JP4757663B2 - Voltage source current control inverter - Google Patents

Voltage source current control inverter Download PDF

Info

Publication number
JP4757663B2
JP4757663B2 JP2006061069A JP2006061069A JP4757663B2 JP 4757663 B2 JP4757663 B2 JP 4757663B2 JP 2006061069 A JP2006061069 A JP 2006061069A JP 2006061069 A JP2006061069 A JP 2006061069A JP 4757663 B2 JP4757663 B2 JP 4757663B2
Authority
JP
Japan
Prior art keywords
voltage
output
harmonic
current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006061069A
Other languages
Japanese (ja)
Other versions
JP2007244066A (en
Inventor
孝英 小澤
功 塚越
誠一 石原
Original Assignee
株式会社荏原電産
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原電産 filed Critical 株式会社荏原電産
Priority to JP2006061069A priority Critical patent/JP4757663B2/en
Publication of JP2007244066A publication Critical patent/JP2007244066A/en
Application granted granted Critical
Publication of JP4757663B2 publication Critical patent/JP4757663B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、商用電力系統に接続され、系統負荷に電力を供給する系統連系発電システムなどにおいて、主に系統連系インバータとして用いられる電圧形電流制御インバータに係り、特にその電流制御についての技術に関する。   The present invention relates to a voltage-type current control inverter that is mainly used as a grid-connected inverter in a grid-connected power generation system that is connected to a commercial power system and supplies power to a system load, and more particularly to a technique for current control thereof. About.

上記電圧形電流制御インバータにおいて、出力電圧波形に基本波の3倍周波数の電圧波形を重畳することで、インバータ入力電圧が低い状態でも、インバータ出力の相間電圧を正弦波で出力でき、電圧利用率を向上できることが知られている。この3倍周波数の電圧波形の重畳は、一般的な電圧制御インバータにおいては、電圧指令信号に直接3次高調波信号を重畳することで実現できる。また、電圧形電流制御インバータにおいては、所定周波数の正弦波目標信号と電流フィードバック信号との誤差信号を増幅した信号と3次高調波信号(目標信号の3倍周波数)とを同期して加算した信号を、パルス幅変調信号発生回路へ入力することで、出力電流を歪ますこと無く、インバータの3相各相出力へ3次高調波成分を重畳する方法が提案されている(例えば、特許文献1)。
特開平6−133558号公報
In the above voltage source current control inverter, by superimposing a voltage waveform with three times the fundamental frequency on the output voltage waveform, the interphase voltage of the inverter output can be output as a sine wave even when the inverter input voltage is low. It is known that can be improved. The superposition of the voltage waveform of the triple frequency can be realized by superimposing the third harmonic signal directly on the voltage command signal in a general voltage control inverter. In the voltage source current control inverter, a signal obtained by amplifying an error signal between a sine wave target signal having a predetermined frequency and a current feedback signal and a third harmonic signal (three times the frequency of the target signal) are added in synchronization. There has been proposed a method of superimposing third-order harmonic components on the three-phase output of the inverter without distorting the output current by inputting the signal to a pulse width modulation signal generation circuit (for example, Patent Documents). 1).
JP-A-6-133558

しかしながら、上記従来の技術では、3相分の誤差信号を増幅した信号の最大値、最小値、中間値を演算することにより3次高調波の信号を生成し、生成した3次高調波信号を誤差信号に同期して加算する方法が提案されているが、3次高調波信号を生成する方法が煩雑である。また、他の方法として、所定周波数の正弦波目標電流信号と電流フィードバック信号との誤差信号を増幅した信号と正弦波目標電流信号と同期した3次高調波信号(目標信号の3倍周波数)とを加算する方法も考えられるが、誤差演算器と増幅器に大きな遅れ要素があると効果的に3次高調波を重畳できない。   However, in the above conventional technique, a third harmonic signal is generated by calculating the maximum value, the minimum value, and the intermediate value of the signal obtained by amplifying the error signal for three phases, and the generated third harmonic signal is A method of adding in synchronization with the error signal has been proposed, but the method of generating the third harmonic signal is complicated. As another method, a signal obtained by amplifying an error signal between a sine wave target current signal having a predetermined frequency and a current feedback signal, and a third harmonic signal synchronized with the sine wave target current signal (three times the frequency of the target signal) However, if there is a large delay element in the error calculator and the amplifier, the third harmonic cannot be effectively superimposed.

本発明は、上述した事情に鑑みてなされたもので、フィードバック系演算器に遅れ要素を有していても、効果的に3次高調波を重畳することができる電圧形電流制御インバータを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a voltage-type current control inverter that can effectively superimpose a third-order harmonic even if the feedback system calculator has a delay element. For the purpose.

本発明の電圧形電流制御インバータは、商用電力系統の電圧を検出する電圧検出器と、前記検出器で検出された前記電圧の周波数と同一周波数の電流指令波形を生成する電流指令波形生成器と、前記生成器から出力される電流目標値と、インバータの出力線から検出された電流フィードバック値との誤差を演算する遅れ要素をもつ誤差演算器と、前記電圧検出器で検出された前記電圧の周波数の3倍周波数の3次高調波信号を得る3次高調波波形生成器と、前記3次高調波波形生成器の出力を前記誤差演算器の遅れ時間分だけ、その位相を遅らす位相シフト器と、前記誤差演算器の出力と前記位相シフト器の出力とを加算する加算演算器とを備え、前記加算演算器の出力をパルス幅変調器に入力し、パルス幅変調信号を生成し、前記インバータを該パルス幅変調信号により動作させることを特徴とするものである。   The voltage source current control inverter of the present invention includes a voltage detector that detects a voltage of a commercial power system, a current command waveform generator that generates a current command waveform having the same frequency as the frequency of the voltage detected by the detector, , An error calculator having a delay element for calculating an error between a current target value output from the generator and a current feedback value detected from the output line of the inverter, and the voltage detected by the voltage detector. A third harmonic waveform generator for obtaining a third harmonic signal having a frequency three times the frequency, and a phase shifter for delaying the phase of the output of the third harmonic waveform generator by the delay time of the error calculator And an addition calculator for adding the output of the error calculator and the output of the phase shifter, inputting the output of the addition calculator to a pulse width modulator, generating a pulse width modulation signal, Invar The is characterized in that operating by the pulse width modulation signal.

本発明では、3次高調波を重畳する際に、フィードバック系の誤差演算器の遅れ要素を考慮して3次高調波を重畳するので、3次高調波信号と遅れ要素を持つ誤差演算器の出力信号の位相を一致させることが可能となり、効果的に3次高調波を重畳することができる。これにより、フィードバック系の誤差演算器に遅れ要素があっても、3次高調波を適正な位相に乗せられるので、インバータの直流入力電圧の高い電圧利用率を確保でき、インバータを効率的に利用することができる。   In the present invention, when superimposing the third harmonic, the third harmonic is superimposed in consideration of the delay element of the error calculator of the feedback system. The phases of the output signals can be matched, and the third harmonic can be effectively superimposed. As a result, even if there is a delay element in the error calculator of the feedback system, the 3rd harmonic can be put on the proper phase, so a high voltage utilization factor of the DC input voltage of the inverter can be secured and the inverter can be used efficiently can do.

以下、本発明の実施形態について、添付図面を参照して説明する。なお、各図中、同一の作用または機能を有する部材または要素には、同一の符号を付して重複した説明を省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted.

図1は、本発明の一実施形態の電圧形電流制御インバータ用いた系統連系発電システムを示す。発電機11の交流発電出力は、全波整流回路などのコンバータ12により整流され、コンデンサ(直流電源)13に貯留された直流電力がインバータ15により系統連系可能な交流電力に変換され、商用電力系統16に接続された負荷に供給される。電圧形電流制御インバータ15は、直流電源13の直流電力を、電流指令値の振幅を有する交流電流に変換し、指令値の交流電流を系統負荷に送出する装置であり、商用電力系統16の系統電圧と同期を取り、交流電力を出力する。そして、指令値の交流電流を出力するように、実際のインバータ出力電流を検出し、誤差演算器を用いてフィードバック制御する。   FIG. 1 shows a grid-connected power generation system using a voltage source current control inverter according to an embodiment of the present invention. The AC power output of the generator 11 is rectified by a converter 12 such as a full-wave rectifier circuit, and DC power stored in a capacitor (DC power supply) 13 is converted into AC power that can be connected to the grid by an inverter 15 to be commercial power. It is supplied to a load connected to the grid 16. The voltage-type current control inverter 15 is a device that converts the DC power of the DC power supply 13 into an AC current having an amplitude of a current command value, and sends the AC current of the command value to a system load. Synchronizes with voltage and outputs AC power. Then, an actual inverter output current is detected so as to output a command value of alternating current, and feedback control is performed using an error calculator.

インバータ15は、電力スイッチング素子をパルス幅変調信号に従ってオン/オフ制御することにより直流電力を交流電力に変換する電力変換装置であり、入力直流電圧がパルス幅変調され、出力される。このため、系統電圧を検出する系統電圧検出器18、系統への送出電流を検出する電流検出器19、系統リアクトル20、コンデンサ21などからなる高周波成分を除去するフィルタ回路などのインバータ装置としての基本的な構成を備えている。   The inverter 15 is a power conversion device that converts DC power into AC power by ON / OFF control of the power switching element according to the pulse width modulation signal, and the input DC voltage is pulse-width modulated and output. For this reason, the basics as an inverter device such as a system voltage detector 18 for detecting a system voltage, a current detector 19 for detecting a current sent to the system, a system reactor 20, a filter circuit for removing a high frequency component including a capacitor 21 and the like. It has a typical configuration.

そして、このインバータ15は、各相毎に基本周波数の波形に3次高調波の波形を重畳して出力する下記構成の制御装置を備えている。すなわち、系統電圧から基本波周波数の波形を検出する周波数検出器(位相検出器)23と、電流指令値と上記周波数検出器23で検出された基本波周波数の波形とから基本波の電流指令波形信号を形成する電流指令波形生成器24と、上記電流指令波形信号(目標値)と上記電流検出器19によりインバータの出力線から検出された電流信号(フィードバック値)との誤差を求める遅れ要素をもつ誤差演算器(PID演算器)25と、上記電圧検出器18で検出された商用系統電圧の3倍周波数の3次高調波波形信号を形成する3次高調波波形生成器26と、上記3次高調波波形生成器の出力を上記誤差演算器(PID演算器)25の遅れ時間分の位相を遅らせる位相シフト器27と、上記誤差演算器25の出力と上記位相シフト器27の出力とを加算演算する加算器28とを備え、加算器28の出力をパルス幅変調器29へ入力して、パルス幅変調信号を生成し、インバータ15をパルス幅変調制御する。   The inverter 15 includes a control device having the following configuration that outputs the waveform of the third harmonic superimposed on the waveform of the fundamental frequency for each phase. That is, a frequency detector (phase detector) 23 that detects a waveform of the fundamental frequency from the system voltage, a current command waveform of the fundamental wave from the current command value and the waveform of the fundamental frequency detected by the frequency detector 23. A current command waveform generator 24 for forming a signal, and a delay element for obtaining an error between the current command waveform signal (target value) and the current signal (feedback value) detected from the output line of the inverter by the current detector 19 An error calculator (PID calculator) 25, a third harmonic waveform generator 26 that forms a third harmonic waveform signal having a frequency three times the commercial system voltage detected by the voltage detector 18, and the above 3 A phase shifter 27 for delaying the phase of the output of the second harmonic waveform generator by the delay time of the error calculator (PID calculator) 25, the output of the error calculator 25, and the phase shifter 27 And an adder 28 for adding operation on the power inputs an output of the adder 28 to the pulse width modulator 29 generates a pulse width modulated signal to a pulse width modulation control of the inverter 15.

上記制御装置によれば、電流指令波形生成器24により電流指令値に従った系統電圧周波数の電流指令波形(目標値)が形成される。そして、インバータ15の出力線から検出された実際電流波形(フィードバック値)との誤差を求める演算が誤差演算器25で行われ、誤差がゼロとなる(フィードバック値が目標値に一致する)ように、誤差演算器25から基本周波数の電流指令波形信号が出力される。そして、この基本周波数の電流指令波形信号に、商用系統電圧の3倍周波数の3次高調波波形信号が位相シフト器27により誤差演算器25の遅れ時間分だけ位相を遅らせて、加算器28により重畳される。これにより、誤差演算器25が遅れ時間を有していても、3次高調波信号と遅れ要素を持つ誤差演算器の基本波信号の位相を一致させることが可能となり、効果的に3次高調波を重畳することができる。   According to the control device, the current command waveform generator 24 forms a current command waveform (target value) of the system voltage frequency according to the current command value. Then, an operation for obtaining an error from the actual current waveform (feedback value) detected from the output line of the inverter 15 is performed by the error calculator 25 so that the error becomes zero (the feedback value matches the target value). A current command waveform signal having a fundamental frequency is output from the error calculator 25. A phase shifter 27 delays the phase of the current command waveform signal of the fundamental frequency by the delay time of the error calculator 25 by the phase shifter 27, and the adder 28 Superimposed. As a result, even if the error calculator 25 has a delay time, the phase of the fundamental signal of the error calculator having the delay element can be matched with the third harmonic signal, and the third harmonic can be effectively applied. Waves can be superimposed.

従って、各相毎の出力電流は、基本波に3次高調波が位相を合わせて正確に重畳したものとなり、インバータにおける入力直流電圧の電圧利用率が高められ、インバータを効率的に作動させることができる。そして、重畳された3次高調波成分は線間電圧においてキャンセルされるので、商用交流電力系統16側には基本波周波数成分のみが出力される。   Therefore, the output current for each phase is obtained by accurately superimposing the third harmonic in phase with the fundamental wave, increasing the voltage utilization factor of the input DC voltage in the inverter and operating the inverter efficiently. Can do. Since the superimposed third harmonic component is canceled in the line voltage, only the fundamental frequency component is output to the commercial AC power system 16 side.

なお、電圧形電流制御インバータの位相シフト器27における位相シフト量の設定は、以下のいずれかの方法による。
(a)誤差演算器25の出力位相遅れを予測して所定の値(時間または遅れ時間に略等しい位相角)を設定する。
(b)誤差演算器25の出力位相を実際に検出し、誤差演算器25の出力と同期するように位相シフト量を設定する。
The phase shift amount in the phase shifter 27 of the voltage source current control inverter is set by any one of the following methods.
(A) Predict the output phase delay of the error calculator 25 and set a predetermined value (time or phase angle substantially equal to the delay time).
(B) The output phase of the error calculator 25 is actually detected, and the phase shift amount is set so as to synchronize with the output of the error calculator 25.

次に、上記制御装置の具体的な構成例を図2に示す。この実施形態においては、誤差演算器25および加算器28を、演算増幅器を用いたアナログ回路で構成している。そして、誤差演算器25においては、抵抗(R)とキャパシタ(C)とで構成される積分回路を含むため、出力位相遅れが生じることは上述したとおりである。ここで、端子Aは電流指令波形生成器24に接続され、電流指令値に従った系統電圧周波数の電流指令波形(目標値)が入力される。端子Bは電流検出器19に接続され、インバータ15の出力線から検出された実際電流波形(フィードバック値)が入力され、誤差演算器25で誤差演算(PID演算)が行われる。3次高調波波形生成器26と、位相シフト器27は、メモリに蓄積されたプログラムによりマイクロプロセッサでデジタル演算処理により実現され、所定量の出力位相遅れの3次高調波アナログ波形が加算器28に入力され、上記誤差演算器25の出力と加算され、3次高調波を重畳した電流指令波形が端子Cよりパルス幅変調器(三角波比較回路)29に出力される。   Next, a specific configuration example of the control device is shown in FIG. In this embodiment, the error calculator 25 and the adder 28 are constituted by analog circuits using operational amplifiers. Since the error calculator 25 includes an integration circuit composed of a resistor (R) and a capacitor (C), the output phase delay occurs as described above. Here, the terminal A is connected to the current command waveform generator 24, and the current command waveform (target value) of the system voltage frequency according to the current command value is input. The terminal B is connected to the current detector 19, the actual current waveform (feedback value) detected from the output line of the inverter 15 is input, and the error calculator 25 performs error calculation (PID calculation). The third harmonic waveform generator 26 and the phase shifter 27 are realized by digital arithmetic processing by a microprocessor using a program stored in the memory, and a third harmonic analog waveform with a predetermined amount of output phase delay is added to the adder 28. Is added to the output of the error calculator 25, and a current command waveform on which the third harmonic is superimposed is output from the terminal C to the pulse width modulator (triangular wave comparison circuit) 29.

次に、この制御装置における3次高調波の位相シフトについて、図3を参照して説明する。まず、系統電圧波形であるU相電圧波形(a)の立ち上がりゼロクロスから次の立ち上がりゼロクロスまでの時間T1を、マイクロプロセッサ内部のタイマ1にて計測する(b)。次に、電流指令波形生成器24の出力位相は、上述の立ち上がりのタイミングから計測した時間の例えば1/360の時間(電気角1°に相当する時間)を設定したタイマ2(c)のタイプアップを利用して、作成することができる。具体的には、インターバルタイマ機能をもつタイマ2に、タイマ1で計測した時間の1/360の時間を設定する。このタイマ2のタイムアップ(インターバル時間)ごとに発生する割り込みにて、出力に使用する360個に分割されたサイン波形テーブルデータ参照用ポインタをインクリメントする。また、立ち上がりゼロクロス発生時にこのサイン波形テーブルデータ参照用ポインタをゼロにリセット(ゼロクロス点の開始点をセット)する。これにより、図3(d)に示す電流指令波形を作成することができる。   Next, the phase shift of the third harmonic in this control apparatus will be described with reference to FIG. First, a time T1 from the rising zero cross of the U phase voltage waveform (a), which is a system voltage waveform, to the next rising zero cross is measured by the timer 1 in the microprocessor (b). Next, the output phase of the current command waveform generator 24 is the type of the timer 2 (c) in which, for example, 1/360 time (time corresponding to an electrical angle of 1 °) measured from the above rising timing is set. Can be created using the app. Specifically, a time 1/360 of the time measured by the timer 1 is set in the timer 2 having the interval timer function. In response to an interrupt that occurs every time the timer 2 expires (interval time), the sine waveform table data reference pointer divided into 360 parts used for output is incremented. When the rising zero cross occurs, the sine waveform table data reference pointer is reset to zero (the start point of the zero cross point is set). Thereby, the current command waveform shown in FIG. 3D can be created.

ここで、上述の電流指令波形の3倍周波数波形を出力する場合には、3倍周波数用のサイン波形テーブルデータを用意しておき、タイマ2(e)のタイムアップごとに3倍周波数サイン波形テーブルデータ参照用ポインタをインクリメントすることで、電流指令波形と同期した3倍周波数波形(f)の出力を行うことができる。さらに、電流指令波形に対し、3倍周波数波形の位相を遅らせるには、立ち上がりゼロクロス発生時にこのサイン波形テーブルデータ参照用ポインタをゼロにリセットする際に、3倍周波数参照用テーブルの参照用ポインタを任意の値(位相シフト量T3)にセットすることで、電流指令値に対して、3倍周波数の位相を、任意の値だけ変化させることができる。図示の実施例の場合は、立ち上がりゼロクロスのタイミングで、時間T2を3個分遅らせることで、電流指令波形に対して、3°遅らせている。上述の説明は、1周期を360分割した際の説明であり、1周期の分割数は任意の値で構わない。この位相シフトした3倍周波数波形(f)に誤差増幅器の基本波出力波形(g)を加算器28で加算すると、正確に位相を合わせた台形状の加算器出力波形(h)が得られる。   Here, when outputting the triple frequency waveform of the above-described current command waveform, the sine waveform table data for the triple frequency is prepared, and the triple frequency sine waveform is obtained every time the timer 2 (e) is timed up. By incrementing the table data reference pointer, the triple frequency waveform (f) synchronized with the current command waveform can be output. Further, in order to delay the phase of the triple frequency waveform with respect to the current command waveform, the pointer for reference of the triple frequency reference table is set when the sine waveform table data reference pointer is reset to zero when a rising zero cross occurs. By setting to an arbitrary value (phase shift amount T3), the phase of the triple frequency can be changed by an arbitrary value with respect to the current command value. In the case of the illustrated embodiment, the time T2 is delayed by three times at the rising zero cross timing, thereby delaying the current command waveform by 3 °. The above description is an explanation when one period is divided into 360, and the number of divisions in one period may be an arbitrary value. When the fundamental wave output waveform (g) of the error amplifier is added to the phase-shifted triple frequency waveform (f) by the adder 28, a trapezoidal adder output waveform (h) in which the phases are accurately matched is obtained.

上述の実施例は、マイクロプロセッサを使用しなくても、ハードウェアでも実施可能であるが、マイクロプロセッサで構成をした方が、構成が簡単になり位相シフト量を変更する場合の変更も容易となり、コスト的にも安価に構成できる。   The above-described embodiment can be implemented by hardware without using a microprocessor, but the configuration with a microprocessor becomes simpler and the change when changing the phase shift amount becomes easier. Therefore, it can be configured at a low cost.

上記実施形態では、誤差演算器25および加算器28をハードウェアで構成する例について説明したが、マイクロプロセッサとメモリを用いソフトウェアで構成するようにしてもよい。   In the above embodiment, the error calculator 25 and the adder 28 are configured by hardware. However, the error calculator 25 and the adder 28 may be configured by software using a microprocessor and a memory.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは勿論である。   Although one embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and may of course be implemented in various forms within the scope of the technical idea.

本発明の一実施形態の電圧形電流制御インバータを示すブロック図である。It is a block diagram which shows the voltage type current control inverter of one Embodiment of this invention. 上記インバータの制御装置の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the control apparatus of the said inverter. 上記インバータの動作例を示す波形図である。It is a wave form diagram which shows the operation example of the said inverter.

符号の説明Explanation of symbols

11 発電機
12 コンバータ
13 直流電源
15 電圧形電流制御インバータ
16 商用交流電力系統
18 電圧検出器
19 電流検出器
20 リアクトル
21 コンデンサ
23 周波数検出器
24 電流指令波形生成器
25 誤差演算器(PID演算器)
26 3次高調波波形生成器
27 位相シフト器
28 加算器
29 パルス幅変調器
11 Generator 12 Converter 13 DC Power Supply 15 Voltage Source Current Control Inverter 16 Commercial AC Power System 18 Voltage Detector 19 Current Detector 20 Reactor 21 Capacitor 23 Frequency Detector 24 Current Command Waveform Generator 25 Error Calculator (PID Calculator)
26 Third harmonic waveform generator 27 Phase shifter 28 Adder 29 Pulse width modulator

Claims (2)

商用電力系統の電圧を検出する電圧検出器と、
前記検出器で検出された前記電圧の周波数と同一周波数の電流指令波形を生成する電流指令波形生成器と、
前記生成器から出力される電流目標値と、インバータの出力線から検出された電流フィードバック値との誤差を演算する遅れ要素をもつ誤差演算器と、
前記電圧検出器で検出された前記電圧の周波数の3倍周波数の3次高調波信号を得る3次高調波波形生成器と、
前記3次高調波波形生成器の出力を前記誤差演算器の遅れ時間分だけ、その位相を遅らす位相シフト器と、
前記誤差演算器の出力と前記位相シフト器の出力とを加算する加算演算器とを備え、前記加算演算器の出力をパルス幅変調器に入力し、パルス幅変調信号を生成し、前記インバータを該パルス幅変調信号により動作させることを特徴とする電圧形電流制御インバータ。
A voltage detector for detecting the voltage of the commercial power system;
A current command waveform generator that generates a current command waveform having the same frequency as the frequency of the voltage detected by the detector;
An error calculator having a delay element for calculating an error between the current target value output from the generator and the current feedback value detected from the output line of the inverter;
A third harmonic waveform generator for obtaining a third harmonic signal having a frequency three times the frequency of the voltage detected by the voltage detector;
A phase shifter that delays the output of the third harmonic waveform generator by the delay time of the error calculator;
An adder that adds the output of the error calculator and the output of the phase shifter, input the output of the adder to a pulse width modulator, generate a pulse width modulation signal, and A voltage-type current control inverter which is operated by the pulse width modulation signal.
前記電流指令波形生成器と3次高調波波形生成器と位相シフト器とを、マイクロプロセッサとメモリによるソフトウェアで構成したことを特徴とする請求項1記載の電圧形電流制御インバータ。   2. The voltage-type current control inverter according to claim 1, wherein the current command waveform generator, the third harmonic waveform generator, and the phase shifter are configured by software using a microprocessor and a memory.
JP2006061069A 2006-03-07 2006-03-07 Voltage source current control inverter Expired - Fee Related JP4757663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061069A JP4757663B2 (en) 2006-03-07 2006-03-07 Voltage source current control inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061069A JP4757663B2 (en) 2006-03-07 2006-03-07 Voltage source current control inverter

Publications (2)

Publication Number Publication Date
JP2007244066A JP2007244066A (en) 2007-09-20
JP4757663B2 true JP4757663B2 (en) 2011-08-24

Family

ID=38589033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061069A Expired - Fee Related JP4757663B2 (en) 2006-03-07 2006-03-07 Voltage source current control inverter

Country Status (1)

Country Link
JP (1) JP4757663B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364303B2 (en) * 2008-06-17 2013-12-11 山洋電気株式会社 Current control type power converter and method for improving output current waveform of current control type power converter
CN102388528B (en) * 2009-04-08 2014-09-03 松下电器产业株式会社 DC power source device and inverter device and air-conditioner using these
JP5585371B2 (en) * 2010-10-14 2014-09-10 富士電機株式会社 Distributed power system
JP6334427B2 (en) * 2015-02-13 2018-05-30 三菱電機株式会社 AC motor drive device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280773A (en) * 1985-06-03 1986-12-11 Nippon Electric Ind Co Ltd Pulse-width control type inverter
JPH0370473A (en) * 1989-08-05 1991-03-26 Fuji Electric Co Ltd Current adjuster for pulse width modulation control inverter
JPH06133558A (en) * 1992-10-15 1994-05-13 Fanuc Ltd Pwm control system
JP3051806B2 (en) * 1993-11-25 2000-06-12 シャープ株式会社 Grid-connected inverter controller
JP3245523B2 (en) * 1995-10-16 2002-01-15 シャープ株式会社 Inverter control method and inverter control device
JP3623626B2 (en) * 1997-01-20 2005-02-23 日本インバータ株式会社 Three-phase voltage type current control inverter
JP3812406B2 (en) * 2001-10-26 2006-08-23 富士電機システムズ株式会社 Control method for PWM power converter

Also Published As

Publication number Publication date
JP2007244066A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
Deng et al. PWM methods to handle time delay in digital control of a UPS inverter
JP4757663B2 (en) Voltage source current control inverter
US4906860A (en) Control device for active filter
TWI604697B (en) Phase-locked loop method for a utility parallel system
JP5742150B2 (en) Synchronous control device for AC / DC converter
JP4419882B2 (en) Zero cross detection circuit
JP2009303461A (en) Current control type power converter and output current waveform improving method of current control type power converter
JP4730435B2 (en) PWM inverter device
KR101026281B1 (en) Current controller of active power filter
JP7293744B2 (en) power converter
JP4779442B2 (en) Control device for power converter
Saysanasongkham et al. A highly reliable digital current control using an adaptive sampling method
JP7359228B2 (en) Power converter control system
JP3958255B2 (en) Phase synchronization detection circuit in generator
JP5061343B2 (en) Power conversion control method
KR940019050A (en) Inverter Control Unit
JP2009288070A (en) Device for measuring alternating current electric power
JP6430274B2 (en) Phase difference detection method
JP2008092665A (en) Controller of ac-ac direct converter
JP3597306B2 (en) Static power converter
JP2007089330A (en) Power conversion device and its adjustment method
JPH074066B2 (en) Control circuit for 3-phase inverter
Lubura et al. Experimental verification of single-phase PLL with novel two-phase generator for grid-connected converters
Solano et al. Experimental evaluation of DC bus voltage control in Shunt Active Power Filter with split capacitor using real time hardware in the loop simulation
JPS62130016A (en) Pulse width modulation control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees