JPH0376875B2 - - Google Patents

Info

Publication number
JPH0376875B2
JPH0376875B2 JP60192527A JP19252785A JPH0376875B2 JP H0376875 B2 JPH0376875 B2 JP H0376875B2 JP 60192527 A JP60192527 A JP 60192527A JP 19252785 A JP19252785 A JP 19252785A JP H0376875 B2 JPH0376875 B2 JP H0376875B2
Authority
JP
Japan
Prior art keywords
fuel
fissile material
fuel assembly
axial
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60192527A
Other languages
Japanese (ja)
Other versions
JPS6252493A (en
Inventor
Masahisa Oohashi
Ryuzo Masuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60192527A priority Critical patent/JPS6252493A/en
Publication of JPS6252493A publication Critical patent/JPS6252493A/en
Publication of JPH0376875B2 publication Critical patent/JPH0376875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉用の燃料集合体及び炉心に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel assembly and a reactor core for a nuclear reactor.

〔発明の背景〕[Background of the invention]

従来の原子炉用の燃料集合体には、一般に中性
子束の低い領域(以下低中性子領域と称する)の
燃料濃縮度を中性子束の高い領域(以下高中性子
領域と称する)の燃料濃縮度よりも高くし、局所
出力を平坦化した燃料集合体が使用されている。
しかしこのような燃料集合体は、低中性子領域に
多くの核分裂性物質を配置することになり、核燃
料の有効な燃焼をさまたげていた。
In conventional nuclear reactor fuel assemblies, the fuel enrichment in the low neutron flux region (hereinafter referred to as the low neutron region) is generally higher than the fuel enrichment in the high neutron flux region (hereinafter referred to as the high neutron region). Fuel assemblies with increased height and flattened local power are used.
However, such fuel assemblies place a large amount of fissile material in the low neutron region, which hinders the effective combustion of nuclear fuel.

そのため、例えば、特開昭58−26292号公報に
開示されいてる燃料集合体では、燃料集合体内に
おける出力分布の可能な範囲内において、軸方向
に燃料濃度差をつけ出力分布の平坦化を行い得る
分だけ、核分裂性物質を燃料集合体径方向の高中
性子領域へ移設させた構成としている。
Therefore, for example, in the fuel assembly disclosed in Japanese Unexamined Patent Publication No. 58-26292, it is possible to flatten the power distribution by creating a fuel concentration difference in the axial direction within the possible range of power distribution within the fuel assembly. The structure is such that the fissile material is moved to the high neutron region in the radial direction of the fuel assembly.

しかし、この燃料集合体では、軸方向の核燃料
物質濃度に差をつけ、上半分の領域では核燃料物
質の濃度を上げ、出力分布の許容範囲内で熱中性
子束の高い下部では核燃料物質の濃度を下げてい
るため、軸方向の下部では燃焼度の損失があつ
た。
However, in this fuel assembly, the concentration of nuclear fuel material in the axial direction is differentiated, increasing the concentration of nuclear fuel material in the upper half region, and reducing the concentration of nuclear fuel material in the lower region where thermal neutron flux is high within the allowable range of the power distribution. As the fuel was lowered, there was a loss of burnup in the lower part in the axial direction.

そのため、燃料濃縮度を燃料集合体の径方向で
高中性子領域へ移行するだけではなく、燃料集合
体軸方向でもより高中性子領域である軸方向中央
の燃料濃縮度を上げることが望まれていた。しか
し、このような構成とすると、局所的な出力を大
きくする問題があるため、炉心内の燃料集合体の
数を増やす方法が考えられたが、燃料集合体を増
やすことは炉心の大型化をまねくという重大な欠
点があつた。
Therefore, it was desired not only to shift the fuel enrichment to the high neutron region in the radial direction of the fuel assembly, but also to increase the fuel enrichment in the axial center, which is the higher neutron region, in the axial direction of the fuel assembly. . However, with such a configuration, there is a problem of increasing local output, so a method of increasing the number of fuel assemblies in the core was considered, but increasing the number of fuel assemblies would mean increasing the size of the core. There was a serious drawback.

その結果、燃料棒の局所的な最大出力を上昇さ
せないで、高中性子領域へより高い燃料濃縮度を
配置できる燃料集合体が強く求められていた。
As a result, there is a strong need for fuel assemblies that can place higher fuel enrichments in the high neutron region without increasing the local maximum power of the fuel rods.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の如き状況に鑑みなされたもの
で、核燃料を有効に燃焼させ、燃焼度の増大を実
現可能とする燃料集合体及び炉心を提供可能とす
ることを目的とするものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a fuel assembly and a reactor core that can effectively burn nuclear fuel and increase burnup.

〔発明の概要〕[Summary of the invention]

第1の発明の原子炉用燃料集合体は、多数の長
尺の燃料棒を束ねて構成される原子炉用の燃料集
合体において、該燃料集合体の径方向断面の熱中
性子束の高い領域に属する前記燃料棒内の燃料の
核分裂性物質重量割合は軸方向中央部が低く、軸
方向上部及び下部では軸方向中央部よりも高く、
前記核燃料集合体の径方向断面の熱中性子束の低
い領域の燃料棒内の燃料の核分裂性物質重量割合
は軸方向中央部が高く、軸方向上部及び下部では
軸方向中央部よりも低くなつており、前記燃料集
合体の径方向平均の核分裂性物質重量割合は軸方
向中央部の平均値が、軸方向上部、下部の平均値
以下になつていることを特徴とするし、第2の発
明の炉心は、多数の長尺の燃料棒を束ねて構成さ
れる原子炉用燃料集合体を有する炉心において、
前記燃料集合体のうち少なくとも炉心最外周部の
燃料集合体を除く燃料集合体の径方向断面の熱中
性子束の高い領域に属する前記燃料棒内の燃料の
核分裂性物質重量割合は軸方向中央部が低く、軸
方向上部及び下部では軸方向中央部よりも高く、
前記燃料集合体の径方向断面の熱中性子束の低い
領域の燃料棒内の燃料の核分裂性物質重量割合は
軸方向中央部が高く、軸方向上部及び下部では軸
方向中央部よりも低くなつており、前記燃料集合
体の径方向平均の核分裂性物質重量割合は軸方向
中央部の平均値が、軸方向上部、下部の値以下に
なつている軸方向中央部と軸方向上部及び下部と
の燃料の核分裂性物質重量割合の異なる複数種の
前記燃料集合体を配列して構成され、炉心最外周
部の燃料集合体の平均核分裂性物質重量割合が、
炉心最外周部よりも内側側の燃料集合体の平均核
分裂性物質割合よりも低くなつていることを特徴
とするものである。
A fuel assembly for a nuclear reactor according to a first aspect of the present invention is a fuel assembly for a nuclear reactor constructed by bundling a large number of long fuel rods, and a region of high thermal neutron flux in a radial cross section of the fuel assembly. The weight fraction of fissile material in the fuel in the fuel rod belonging to is lower in the axially central part and higher in the axially upper and lower parts than in the axially central part,
The weight fraction of fissile material in the fuel in the fuel rods in the low thermal neutron flux region of the radial cross section of the nuclear fuel assembly is high in the axial center and lower in the axial upper and lower parts than in the axial center. The fuel assembly is characterized in that the radially average weight ratio of fissile material in the axially central portion is less than the average value in the axially upper and lower portions, The reactor core has a reactor fuel assembly composed of a large number of long fuel rods bundled together.
Among the fuel assemblies, at least the fuel assembly at the outermost periphery of the core belongs to a region of high thermal neutron flux in the radial cross section of the fuel assembly. is lower, higher in the upper and lower parts of the axis than in the middle part,
The weight fraction of fissile material in the fuel in the fuel rods in the low thermal neutron flux region of the radial cross section of the fuel assembly is high in the axial center, and is lower in the axial upper and lower parts than in the axial center. The average fissile material weight ratio in the radial direction of the fuel assembly is determined by the axial center portion and the axial upper and lower portions, where the average value at the axial center portion is less than or equal to the values at the axially upper and lower portions. It is constructed by arranging a plurality of types of fuel assemblies having different fissile material weight percentages of fuel, and the average fissile material weight percentage of the fuel assemblies at the outermost periphery of the core is:
It is characterized by a lower average content of fissile material than the average content of fissile material in the fuel assemblies on the inner side of the outermost periphery of the core.

本発明は以下の検討結果に基づいてなされたも
のである。
The present invention was made based on the following study results.

すなわち、従来の原子炉用燃料集合体では、最
大出力ピークを生じる部分にのみ着目し、その部
分の出力を下げるように検討されて来たのに対
し、本発明はより出力の低い軸方向上部、下部に
着目し、軸方向上部、下部では局所出力ピーキン
グ係数を大きくしても問題にならないことを考慮
し、上部、下部では中性子束の高い燃料集合体径
方向周辺部に高濃度燃料を配置しつつ、軸方向上
部、下部は本来中性子束の低い領域であるため、
上部、下部の平均濃縮度は軸方向中央部以下とす
ることにより平均濃縮度を上下部で高め、中央部
で低くするという従来の一般的な軸方向出力分布
とはまつてく逆の発想で軸方向出力分布の平坦化
を計ると共に、燃料の有効利用を可能とし、所期
の目的の達成を計つたものである。
In other words, in conventional fuel assemblies for nuclear reactors, attention has been focused only on the portion that produces the maximum output peak, and studies have been made to reduce the output of that portion. , focusing on the lower part, taking into consideration that increasing the local power peaking coefficient in the axial upper and lower parts will not cause any problems, and placing high-concentration fuel in the radial periphery of the fuel assembly where the neutron flux is high in the upper and lower parts. However, since the upper and lower axial regions are originally regions with low neutron flux,
By setting the average concentration at the top and bottom to be less than the center in the axial direction, the average concentration is increased in the upper and lower parts and lowered in the center. In addition to flattening the directional power distribution, it also enables effective use of fuel, achieving the intended purpose.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例について説明する。 Examples will be described below.

第1図は本発明の一実施例である圧力管型原子
炉用の同心円状のクラスタ型燃料集合体の構成の
説明図で、aは縦断面、b及びcはそれぞれaの
X−X断面及びY−Y断面を示しており、1は外
周部に配置される燃料棒、2は内側側に配置され
る燃料棒で、1体の燃料集合体は燃料棒1及び2
の合計が36本で構成され、中央部には冷却材を内
蔵する燃料の支持棒3が配置されている。
FIG. 1 is an explanatory diagram of the configuration of a concentric cluster fuel assembly for a pressure tube nuclear reactor, which is an embodiment of the present invention, where a is a vertical cross section, and b and c are X-X cross sections of a, respectively. 1 is a fuel rod arranged on the outer periphery, 2 is a fuel rod arranged on the inner side, and one fuel assembly consists of fuel rods 1 and 2.
It consists of 36 rods in total, and a fuel support rod 3 containing a coolant is placed in the center.

燃料棒は燃料ペレツトとそれを被覆する被覆管
及び上下端部を密封するための端栓により構成さ
れており、燃料にはプルトニウム・ウラン混合酸
化物が用いられている。
A fuel rod is composed of fuel pellets, a cladding tube covering the pellets, and end plugs for sealing the upper and lower ends, and plutonium-uranium mixed oxide is used as the fuel.

燃料棒1には、上部1a、下部1cに燃料ペレ
ツトPが、中央部1bには燃料ペレツトQが充填
され、燃料棒2には、上部2a、下部2cには燃
料ペレツトQが、中央部2bには燃料ペレツトP
が充填されている。燃料ペレツトP及びQの富化
度は、それぞれ、3.2wt(重量)%及び1.6wt%で
ある。
The fuel rod 1 is filled with fuel pellets P in the upper part 1a and the lower part 1c, and the fuel pellets Q in the middle part 1b.The fuel rod 2 is filled with fuel pellets Q in the upper part 2a and the lower part 2c, and the middle part 2b is fuel pellet P
is filled. The enrichment of fuel pellets P and Q is 3.2 wt% and 1.6 wt%, respectively.

すなわち、この実施例の圧力管型原子炉燃料集
合体で熱中性子束の高い集合体径方向最外層の燃
料棒1は軸方向中央部1bのプルトニウム富化度
が1.6wt%であるのに対し、軸方向上下部1a,
1cではプルトニウム富化度を3.2wt%と中央部
1bよりも高い値としている。一方、熱中性子束
の低い、中間層と内層の燃料棒2は軸方向中央部
2bのプルトニウム富化度を3.2wt%としている
のに対し、軸方向上下部2a,2cではプルトニ
ウム富化度を1.6wt%として軸方向中央部2bよ
りも低い値としている。その結果、この実施例で
は、外層の18本の燃料棒と、中間層、内層の18本
の燃料棒のプルトニウム富化度の関係が、軸方向
上部、下部と軸方向中央部とでは逆転している。
That is, in the pressure tube reactor fuel assembly of this embodiment, the plutonium enrichment of the fuel rod 1 in the radially outermost layer of the assembly with high thermal neutron flux is 1.6 wt%, whereas the plutonium enrichment in the axial center portion 1b is 1.6 wt%. , axial upper and lower parts 1a,
In 1c, the plutonium enrichment is 3.2wt%, which is higher than in the central part 1b. On the other hand, in the fuel rods 2 in the middle and inner layers, where the thermal neutron flux is low, the plutonium enrichment in the axial center part 2b is 3.2wt%, while the plutonium enrichment in the axially upper and lower parts 2a and 2c is 3.2wt%. It is set at 1.6wt%, which is a lower value than that of the axial center portion 2b. As a result, in this example, the relationship between the plutonium enrichment of the 18 fuel rods in the outer layer and the 18 fuel rods in the middle and inner layers is reversed between the axially upper and lower parts and the axially central part. ing.

なお、従来の圧力管型原子炉用の燃料集合体で
は、プルトニウム富化度が軸方向に一定な燃料棒
が使用されており、外層の燃料棒にはプルトニウ
ム富化度が3.2wt%のものを用い、中間層、内層
の燃料棒にはプルトニウム富化度が1.6wt%のも
のが用いられ、これによつて燃料の軸方向中央付
近の最大出力の燃料棒出力ができるたれ低下する
ようにしているが、その取出平均燃焼度は約
30000MWd/tであつた。
In addition, in conventional fuel assemblies for pressure tube reactors, fuel rods with a constant plutonium enrichment in the axial direction are used, and the outer layer fuel rods have a plutonium enrichment of 3.2 wt%. The plutonium enrichment is 1.6wt% for the fuel rods in the middle and inner layers, which reduces the maximum output of the fuel rods near the axial center of the fuel. However, the average extraction burnup is approximately
It was 30000MWd/t.

このように従来の同一平均プルトニウム富化度
の燃料集合体の取出平均燃焼度が約
30000MWd/tであるのに対し、この実施例の
燃料集合体の取出平均燃焼度は31500MWd/t
で1500MWd/tの増大を計ることができる。ま
た軸方向出力ピーキング係数も約6%低減され、
最大線出力密度が6%低下し燃料の健全性がより
向上する。
In this way, the average extraction burnup of conventional fuel assemblies with the same average plutonium enrichment is approximately
30,000 MWd/t, whereas the average burnup of the fuel assembly in this example was 31,500 MWd/t.
It is possible to measure an increase of 1500 MWd/t. The axial output peaking coefficient has also been reduced by approximately 6%,
The maximum linear power density is reduced by 6% and the health of the fuel is further improved.

また、この実施例は、従来の燃料のプルトニウ
ム富化度の種類、量はいつさい変えずに外層と内
層、中間層の燃料ペレツトを部分的に配置変えす
るだけで実施でき、新しいプルトニウム富化度の
燃料ペレツトは用いる必要がない簡単な構成であ
る。
In addition, this example can be implemented by simply changing the arrangement of the fuel pellets in the outer layer, inner layer, and middle layer, without changing the type or amount of plutonium enrichment in the conventional fuel. It is a simple construction that does not require the use of granular fuel pellets.

第2図は、第1図の実施例の燃料集合体と従来
の燃料集合体の出力分布を比較して示したもの
で、aが実施例(本発明)、bが従来の燃料集合
体を用いた場合で、縦軸には軸方向位置、横軸に
は、平均プルトニウム富化度(wt%)、軸方向出
力ピーキング係数、局所出力ピーキング係数、軸
方向X局所出力ピーキング係数がとつてあり、軸
方向の平均プルトニウム富化度分布、軸方向出力
分布、集合体内局所出力ピーキング係数分布、軸
方向X局所出力ピーキング係数分布を示してい
る。第2図から明らかなように、軸方向出力ピー
キング係数は、軸方向平均プルトニウム富化度が
共に2.4wt%の場合でも、従来の燃料集合体の場
合に約1.5であつたのが、本発明の場合は約1.4と
なり約6%の低減が可能となつた。これは出力分
布上問題のない軸方向上部、下部で、同一本数の
外層燃料と中間層、外層燃料を交換して局所出力
ピーキング係数を大きくしているためであり、そ
の結果、軸方向X局所出力ピーキング係数も、従
来の燃料集合体の場合が約1.8であつたものが、
本発明では約1.68になり約6%低減可能となつ
た。なお、軸方向上部、下部の燃料境界部では、
出力が従来よりやや上るが軸方向中央部よりは小
さいので問題はない。
Fig. 2 shows a comparison of the output distribution of the fuel assembly of the embodiment shown in Fig. 1 and the conventional fuel assembly, where a indicates the embodiment (the present invention) and b indicates the conventional fuel assembly. In this case, the vertical axis shows the axial position, and the horizontal axis shows the average plutonium enrichment (wt%), axial output peaking coefficient, local output peaking coefficient, and axial X local output peaking coefficient. , the axial average plutonium enrichment distribution, the axial power distribution, the intra-assembly local power peaking coefficient distribution, and the axial X local power peaking coefficient distribution. As is clear from FIG. 2, the axial power peaking coefficient was approximately 1.5 in the case of the conventional fuel assembly, even when the axial average plutonium enrichment was 2.4 wt%, but in the present invention In the case of , it was approximately 1.4, which enabled a reduction of approximately 6%. This is because the local output peaking coefficient is increased by replacing the same number of outer layer fuel with the middle layer and outer layer fuel in the upper and lower parts of the axis in the axial direction where there is no problem in terms of power distribution. The output peaking coefficient was also approximately 1.8 for conventional fuel assemblies, but
In the present invention, it is approximately 1.68, which is a reduction of approximately 6%. In addition, at the upper and lower fuel boundaries in the axial direction,
The output is slightly higher than before, but it is smaller than the axially central portion, so there is no problem.

第3図及び第4図は、本発明の炉心の一実施例
である圧力管型原子炉の炉心の説明図で、第1図
の燃料集合体を使用したもので、燃料集合体120
体より構成されている。第3図aは炉心径方向燃
料配置を示し、第3図bは第3図aのZ−Z断面
の径方向出力分布図で縦軸には燃料出力(相対
値)がとつてある。A,B,Cは外周部、中間
部、内周部で用いられているそれぞれ異なる種類
の燃料集合体を示している。第4図a,b,cは
それぞれ燃料集合体、A,B,Cの軸方向の構成
を示し、第4図d,eは燃料集合体A,B,Cの
X−X断面、Y−Y断面を示している。
3 and 4 are explanatory diagrams of a core of a pressure tube reactor which is an embodiment of the core of the present invention, in which the fuel assembly shown in FIG. 1 is used, and the fuel assembly 120
It is made up of the body. FIG. 3a shows the fuel arrangement in the radial direction of the core, and FIG. 3b is a radial power distribution diagram of the Z-Z cross section of FIG. 3a, with the fuel output (relative value) plotted on the vertical axis. A, B, and C indicate different types of fuel assemblies used in the outer circumferential portion, intermediate portion, and inner circumferential portion, respectively. Figures 4a, b, and c show the axial configurations of fuel assemblies A, B, and C, respectively, and Figures 4d and e show the XX cross sections of fuel assemblies A, B, and C, and Y- A Y cross section is shown.

この実施例の炉心では、燃料物質としてウラ
ン・プルトニウム混合酸化物燃料を用いており、
天然ウランに3.2wt%の核分裂性プルトニウムを
富化した高富化燃料Pと、天然ウランに1.6wt%
の核分裂性プルトニウムを富化した低富化燃料Q
の2種類の燃料棒を用いている。燃料集合体A,
B,Cは第4図に示すように、燃料富化度の集合
体内配列が異なつている。
The reactor core of this example uses uranium-plutonium mixed oxide fuel as the fuel material,
Highly enriched fuel P, which is natural uranium enriched with 3.2wt% fissile plutonium, and natural uranium enriched with 1.6wt% fissile plutonium.
Low enrichment fuel Q enriched with fissile plutonium
Two types of fuel rods are used. fuel assembly A,
As shown in FIG. 4, B and C have different fuel enrichment arrangements within the assembly.

燃料集合体Aは内層燃料、中間層燃料の軸方向
全てに低富化燃料Qを用い、外層燃料の軸方向全
てに高富化燃料Pを用いている。燃料集合体Bは
内層燃料、中幅層燃料の軸方向中央部の全長の約
1/3の範囲を高富化燃料Pとし、それ以外の上部、
下部は低富化燃料Qとしている。また外層燃料は
軸方向中央部の全長の約1/3の範囲を低富化燃料
Qとし、それ以外の上部、下部は高富化燃料Pと
している。
In the fuel assembly A, the low enrichment fuel Q is used in all the axial directions of the inner layer fuel and the middle layer fuel, and the highly enriched fuel P is used in all the axial directions of the outer layer fuel. In the fuel assembly B, a range of approximately 1/3 of the total length of the inner layer fuel and the middle width layer fuel in the axial direction is the highly enriched fuel P, and the other upper part,
The lower part is the low enrichment fuel Q. Further, the outer layer fuel has low enrichment fuel Q in a range of about 1/3 of the total length in the axial center, and high enrichment fuel P in the other upper and lower parts.

燃料集合体Cは内層燃料、中間層燃料の軸方向
中央部の全長の約1/2の範囲を高富化燃料Pとし、
それ以外の上部、下部は低富化燃料Qとしてい
る。また外層燃料は軸方向中央部の約1/2の範囲
を低富化燃料Qとし、それ以外を高富化燃料Pと
している。
In the fuel assembly C, approximately 1/2 of the total length of the inner layer fuel and the middle layer fuel in the axial direction is made into highly enriched fuel P.
The other upper and lower parts are low enriched fuel Q. Moreover, the outer layer fuel has a low enrichment fuel Q in about 1/2 of the axial center area, and a high enrichment fuel P in the other area.

原子炉では熱中性子束は炉心の中央よりも径方
向周辺、あるいは軸方向上部、下部が低いという
一般的性質を有している。また圧力管型原子炉、
あるいは軽水炉では燃料集合体の径方向周辺より
も中心部の方が熱中性子束が低いという特性を有
している。第3図の燃料集合体Cは炉心中央領域
に位置し全体的に熱中性子束が大きいが軸方向の
上部、下部、及び燃料集合体径方向中央部では熱
中性子束が低下する。従つて軸方向出力分布平坦
化に効果的な燃料集合体中の外層燃料のみ軸方向
上部、下部のそれぞれ約1/4の範囲を高富化燃料
Pとし、中央部は低富化燃料Qとしてある。一方
内層、中間層は熱中性子束が高い軸方向中央部で
集合体内局所出力を平坦化するために高富化燃料
Pとし、局所出力を平坦化する必要がなく軸方向
平坦化の効果の小さい軸方向上部、下部の約1/4
の範囲では低富化燃料Qとしている。
A nuclear reactor has a general property that the thermal neutron flux is lower at the radial periphery or at the axial upper and lower parts than at the center of the core. Also, pressure tube reactors,
Alternatively, a light water reactor has a characteristic that the thermal neutron flux is lower at the center than at the radial periphery of the fuel assembly. The fuel assembly C in FIG. 3 is located in the central region of the reactor core and has a large thermal neutron flux overall, but the thermal neutron flux decreases at the upper and lower parts in the axial direction and at the center in the radial direction of the fuel assembly. Therefore, only the outer layer fuel in the fuel assembly, which is effective for flattening the axial power distribution, has approximately 1/4 of the upper and lower axial regions as highly enriched fuel P, and the central region as low enriched fuel Q. . On the other hand, the inner layer and the middle layer are made of highly enriched fuel P in order to flatten the local output within the assembly in the axial center where the thermal neutron flux is high, and the axis where there is no need to flatten the local output and the effect of axial flattening is small. Direction top, bottom about 1/4
In the range of , low enrichment fuel Q is considered.

第3図の燃料集合体B燃料集合体Cの外側に位
置し、平均熱中性子束は炉心中央よりも低下した
位置に装荷される。このため燃料集合体Cをこの
位置に用いると中央よりも出力が低下する。そこ
で燃料集合体Bでは燃料集合体Cよりも軸方向の
燃料配置が変る位置をより中央側に移動させたも
のを用いる。
Fuel assembly B is located outside fuel assembly C in FIG. 3, and is loaded at a position where the average thermal neutron flux is lower than the center of the core. Therefore, if the fuel assembly C is used at this position, the output will be lower than that at the center. Therefore, a fuel assembly B is used in which the position where the fuel arrangement in the axial direction changes is moved closer to the center than in the fuel assembly C.

また第3図の燃料集合体Aは炉心径方向で最も
熱中性子束の低い炉周辺部に配置されるため、燃
料集合体の中で最も熱中性子束の高い外層燃料を
高富化燃料Pとして燃料出力を高めさせ炉心径方
向の出力分布平坦化を計つており、また熱中性子
束の炉心で最も低い内層、中間層では燃料はあま
り燃焼しないためむだのない低富化燃料Qとして
いる。
In addition, since the fuel assembly A in Figure 3 is placed in the periphery of the reactor where the thermal neutron flux is lowest in the radial direction of the core, the outer layer fuel with the highest thermal neutron flux in the fuel assembly is used as the highly enriched fuel P. The plan is to increase the output and flatten the power distribution in the radial direction of the core, and to create a low-enriched fuel Q that is wasteful because not much fuel is burned in the inner and middle layers, where thermal neutron flux is the lowest in the core.

そして、この実施例の炉心では、第3図bに示
すように炉心径方向出力分布の平坦化が可能とな
つている。またこの実施例の炉心では軸方向の各
断面の燃料プルトニウム富化度はすべて同一の
2.4wt%でありながら軸方向出力分布を約5%平
坦化することが可能となつている。この実施例の
炉心を採用した場合、燃料の平均取出燃焼度は従
来炉心がプルトニウム平均富化度2.4wt%で約
30000MWd/tであつたのに対し32500MWd/
tに増大し、約2500MWd/tの燃焼度改善を計
ることができる。
In the core of this embodiment, it is possible to flatten the power distribution in the radial direction of the core, as shown in FIG. 3b. In addition, in the core of this example, the fuel plutonium enrichment in each axial cross section is all the same.
Although it is 2.4wt%, it is possible to flatten the axial power distribution by about 5%. When the core of this example is adopted, the average fuel extraction burnup will be approximately
30,000MWd/t was 32,500MWd/
t, resulting in an improvement in burnup of approximately 2500 MWd/t.

なお第3図及び第4図の実施例の炉心では2種
類のプルトニウム富化度燃料を用いているが、熱
中性子束の低い内層燃料の一部あるいは全部に
は、天然ウラン、濃縮プラントから不要物質とし
て出てくる劣化ウラン、使用済燃料の再処理によ
つて出てくる減損ウラン等の低核分裂性の酸化物
燃料を用い、中間層、外層燃料にプルトニウム富
化燃料を用いても、同様の炉心を形成することが
できる。
The reactor cores of the embodiments shown in Figures 3 and 4 use two types of plutonium-enriched fuel, but some or all of the inner layer fuel with low thermal neutron flux may contain natural uranium or plutonium that is not needed from the enrichment plant. The same result can be obtained even if low-fissile oxide fuel such as depleted uranium produced as a material or depleted uranium produced by reprocessing spent fuel is used, and plutonium-enriched fuel is used as the middle and outer layer fuel. can form a reactor core.

またこのような炉心の燃料配置を3種類以上の
燃料濃度を用いたより多くの燃料集合体を用い行
なえば、燃焼度出力分布でより最適な炉心を形成
することも可能である。
Further, by arranging fuel in the core using more fuel assemblies with three or more types of fuel concentrations, it is possible to form a core with a more optimal burnup power distribution.

また、第3図及び第4図の実施例の炉心を、濃
縮ウラン酸化物燃料で形成することも可能である
と共に、ガドリニア等の可燃性中性子毒物の混入
している燃料を用いることもできる。
Further, the cores of the embodiments shown in FIGS. 3 and 4 can be formed from enriched uranium oxide fuel, and fuel mixed with flammable neutron poisons such as gadolinia can also be used.

また、第3図及び第4図の実施例では燃料集合
体の内層、中間層、外層の燃料は層毎に同一燃料
濃度としているが、層の中で燃料棒毎に濃度を変
えることも可能である。
Furthermore, in the embodiments shown in Figures 3 and 4, the fuel concentration in the inner layer, intermediate layer, and outer layer of the fuel assembly is the same for each layer, but it is also possible to vary the concentration for each fuel rod within the layer. It is.

第5図は本発明の燃料集合体の他の実施例を示
し、第3図及び第4図の炉心にも使用することが
できる燃料集合体の構成説明図で、aは縦断面、
b,c,d及びeはそれぞれaのI−I、J−
J、K−K、L−L断面を示しており、4は外周
層に配置される燃料棒、5は中間層の配置されも
燃料棒、6は内層に配置される燃料棒を示してい
る。
FIG. 5 shows another embodiment of the fuel assembly of the present invention, and is an explanatory diagram of the configuration of the fuel assembly that can also be used in the cores of FIGS. 3 and 4, where a is a vertical cross section;
b, c, d and e are I-I and J- of a, respectively
J, K-K, and L-L cross sections are shown, and 4 shows the fuel rods arranged in the outer layer, 5 shows the fuel rods arranged in the middle layer, and 6 shows the fuel rods arranged in the inner layer. .

I−I断面では、軸方向最上端、最下端である
ため、燃焼効率のむだを省くために外層、中間
層、内層の燃料棒4,5,6の何れも低濃度燃料
Qを使用する。J−J断面では、軸方向で比較的
低い熱中性子束領域のため外層燃料棒4を高濃度
燃料Pとし、内層、中間層の燃料棒4,5は低濃
度燃料Qとする。K−K断面では熱中性子束は比
較的高いが軸方向中央部よりはやや低いため、内
層、外層の燃料棒6,4は低濃度燃料Qとし中間
層の燃料棒5は高濃度燃料Pとし、L−L断面よ
りも局所出力ピーキング係数をやや大きくする。
またL−L断面では熱中性子束が最も高いため、
内層、中間層の燃料棒6,5を高濃度燃料Pと
し、外層4の燃料棒を低濃度燃料Qとし局所出力
分布を平坦化している。
In the I-I cross section, since these are the uppermost and lowermost ends in the axial direction, the low concentration fuel Q is used for all of the fuel rods 4, 5, and 6 in the outer layer, middle layer, and inner layer in order to avoid wasteful combustion efficiency. In the J-J cross section, the outer layer fuel rod 4 is used as a high concentration fuel P because of the relatively low thermal neutron flux region in the axial direction, and the inner layer and intermediate layer fuel rods 4 and 5 are used as a low concentration fuel Q. Thermal neutron flux is relatively high in the K-K cross section, but slightly lower than in the central part in the axial direction, so the fuel rods 6 and 4 in the inner and outer layers are filled with low-concentration fuel Q, and the fuel rods 5 in the middle layer are filled with high-concentration fuel P. , the local output peaking coefficient is made slightly larger than that of the LL cross section.
In addition, since the thermal neutron flux is highest at the L-L cross section,
The fuel rods 6 and 5 in the inner and intermediate layers are made of high concentration fuel P, and the fuel rods in the outer layer 4 are made of low concentration fuel Q to flatten the local power distribution.

第1図〜第5図の実施例における燃料棒は軸方
向中央部に対し上下対象であるが、冷却材にボイ
ドが発生する沸騰水冷却型原子炉用燃料部では中
央部以上の軸方向燃料境界面を上部へずらし熱的
に楽にすることもできる。
The fuel rods in the embodiments shown in Figs. 1 to 5 are vertically symmetrical with respect to the central part in the axial direction, but in the fuel section for a boiling water-cooled nuclear reactor where voids occur in the coolant, the fuel rods in the axial direction above the central part are vertically symmetrical. It is also possible to move the boundary surface upwards to make it thermally easier.

第6図は、さらに他の実施例の軽水炉用燃料集
合体の説明図で、第6図aが炉心径方向燃料配置
を示し、A,C,Dは熱中性子束の高い領域の燃
料棒、B,E,F,G,Hは熱中性子束が低い領
域の燃料棒、記号の記入されていない燃料棒は水
ロソドを示している。第6図bは燃料集合体A〜
Hの軸方向の構成及び燃料集合体の軸方向の全平
均の構成を示したもので特開昭58−26292号公報
に開示されている燃料集合体において、高中性子
領域燃料棒には軸方向中央部よりも上下部の燃料
濃度を高め、低中性子領域燃料棒は軸方向中央よ
りも上下部の燃料濃度を低めたものであり、第6
図cは比較のために示した特開昭58−26292号公
報に開示された燃料集合体A′〜H′(第6図aのA
〜Hに対応して使用されるもの)の軸方向の構
成、燃料集合体の軸方向の全平均の構成及び熱中
性子束分布がとつてある。第6図b,cに記載さ
れている数字は燃料濃度(wt%)で、この実施
例の高中性子領域A,C,Dの平均は3.45wt%、
低中性子領域B,E,F,G,Hの平均は2.7wt
%であり、高中性子領域A′,C′,D′の平均は
3.3wt%、低中性子領域B′,E′,F′,G′,H′の平
均は2.85wt%である 本実施例では熱中性子束の高い領域の燃料棒
A,C,Dを軸方向中央濃度を低くし、上下部濃
度を中央より高くする。また熱中性子束の低い領
域の燃料棒の内、ガドリニアを含む燃料棒以外
B,E,Hは軸方向中央濃度を高くし、上下部濃
度を中央より低くする。
FIG. 6 is an explanatory diagram of a fuel assembly for a light water reactor according to yet another embodiment, in which FIG. 6a shows the fuel arrangement in the radial direction of the core, and A, C, and D indicate fuel rods in areas with high thermal neutron flux; B, E, F, G, and H indicate fuel rods in the region of low thermal neutron flux, and fuel rods without symbols indicate water rods. Figure 6b shows fuel assembly A~
In the fuel assembly disclosed in JP-A-58-26292, which shows the axial configuration of H and the overall average configuration of the fuel assembly in the axial direction, the fuel rods in the high neutron region The fuel concentration in the upper and lower parts is higher than that in the center, and the fuel concentration in the upper and lower parts of the low neutron region fuel rod is lower than that in the axial center.
Figure c shows fuel assemblies A' to H' (A
The axial configuration of the fuel assembly (used corresponding to H), the total average configuration of the fuel assembly in the axial direction, and the thermal neutron flux distribution are determined. The numbers shown in Fig. 6b and c are the fuel concentrations (wt%), and the average of the high neutron regions A, C, and D in this example is 3.45wt%,
The average of low neutron regions B, E, F, G, and H is 2.7wt
%, and the average of high neutron regions A′, C′, D′ is
3.3wt%, and the average in the low neutron regions B', E', F', G', and H' is 2.85wt%. In this example, the fuel rods A, C, and D in the high thermal neutron flux region are Lower the center density and make the upper and lower density higher than the center. Among the fuel rods in the low thermal neutron flux region, B, E, and H, other than the fuel rods containing gadolinia, have a high concentration at the center in the axial direction, and a lower concentration at the upper and lower portions than at the center.

すなわち、特開昭58−26292号公報に記載され
た従来の燃料集合体は、軸方向上部の燃料濃度を
下部より高めることにより軸方向出力分布を平坦
化し、集合体径方向で熱中性子束の高い外周部の
燃料濃度を中央部よりも高めて燃料の利用効率を
上げた優れたものであるが、本発明の着目点であ
る燃料の利用効率を上げるために、軸方向平坦化
を集合体径方向で最も熱中性子束の高い領域で実
施し、逆に熱中性子束の低い領域の燃料棒では逆
に軸方向平坦化を実施しないで軸方向中央よりも
上下部濃度を下げるということは考慮されていな
かつた。
In other words, the conventional fuel assembly described in JP-A-58-26292 flattens the axial power distribution by increasing the fuel concentration in the upper part of the axis than in the lower part, and reduces the thermal neutron flux in the radial direction of the assembly. This is an excellent product that increases the fuel usage efficiency by increasing the fuel concentration in the outer periphery than in the central part, but in order to increase the fuel usage efficiency, which is the focus of the present invention, axial flattening is applied to the aggregate. It should be taken into consideration that flattening should be carried out in the region with the highest thermal neutron flux in the radial direction, and conversely in the fuel rods in the region with the lowest thermal neutron flux, the concentration should be lowered above and below the center in the axial direction without carrying out flattening in the axial direction. It had not been done.

このような従来の燃料集合体に対して、第6図
の本発明の実施例の燃料集合体は、平均は同一濃
度でありながら燃焼度を5%向上することができ
る。これは第6図に示すように高熱中性子領域の
燃料棒平均濃度を3.3wt%から3.45wt%に約5%
向上したこと、及び軸方向濃度分布でも熱中性子
の高い軸方向中央から下部にかけて従来よりも燃
料濃度を増大できたことに基づいている。
Compared to such a conventional fuel assembly, the fuel assembly according to the embodiment of the present invention shown in FIG. 6 can improve burnup by 5% while maintaining the same concentration on average. As shown in Figure 6, this increases the average concentration of fuel rods in the hot neutron region from 3.3wt% to 3.45wt% by approximately 5%.
This is based on the fact that the fuel concentration has been increased from the center to the bottom in the axial direction where thermal neutrons are high in the axial concentration distribution compared to the conventional one.

以上の、実施例の記載より明らかな如く、原子
炉の炉心において軸方向の燃料平均濃度を中央部
より上部、下部で上げることなく軸方向出力分布
を平坦化できる。また軸方向上部下部では燃料集
合体の熱中性子束の高い径方向周辺部で燃料濃度
を高くすると共に、径方向中央部は軸方向中央部
よりも燃料濃度を低下させるため、また軸方向全
体では軸方向中央部を軸方向上部、下部の平均濃
度以上の濃度とすることができるために燃料を低
い濃度で高い燃焼度を出すことができる。
As is clear from the description of the embodiments above, the axial power distribution can be flattened without increasing the average fuel concentration in the axial direction in the upper and lower parts of the reactor core. In addition, in the upper and lower parts of the axial direction, the fuel concentration is increased in the radial periphery of the fuel assembly where thermal neutron flux is high, and the fuel concentration is lowered in the radial center than in the axial center. Since the axially central portion can have a concentration higher than the average concentration of the axially upper and lower portions, a high burnup can be achieved with a low fuel concentration.

そして、燃料集合体内で2種類以上の燃料濃縮
度を使つている場合、燃料集合体内に中性子束分
布のある原子炉ならば、燃料濃縮度の新しい種類
の追加等を実施しなくても、その燃料濃縮度を配
置変更するだけで軸方向出力分布の平坦化、燃焼
度の向上を計ることができる。
If two or more types of fuel enrichment are used within a fuel assembly, if the reactor has a neutron flux distribution within the fuel assembly, the new type of fuel enrichment can be used without adding a new type of fuel enrichment. It is possible to flatten the axial power distribution and improve burnup simply by changing the fuel enrichment arrangement.

〔発明の効果〕〔Effect of the invention〕

本発明は、核燃料を有効に燃焼させ、燃焼度の
増大を実現可能とする燃料集合体を提供可能とす
るもので、産業上の効果の大なるものである。
The present invention makes it possible to provide a fuel assembly that can effectively burn nuclear fuel and increase burnup, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料集合体の一実施例の構成
の説明図、第2図は第1図の一実施例と従来の燃
料集合体の出力分布の説明図、第3図及び第4図
は本発明の炉心の一実施例の説明図、第5図は本
発明の燃料集合体の他の実施例の構成の説明図、
第6図は同じく他の実施例の構成を従来の燃料集
合体の構成と比較して示す説明図である。 1……(外周部に配置される)燃料棒、2……
(内側側に配置される)燃料棒、1a,1b,1
c……(燃料棒1の)上部、中央部、下部、2
a,2b,2c……(燃料棒2の)上部、中央
部、下部、P……高富化燃料、Q……低富化燃
料。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the fuel assembly of the present invention, FIG. 2 is an explanatory diagram of the output distribution of the embodiment of FIG. 1 and the conventional fuel assembly, and FIGS. The figure is an explanatory diagram of one embodiment of the reactor core of the present invention, FIG. 5 is an explanatory diagram of the configuration of another embodiment of the fuel assembly of the present invention,
FIG. 6 is an explanatory diagram showing the structure of another embodiment in comparison with the structure of a conventional fuel assembly. 1...Fuel rod (arranged on the outer periphery), 2...
Fuel rods (located on the inside), 1a, 1b, 1
c... (of fuel rod 1) upper part, center part, lower part, 2
a, 2b, 2c...upper, center, lower part (of fuel rod 2), P...highly enriched fuel, Q...lowly enriched fuel.

Claims (1)

【特許請求の範囲】 1 多数の長尺の燃料棒を束ねて構成される原子
炉用の燃料集合体において、該燃料集合体の径方
向断面の熱中性子束の高い領域に属する前記燃料
棒内の燃料の核分裂性物質重量割合は軸方向中央
部が低く、軸方向上部及び下部では軸方向中央部
よりも高く、前記燃料集合体の径方向断面の熱中
性子束の低い領域の燃料棒内の燃料の核分裂性物
質重量割合は軸方向中央部が高く、軸方向上部及
び下部では軸方向中央部よりも低くなつており、
前記燃料集合体の径方向平均の核分裂性物質重量
割合は軸方向中央部の平均値が、軸方向上部、下
部の平均値以下になつていることを特徴とする燃
料集合体。 2 前記燃料集合体の径方向断面の熱中性子束の
高い領域が、前記燃料集合体の最外周部の燃料棒
よりなる領域であり、同じく熱中性子束の低い領
域が前記最外周部より内側の燃料棒よりなる領域
である特許請求の範囲第1項記載の燃料集合体。 3 前記燃料集合体は、その全体に用いる核分裂
性物質の重量割合が軸方向中央部の径方向断面内
の燃料棒に用いられている核分裂性物質の重量割
合であり、その全体に用いる核分裂性物質重量割
合の種類の数が軸方向中央部の径方向断面内で用
いられる核分裂性物質重量割合の種数の数である
特許請求の範囲第1項又は第2項記載の燃料集合
体。 4 多数の長尺の燃料棒を束ねて構成される原子
炉用の燃料集合体を有する炉心において、前記燃
料集合体のうち少なくとも炉心最外周部の燃料集
合体を除く燃料集合体の径方向断面の熱中性子束
の高い領域に属する前記燃料棒内の燃料の核分裂
性物質重量割合は軸方向中央部が低く、軸方向上
部及び下部では軸方向中央部よりも高く、前記核
燃料集合体の径方向断面の熱中性子束の低い領域
の燃料棒内の燃料の核分裂性物質重量割合は軸方
向中央部が高く、軸方向上部及び下部では軸方向
中央部よりも低くなつており、前記燃料集合体の
径方向平均の核分裂性物質重量割合は軸方向中央
部の平均値が、軸方向上部、下部の平均値以下に
なつている軸方向中央部と軸方向上部及び下部と
の燃料の核分裂性物質重量割合の異なる複数種の
前記燃料集合体を配列して構成され、炉心最外周
部の燃料集合体の平均核分裂性物質重量割合が、
炉心最外周部よりも内側側の燃料集合体の平均核
分裂性物質割合よりも低くなつていることを特徴
とする炉心。 5 前記複数種の前記燃料集合体のそれぞれの最
外周部の燃料棒の前記軸方向中央部の燃料の核分
裂性物質重量割合の前記軸方向上部及び下部の燃
料の核分裂性物質重量割合に対する比が炉心中心
部から外周部に向つて小さくなつている特許請求
の範囲第4項記載の炉心。 6 前記燃料集合体の径方向断面の熱中性子束の
高い領域が、前記燃料集合体の最外周部の燃料棒
よりなる領域であり、同じく熱中性子束の低い領
域が前記最外周部より内側の燃料棒よりなる領域
である特許請求の範囲第4項又は第5項記載の炉
心。 7 前記燃料集合体は、その全体に用いる核分裂
性物質の重量割合が軸方向中央部の径方向断面内
の燃料棒に用いられている核分裂性物質の重量割
合であり、その全体に用いる核分裂性物質重量割
合の種数の数が軸方向中央部の径方向断面内で用
いられる核分裂性物質重量割合の種類の数である
特許請求の範囲第4項又は第5項又は第6項記載
の炉心。
[Scope of Claims] 1. In a fuel assembly for a nuclear reactor constructed by bundling a large number of long fuel rods, the fuel rods within the fuel rods that belong to a region of high thermal neutron flux in the radial cross section of the fuel assembly The weight fraction of fissile material in the fuel is lower in the axial center, and higher in the upper and lower axial regions than in the axial center, and is higher in the fuel rods in the low thermal neutron flux regions of the radial cross section of the fuel assembly. The weight percentage of fissile material in the fuel is higher in the axial center, and lower in the upper and lower axial regions than in the axial center.
The fuel assembly is characterized in that the radially average weight ratio of fissile material in the fuel assembly is such that the average value at the axial center portion is less than the average value at the axially upper and lower portions. 2. The region of high thermal neutron flux in the radial cross section of the fuel assembly is the region consisting of the fuel rods at the outermost periphery of the fuel assembly, and the region of low thermal neutron flux is the region inside the outermost periphery of the fuel assembly. The fuel assembly according to claim 1, which is a region consisting of fuel rods. 3 The weight proportion of the fissile material used in the fuel assembly as a whole is the weight proportion of the fissile material used in the fuel rods in the radial cross section of the central part in the axial direction; 3. The fuel assembly according to claim 1, wherein the number of types of material weight proportions is the number of types of fissile material weight proportions used within the radial cross section of the axially central portion. 4. In a core having a fuel assembly for a nuclear reactor configured by bundling a large number of long fuel rods, a radial cross section of the fuel assembly excluding at least the fuel assembly at the outermost part of the core among the fuel assemblies. The weight fraction of fissile material in the fuel in the fuel rod, which belongs to the region of high thermal neutron flux, is lower in the axial center, higher in the axial upper and lower parts than in the axial center, and is higher in the radial direction of the nuclear fuel assembly. The weight percentage of fissile material in the fuel in the fuel rod in the low thermal neutron flux region of the cross section is high in the axial center, and lower in the axial upper and lower parts than in the axial center. The radial average fissile material weight ratio is the fissile material weight of the fuel in the axial center, upper and lower axial areas where the average value at the axial center is less than the average value at the axial upper and lower parts. It is constructed by arranging a plurality of types of fuel assemblies with different proportions, and the average fissile material weight proportion of the fuel assemblies at the outermost part of the core is
A reactor core characterized in that the ratio of fissile material is lower than the average content of fissile material in fuel assemblies on the inner side of the core than at the outermost periphery of the core. 5. The ratio of the fissile material weight percentage of the fuel in the axially central portion of the outermost fuel rod of each of the plurality of types of fuel assemblies to the fissile material weight percentage of the fuel in the axially upper and lower portions is 5. The reactor core according to claim 4, wherein the core becomes smaller from the center of the core toward the outer periphery. 6. The region of high thermal neutron flux in the radial cross section of the fuel assembly is the region consisting of fuel rods at the outermost periphery of the fuel assembly, and similarly the region of low thermal neutron flux is the region inside the outermost periphery. 6. The reactor core according to claim 4 or 5, which is a region consisting of fuel rods. 7 The weight proportion of the fissile material used in the fuel assembly as a whole is the weight proportion of the fissile material used in the fuel rods in the radial cross section of the central part in the axial direction; The reactor core according to claim 4, 5, or 6, wherein the number of types of material weight percentages is the number of types of fissile material weight percentages used within the radial cross section of the axially central portion. .
JP60192527A 1985-08-30 1985-08-30 Fuel aggregate and core Granted JPS6252493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60192527A JPS6252493A (en) 1985-08-30 1985-08-30 Fuel aggregate and core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60192527A JPS6252493A (en) 1985-08-30 1985-08-30 Fuel aggregate and core

Publications (2)

Publication Number Publication Date
JPS6252493A JPS6252493A (en) 1987-03-07
JPH0376875B2 true JPH0376875B2 (en) 1991-12-06

Family

ID=16292763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60192527A Granted JPS6252493A (en) 1985-08-30 1985-08-30 Fuel aggregate and core

Country Status (1)

Country Link
JP (1) JPS6252493A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774828B2 (en) * 1989-08-25 1998-07-09 株式会社日立製作所 Fast reactor fuel assemblies, fast reactor cores, and fast reactor fuel rods
JP3927130B2 (en) 2002-02-25 2007-06-06 有限会社エリート貿易 Optical fiber decoration device using LED light source and its decoration

Also Published As

Publication number Publication date
JPS6252493A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
JP3531011B2 (en) Fuel assemblies and reactors
JPH02296192A (en) Fuel assembly and nuclear reactor
JPS60242392A (en) Fuel aggregate
JP2772061B2 (en) Fuel assembly
JP2510612B2 (en) Reactor core and initial reactor core
JP3651522B2 (en) Nuclear reactor core
JPH0376875B2 (en)
JP3514869B2 (en) Fuel assemblies for boiling water reactors
JPH10170674A (en) Fuel assembly
JP4351798B2 (en) Fuel assemblies and reactors
JP2000028771A (en) Fuel assembly
JP3237922B2 (en) Fuel assemblies and cores for boiling water reactors
JP2563287B2 (en) Fuel assembly for nuclear reactor
JP3075749B2 (en) Boiling water reactor
JPH0816711B2 (en) Fuel assembly
JPH0636049B2 (en) Fuel assembly for boiling water reactor
JP3051762B2 (en) Nuclear fuel assembly
JP2577367B2 (en) Fuel assembly
JP3501406B2 (en) Fuel assembly
JP2003262692A (en) Boiling water reactor fuel assembly and determination method for fuel arrangement in the fuel assembly
JP3347137B2 (en) Fuel assemblies and boiling water reactor cores
JP2544249B2 (en) Fuel assembly and reactor core for boiling water reactors
JPS6247583A (en) Fuel aggregate for pressure tube type reactor
JP2656279B2 (en) Fuel assembly for boiling water reactor
JPS6184591A (en) Fuel aggregate