JP4044993B2 - Reactor fuel loading method - Google Patents

Reactor fuel loading method Download PDF

Info

Publication number
JP4044993B2
JP4044993B2 JP30526997A JP30526997A JP4044993B2 JP 4044993 B2 JP4044993 B2 JP 4044993B2 JP 30526997 A JP30526997 A JP 30526997A JP 30526997 A JP30526997 A JP 30526997A JP 4044993 B2 JP4044993 B2 JP 4044993B2
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
mox
core
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30526997A
Other languages
Japanese (ja)
Other versions
JPH11142566A (en
Inventor
真吾 藤巻
定幸 井筒
勝 笹川
聡志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP30526997A priority Critical patent/JP4044993B2/en
Publication of JPH11142566A publication Critical patent/JPH11142566A/en
Application granted granted Critical
Publication of JP4044993B2 publication Critical patent/JP4044993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子炉(以下、BWRと略す)に係わり、特にプルトニウムを含む燃料集合体を装荷する原子炉炉心及びこれに用いる燃料装荷方法に関する。
【0002】
【従来の技術】
使用済み燃料の再処理によって回収されたプルトニウムをウランと混合し、ウラン・プルトニウム混合酸化物燃料(以下、MOX燃料と略す)として利用する計画が進められている。プルトニウムの消費量増加のため、初装荷炉心からMOX燃料とウラン燃料とを混在させて使用することが考えられる。
【0003】
MOX燃料集合体は、核分裂性物質であるプルトニウム239やプルトニウム241の熱中性子吸収断面積が大きいこと及び、プルトニウム240による中性子の吸収がウラン238よりも大きいこと等のために、ウラン燃料集合体よりも熱中性子の割合が減少する、つまり、ウラン燃料集合体の方がMOX燃料集合体よりも熱中性子の割合が大きくなることになる。したがって、MOX燃料集合体とウラン燃料集合体が隣接する場合、MOX燃料集合体にウラン燃料集合体から熱中性子が流入するが、このとき流入した熱中性子は燃料集合体の最外周の燃料棒に影響し出力を上昇させる。
【0004】
一般に、燃料集合体内の出力分布は、燃焼初期においては、水ギャップに隣接している燃料集合体最外周の中性子スペクトルがやわらかいことから、この燃料集合体最外周の燃料棒の出力が大きい。この様に、燃焼初期で最外周の燃料棒の燃焼が他の燃料棒より先に進む結果、燃焼中期以降では、最外周の燃料棒では既に燃焼のピークを越えてしまうので、最外周以外の燃料棒の出力が大きくなる。MOX燃料集合体とウラン燃料集合体を混在させた場合には、ウラン燃料集合体と隣接するMOX燃料集合体は、ウラン燃料集合体からの熱中性子の流れ込みと、燃料集合体内の出力分布の2つの効果により、燃焼初期で大きな局所出力ピーキングを生じる。
【0005】
【発明が解決しようとする課題】
MOX燃料集合体の局所出力ピーキングが増大することは、炉心全体の線出力密度の最大値の増加を招き、線出力密度を平坦化することが困難になる。
【0006】
また、MOX新燃料を第2サイクル炉心に装荷する場合、熱的に余裕の小さいMOX新燃料の熱的余裕を向上させることが必要であった。
【0007】
また、初装荷炉心の平均濃縮度を上昇させて、経済性を向上させた炉心に新燃料を装荷する場合、余剰反応度がより上昇し制御が困難になる可能性がある。
【0008】
本発明の目的は、第1サイクル終了時に装荷するMOX新燃料の熱的余裕を向上させかつ、余剰反応度を低減する燃料交換方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明では、第1運転サイクル終了後に、プルトニウムを含まない平均濃縮度が最も低い低濃縮度燃料集合体1体とプルトニウムを含む新燃料集合体がお互いに対角線状になるように燃料を配置する。
【0010】
本発明によれば、MOX新燃料集合体と低濃縮度燃料集合体は隣接しないため、MOX新燃料に対する熱中性子の流入量は減少し、MOX新燃料の熱的余裕を増加させることが可能となる。
【0011】
また、第2サイクル初期の時点で比較すると、MOX新燃料の方が、低濃縮度燃料集合体以外の燃料よりは、可燃性毒物の濃度が濃いため、反応度が小さい。その反応度の小さいMOX新燃料が、インポータンスの大きい炉心中央部に装荷されるため余剰反応度を低減させることが可能となる。
【0012】
また好ましくは、前記プルトニウムを含まない平均濃縮度が最も低い低濃縮度燃料集合体がコントロールセルを構成する4体の燃料集合体のうちの1体となるように炉心を構成する。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面を参照して説明する。
【0014】
図1は本発明による燃料装荷方法の第1実施例を示したものである。図1(a)に横断面図として示す初装荷炉心は、280体の低濃縮度燃料集合体、464体の高濃縮度燃料集合体及び128体の初装荷MOX燃料集合体から構成される。第1サイクル終了時に低濃縮度燃料集合体128体が炉心から取り出され、代わりにMOX新燃料集合体128体が炉心に装荷される。図1(b)は横断面図として示した第2サイクルの燃料装荷パターンであり、152体の低濃縮度燃料集合体、464体の高濃縮度燃料集合体、128体の初装荷MOX燃料集合体及び128体のMOX新燃料集合体から構成される。
【0015】
MOX新燃料集合体128体は、低濃縮度燃料集合体と対角線状に配置されており、低濃縮度燃料集合体は4体で1つのコントロールセルを構成している。炉心中央部は、初装荷MOX燃料集合体1体,低濃縮度ウラン燃料集合体1体,高濃縮度ウラン燃料集合体2体からなる単位装荷パターンと、MOX新燃料集合体1体,低濃縮度ウラン燃料集合体1体,高濃縮度ウラン燃料集合体2体からなる単位装荷パターンとの2種類によって炉心中央部が構成される。
【0016】
図2は本発明による、単位装荷パターンの第1実施例の横断面図を示したものである。本装荷パターンは、1体の低濃縮度燃料集合体,2体の高濃縮度燃料集合体及び1体のMOX新燃料集合体を備えている。
【0017】
単位装荷パターンを構成するウラン燃料集合体は、燃料棒8が9×9の正方格子状に配置されており、その中央部に水が流れる太径のウォータロッド9が2本配置されている。ここで、2本のウォータロッド9は、7本の燃料棒8を配置可能な領域に設置されている。また、単位装荷パターンを構成するMOX燃料集合体4は、燃料棒8が8×8の正方格子状に配置されており、その中央部に水が流れる太径のウォータロッド9が1本配置されている。ここで、ウォータロッド9は、4本の燃料棒8を配置可能な領域に設置されている。
【0018】
図1の炉心を構成するウラン低濃縮燃料集合体2の平均濃縮度は約1.5% 、ウラン高濃縮燃料集合体3の平均濃縮度は4.1% 、初装荷のMOX燃料集合体4及びMOX新燃料集合体の平均核分裂性プルトニウム富化度は2.9% 、平均濃縮度は1.2% である。
【0019】
また、図2の単位装荷パターンを構成するMOX燃料集合体内4及び5の燃料棒は、燃料装荷時より、少なくとも一部にプルトニウムを含んでいるが、ウラン低濃縮度燃料集合体2と対角線状になるよう配置されている。この様に、MOX燃料集合値4及び5をウラン低濃縮度燃料集合体2と隣接させず、より平均濃縮度が大きく熱中性子割合が近い燃料集合体を隣接させることにより、MOX燃料集合体4及び5への熱中性子の流入量を低減し、局所出力ピーキングの増加を抑制することができる。特にMOX新燃料集合体5は熱的に余裕が少ないことは前記したが、本発明によって、余裕を向上させることが可能である。
【0020】
また、第2サイクル開始時点でMOX新燃料は、初装荷MOX燃料集合体及び高濃縮度燃料集合体よりも反応度が小さい。その新燃料がインポータンスの大きい炉心中央部に配置されるためにサイクル初期の余剰反応度を低減することが可能となる。
【0021】
次に、図3を用いて本発明による第2実施例について説明する。図3(a)に横断面図として示す初装荷炉心は、248体の低濃縮度燃料集合体、360体の高濃縮度燃料集合体及び264体の初装荷MOX燃料集合体から構成される。
【0022】
第1サイクル終了時に低濃縮度燃料集合体96体が炉心から取り出され、替わりにMOX新燃料集合体96体が炉心に装荷される。図1(b)は横断面図として示した第2サイクルの燃料装荷パターンであり、152体の低濃縮度燃料集合体,360体の高濃縮度燃料集合体,264体の初装荷MOX燃料集合体及び96体のMOX新燃料集合体から構成される。
【0023】
MOX新燃料集合体96体は、低濃縮度燃料集合体と対角線状に配置されており、低濃縮度燃料集合体は4体で1つのコントロールセルを構成している。炉心中央部は、初装荷MOX燃料集合体1体,低濃縮度ウラン燃料集合体1体,高濃縮度ウラン燃料集合体2体からなる単位装荷パターンと、MOX新燃料集合体1体,低濃縮度ウラン燃料集合体1体,高濃縮度ウラン燃料集合体2体からなる単位装荷パターンとの2種類によって炉心中央部が構成される。
【0024】
熱的に余裕の少なくなる傾向にあるMOX新燃料は、低濃縮度ウラン燃焼集合体に隣接しない位置に配置されるため、熱的余裕を向上させることができる。
【0025】
また、第2サイクル開始時点でMOX新燃料は、初装荷MOX燃料集合体及び高濃縮度燃料集合体よりも反応度が小さい。その新燃料がインポータンスの大きい炉心中央部に配置されるためにサイクル初期の余剰反応度を低減することが可能となる。
【0026】
第2実施例に示すように、本発明は、炉心の構成が変化しても第1実施例と同様の効果が得られる。
【0027】
次に、図4を用いて本発明による第3実施例について説明する。図4は第3実施例の横断面図を示したものである。本実施例の炉心を構成する4体の燃料集合体のうち、MOX燃料集合体1体は、図2の第1実施例と同じであるが、ウラン燃料集合体3体が異なる。本実施例のウラン燃料集合体は、燃料棒が8×8の正方格子状に配置されており、その中央部の4本の燃料棒が配置可能な領域に水が流れる太径のウォータロッドが1本配置されている。本実施例においても第1実施例と同様の効果が得られる。
【0028】
次に、図5を用いて本発明による第4実施例について説明する。図5は第4実施例の横断面図を示したものである。本実施例の炉心を構成する4体の燃料集合体のうち、ウラン燃料集合体3体は、図2の第1実施例と同じであるが、MOX燃料集合体1体が異なる。本実施例のMOX燃料集合体4は、燃料棒6が9×9の正方格子状に配置されており、その中央部の7本の燃料棒が配置可能な領域に水が流れる太径のウォータロッド8が2本配置されている。本実施例においても第1実施例と同様の効果が得られる。
【0029】
次に、図6を用いて本発明による第5実施例について説明する。図6は第5実施例の横断面図を示したものである。本実施例の炉心を構成する4体の燃料集合体が、図2の第1実施例と異なる。本実施例の燃料集合体は、燃料棒が9×9の正方格子状に配置されており、その中央部の9本の燃料棒が配置可能な領域に水が流れるウォータボックス10が1体配置されている。本実施例においても第1実施例と同様の効果が得られる。
【0030】
第3〜5実施例のように、本発明は、燃料集合体の形状に依存するものではなく、様々な形状の燃料集合体に対して有効である。
【0031】
【発明の効果】
本発明によれば、熱的余裕を確保しつつ、MOX燃料を継続的に装荷できる装荷方法を提供することができる。
【図面の簡単な説明】
【図1】本発明による第1実施例の原子炉の炉心を示す横断した断面図。
【図2】図1の横断面図。
【図3】本発明による第2実施例の原子炉の炉心を横断した断面図。
【図4】本発明による第3実施例である原子炉炉心の横断面図。
【図5】本発明による第4実施例である原子炉炉心の横断面図。
【図6】本発明による第5実施例である原子炉炉心の横断面図
【符号の説明】
1…原子炉炉心、2…ウラン低濃縮ウラン燃料集合体、3…ウラン高濃縮燃料集合体、4…MOX燃料集合体、5…MOX新燃料集合体、6…コントロールセル、7…制御棒、8…燃料棒、9…ウォータロッド、10…ウォータボックス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiling water reactor (hereinafter abbreviated as BWR), and more particularly to a nuclear reactor core loaded with a fuel assembly containing plutonium and a fuel loading method used therefor.
[0002]
[Prior art]
There is a plan to mix plutonium recovered by reprocessing spent fuel with uranium and use it as a uranium / plutonium mixed oxide fuel (hereinafter abbreviated as MOX fuel). In order to increase the consumption of plutonium, it is possible to use a mixture of MOX fuel and uranium fuel from the initial loading core.
[0003]
The MOX fuel assembly has a larger thermal neutron absorption cross section of plutonium 239 and plutonium 241 which are fissile materials, and neutron absorption by plutonium 240 is larger than that of uranium 238. However, the ratio of thermal neutrons decreases, that is, the uranium fuel assembly has a higher thermal neutron ratio than the MOX fuel assembly. Therefore, when the MOX fuel assembly and the uranium fuel assembly are adjacent to each other, thermal neutrons flow into the MOX fuel assembly from the uranium fuel assembly. At this time, the thermal neutrons flow into the outermost fuel rod of the fuel assembly. Affects and increases output.
[0004]
In general, the power distribution in the fuel assembly has a large output of the fuel rods at the outermost periphery of the fuel assembly because the neutron spectrum at the outermost periphery of the fuel assembly adjacent to the water gap is soft at the beginning of combustion. As described above, the combustion of the outermost fuel rod proceeds earlier than the other fuel rods in the early stage of combustion. As a result, after the middle stage of combustion, the outermost fuel rod has already exceeded the combustion peak. Fuel rod output increases. When the MOX fuel assembly and the uranium fuel assembly are mixed, the MOX fuel assembly adjacent to the uranium fuel assembly has a flow of thermal neutrons from the uranium fuel assembly and an output distribution within the fuel assembly. Two effects result in large local power peaking in the early stages of combustion.
[0005]
[Problems to be solved by the invention]
An increase in the local power peaking of the MOX fuel assembly causes an increase in the maximum value of the linear power density of the entire core, and it becomes difficult to flatten the linear power density.
[0006]
In addition, when the MOX new fuel is loaded into the second cycle core, it is necessary to improve the thermal margin of the MOX new fuel having a small thermal margin.
[0007]
In addition, when the average enrichment of the initially loaded core is increased and new fuel is loaded into the core with improved economic efficiency, there is a possibility that the surplus reactivity will be further increased and the control becomes difficult.
[0008]
An object of the present invention is to provide a fuel exchange method that improves the thermal margin of MOX new fuel loaded at the end of the first cycle and reduces the excess reactivity.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, after the end of the first operation cycle, one low enrichment fuel assembly having the lowest average enrichment not containing plutonium and a new fuel assembly containing plutonium are diagonal to each other. Arrange the fuel so that
[0010]
According to the present invention, since the MOX new fuel assembly and the low enrichment fuel assembly are not adjacent to each other, the inflow of thermal neutrons to the MOX new fuel is reduced, and the thermal margin of the MOX new fuel can be increased. Become.
[0011]
Further, when compared at the beginning of the second cycle, the MOX new fuel has a lower reactivity because the concentration of the combustible poison is higher than the fuel other than the low enrichment fuel assembly. Since the MOX new fuel having a low reactivity is loaded in the center of the core having a large importance, the excess reactivity can be reduced.
[0012]
Preferably, the core is configured such that the low enrichment fuel assembly having the lowest average enrichment not containing plutonium is one of four fuel assemblies constituting the control cell.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
FIG. 1 shows a first embodiment of a fuel loading method according to the present invention. The initially loaded core shown as a cross-sectional view in FIG. 1A is composed of 280 low enriched fuel assemblies, 464 highly enriched fuel assemblies, and 128 initially loaded MOX fuel assemblies. At the end of the first cycle, 128 low enrichment fuel assemblies are removed from the core, and instead, 128 new MOX fuel assemblies are loaded into the core. FIG. 1 (b) shows the fuel loading pattern of the second cycle shown as a cross-sectional view. 152 low enriched fuel assemblies, 464 highly enriched fuel assemblies, and 128 initially loaded MOX fuel assemblies. And 128 MOX new fuel assemblies.
[0015]
The 128 MOX new fuel assemblies are arranged diagonally with the low enrichment fuel assembly, and four low enrichment fuel assemblies constitute one control cell. The central part of the core consists of a unit loading pattern consisting of one MOX fuel assembly, a low enrichment uranium fuel assembly, and two high enrichment uranium fuel assemblies, a new MOX fuel assembly, and a low enrichment. The central part of the core is composed of two types of unit loading patterns consisting of one high uranium fuel assembly and two highly enriched uranium fuel assemblies.
[0016]
FIG. 2 is a cross-sectional view of the first embodiment of the unit loading pattern according to the present invention. This loading pattern comprises one low enrichment fuel assembly, two high enrichment fuel assemblies and one MOX new fuel assembly.
[0017]
In the uranium fuel assembly constituting the unit loading pattern, fuel rods 8 are arranged in a 9 × 9 square lattice shape, and two large diameter water rods 9 through which water flows are arranged in the center. Here, the two water rods 9 are installed in an area where seven fuel rods 8 can be arranged. Further, the MOX fuel assembly 4 constituting the unit loading pattern has fuel rods 8 arranged in an 8 × 8 square lattice, and one large-diameter water rod 9 through which water flows is arranged at the center. ing. Here, the water rod 9 is installed in an area where the four fuel rods 8 can be arranged.
[0018]
The average enrichment of the uranium low enriched fuel assembly 2 constituting the core of FIG. 1 is about 1.5%, the average enrichment of the uranium highly enriched fuel assembly 3 is 4.1%, and the MOX fuel assembly 4 of the initial load is 4%. And the MOF new fuel assembly has an average fissile plutonium enrichment of 2.9% and an average enrichment of 1.2%.
[0019]
Further, the fuel rods of the MOX fuel assemblies 4 and 5 constituting the unit loading pattern of FIG. 2 contain plutonium at least partially from the time of fuel loading, but are diagonally aligned with the uranium low enrichment fuel assembly 2. It is arranged to become. In this way, the MOX fuel assembly values 4 and 5 are not adjacent to the uranium low enrichment fuel assembly 2, and the fuel assembly having a higher average enrichment and a close thermal neutron ratio are adjacent to each other. And 5 can reduce the inflow of thermal neutrons and suppress an increase in local power peaking. In particular, as described above, the MOX new fuel assembly 5 has a small thermal margin, but according to the present invention, the margin can be improved.
[0020]
In addition, the MOX new fuel has a lower reactivity than the initially loaded MOX fuel assembly and the highly enriched fuel assembly at the start of the second cycle. Since the new fuel is disposed in the central part of the core having a large importance, it is possible to reduce the excess reactivity at the beginning of the cycle.
[0021]
Next, a second embodiment according to the present invention will be described with reference to FIG. The initially loaded core shown as a cross-sectional view in FIG. 3A is composed of 248 low enriched fuel assemblies, 360 highly enriched fuel assemblies, and 264 initially loaded MOX fuel assemblies.
[0022]
At the end of the first cycle, 96 low enrichment fuel assemblies are removed from the core, and instead, 96 new MOX fuel assemblies are loaded into the core. FIG. 1B is a fuel cycle pattern of the second cycle shown as a cross-sectional view. 152 low enriched fuel assemblies, 360 highly enriched fuel assemblies, and 264 initially loaded MOX fuel assemblies. And 96 MOX new fuel assemblies.
[0023]
The 96 new MOX fuel assemblies are arranged diagonally with the low enrichment fuel assembly, and four low enrichment fuel assemblies constitute one control cell. The center of the core consists of a unit loading pattern consisting of one MOX fuel assembly for the initial loading, one low enriched uranium fuel assembly, and two high enriched uranium fuel assemblies, one MOX new fuel assembly, and low enrichment. The central part of the core is composed of two types of unit loading patterns consisting of one high uranium fuel assembly and two highly enriched uranium fuel assemblies.
[0024]
The new MOX fuel, which tends to have a small thermal margin, is disposed at a position not adjacent to the low enriched uranium combustion assembly, so that the thermal margin can be improved.
[0025]
In addition, the MOX new fuel has a lower reactivity than the initially loaded MOX fuel assembly and the highly enriched fuel assembly at the start of the second cycle. Since the new fuel is disposed in the central part of the core having a large importance, it is possible to reduce the excess reactivity at the beginning of the cycle.
[0026]
As shown in the second embodiment, the present invention can obtain the same effects as those of the first embodiment even if the structure of the core changes.
[0027]
Next, a third embodiment according to the present invention will be described with reference to FIG. FIG. 4 shows a cross-sectional view of the third embodiment. Of the four fuel assemblies constituting the core of this embodiment, one MOX fuel assembly is the same as the first embodiment of FIG. 2, but three uranium fuel assemblies are different. In the uranium fuel assembly of this embodiment, the fuel rods are arranged in an 8 × 8 square lattice shape, and a large diameter water rod in which water flows in an area where the four fuel rods at the center can be arranged. One is arranged. In this embodiment, the same effect as in the first embodiment can be obtained.
[0028]
Next, a fourth embodiment according to the present invention will be described with reference to FIG. FIG. 5 shows a cross-sectional view of the fourth embodiment. Of the four fuel assemblies constituting the core of the present embodiment, three uranium fuel assemblies are the same as those in the first embodiment of FIG. 2, but one MOX fuel assembly is different. In the MOX fuel assembly 4 of the present embodiment, the fuel rods 6 are arranged in a 9 × 9 square lattice shape, and a large-diameter water in which water flows in a region where the seven fuel rods in the center can be arranged. Two rods 8 are arranged. In this embodiment, the same effect as in the first embodiment can be obtained.
[0029]
Next, a fifth embodiment according to the present invention will be described with reference to FIG. FIG. 6 shows a cross-sectional view of the fifth embodiment. The four fuel assemblies constituting the core of this embodiment are different from the first embodiment of FIG. In the fuel assembly of the present embodiment, fuel rods are arranged in a 9 × 9 square lattice, and one water box 10 in which water flows in an area where nine fuel rods can be arranged in the center is arranged. Has been. In this embodiment, the same effect as in the first embodiment can be obtained.
[0030]
As in the third to fifth embodiments, the present invention does not depend on the shape of the fuel assembly, and is effective for various shapes of fuel assemblies.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the loading method which can load MOX fuel continuously can be provided, ensuring a thermal margin.
[Brief description of the drawings]
FIG. 1 is a cross sectional view showing a core of a nuclear reactor according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a cross-sectional view across the core of a reactor according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view of a reactor core according to a third embodiment of the present invention.
FIG. 5 is a cross-sectional view of a reactor core according to a fourth embodiment of the present invention.
FIG. 6 is a cross-sectional view of a reactor core according to a fifth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Reactor core, 2 ... Uranium low enriched uranium fuel assembly, 3 ... Uranium highly enriched fuel assembly, 4 ... MOX fuel assembly, 5 ... MOX new fuel assembly, 6 ... Control cell, 7 ... Control rod, 8 ... Fuel rod, 9 ... Water rod, 10 ... Water box.

Claims (2)

プルトニウムを含む第1燃料集合体と、プルトニウムを含まない第2燃料集合体と、プルトニウムを含まず前記第2燃料集合体よりも平均濃縮度が高い第3燃料集合体とが存在する原子炉炉心に装荷する燃料装荷方法において、第1運転サイクル終了後に、前記第2燃料集合体1体及び前記第1燃料集合体1体とがお互いに対角線状に配置し、前記第3燃料集合体2体が前記第1燃料集合体と隣接するように燃料を配置する単位装荷パターンを構成し、4つの前記単位装荷パターンの各々の第1燃料集合体が互いに隣接して配置されるように、複数の前記単位装荷パターンを炉心中央部に構成することを特徴とする原子炉の燃料装荷方法。A nuclear reactor core including a first fuel assembly containing plutonium, a second fuel assembly not containing plutonium, and a third fuel assembly not containing plutonium and having a higher average enrichment than the second fuel assembly. In the fuel loading method in which the second fuel assembly and the first fuel assembly are arranged diagonally to each other after the first operation cycle, the third fuel assembly is assembled . Constitutes a unit loading pattern in which fuel is arranged so as to be adjacent to the first fuel assembly, and a plurality of unit loading patterns are arranged such that the first fuel assemblies in each of the four unit loading patterns are arranged adjacent to each other . A fuel loading method for a nuclear reactor, wherein the unit loading pattern is configured in a central portion of a core. 請求項1において、前記第2燃料集合体がコントロールセルを構成する4体の燃料集合体のうちの1体となるよう配置することを特徴とする原子炉の燃料装荷方法。  2. The method of loading a nuclear reactor according to claim 1, wherein the second fuel assembly is arranged to be one of the four fuel assemblies constituting the control cell.
JP30526997A 1997-11-07 1997-11-07 Reactor fuel loading method Expired - Fee Related JP4044993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30526997A JP4044993B2 (en) 1997-11-07 1997-11-07 Reactor fuel loading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30526997A JP4044993B2 (en) 1997-11-07 1997-11-07 Reactor fuel loading method

Publications (2)

Publication Number Publication Date
JPH11142566A JPH11142566A (en) 1999-05-28
JP4044993B2 true JP4044993B2 (en) 2008-02-06

Family

ID=17943077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30526997A Expired - Fee Related JP4044993B2 (en) 1997-11-07 1997-11-07 Reactor fuel loading method

Country Status (1)

Country Link
JP (1) JP4044993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653342B2 (en) * 2001-06-14 2011-03-16 原子燃料工業株式会社 Boiling water reactor core

Also Published As

Publication number Publication date
JPH11142566A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3186546B2 (en) First loading core
JP3945719B2 (en) Initial core
JP4044993B2 (en) Reactor fuel loading method
JP3435308B2 (en) First loading core
JPH1082879A (en) Nuclear reactor core
JP4046870B2 (en) MOX fuel assembly
JP2563287B2 (en) Fuel assembly for nuclear reactor
JP4138190B2 (en) Fuel assemblies and reactor cores
JP3075749B2 (en) Boiling water reactor
JP2972917B2 (en) Fuel assembly
JPH0555836B2 (en)
JP2852101B2 (en) Reactor core and fuel loading method
JP2625404B2 (en) Fuel assembly
JP3309797B2 (en) Fuel assembly
JP3596831B2 (en) Boiling water reactor core
JP3894784B2 (en) Fuel loading method for boiling water reactor
JPS6013284A (en) Fuel aggregate
JP3910641B2 (en) MOX fuel assembly and core
JPH07270561A (en) Fuel assembly and reactor core
JP2001056388A (en) Mox fuel assembly
JPH09166678A (en) Mox fuel assembly
JPH0331794A (en) Boiling water reactor
JPH0712974A (en) Fuel assembly
JP2001272489A (en) Fuel assembly
JPH1123762A (en) Fuel assembly and initial loading reactor core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees