JPS63149588A - Fuel aggregate for nuclear reactor - Google Patents

Fuel aggregate for nuclear reactor

Info

Publication number
JPS63149588A
JPS63149588A JP61296617A JP29661786A JPS63149588A JP S63149588 A JPS63149588 A JP S63149588A JP 61296617 A JP61296617 A JP 61296617A JP 29661786 A JP29661786 A JP 29661786A JP S63149588 A JPS63149588 A JP S63149588A
Authority
JP
Japan
Prior art keywords
fuel
gadolinia
rods
fuel assembly
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61296617A
Other languages
Japanese (ja)
Other versions
JP2563287B2 (en
Inventor
庄一 渡辺
宏司 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61296617A priority Critical patent/JP2563287B2/en
Publication of JPS63149588A publication Critical patent/JPS63149588A/en
Application granted granted Critical
Publication of JP2563287B2 publication Critical patent/JP2563287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉用燃料集合体に係わり、特に高燃焼度化
に好適な原子炉用燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor fuel assembly, and particularly to a nuclear reactor fuel assembly suitable for increasing burnup.

(従来の技術) 現在の商業用原子炉で使用されている燃料集合体は、濃
縮ウランの二酸化物をペレット状に焼結した燃料要素を
ジルコニウム合金の被覆管に充填した燃料棒を正方格子
状に配列し、これをスペーサ゛で燃料棒の間隔を保持し
ながら束ねて構成されている。ざらに、この燃料集合体
を構成する燃料棒の一部には燃料の余剰な反応度を制御
するために、濃縮ウランと中性子吸収物質であるガドリ
ニウムとの混合酸化物(ガドリニア)のペレットが充填
されている(以下、これをガドリニア捧という)。
(Prior art) Fuel assemblies used in current commercial nuclear reactors are made up of fuel rods in which fuel elements made by sintering enriched uranium dioxide into pellets are filled in zirconium alloy cladding tubes in a square lattice structure. The fuel rods are arranged in rows and bundled together using spacers to maintain the spacing between the fuel rods. Roughly speaking, some of the fuel rods that make up this fuel assembly are filled with pellets of a mixed oxide (gadolinia) of enriched uranium and gadolinium, a neutron absorbing substance, in order to control the excess reactivity of the fuel. (hereinafter referred to as Gadolinia dedication).

第7図は従来の沸騰水型原子炉用のウラン燃料集合体の
配置図を示す。この燃料では燃料棒(濃縮度の高い順に
番号で表わす)が8×8の正方格子状に配列されており
、中央部分にはその中を冷油水が流れるウォータロッド
Wが2本配置されている。そして、62本の燃料体のう
ち8本がガドリニアロッドGであり、残り54本が濃縮
ウランの酸化物ペレットか充填された通常の燃料体1〜
4である。第8図に前記した第7図の燃Hの無限増倍率
の燃焼変化を示すが、未燃焼時から燃焼度10G間/l
までは燃焼とともに増加しそれ以後は減少している。こ
の燃料を運転期間が10GWd/lの3バッヂ取替え炉
心(燃料交換時に全炉心の3分の1ずつ新燃料と交換す
る)に装荷すると、無限増倍率の増加する部分(1サイ
クル目燃料)と減少する部分(2サイクル以降の燃料)
とが丁度釣合い、運転期間を通じてほぼ平坦な実効倍率
が達成される。
FIG. 7 shows a layout diagram of a conventional uranium fuel assembly for a boiling water reactor. In this fuel, fuel rods (numbered in descending order of enrichment) are arranged in an 8 x 8 square grid, and two water rods W through which cold oil and water flow are arranged in the center. . Of the 62 fuel bodies, 8 are gadolinia rods G, and the remaining 54 are ordinary fuel bodies 1 to 1 filled with enriched uranium oxide pellets.
It is 4. Fig. 8 shows the combustion change of the infinite multiplication factor of the fuel H in Fig. 7 described above.
It increases with combustion until then, and decreases thereafter. When this fuel is loaded into a 3-badge replacement core with an operating period of 10 GWd/l (one-third of the entire core is replaced with new fuel at the time of fuel replacement), the part where the infinite multiplication factor increases (first cycle fuel) and Part that decreases (fuel after 2nd cycle)
are exactly balanced, and a nearly flat effective magnification is achieved throughout the operating period.

このような燃料は、ガドリニアロッドの本数とガドリニ
ア濃度とを適切に設計することによって得られる。前者
は無限増倍率をどれだけ抑えるかを、後者はいつまで制
御するかを決定する。特に、ガドリニア濃度はガドリニ
アが運転サイクル末期(以下EOCと略す)には完全に
燃尽きるように決めなければならない。もし、EOCに
おいてガドリニアが残っていると中性子が無駄に吸収さ
れることになるので、燃料経済性が悪化することになる
からである。
Such fuel can be obtained by appropriately designing the number of gadolinia rods and the gadolinia concentration. The former determines how much to suppress the infinite multiplication factor, and the latter determines how long to control it. In particular, the gadolinia concentration must be determined so that gadolinia is completely burned out at the end of the operating cycle (hereinafter abbreviated as EOC). This is because if gadolinia remains in the EOC, neutrons will be wasted and the fuel economy will deteriorate.

(発明が解決しようとする問題点) 近年、燃料経済性向上の観点から燃料集合体1体当りの
核分裂性物質含有伍を増すことによって1ノイクル毎の
取替体数を減らした設計が進められている。このために
は、燃料集合体の燃焼初期での余剰反応度を抑えねばな
らないので、ガドリニア本数を従来以上に増やすことが
必要である。
(Problem to be solved by the invention) In recent years, from the perspective of improving fuel economy, designs have been advanced in which the number of replacement bodies per fuel assembly is reduced by increasing the content of fissile material per fuel assembly. There is. For this purpose, it is necessary to suppress the excess reactivity of the fuel assembly at the initial stage of combustion, so it is necessary to increase the number of gadolinia than before.

一方、ガドリニア棒の中性子吸収能力は大きいので、ガ
ドリニア捧同士の中性子吸収の強い干渉を避けるため燃
11東合体内では相互に隣接した配置は取らないのが従
来の設計の考え方であり、これによって燃料集合体内で
のガドリニア棒配置場所の自由度は制限されてくる。
On the other hand, since the neutron absorption capacity of gadolinia rods is large, the conventional design concept is not to arrange them adjacent to each other within the 11 East coalescence in order to avoid strong interference of neutron absorption between gadolinia rods. The degree of freedom in arranging the gadolinia rods within the fuel assembly is restricted.

ところが、上記のように高燃焼度化によってガドリニア
俸本数が増すと集合体内での配置場所がなくなり必要な
本数を配置できなくなる場合が生じてくる。この対策と
してガドリニア濃度を濃くLi”EOCでガドリニアが
燃え残るようにすれば、2サイクル目燃料の燃焼初期で
の無限増倍率は小さくなり、運転サイクル初期(以下B
OCと略す)での炉心の反応度はその分低下して初期余
剰反応度を抑えることができる。しかし、一方ではEO
Cにおいてガドリニアを無駄に燃え残すので、炉心の反
応度が低下して、運転サイクル長さが短くなり燃料経済
性が低下するという問題点があった。
However, as described above, when the number of gadolinia tubes increases due to the increase in burnup, there will be no space for placement within the assembly, and the necessary number of gadolinia tubes may not be able to be placed. As a countermeasure to this problem, if the gadolinia concentration is increased and the gadolinia is left unburned by Li'EOC, the infinite multiplication factor at the beginning of combustion of the second cycle fuel becomes small, and the initial operation cycle (hereinafter referred to as B
The reactivity of the core at the OC (abbreviated as OC) is reduced by that amount, and the initial surplus reactivity can be suppressed. However, on the other hand, E.O.
Since gadolinia is wasted and left unburned in C, there is a problem in that the reactivity of the reactor core is reduced, the operating cycle length is shortened, and fuel economy is reduced.

また、第6図は特にガドリニア棒の配置場所が制限され
るような配置図であり、同図に示すように、全燃料体の
うち約173の20本をプルトニウムを富化したMOX
 (混合酸化物: MiXed 0xide )燃料棒
とし、燃料集合体中央部に配置したいわゆるアイランド
型MOX燃料渠合体と呼ばれているものである。図に示
すものは、特に、高燃焼度化に対応した設計例であるが
、燃料集合体中央部では燃料棒4本分相当人きざの大径
つl−タロラドWを配置し、燃料集合体での水対燃料体
積比を増しており、その結果第7図に示した従来型燃料
よりも燃料体本数が2本少くなっている。ここでは、ウ
ラン燃料棒は濃縮度の小ざい順に番号3,2゜1で表わ
し、MOX燃料棒はPで表わしている。
In addition, Figure 6 is a layout diagram in which the location of gadolinia rods is particularly restricted.
(Mixed Oxide) fuel rods are arranged in the center of the fuel assembly, which is called an island-type MOX fuel conduit assembly. What is shown in the figure is an example of a design that is especially compatible with high burnup. As a result, the number of fuel bodies is two fewer than the conventional fuel shown in FIG. 7. Here, the uranium fuel rods are designated by numbers 3, 2°1 in order of decreasing enrichment, and the MOX fuel rods are designated by P.

ガドリニア捧Gは燃料製造工程を簡素化するために、ウ
ランを母材とし、プルトニウムを含まない。
In order to simplify the fuel production process, Gadolinia G uses uranium as a base material and does not contain plutonium.

このような設計を採用した場合、中央部でのガドリニア
棒の配置場所を避ける必要が生じる。また、従来の設計
法ではガドリニア棒の水ギャップに沿う最外周の配置は
、ガドリニアの燃焼特性が内側配置の場合よりも大きく
変化する等の理由で避けられている。
When such a design is adopted, it is necessary to avoid placing the gadolinia rod in the central part. Furthermore, in conventional design methods, the arrangement of the outermost circumference of the gadolinia rod along the water gap is avoided for reasons such as the fact that the combustion characteristics of gadolinia change more greatly than when it is arranged inside.

以上のことから、ガドリニア棒の配置場所は著しく制限
されることになる。図に示されるMOX燃料集合体は、
平均濃縮度約3.5w10のウラン燃料集合体と反応度
寿命が等価となるものであるが、燃焼初期余剰反応度を
抑えるために10本をこえるガドリニア捧が必要となっ
た。しかし、図に示されるように10本が限度で、ガド
リニア濃度は3.0W10となり、ガドリニア棒G1を
EOCで燃え残さざるを得ない設計となるという問題点
があった[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために、本発明の原子炉用燃料集
合体では燃料集合体内に配置したガドリニア俸のうら少
くとも一部を互いに隣接した位置に配置することによっ
て必要な本数を確保し、かつ隣接したガドリニア棒のう
ち少くとも1本のガドリニア濃度を小ざくするようにし
たことを特徴とするものである (作 用) ガドリニウム(155Gd、 157Gd)はガドリニ
ア棒内で発生した中性子と隣接する燃料体から流れ込l
νでくる中性子を吸収することによって燃料集合体の余
剰反応度を抑制している。155Gdおよび157 G
、1は中性子を吸収して、中性子吸収断面積の小さい 
 Gdヤ158Gdに変わるので、ガドリニア棒の中性
子吸収能力は燃焼度とともに、次第に小さくなり、EO
Cで燃え尽きるように設計されている。
Because of the above, the location where the gadolinia rod can be placed is extremely limited. The MOX fuel assembly shown in the figure is
Although the reactivity life is equivalent to that of a uranium fuel assembly with an average enrichment of about 3.5w10, more than 10 gadolinia rods were required to suppress excess reactivity at the initial stage of combustion. However, as shown in the figure, the limit was 10 rods, the gadolinia concentration was 3.0W10, and there was a problem that the design had to leave the gadolinia rods G1 unburned in the EOC [Structure of the invention] (Problem Means for Solving the Problem) In order to solve the above problem, in the fuel assembly for a nuclear reactor of the present invention, at least a part of the gadolinia shale arranged in the fuel assembly is arranged in a position adjacent to each other. The gadolinium (155Gd, 157Gd) is characterized by ensuring the required number of gadolinia rods and reducing the gadolinia concentration in at least one of the adjacent gadolinia rods (function). Neutrons generated within the fuel body and flowing from the adjacent fuel body l
By absorbing neutrons generated by ν, excess reactivity of the fuel assembly is suppressed. 155Gd and 157G
, 1 absorbs neutrons and has a small neutron absorption cross section.
Since the Gd value changes to 158 Gd, the neutron absorption capacity of the gadolinia rod gradually decreases with the burnup, and the EO
It is designed to burn out in C.

ガドリニア棒木数を増してそのうち一部を互いに隣接し
て配置した場合、サイクル初期の余剰反応度を抑制する
ことができるが、ガドリニア棒相互の干渉によってガド
リニア棒1本当り中性子吸収が減り、ガドリニアは燃え
遅れることになる。
If the number of gadolinia rods is increased and some of them are placed adjacent to each other, excess reactivity at the beginning of the cycle can be suppressed, but neutron absorption per gadolinia rod decreases due to mutual interference between the gadolinia rods. will be delayed.

この改善策として、互いに隣接して配置したガドリニア
棒のうち少くとも1本を運転サイクル期間前半で燃え尽
きるようにガドリニア′a度を十分小さくしておけば、
他のガドリニア棒はEOCで燃え尽きるので、燃料経済
性を向上させることができる。
As a solution to this problem, if the gadolinia degree is made sufficiently small so that at least one of the gadolinia rods placed adjacent to each other burns out in the first half of the operating cycle,
Other gadolinia rods are burned out at EOC, which can improve fuel economy.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の燃料集合体の配置図をであ
り、同図に承りように、中性子吸収を高めるために最外
周から2行目コーナー部の熱中性子束の高い部分に2本
のガドリニア棒G2 <aml、5W10 )を配置し
た例であり、ガドリニア棒本数を増したことによって初
期余剰反応度が抑えられ、ガドリニア棒G1のガドリニ
ア濃度を2.5W10に減らすことができた。
Figure 1 shows the layout of a fuel assembly according to an embodiment of the present invention. This is an example in which two gadolinia rods G2 <aml, 5W10) are arranged, and by increasing the number of gadolinia rods, the initial excess reactivity was suppressed, and the gadolinia concentration of gadolinia rod G1 was able to be reduced to 2.5W10. .

第2図は本発明の伯の実施例の配置図であり、同図に示
すように、ガドリニア棒G1を8本に減らし、代わりに
02を4本に増した例で、特に燃料集合体内濃縮度・富
化度分布の対称性が改善され、前記した実施例よりも局
所出力分布が平坦化された。ガドリニア濃度はG1で2
.5W10 、 G2はG1の濃度の6割減の1゜5w
10とし、トータルのガドリニア量をざらに減らすこと
ができた。
Figure 2 is a layout diagram of an embodiment of the present invention. As shown in the figure, the number of gadolinia rods G1 is reduced to eight, and the number of Gadolinia rods G1 is increased to four instead. The symmetry of the degree/enrichment distribution was improved, and the local power distribution was made flatter than in the above embodiment. Gadolinia concentration is 2 in G1
.. 5W10, G2 is 1°5W, which is 60% less than the concentration of G1.
10, it was possible to roughly reduce the total amount of gadolinia.

第3図は第2図の本発明の燃料集合体および第6図の従
来の燃1”I集合体の無限増倍率の燃焼変化を示した図
であり、第4図は第2図の本発明の炉心および第6図の
従来の炉心の出力運転時余剰反応度と冷温時炉停止余裕
を示したものである。この図には冷温時炉停止余裕を実
効増倍率0.99以下として設計基準を満足しつつ燃焼
初期での出力運転時余剰反応度を下げてその燃焼変化を
平坦化しかつ運転サイクル長さが伸びている様子が示さ
れている。
FIG. 3 is a diagram showing the combustion change of the fuel assembly of the present invention shown in FIG. 2 and the conventional fuel 1"I assembly shown in FIG. 6 at an infinite multiplication factor. FIG. This figure shows the excess reactivity during power operation and cold reactor shutdown margin of the inventive core and the conventional core in Figure 6.This figure shows the cold reactor shutdown margin designed with an effective multiplication factor of 0.99 or less. It is shown that while meeting the standards, the surplus reactivity during power operation in the early stage of combustion is lowered, the combustion change is flattened, and the operation cycle length is extended.

これより、本実施例によって燃焼初期における炉心・燃
料の余剰反応度を抑えてEOCでのガドリニア燃え残り
を減らして燃料経済性を向上できることが分る。
From this, it can be seen that this example suppresses the excess reactivity of the core and fuel at the early stage of combustion, reduces the amount of unburned gadolinia at EOC, and improves fuel economy.

第5図は本発明のざらに他の実施例の配置図であり、ざ
らに高燃焼度化を図ったウラン燃料集合体の例を示して
いる。本実施例では9行9列の燃料体配列をなす燃料集
合体中央部に燃料体9本相当大ぎざの太径つを一タロツ
ドWを配置したもので、第1図の実施例に示すものより
も水対燃料体積比を増している。ここでは、番号3,2
.1の順に濃縮度の低い燃料を配置し燃料集合体平均濃
縮度を約6W10としており、濃度6.0W10のガド
リニア棒G1を20本配し、ざらに濃度1.5w10の
ガドリニア棒G2を8本配置している。
FIG. 5 is a layout diagram of another embodiment of the present invention, and shows an example of a uranium fuel assembly with a roughly high burnup. In this embodiment, one tarrod W is arranged in the center of the fuel assembly, which has a fuel assembly arranged in 9 rows and 9 columns, and has large diameters corresponding to 9 fuel bodies. The water-to-fuel volume ratio is increased. Here, numbers 3, 2
.. Fuels with low enrichment are arranged in order of 1 to make the fuel assembly average enrichment about 6W10, and 20 gadolinia rods G1 with a concentration of 6.0W10 are arranged, and roughly 8 gadolinia rods G2 with a concentration of 1.5W10 are arranged. It is placed.

本実施例では、低濃度力士リニア棒G2を中性子束の高
い燃料集合体最外周2打目のコーナー部およびつを一タ
ロツドに面する場所に配置し、ガドリニアの中性子吸収
を高めている。
In this embodiment, the low-concentration sumo linear rod G2 is placed at the second corner of the outermost periphery of the fuel assembly, where the neutron flux is high, and at a location where one side faces one tarod to enhance neutron absorption of gadolinia.

以上述べた実施例では、低濃度ガドリニア燃を集合体最
外周から2行目のコーナー部又はつ4−タロラドに面す
る部分に限定したが、ガドリニア濃度と本数を適当に調
整することによって、他の場所に配置し、場所の自由度
を増すことができる。
In the embodiments described above, the low-concentration gadolinia fuel was limited to the corner part of the second line from the outermost periphery of the aggregate or the part facing the 4-talorado, but by appropriately adjusting the gadolinia concentration and number, other It can be placed anywhere, increasing the flexibility of location.

[発明の効果] 以上説明したように、本発明の原子炉燃料集合体によれ
ば、必要なガドリニア捧本数を燃料集合体内に配置する
ことができ、かつ運転サイクル末期におけるガドリニア
の燃え残りを無くして燃料経済性を向上させることがで
きるというすぐれた効果を奏する。
[Effects of the Invention] As explained above, according to the nuclear reactor fuel assembly of the present invention, it is possible to arrange the necessary number of gadolinia in the fuel assembly, and it is possible to eliminate unburned gadolinia at the end of the operation cycle. This has the excellent effect of improving fuel economy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の配置図、第2図は本発明の
他の実施例の配置図、第3図は第2図の本発明の燃料集
合体および第6図の従来型MOX燃料集合体の無限増倍
率燃焼変化を比較した図、第4図は同じく第2図の本発
明の燃料集合体および第6図の従来型MOX燃料集合体
の出力運転時余剰反応度および炉停止余裕の燃焼変化を
比較した図、第5図は本発明のさらに他の実施例の配置
図、第6図は従来のMOX燃料集合体の配置図、第7図
は従来の沸騰水型原子炉用のウラン燃料集合体の配置図
、第8図に第7図の燃わ1の無限増倍率の燃焼変化を示
す図である。 1〜4・・・燃料棒 G1.G2・・・ガドリニア棒 W・・・ウォータロッド (8733)代理人 弁理士 猪 股 祥 晃(ばか 
1名) 出か運転峙無尾噌倍牢 #、P艮少曽す督率
FIG. 1 is a layout diagram of one embodiment of the present invention, FIG. 2 is a layout diagram of another embodiment of the present invention, and FIG. 3 is a fuel assembly of the present invention shown in FIG. 2 and a conventional type shown in FIG. 6. Figure 4 is a diagram comparing the infinite multiplication rate combustion changes of MOX fuel assemblies, and Figure 4 shows the surplus reactivity and reactor during power operation of the fuel assembly of the present invention in Figure 2 and the conventional MOX fuel assembly in Figure 6. Figure 5 is a layout diagram of still another embodiment of the present invention, Figure 6 is a layout diagram of a conventional MOX fuel assembly, and Figure 7 is a diagram comparing combustion changes in stop margin. FIG. 8 is a layout diagram of a uranium fuel assembly for a reactor, and a diagram showing the combustion change of the burner 1 of FIG. 7 at an infinite multiplication factor. 1-4...Fuel rod G1. G2...Gadolinia rod W...Water rod (8733) Agent Patent attorney Yoshiaki Inomata (Idiot)
1 person) Driving out and facing Muo So double prison #, P Ai Shao Zeng command

Claims (3)

【特許請求の範囲】[Claims] (1)ペレット状の燃料要素が充填された多数の燃料棒
およびウォータロッドを格子状に配列された燃料集合体
において、可燃性毒物を添加した燃料棒のうち少なくと
も一部が互いに隣接した位置に配置され、かつその中の
少なくとも1本の前記燃料棒の可燃性毒物含有率が低濃
度であることを特徴とする原子炉用燃料集合体。
(1) In a fuel assembly in which a large number of fuel rods and water rods filled with pellet-shaped fuel elements are arranged in a grid, at least some of the fuel rods to which burnable poison has been added are located adjacent to each other. 1. A fuel assembly for a nuclear reactor, wherein at least one fuel rod therein has a low burnable poison content.
(2)低濃度の可燃性毒物を添加した燃料棒位置は燃料
集合体最外周から2行目のコーナー部又はウォータロッ
ドに配する位置であることを特徴とする特許請求の範囲
第1項記載の原子炉用燃料集合体。
(2) The position of the fuel rod to which the burnable poison at a low concentration is added is located at the corner of the second line from the outermost periphery of the fuel assembly or at the water rod. fuel assembly for nuclear reactors.
(3)低濃度のガドリニア濃度は最高濃度のガドリニア
棒の6割以下であることを特徴とする特許請求の範囲第
1項記載の原子炉用燃料集合体。
(3) The fuel assembly for a nuclear reactor according to claim 1, wherein the low concentration of gadolinia is 60% or less of the gadolinia rod having the highest concentration.
JP61296617A 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor Expired - Lifetime JP2563287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296617A JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296617A JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS63149588A true JPS63149588A (en) 1988-06-22
JP2563287B2 JP2563287B2 (en) 1996-12-11

Family

ID=17835868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296617A Expired - Lifetime JP2563287B2 (en) 1986-12-15 1986-12-15 Fuel assembly for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2563287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168589A (en) * 1987-01-06 1988-07-12 株式会社東芝 Fuel aggregate
SG106150A1 (en) * 2002-06-18 2004-09-30 Seiko Instr Inc Analog chronograph timepiece having plural motors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220674A (en) * 1983-05-30 1984-12-12 株式会社東芝 Fuel assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220674A (en) * 1983-05-30 1984-12-12 株式会社東芝 Fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168589A (en) * 1987-01-06 1988-07-12 株式会社東芝 Fuel aggregate
SG106150A1 (en) * 2002-06-18 2004-09-30 Seiko Instr Inc Analog chronograph timepiece having plural motors

Also Published As

Publication number Publication date
JP2563287B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JPS61223582A (en) Fuel aggregate for nuclear reactor
JPH051912B2 (en)
JPS63149588A (en) Fuel aggregate for nuclear reactor
JPH1090460A (en) Fuel assembly
JPH07244184A (en) Reactor core, its operation method and fuel assembly
JP3514869B2 (en) Fuel assemblies for boiling water reactors
JPH06174874A (en) Fuel assembly and reactor core
JP3075749B2 (en) Boiling water reactor
JPS60201284A (en) Fuel aggregate
JP2577367B2 (en) Fuel assembly
JP2972917B2 (en) Fuel assembly
JP4046870B2 (en) MOX fuel assembly
JP4351798B2 (en) Fuel assemblies and reactors
JPH102982A (en) Core for nuclear reactor and its operating method
JPH0555836B2 (en)
JPS63127190A (en) Nuclear reactor fuel aggregate
JP3309797B2 (en) Fuel assembly
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP2002090487A (en) Reactor core and its operation method
JP3212744B2 (en) Fuel assembly
JP2000180575A (en) Fuel assembly for boiling-water reactor and reactor core using it
JPS60242391A (en) Fuel aggregate
JPH07111468B2 (en) Fuel assembly for nuclear reactor
JPH07151883A (en) Fuel assembly for boiling water reactor
JP2001056388A (en) Mox fuel assembly

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term