JP2563287B2 - Fuel assembly for nuclear reactor - Google Patents

Fuel assembly for nuclear reactor

Info

Publication number
JP2563287B2
JP2563287B2 JP61296617A JP29661786A JP2563287B2 JP 2563287 B2 JP2563287 B2 JP 2563287B2 JP 61296617 A JP61296617 A JP 61296617A JP 29661786 A JP29661786 A JP 29661786A JP 2563287 B2 JP2563287 B2 JP 2563287B2
Authority
JP
Japan
Prior art keywords
fuel
gadolinia
fuel assembly
rods
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61296617A
Other languages
Japanese (ja)
Other versions
JPS63149588A (en
Inventor
庄一 渡辺
宏司 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61296617A priority Critical patent/JP2563287B2/en
Publication of JPS63149588A publication Critical patent/JPS63149588A/en
Application granted granted Critical
Publication of JP2563287B2 publication Critical patent/JP2563287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉用燃料集合体に係わり、特に高燃焼度
化に好適な原子炉用燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a fuel assembly for a nuclear reactor, and more particularly to a fuel assembly for a nuclear reactor suitable for high burnup.

(従来の技術) 現在の商業用原子炉で使用されている燃料集合体は、
濃縮ウランの二酸化物をペレット状に焼結した燃料要素
をジルコニウム合金の被覆管に充填した燃料棒を正方格
子状に配列し、これをスペーサで燃料棒の間隔を保持し
ながら束ねて構成されている。さらに、この燃料集合体
を構成する燃料棒の一部には燃料の余剰な反応度を制御
するために、濃縮ウラン酸化物と中性子吸収物質である
ガドリニウム酸化物(ガドリニア)との混合酸化物ペレ
ットが充填されている(以下、これをガドリニア棒とい
う)。
(Prior Art) Fuel assemblies used in current commercial nuclear reactors are
Fuel elements filled with zirconia enriched uranium dioxide pellets are packed in a zirconium alloy cladding tube and arranged in a square lattice, and the fuel rods are bundled by spacers while keeping the distance between the fuel rods. There is. In addition, in order to control the excess reactivity of the fuel in some of the fuel rods that compose this fuel assembly, mixed oxide pellets of enriched uranium oxide and gadolinium oxide (gadolinia) that is a neutron absorbing substance are used. Is filled (hereinafter referred to as gadolinia rod).

第7図は従来の沸騰水型原子炉用のウラン燃料集合体
の配置図を示す。この燃料では燃料棒(濃縮度の高い順
で番号で表わす)が8×8の正方格子状に配列されてお
り、中央部分にはその中を冷却水が流れるウォータロッ
ドWが本配置されている。そして、62本の燃料棒のうち
8本がガドリニア棒であり、残り54本が濃縮ウランの酸
化物ペレットが充填された通常の燃料棒1〜4である。
第8図に前記した第7図の燃料の無限増倍率の燃焼変化
を示すが、未燃焼時から燃焼度10GWd/tまでは燃焼とと
もに増加しそれ以後は減少している。この燃料を運転期
間が10GWd/tの3バッチ取替え炉心(燃料交換時に全炉
心の3分の1ずつ新燃料と交換する)に装荷すると、無
限増倍率の増加する部分(1サイクル目燃料)と減少す
る部分(2サイクル以降の燃料)とが丁度釣合い、運転
期間を通じてほぼ平坦な実効倍率が達成される。
FIG. 7 shows a layout of a conventional uranium fuel assembly for a boiling water reactor. In this fuel, fuel rods (represented by numbers in the order of increasing enrichment) are arranged in an 8 × 8 square lattice, and a water rod W through which cooling water flows is permanently arranged in the central portion. . And, of the 62 fuel rods, 8 are gadolinia rods, and the remaining 54 are ordinary fuel rods 1 to 4 filled with oxide pellets of enriched uranium.
FIG. 8 shows the combustion change of the infinite multiplication factor of the fuel of FIG. 7 described above. It increases with combustion from unburned to a burnup of 10 GWd / t, and decreases thereafter. When this fuel is loaded into a 3-batch replacement core with an operating period of 10 GWd / t (one-third of the total core is replaced with fresh fuel at the time of refueling), the infinite multiplication factor increases (first cycle fuel) The decreasing portion (fuel after 2 cycles) is just balanced, and a substantially flat effective magnification is achieved throughout the operation period.

このような燃料は、ガドリニア棒の本数とガドリニア
濃度とを適切に設計することによって得られる。前者は
無限増倍率をどれだけ抑えるかを、後者はいつまで制御
するかを決定する。特に、ガドリニア濃度はガドリニア
が運転サイクル末期(以下EOCと略す)には完全に燃尽
きるように決めなければならない。もし、EOCにおいて
ガドリニアが残っていると中性子が無駄に吸収されるこ
とになるので、燃料経済性が悪化することになるからで
ある。
Such fuel can be obtained by properly designing the number of gadolinia rods and the gadolinia concentration. The former decides how much the infinite multiplication factor is suppressed, and the latter decides to what extent. In particular, the gadolinia concentration must be determined so that the gadolinia is completely burned at the end of the operating cycle (hereinafter referred to as EOC). If gadolinia remains in the EOC, neutrons will be unnecessarily absorbed, and fuel economy will deteriorate.

(発明が解決しようとする問題点) 近年、燃料経済性向上の観点から燃料集合体1体当り
の核分裂性物質含有量を増すことによってサイクル毎の
取替体数を減らした設計が進められている。このために
は、燃料集合体の燃焼初期での余剰反応度を抑えねばな
らないので、ガドリニア本数を従来以上に増やすことが
必要である。
(Problems to be Solved by the Invention) In recent years, from the viewpoint of improving fuel economy, a design in which the number of replacements per cycle is reduced by increasing the content of fissile material per fuel assembly has been advanced. . For this purpose, it is necessary to suppress the excess reactivity of the fuel assembly at the initial stage of combustion, so it is necessary to increase the number of gadolinia more than before.

一方、ガドリニア棒の中性子吸収能力は大きいので、
ガドリニア棒同士の中性子吸収の強い干渉を避けるため
燃料集合体内では相互に隣接した配置は取らないのが従
来の設計の考え方であり、これによって燃料集合体内で
のガドリニア棒配置場所の自由度は制限されてくる。
On the other hand, since the gadolinia rod has a large neutron absorption capacity,
In order to avoid strong interference of neutron absorption between gadolinia rods, the conventional design idea is not to place them adjacent to each other in the fuel assembly, which limits the freedom of placement of gadolinia rods in the fuel assembly. Is coming.

ところが、上記のように高燃焼度化によってガドリニ
ア棒本数が増すと集合体内での配置場所がなくなり必要
な本数を配置できなくなる場合が生じてくる。この対策
としてガドリニア濃度を濃くしてEOCでガドリニアが燃
え残るようにすれば、2サイクル目燃料の燃焼初期での
無限増倍率は小さくなり、運転サイクル初期(以下BOC
と略す)での炉心の反応度はその分低下して初期余剰反
応度を抑えることができる。しかし、一方ではEOCにお
いてガドリニアを無駄に燃え残すので、炉心の反応度が
低下して、運転サイクル長さが短くなり燃料経済性が低
下するという問題点があった。
However, if the number of gadolinia rods increases due to the high burnup as described above, there may be a case where the required number of gadolinia rods cannot be arranged because there is no place for arrangement in the assembly. As a countermeasure against this, if the gadolinia concentration is increased so that the gadolinia remains unburned at the EOC, the infinite multiplication factor at the beginning of the combustion of the second cycle fuel will be small, and
(Abbreviated as)), the reactivity of the core is reduced accordingly and the initial excess reactivity can be suppressed. However, on the other hand, there is a problem that the gadolinia is unnecessarily burned in the EOC, which reduces the reactivity of the core, shortens the operation cycle length, and lowers the fuel economy.

また、第6図は特にガドリニア棒の配置場所が制限さ
れるような配置図であり、同図に示すように、全燃料棒
のうち約1/3の20本をプルトニウムを富化したMOX(混合
酸化物:Mixed Oxide)燃料棒とし、燃料集合体中央部に
配置したいわゆるアイランド型MOX燃料集合体と呼ばれ
ているものである。図に示すものは、特に、高燃焼度化
に対応した設計例であるが、燃料集合体中央部では燃料
棒4本分相当大きさの太径ウォータロッドWを配置し、
燃料集合体での水対燃料体積比を増しており、その結果
第7図に示した従来型燃料よりも燃料棒本数が2本少く
なっている。ここでは、ウラン燃料棒は濃縮度の小さい
順に番号3,2,1で表わし、MOX燃料棒はPで表わしてい
る。ガドリニア棒Gは燃料製造工程を簡素化するため
に、ウランを母材とし、プルトニウムを含まない。
In addition, Fig. 6 is a layout diagram in which the location of gadolinia rods is particularly limited. As shown in the figure, approximately 1/3 of all fuel rods, 20 of which are plutonium-rich MOX ( Mixed Oxide) A so-called island type MOX fuel assembly is arranged in the center of the fuel assembly as a fuel rod. Although the one shown in the drawing is a design example corresponding to high burnup, a large diameter water rod W having a size corresponding to four fuel rods is arranged at the center of the fuel assembly.
Increasing the water to fuel volume ratio in the fuel assembly results in two fewer fuel rods than the conventional fuel shown in FIG. Here, the uranium fuel rods are represented by the numbers 3,2,1 in order of increasing enrichment, and the MOX fuel rods are represented by P. The gadolinia rod G uses uranium as a base material and does not contain plutonium in order to simplify the fuel manufacturing process.

このような設計を採用した場合、中央部でのガドリニ
ア棒の配置場所を避ける必要が生じる。また、従来の設
計法ではガドリニア棒の水ギャップに沿う最外周の配置
は、ガドリニアの燃焼特性が内側配置の場合よりも大き
く変化する等の理由で避けられている。
When such a design is adopted, it is necessary to avoid the location of the gadolinia rod in the central portion. Further, in the conventional design method, the arrangement of the outermost periphery along the water gap of the gadolinia rod is avoided because the gadolinia combustion characteristics change more than those of the inner arrangement.

以上のことから、ガドリニア棒の配置場所は著しく制
限されることになる。図に示されるMOX燃料集合体は、
平均濃縮度約3.5w/oのウラン燃料集合体と反応度寿命が
等価となるものであるが、燃焼初期余剰反応度を抑える
ために10本をこえるガドリニア棒が必要となった。しか
し、図に示されるように10本が限度で、ガドリニア濃度
は3.0w/oとなり、ガドリニア棒G1をEOCで燃え残さざる
を得ない設計となるという問題点があった [発明の構成] (問題点を解決するための手段) 上記問題点を解決するために、本発明の原子炉用燃料
集合体では燃料集合体内に配置したガドリニア棒のうち
少くとも二組を互いにX方向またはY方向に隣接した位
置に配置することによって必要な本数を確保し、かつX
方向またはY方向に隣接したガドリニア棒のうち少なく
とも1本のガドリニア濃度を小さくするようにしたこと
を特徴とするものである。ここでX方向またはY方向に
隣接した位置とは、正方格子状配列のX方向またはY方
向、すなわち、燃料集合体の水平断面において縦または
横方向に隣接した位置を意味し、例えば正方格子状配列
の斜め方向の隣接はこれに相当しない。また、L字型ま
たはT字型のようにX方向およびY方向の両方向に隣接
して一組となったものは、これを一組と数える。
From the above, the place where the gadolinia rod is arranged is significantly limited. The MOX fuel assembly shown in the figure is
The reactivity life is equivalent to that of a uranium fuel assembly with an average enrichment of about 3.5 w / o, but more than 10 gadolinia rods were required to suppress the excess reactivity in the early stage of combustion. However, as shown in the figure, there is a problem that the gadolinia concentration is 3.0 w / o with a limit of 10 and the gadolinia rod G 1 is designed to be left unburned by EOC. (Means for Solving the Problems) In order to solve the above problems, in the fuel assembly for a nuclear reactor of the present invention, at least two sets of gadolinia rods arranged in the fuel assembly are mutually in the X direction or the Y direction. Secures the required number by arranging in a position adjacent to
It is characterized in that the gadolinia concentration of at least one of the gadolinia rods adjacent to each other in the Y direction or the Y direction is reduced. Here, the positions adjacent to each other in the X direction or the Y direction mean positions adjacent to each other in the X direction or the Y direction of the square lattice array, that is, in the vertical or horizontal direction in the horizontal cross section of the fuel assembly. The diagonal adjacency of the array does not correspond to this. In addition, the L-shaped or T-shaped ones that are adjacent to each other in both the X and Y directions are counted as one set.

(作 用) ガドリニウム(155Gd,157Gd)はガドリニア棒内で発
生した中性子と隣接する燃料棒から流れ込んでくる中性
子を吸収することによって燃料集合体の余剰反応度を抑
制している。155Gdおよび157Gdは中性子を吸収して、中
性子吸収断面積の小さい156Gdや158Gdに変わるので、ガ
ドリニア棒の中性子吸収能力は燃焼度とともに、次第に
小さくなり、EOCで燃え尽きるように設計されている。
(Operation) Gadolinium ( 155 Gd, 157 Gd) suppresses the excess reactivity of the fuel assembly by absorbing the neutrons generated in the gadolinia rod and the neutrons flowing from the adjacent fuel rods. Since 155 Gd and 157 Gd absorb neutrons and change to 156 Gd and 158 Gd, which have a small neutron absorption cross section, the neutron absorption capacity of the gadolinia rod gradually decreases with burnup and is designed to burn out at EOC. There is.

ガドリニア棒本数を増してそのうち一部を互いにX方
向またはY方向に隣接して配置した場合、サイクル初期
の余剰反応度を抑制することができるが、ガドリニア棒
相互の干渉によってガドリニア棒1本当り中性子吸収が
減り、ガドリニアは燃え遅れることになる。この改善策
として、互いにX方向またはY方向に隣接して配置した
ガドリニア棒のうち少くとも1本を運転サイクル期間前
半で燃え尽きるようにガドリニア濃度を十分小さくして
おけば、他のガドリニア棒はEOCで燃え尽きるので、燃
料経済性を向上させることができる。
When the number of gadolinia rods is increased and some of them are arranged adjacent to each other in the X direction or the Y direction, the excess reactivity at the beginning of the cycle can be suppressed. Absorption will be reduced and the gadolinia will burn late. As a remedy for this, if at least one of the gadolinia rods arranged adjacent to each other in the X direction or the Y direction is burned out in the first half of the operation cycle period, the gadolinia concentration will be sufficiently small so that the other gadolinia rods will not reach EOC. Since it burns out, fuel economy can be improved.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Hereinafter, the Example of this invention is described with reference to drawings.

第1図は本発明の一実施例のMOX燃料集合体の配置図
であり、同図に示すように、2ヶ所でL字型にガドリニ
ア棒を隣接配置し、中性子吸収を高めるために最外周か
ら2行目コーナー部の熱中性子束の高い部分に2本のガ
ドリニア棒G2(濃度1.5w/o)を配置した例であり、ガド
リニア棒本数を増したことによって初期余剰反応度が抑
えられ、ガドリニア棒G1のガドリニア濃度を2.5w/oに減
らすことができた。
FIG. 1 is a layout view of a MOX fuel assembly according to an embodiment of the present invention. As shown in the drawing, L-shaped gadolinia rods are arranged adjacent to each other at two locations, and the outermost circumference is provided to enhance neutron absorption. This is an example of arranging two gadolinia rods G 2 (concentration 1.5w / o) in the high thermal neutron flux part of the second to the corner part. By increasing the number of gadolinia rods, the initial excess reactivity was suppressed. , The gadolinia concentration of the gadolinia rod G 1 could be reduced to 2.5 w / o.

第2図は本発明の他の実施例のMOX燃料集合体の配置
図であり、同図に示すように、4ヶ所でL字型にガドリ
ニア棒を隣接配置し、ガドリニア棒G1を8本に減らし、
代わりにG2を4本に増した例で、特に燃料集合体内濃縮
度・富化度分布の対称性が改善され、前記した実施例よ
りも局所出力分布が平坦化された。ガドリニア濃度はG1
で2.5w/o、G2はG1の濃度の6割減の1.5w/oとし、トータ
ルのガドリニア量をさらに減らすことができた。
FIG. 2 is a layout view of a MOX fuel assembly according to another embodiment of the present invention. As shown in FIG. 2, L-shaped gadolinia rods are adjacently arranged at four places, and eight gadolinia rods G 1 are arranged. Reduced to
Instead, in the example in which G 2 was increased to 4, the symmetry of the concentration / enrichment distribution in the fuel assembly was particularly improved, and the local output distribution was flattened as compared with the above-mentioned embodiment. Gadolinia concentration is G 1
In 2.5w / o, G 2 is a 1.5 w / o of 60% decline in the concentration of G 1, it was possible to further reduce the gadolinia amount of total.

第3図は第2図の本発明のMOX燃料集合体および第6
図の従来のMOX燃料集合体の無限増倍率の燃焼変化を示
した図であり、第4図は第2図の本発明の炉心および第
6図の従来の炉心の出力運転時余剰反応度と冷温時炉停
止余裕を示したものである。この図には冷温時炉停止余
裕を実効増倍率0.99以下として設計基準を満足しつつ燃
焼初期での出力運転時余剰反応度を下げてその燃焼変化
を平坦化しかつ運転サイクル長さが伸びている様子が示
されている。
FIG. 3 shows the MOX fuel assembly of the present invention shown in FIG.
FIG. 4 is a diagram showing a combustion change of an infinite multiplication factor of the conventional MOX fuel assembly shown in FIG. 4, and FIG. 4 shows surplus reactivity during power operation of the core of the present invention of FIG. 2 and the conventional core of FIG. This shows the room shutdown margin during cold temperatures. In this figure, the cold shutdown shutdown margin is set to an effective multiplication factor of 0.99 or less, while the design standard is satisfied, the excess reactivity during output operation at the initial stage of combustion is reduced to flatten the combustion change and the operating cycle length is extended. The situation is shown.

これより、本実施例によって燃焼初期における炉心・
燃料の余剰反応度を抑えてEOCでのガドリニア燃え残り
を減らして燃料経済性を向上できることが分る。
From this, according to the present embodiment,
It can be seen that the excess reactivity of the fuel can be suppressed and the gadolinia unburned residue at the EOC can be reduced to improve the fuel economy.

第5図は本発明のさらに他の実施例の配置図であり、
さらに高燃焼度化を図ったウラン燃料集合体の例を示し
ている。本実施例では9行9列の燃料棒配列をなす燃料
集合体中央部に燃料棒9本相当大きさの太径ウォータロ
ッドWを配置したもので、第1図の実施例に示すものよ
りも水対燃料体積比を増している。ここでは、番号3,2,
1の順に濃縮度の低い燃料を配置し燃料集合体平均濃縮
度を約6w/oとしており、濃度6.0w/oのガドリニア棒G1
20本配し、さらに濃度1.5w/oのガドリニア棒G2を8本配
置している。
FIG. 5 is a layout view of still another embodiment of the present invention,
An example of a uranium fuel assembly with a higher burnup is shown. In this embodiment, a large diameter water rod W having a size equivalent to nine fuel rods is arranged in the center of the fuel assembly forming a fuel rod array of 9 rows and 9 columns, which is larger than that shown in the embodiment of FIG. Increasing water to fuel volume ratio. Here, the numbers 3,2,
It was placed a low enrichment fuel to 1 forward fuel assembly average enrichment has about 6w / o, the gadolinia rods G 1 at a concentration 6.0 w / o
Twenty bars are arranged and eight gadolinia bars G 2 with a concentration of 1.5 w / o are arranged.

本実施例では、ガドリニア棒を互いにL字型またはT
字型に隣接させ、低濃度ガドリニア棒G2を熱中性子束の
高い燃料集合体最外周2行目のコーナー部およびウォー
タロッドに面する場所に配置し、ガドリニアの熱中性子
吸収を高めている。
In this embodiment, the gadolinia rods are L-shaped or T-shaped.
The low-concentration gadolinia rod G 2 is arranged adjacent to the character shape at a position facing the corner of the second outermost row of the fuel assembly having a high thermal neutron flux and the water rod to enhance the thermal neutron absorption of the gadolinia.

以上述べた実施例では、互いにガドリニア棒をX方向
またはY方向に、またはL字型またはT字型に隣接さ
せ、低濃度ガドリニア棒を集合体最外周から2行目のコ
ーナー部又はウォータロッドに面する部分に限定した
が、ガドリニア濃度の本数を適当に調整することによっ
て、他の場所に配置し、場所の自由度を増すことができ
る。
In the embodiments described above, the gadolinia rods are adjacent to each other in the X direction or the Y direction, or in the L-shape or the T-shape, and the low-concentration gadolinia rods are used as the corners or water rods in the second row from the outermost periphery of the assembly. Although it is limited to the facing portion, it can be arranged at another place and the degree of freedom of the place can be increased by appropriately adjusting the number of gadolinia densities.

[発明の効果] 以上説明したように、本発明の原子炉燃料集合体によ
れば、必要なガドリニア棒本数を燃料集合体内に配置す
ることができ、かつ運転サイクル末期におけるガドリニ
アの燃え残りを無くして燃料経済性を向上させることが
できるというすぐれた効果を奏する。
[Effects of the Invention] As described above, according to the reactor fuel assembly of the present invention, it is possible to arrange the required number of gadolinia rods in the fuel assembly and eliminate the unburned residue of gadolinia at the end of the operation cycle. It has an excellent effect that the fuel economy can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のMOX燃料集合体の配置図、
第2図は本発明の他の実施例のMOX燃料集合体の配置
図、第3図は第2図の本発明のMOX燃料集合体および第
6図の従来型MOX燃料集合体の無限増倍率燃焼変化を比
較した図、第4図は同じく第2図の本発明のMOX燃料集
合体および第6図の従来型MOX燃料集合体の出力運転時
余剰反応度および炉停止余裕の燃焼変化を比較した図、
第5図は本発明のさらに他の実施例のウラン燃料集合体
の配置図、第6図は従来のMOX燃料集合体の配置図、第
7図は従来の沸騰水型原子炉用のウラン燃料集合体の配
置図、第8図に第7図の燃料の無限増倍率の燃焼変化を
示す図である。 1〜4……ウラン燃料棒 P……MOX燃料棒 G1,G2……ガドリニア棒 W……ウォータロッド
FIG. 1 is a layout view of a MOX fuel assembly according to an embodiment of the present invention,
FIG. 2 is a layout view of the MOX fuel assembly of another embodiment of the present invention, and FIG. 3 is an infinite multiplication factor of the MOX fuel assembly of the present invention of FIG. 2 and the conventional MOX fuel assembly of FIG. FIG. 4 is a diagram comparing combustion changes, and FIG. 4 is a comparison of combustion changes of surplus reactivity during power operation and reactor shutdown margin of the MOX fuel assembly of the present invention of FIG. 2 and the conventional MOX fuel assembly of FIG. Figure,
FIG. 5 is a layout view of a uranium fuel assembly according to still another embodiment of the present invention, FIG. 6 is a layout view of a conventional MOX fuel assembly, and FIG. 7 is a conventional uranium fuel for a boiling water reactor. FIG. 9 is a layout view of the assembly, and FIG. 8 is a diagram showing a combustion change of the fuel of FIG. 7 at an infinite multiplication factor. 1-4 uranium fuel rod P …… MOX fuel rod G 1 , G 2 …… Gadolinia rod W …… Water rod

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ペレット状の燃料要素が充填された多数の
燃料棒およびウォータロッドを正方格子状に配列した燃
料集合体において、互いにX方向またはY方向に隣接し
た位置に配置された可燃性毒物入り燃料棒が少なくとも
二組存在し、かつその各組の中の少なくとも1本の燃料
棒の可燃性毒物が低濃度であることを特徴とする原子炉
用燃料集合体。
1. A fuel assembly in which a large number of fuel rods and water rods filled with pellet-shaped fuel elements are arranged in a square lattice, and combustible poisons are arranged at positions adjacent to each other in the X direction or the Y direction. A fuel assembly for a nuclear reactor, characterized in that there are at least two sets of incoming fuel rods, and at least one fuel rod in each set has a low concentration of burnable poisons.
【請求項2】低濃度の可燃性毒物を添加した燃料棒位置
は燃料集合体最外周から2行目のコーナー部またはウォ
ータロッドに隣接した位置であることを特徴とする特許
請求の範囲第1項記載の原子炉用燃料集合体。
2. A fuel rod position to which a low concentration of burnable poison is added is located at a corner portion of the second row from the outermost periphery of the fuel assembly or a position adjacent to the water rod. A fuel assembly for a nuclear reactor according to the item.
【請求項3】低濃度の可燃性毒物濃度は最高濃度の可燃
性毒物濃度の6割以下であることを特徴とする特許請求
の範囲第1項または第2項記載の原子炉用燃料集合体。
3. The fuel assembly for a nuclear reactor according to claim 1, wherein the concentration of the burnable poison at a low concentration is 60% or less of the concentration of the burnable poison at the maximum concentration. .
JP61296617A 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor Expired - Lifetime JP2563287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296617A JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296617A JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS63149588A JPS63149588A (en) 1988-06-22
JP2563287B2 true JP2563287B2 (en) 1996-12-11

Family

ID=17835868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296617A Expired - Lifetime JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2563287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577367B2 (en) * 1987-01-06 1997-01-29 株式会社東芝 Fuel assembly
JP2004020421A (en) * 2002-06-18 2004-01-22 Seiko Instruments Inc Analogue chronograph timepiece equipped with a plurality of motors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220674A (en) * 1983-05-30 1984-12-12 株式会社東芝 Fuel assembly

Also Published As

Publication number Publication date
JPS63149588A (en) 1988-06-22

Similar Documents

Publication Publication Date Title
JP3531011B2 (en) Fuel assemblies and reactors
JPH09105792A (en) Initial loading reactor core and fuel assembly
JP2772061B2 (en) Fuel assembly
JP3874466B2 (en) Fuel assembly
US6335956B1 (en) Fuel assembly
JP2563287B2 (en) Fuel assembly for nuclear reactor
JP4046870B2 (en) MOX fuel assembly
JP3075749B2 (en) Boiling water reactor
JP2001124884A (en) Fuel assembly for boiling water reactor and initially charged reactor core
JP3916807B2 (en) MOX fuel assembly
JP4351798B2 (en) Fuel assemblies and reactors
JP2577367B2 (en) Fuel assembly
JP3309797B2 (en) Fuel assembly
JP3115392B2 (en) Fuel assembly for boiling water reactor
JP2958856B2 (en) Fuel assembly for boiling water reactor
JP3990013B2 (en) Fuel assemblies and reactor cores
JP2942529B2 (en) Fuel assembly
JP4044993B2 (en) Reactor fuel loading method
JP2002189094A (en) Fuel assembly for boiling water reactor
JP3262723B2 (en) MOX fuel assembly and reactor core
JP3314382B2 (en) Fuel assembly
JP4397009B2 (en) Fuel assemblies for boiling water reactors
JPH10206582A (en) Fuel assembly
JP2965317B2 (en) Fuel assembly
JPH07151883A (en) Fuel assembly for boiling water reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term