconium based alloy
JPH024937A (en) * 1988-01-22 1990-01-09 Mitsubishi Metal Corp Zr alloy for reactor fuel assembled body
JPH01301830A (en) * 1988-05-30 1989-12-06 Sumitomo Metal Ind Ltd High corrosion-resistant zirconium alloy
JPH0867954A (en) * 1994-08-25 1996-03-12 Sumitomo Metal Ind Ltd Production of high corrosion resistant zirconium alloy
JPH08100231A (en) * 1994-09-30 1996-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant zirconium alloy and its production
JPH11133174A (en) * 1997-08-28 1999-05-21 Siemens Power Corp Corrosion-resistant reactor constituting member, nuclear fuel rod cover pipe, zirconium alloy used for aqueous environment, and structural member for reactor fuel assembly body
JPH11194189A (en) * 1997-10-13 1999-07-21 Mitsubishi Materials Corp Production for zr alloy tube for reactor fuel clad superior in corrosion resistivity and creep characteristic
JP2001074872A (en) * 1999-08-31 2001-03-23 Hitachi Ltd Method for manufacturing zirconium alloy for nuclear reactor
JP2001221878A (en) * 2000-02-09 2001-08-17 Hitachi Ltd Zirconium-based alloy and its manufacturing method and fuel assembly for light water reactor using the same

Similar Documents

Publication Publication Date Title
TWI460739B (en) A spacer grid and method of manufacturing the same
CN1087037C (en) New type zircaloy used as covering layer of fuel rod
JP2021500567A (en) How to manufacture cladding and cladding
JP2006028553A (en) Zirconium alloy and channel box utilizing the same
KR19980081820A (en) Pressurized Water Fuel Assembly
JP2006226905A (en) Metallic fuel fast reactor core
JP4526076B2 (en) Light water reactor fuel assemblies and cores loaded with them
JP4098002B2 (en) Fuel assemblies and reactor cores
JP2007225624A (en) Reactor core
JP4999270B2 (en) Methods, applications, and apparatus for boiling water nuclear fuel and fuel assembly cladding.
JP2515172B2 (en) Manufacturing method of cladding tube for nuclear fuel
JP4713224B2 (en) Boiling water reactor fuel assembly set and core
JP5551869B2 (en) Zirconium-based alloy, water-cooled nuclear reactor fuel assembly and channel box using the same
JP5042768B2 (en) Zirconium-based alloy
JP5305716B2 (en) Reactor control rod
KR100323299B1 (en) High strength zirconium alloys containing bismuth and niobium
JP2001158928A (en) High purity zirconium alloy and structural material for nuclear reactor core
JP5085522B2 (en) Reactor core for long-term continuous operation
JP2014077184A (en) Hafnium alloy having high strength corrosion resistance, structural part of atomic furnace control rod using the same
EP0964407B1 (en) High strength zirconium alloys containing bismuth, tin and niobium
JP3347137B2 (en) Fuel assemblies and boiling water reactor cores
JP2011117892A (en) Fuel assembly
EP0867518A1 (en) High strength zirconium alloys containing bismuth
JPH0376875B2 (en)
JP4397009B2 (en) Fuel assemblies for boiling water reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019