JP2015047021A - Dead-time compensation apparatus of power conversion apparatus - Google Patents

Dead-time compensation apparatus of power conversion apparatus Download PDF

Info

Publication number
JP2015047021A
JP2015047021A JP2013177445A JP2013177445A JP2015047021A JP 2015047021 A JP2015047021 A JP 2015047021A JP 2013177445 A JP2013177445 A JP 2013177445A JP 2013177445 A JP2013177445 A JP 2013177445A JP 2015047021 A JP2015047021 A JP 2015047021A
Authority
JP
Japan
Prior art keywords
voltage
value
pwm
converter
dead time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013177445A
Other languages
Japanese (ja)
Other versions
JP6303334B2 (en
Inventor
昌司 滝口
Masashi Takiguchi
昌司 滝口
山本 康弘
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013177445A priority Critical patent/JP6303334B2/en
Publication of JP2015047021A publication Critical patent/JP2015047021A/en
Application granted granted Critical
Publication of JP6303334B2 publication Critical patent/JP6303334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To compensate an output voltage error caused by dead time or ON voltage drop in PWM modulation.SOLUTION: An output voltage of a PWM inverter or an input voltage of a PWM converter is detected by a voltage detection circuit. The voltage detection circuit using an A/D converter for performing ▵Σ modulation integrates bit data converted by the A/D converter, converts the integrated value into a digital value at timing synchronized with a PWM gate signal generating carrier and calculates a reference wave component of the detection voltage. The voltage detection circuit calculates a difference between the reference wave component and a voltage command of the PWM inverter (or the PWM converter) and outputs an addition value of the difference and the voltage command to a PWM modulation part.

Description

本発明は、電力変換装置のデットタイム補償装置に係わり、特に検出電圧を入力して△Σ変調を行うA/D変換器を用いて出力電圧誤差を補償するデットタイム補償装置に関するものである。   The present invention relates to a dead time compensator for a power converter, and more particularly to a dead time compensator for compensating an output voltage error by using an A / D converter that inputs a detected voltage and performs ΔΣ modulation.

IGBT等のスイッチング素子の制御により、直流電力を交流電力に変換するインバータでは、インバータの上下アームの短絡防止ためにデッドタイムが設けられる。このインバータの制御において、出力する電圧指令と実際に出力される電圧の間にはデッドタイムやスイッチング素子の電圧降下などにより誤差が発生する。この電圧誤差は出力電流波形に歪を生じさせ、モータを駆動した場合にはトルクリプルが生じる等、制御性能に悪影響を及ぼす。   In an inverter that converts DC power into AC power by controlling a switching element such as an IGBT, a dead time is provided to prevent a short circuit between the upper and lower arms of the inverter. In this inverter control, an error occurs between the output voltage command and the actually output voltage due to dead time, voltage drop of the switching element, and the like. This voltage error causes distortion in the output current waveform and adversely affects control performance such as torque ripple when the motor is driven.

この電圧誤差を補償(以下デッドタイム補償という)する手法は数多く提案されている。例えば、特許文献1のように、出力電流の極性に応じて方形波や台形波電圧を電圧指令に重畳する方式や、非特許文献のように、誤差電圧成分を外乱とし、外乱オブザーバを用いて誤差電圧を推定して電圧指令の補償を行う方式がある。   Many methods for compensating for this voltage error (hereinafter referred to as dead time compensation) have been proposed. For example, a method of superimposing a square wave or a trapezoidal wave voltage on a voltage command according to the polarity of the output current as in Patent Document 1, or an error voltage component as disturbance as in Non-Patent Document and using a disturbance observer There is a method for estimating the error voltage and compensating for the voltage command.

特開2001−145368JP2001-145368

伊東他、「ベクトル制御における外乱オブザーバを用いたインバータの出力電圧の誤差補償手法の解析」、電学論D、vol.128.No.8.pp.1005−1012(2008)               Ito et al., “Analysis of Error Compensation Method for Inverter Output Voltage Using Disturbance Observer in Vector Control”, Electron Theory D, vol. 128. No. 8. pp. 1005-1012 (2008)

図4は、特許文献1に記載されたインバータのデットタイム補償装置の回路図で、CTにより検出した電流を比較器と補償量演算器に入力する。比較器では電流の大小及び極性に応じて出力されるパルス状の信号と、補償量演算器は周波数設定器で設定された周波数に応じた補償量とを乗算した後、積分器を介して補償電圧とし、PWM電圧指令値に加算してPWMパルス演算器に出力するものである。   FIG. 4 is a circuit diagram of an inverter dead time compensator described in Patent Document 1, in which a current detected by CT is input to a comparator and a compensation amount calculator. The comparator multiplies the pulse signal output according to the magnitude and polarity of the current and the compensation amount calculator by the compensation amount according to the frequency set by the frequency setter, and then compensates via the integrator. The voltage is added to the PWM voltage command value and output to the PWM pulse calculator.

この特許文献1の方式では、電流の極性に応じて補償量の切替えを行っているが、電流の周波数が低い場合には電流の傾きが小さいため零付近になる時間が長くなり、極性判定が難しくなるため補償量の切替えが難しくなる。また、スイッチング素子のオン電圧降下は温度による変化があり、素子によるオン電圧降下のバラツキも大きいため、電圧誤差成分を除去することは難しくなっている。   In the method of Patent Document 1, the compensation amount is switched in accordance with the polarity of the current. However, when the current frequency is low, the slope of the current is small and the time near zero becomes long, and the polarity determination is performed. It becomes difficult to switch the compensation amount. Further, since the ON voltage drop of the switching element varies with temperature and the variation of the ON voltage drop due to the element is large, it is difficult to remove the voltage error component.

図5は非特許文献に記載された外乱オブザーバを用いた補償法のブロック図で、
外乱オブザーバでは、電圧指令と実際のモータ端子電圧の差を求めて外乱を推定する。推定した外乱は外乱補償電圧Vcomp(Vdcomp,Vqcomp)として電圧指令に加算することでデットタイム誤差電圧補償を行っている。この非特許文献の方式は、オブザーバにより電圧誤差を推定して補償を行うため電流の極性に応じて補償を行うため、特許文献1のように電流の極性に応じて切替える必要はなく、或る程度の電圧誤差分の変動にも対応できる。
FIG. 5 is a block diagram of a compensation method using a disturbance observer described in non-patent literature.
The disturbance observer estimates the disturbance by obtaining the difference between the voltage command and the actual motor terminal voltage. The estimated disturbance is added to the voltage command as a disturbance compensation voltage Vcomp (Vdcomp, Vqcomp) to compensate the dead time error voltage. In the method of this non-patent document, the voltage error is estimated by an observer and compensation is performed, so that compensation is performed according to the polarity of the current. It is possible to cope with fluctuations of about a voltage error.

しかし、電圧誤差を推定するオブザーバの演算は、電流制御周期よりも高速に演算する必要があるため高速な演算能力を備えた機能が必要となる。また、モータ定数を用いるので定数が未知のモータに適用することができなく、更に、モータ定数が大きく変動した場合には不安定になる可能性もある。   However, since the observer's calculation for estimating the voltage error needs to be calculated faster than the current control period, a function having high-speed calculation capability is required. In addition, since the motor constant is used, it cannot be applied to a motor whose constant is unknown, and may become unstable when the motor constant fluctuates greatly.

本発明が目的とするとこは、電流の切替えや高速で複雑な演算をすることなく、簡単にデッドタイム、オン電圧降下による出力電圧誤差を補償する電力変換装置のデットタイム補償装置を提供することにある。   An object of the present invention is to provide a dead time compensator for a power converter that can easily compensate for an output voltage error due to a dead time and an on-voltage drop without switching currents or performing complicated calculations at high speed. It is in.

本発明の請求項1は、電力変換装置のスイッチング素子をPWMゲート信号によってオン・オフ制御するものであって、PWM変調部でデッドタイムによる誤差電圧を補償するものにおいて、
前記電力変換装置の入力電圧、若しくは出力電圧を電圧検出回路にて検出し、この電圧検出回路に△Σ変調を行うA/D変換器を用い、このA/D変換器により変換されたビットデータを積算し、積算値をPWMゲート信号生成用キャリアに同期したタイミングでディジタル値に変換して電圧検出回路から基本波成分として出力すると共に、
前記電力変換装置の電圧指令と算出された基本波成分との差分を算出し、この差分と電圧指令の加算値を誤差電圧補償値として前記PWM変調部に出力することを特徴としたものである。
Claim 1 of the present invention is to turn on / off a switching element of a power conversion device by a PWM gate signal, and compensates an error voltage due to dead time in a PWM modulator.
Bit data converted by the A / D converter using an A / D converter that detects an input voltage or an output voltage of the power converter by a voltage detection circuit and performs ΔΣ modulation on the voltage detection circuit. And the integrated value is converted into a digital value at a timing synchronized with the carrier for generating the PWM gate signal and output as a fundamental wave component from the voltage detection circuit.
A difference between the voltage command of the power conversion device and the calculated fundamental wave component is calculated, and an addition value of the difference and the voltage command is output to the PWM modulation unit as an error voltage compensation value. .

本発明の請求項2は、前記電圧検出回路を、入力されたアナログの電圧信号を△Σモジュレータでクロック信号に基づいてビットデータに変換し、変換されたビットデータを積算する積算器と、
積算された積算値をキャリアに同期したタイミングで取り込んで積算値の変化量を算出する積算変化量算出部と、
前記積算器における積算値をカウントし、キャリアに同期したタイミングでカウント値を取り込んで積算回数を算出する積算回数算出部と、
前記積算値の変化量を前記積算回数で除算する除算部、
とで構成したことを特徴としたものである。
According to a second aspect of the present invention, the voltage detecting circuit converts the input analog voltage signal into bit data based on the clock signal by the ΔΣ modulator, and integrates the converted bit data;
An integrated change amount calculation unit that takes in the integrated integrated value at a timing synchronized with the carrier and calculates the change amount of the integrated value;
An integration number calculation unit that counts the integration value in the integrator and takes the count value at a timing synchronized with the carrier to calculate the integration number;
A division unit for dividing the amount of change of the integrated value by the number of integrations;
It is characterized by comprising.

本発明の請求項3は、前記電力変換装置の電圧指令をサンプラーによって遅延させ、遅延した電圧指令と前記基本波成分との差分を算出し、この差分と電圧指令の加算値を誤差電圧補償値として前記PWM変調部に出力することを特徴としたものである。   According to a third aspect of the present invention, the voltage command of the power converter is delayed by a sampler, a difference between the delayed voltage command and the fundamental wave component is calculated, and an added value of the difference and the voltage command is calculated as an error voltage compensation value. Is output to the PWM modulation section.

以上のとおり、本発明によれば、検出電圧を△Σ変調して基本波成分を算出し、この基本波成分と電圧指令との差分を電圧指令に加算してデッドタイム、オン電圧降下による出力電圧誤差の補償信号としたものである。これにより、従来のような電流の切り替えや高速で複雑な演算を用いることなく、簡単にデッドタイム、オン電圧降下による出力電圧誤差を補償することができる。   As described above, according to the present invention, the detection voltage is ΔΣ modulated to calculate the fundamental wave component, and the difference between the fundamental wave component and the voltage command is added to the voltage command to output the dead time and the ON voltage drop. This is a voltage error compensation signal. Thus, it is possible to easily compensate for an output voltage error due to a dead time and an on-voltage drop without using a current switching or a high-speed and complicated calculation as in the prior art.

本発明の実施形態を示すデットタイム補償装置の構成図。The block diagram of the dead time compensation apparatus which shows embodiment of this invention. 本発明の電圧検出部の構成図。The block diagram of the voltage detection part of this invention. 本発明の電圧検出回路の構成図。The block diagram of the voltage detection circuit of this invention. 従来のデットタイム補償装置の構成図。The block diagram of the conventional dead time compensation apparatus. 従来のデットタイム補償装置の構成図。The block diagram of the conventional dead time compensation apparatus. 実験結果の波形図で、(a)は本発明の場合、(b)は本発明のデッドタイム補償を除いた場合。In the waveform diagram of the experimental results, (a) is the case of the present invention, and (b) is the case of excluding the dead time compensation of the present invention.

図1は本発明の実施例を示すデットタイム補償装置の構成図で、1は直流電源部、2はスイッチング素子よりなるインバータの主回路部、3はPWM変調部で、入力された電圧指令、直流電圧vdcおよびキャリアcryに基づいてPWMゲート信号を生成して主回路部2に出力し、主回路部2において直流電圧をU,V,Wの三相交流電圧に変換する。10は本発明による電圧検出部、20は制御部で、この制御部20はデットタイム補償部分のみを表現している。   FIG. 1 is a configuration diagram of a dead time compensator showing an embodiment of the present invention, wherein 1 is a DC power supply unit, 2 is a main circuit unit of an inverter composed of switching elements, 3 is a PWM modulation unit, and an input voltage command, A PWM gate signal is generated based on the DC voltage vdc and the carrier cry, and is output to the main circuit unit 2, and the DC voltage is converted into a three-phase AC voltage of U, V, and W in the main circuit unit 2. 10 is a voltage detection unit according to the present invention, 20 is a control unit, and this control unit 20 represents only the dead time compensation portion.

図2は電圧検出部10の概略構成で、抵抗分圧回路11と電圧検出回路12を備えている。電圧検出部10は、インバータの出力電圧u,v,wを直接抵抗R1,R2で分圧した電圧vu,vv,vwをAD変換器13に入力する。AD変換器13で離散値となったデータは基本波成分となって制御部へ送られる。   FIG. 2 is a schematic configuration of the voltage detection unit 10 and includes a resistance voltage dividing circuit 11 and a voltage detection circuit 12. The voltage detection unit 10 inputs voltages vu, vv, vw obtained by directly dividing the inverter output voltages u, v, w by resistors R1, R2 to the AD converter 13. The data converted into discrete values by the AD converter 13 is sent to the control unit as a fundamental wave component.

図3は電圧検出回路12の構成図でU相分を代表として示している。AD変換器13には、△Σモジュレータ13aが用いられて△Σ変調される。そのために、△Σモジュレータ13aには絶縁回路13cを介して1ビット1-bitのクロック信号clk-vが印加され、入力されたアナログの電圧vuは△Σモジュレータ13aにおいて1ビットデータSm-vに変換され、絶縁回路13bを介して出力される。絶縁回路13b,13cは、1ビットデータであるので、フォトカプラ等によって容易に絶縁することができる。 FIG. 3 is a configuration diagram of the voltage detection circuit 12 and shows the U phase as a representative. The AD converter 13 is ΔΣ modulated by using a ΔΣ modulator 13a. For this purpose, the 1-bit 1 - bit clock signal clk - v is applied to the ΔΣ modulator 13a via the isolation circuit 13c, and the input analog voltage vu is converted to 1-bit data Sm - v in the ΔΣ modulator 13a. It is converted and output through the insulating circuit 13b. Since the insulation circuits 13b and 13c are 1-bit data, they can be easily insulated by a photocoupler or the like.

絶縁回路13bを経た絶縁後の1ビットデータSmは、FPGA等による積算部14でクロックclkに基づいて積算され、積算値ΣSmはキャリア発生部によるキャリアcry と同期した割込みタイミングintcで積算変化量算出部15に入力される。なお、図3における割込みタイミングintcはキャリア周期の1/2のタイミングとしている。   The 1-bit data Sm after insulation that has passed through the insulation circuit 13b is accumulated based on the clock clk by the accumulator 14 such as an FPGA, and the accumulated value ΣSm is calculated by the interrupt timing intc synchronized with the carrier cry by the carrier generator. Input to the unit 15. Note that the interrupt timing intc in FIG. 3 is a half of the carrier period.

積算変化量算出部15は、積分値の変化量演算部15aと積分値の変化量演算部15bより構成される。変化量演算部15aでは、現在の積算値ΣSm(n)と前回の積算値ΣSm(n-1)からその変化量、△V=ΣSm(n)−ΣSm(n-1)を演算する。
変化量演算部15bでは、今回の変化量△V(n)と前回の変化量△V(n-1) との和、△V(n)+△V(n-1)を求めて除算部18に出力する。この△V(n)+△V(n-1)は、キャリア1周期分の変化量に相当する。
The integrated change amount calculation unit 15 includes an integral value change amount calculation unit 15a and an integral value change amount calculation unit 15b. The change amount calculation unit 15a calculates the change amount, ΔV = ΣSm (n) −ΣSm (n−1), from the current integrated value ΣSm (n) and the previous integrated value ΣSm (n−1).
In the change amount calculation unit 15b, the sum of the current change amount ΔV (n) and the previous change amount ΔV (n-1), ΔV (n) + ΔV (n-1) is obtained and a division unit. 18 is output. This ΔV (n) + ΔV (n−1) corresponds to the amount of change for one carrier cycle.

一方、クロックclkはカウント部16に入力されてクロックがカウントされ、カウント値N(n)は割込みタイミングintcで積分回数算出部17に入力される。積分回数算出部17は、積分回数の変化量演算部17aと積分回数の変化量積算部17bより構成される。変化量演算部17aでは、現在のカウント値N(n)と前回のカウント値N(n-1)との積算回数の差、△N(n)=N(n)−N(n-1)を求める。   On the other hand, the clock clk is input to the counting unit 16 to count the clock, and the count value N (n) is input to the integration number calculating unit 17 at the interrupt timing intc. The integration number calculation unit 17 includes an integration number change amount calculation unit 17a and an integration number change amount integration unit 17b. In the change amount calculation unit 17a, the difference in the number of integrations between the current count value N (n) and the previous count value N (n-1), ΔN (n) = N (n) −N (n−1) Ask for.

変化量積算部17bでは、今回の積算回数△N(n)と前回の積算回数△N(n-1) との和、△N(n)+△N(n-1)を求めて除算部18に出力する。この△N(n)+△N(n-1)は、キャリア1周期分の変化量に相当する。
除算部18では、積算値の変化量△V(n)+△V(n-1)を積算回数△N(n)+△N(n-1)で除算することでPWM電圧の基本波成分を得る。
In the change amount integration unit 17b, a sum of the current integration number ΔN (n) and the previous integration number ΔN (n-1), ΔN (n) + ΔN (n-1) is obtained and a division unit. 18 is output. This ΔN (n) + ΔN (n−1) corresponds to the amount of change for one carrier cycle.
The division unit 18 divides the change amount ΔV (n) + ΔV (n−1) of the integrated value by the number of integrations ΔN (n) + ΔN (n−1) to thereby obtain the fundamental wave component of the PWM voltage. Get.

なお、図3では割込みタイミングintcをキャリア周期の1/2とした場合であるが、電圧検出値s-vu,s-vv,s-vwをデッドタイム補償に用いる場合には、電圧指令の更新周期と同じか、若しくはそれよりも早くすることが望ましい。 Although a case where the interrupt timing intc in Figures 3 and 1/2 of the carrier period, a voltage detection value s - vu, s - vv, s - in the case of using the dead time compensation is a vw, updating of the voltage command It is desirable to make it the same or faster than the cycle.

次に、図1を用いてデッドタイム補償について説明する。制御部20には電圧指令値v* -u,v* -v,v* -wが入力されており、サンプラー21を経て遅延された電圧指令値v* -u-z,v* -v-z,v* -w-zと、電圧検出部10による検出電圧の基本波成分s-vu,s-vv,s-vwとの差分をとり、デッドタイム補償量△v-u,△v-v,△v-wが算出される。このデッドタイム補償量を電圧指令値v* -u,v* -v,v* -wに加算した値がデッドタイム補償値としてゲート信号生成部に入力される。 Next, dead time compensation will be described with reference to FIG. Voltage command value to the control unit 20 v * - u, v * - v, v * - w is inputted, the voltage command value is delayed through the sampler 21 v * - u - z, v * - v - z, v * - w - z and, the fundamental wave component of the detected voltage by the voltage detection unit 10 s - vu, s - vv , s - take the difference between the vw, dead time compensation amount △ vu, △ v - v, △ v - w is calculated. The dead time compensation amount a voltage command value v * - u, v * - v, v * - value obtained by adding the w is inputted to the gate signal generation unit as the dead time compensation value.

ゲート信号生成部では、このデッドタイム補償された電圧指令値と検出された直流電圧vdcからインバータのスイッチング素子をオン・オフ制御するゲート信号が生成される。なお、電圧検出にはPWM出力期間や検出遅れが存在する。正確な電圧誤差成分を演算するためには、この時間遅れ分を補正する必要がある。そこで、制御部20に設けたサンプラー21により電圧指令を遅延させて、電圧検出タイミングと整合させている。   In the gate signal generation unit, a gate signal for on / off control of the switching element of the inverter is generated from the voltage command value compensated for the dead time and the detected DC voltage vdc. Note that there are PWM output periods and detection delays in voltage detection. In order to calculate an accurate voltage error component, it is necessary to correct this time delay. Therefore, the voltage command is delayed by the sampler 21 provided in the control unit 20 to match the voltage detection timing.

上記では、インバータの主回路部2を構成するスイッチング素子のオン・オフ制御の場合についての説明であるが、本発明では、電力変換装置において交流電力を直流電力に変換するPWMコンバータにも同様にして適用できる。PWMコンバータ適用時には、図1で示すインバータ出力電圧vn-u,vn-v,vn-wがコンバータ入力電圧となる。
また、実施例では、三相インバータについて説明しているが、単相若しくは多相のPWMインバータ、PWMコンバータにも適用できることは勿論である。
In the above description, the on / off control of the switching elements constituting the main circuit unit 2 of the inverter is described. However, in the present invention, the same applies to the PWM converter that converts AC power into DC power in the power converter. Can be applied. When the PWM converter is applied, the inverter output voltages vn - u, vn - v, vn - w shown in FIG. 1 become the converter input voltages.
In the embodiment, a three-phase inverter is described. However, it is needless to say that the present invention can be applied to a single-phase or multi-phase PWM inverter and a PWM converter.

図6は実験結果の波形図を示したもので、図6(a)は本発明の場合、図6(b)は図1においてデッドタイム補償量を電圧指令に加算していない場合の結果である。図で明らかなように、図6(b)においては電圧指令CH2と電圧検出値CH1との誤差は比較的大きくなっているのに対し、本発明を適用した図6(a)での電圧指令CH2と電圧検出値CH1との誤差は小さくなっている。また、CH6で示す出力電流は、図6(b)においては電流0A付近で歪が発生しているのに対し、図6(a)では、出力電流CH6の0A付近での歪も減少していることが分る。   6A and 6B show waveform diagrams of the experimental results. FIG. 6A shows the case of the present invention, and FIG. 6B shows the result when the dead time compensation amount is not added to the voltage command in FIG. is there. As apparent from FIG. 6, the error between the voltage command CH2 and the detected voltage value CH1 is relatively large in FIG. 6B, whereas the voltage command in FIG. 6A to which the present invention is applied. The error between CH2 and voltage detection value CH1 is small. The output current indicated by CH6 is distorted in the vicinity of 0A in FIG. 6B, whereas in FIG. 6A, the distortion of the output current CH6 in the vicinity of 0A is also reduced. You can see that

1… 直流電源部
2… 主回路部
3… PWM変調部
10… 電圧検出部
11… 抵抗分圧回路
12… 電圧検出回路
13… A/D変換器
14… 積算部
15… 積算変化量算出部
16… カウント部
17… 積算回数算出部
18… 除算部
20… 制御部
21… サンプラー
DESCRIPTION OF SYMBOLS 1 ... DC power supply part 2 ... Main circuit part 3 ... PWM modulation part 10 ... Voltage detection part 11 ... Resistance voltage dividing circuit 12 ... Voltage detection circuit 13 ... A / D converter 14 ... Integration part 15 ... Integrated change amount calculation part 16 ... Counting unit 17 ... Integration number calculation unit 18 ... Dividing unit 20 ... Control unit 21 ... Sampler

Claims (3)

電力変換装置のスイッチング素子をPWMゲート信号によってオン・オフ制御するものであって、PWM変調部でデッドタイムによる誤差電圧を補償するものにおいて、
前記電力変換装置の入力電圧、若しくは出力電圧を電圧検出回路にて検出し、この電圧検出回路に△Σ変調を行うA/D変換器を用い、このA/D変換器により変換されたビットデータを積算し、積算値をPWMゲート信号生成用キャリアに同期したタイミングでディジタル値に変換して電圧検出回路から基本波成分として出力すると共に、
前記電力変換装置の電圧指令と算出された基本波成分との差分を算出し、この差分と電圧指令の加算値を誤差電圧補償値として前記PWM変調部に出力することを特徴とした電力変換装置のデットタイム補償装置。
In which the switching element of the power conversion device is controlled to be turned on / off by the PWM gate signal, and the error voltage due to the dead time is compensated by the PWM modulator,
Bit data converted by the A / D converter using an A / D converter that detects an input voltage or an output voltage of the power converter by a voltage detection circuit and performs ΔΣ modulation on the voltage detection circuit. And the integrated value is converted into a digital value at a timing synchronized with the carrier for generating the PWM gate signal and output as a fundamental wave component from the voltage detection circuit.
A power converter that calculates a difference between the voltage command of the power converter and the calculated fundamental wave component, and outputs an added value of the difference and the voltage command as an error voltage compensation value to the PWM modulator. Dead time compensation device.
前記電圧検出回路は、
入力されたアナログの電圧信号を△Σモジュレータでクロック信号に基づいてビットデータに変換し、変換されたビットデータを積算する積算器と、
積算された積算値をキャリアに同期したタイミングで取り込んで積算値の変化量を算出する積算変化量算出部と、
前記積算器における積算値をカウントし、キャリアに同期したタイミングでカウント値を取り込んで積算回数を算出する積算回数算出部と、
前記積算値の変化量を前記積算回数で除算する除算部、
とで構成したことを特徴とした請求項1記載の電力変換装置のデットタイム補償装置。
The voltage detection circuit includes:
An integrator for converting the input analog voltage signal into bit data based on the clock signal by the ΔΣ modulator, and integrating the converted bit data;
An integrated change amount calculation unit that takes in the integrated integrated value at a timing synchronized with the carrier and calculates the change amount of the integrated value;
An integration number calculation unit that counts the integration value in the integrator and takes the count value at a timing synchronized with the carrier to calculate the integration number;
A division unit for dividing the amount of change of the integrated value by the number of integrations;
2. The dead time compensation device for a power conversion device according to claim 1, wherein
前記電力変換装置の電圧指令をサンプラーによって遅延させ、遅延した電圧指令と前記基本波成分との差分を算出し、この差分と電圧指令の加算値を誤差電圧補償値として前記PWM変調部に出力することを特徴とした請求項1又は2記載の電力変換装置のデットタイム補償装置。 The voltage command of the power converter is delayed by a sampler, a difference between the delayed voltage command and the fundamental wave component is calculated, and an added value of the difference and the voltage command is output to the PWM modulation unit as an error voltage compensation value. The dead time compensator for a power converter according to claim 1 or 2.
JP2013177445A 2013-08-29 2013-08-29 Power converter dead time compensator Expired - Fee Related JP6303334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177445A JP6303334B2 (en) 2013-08-29 2013-08-29 Power converter dead time compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177445A JP6303334B2 (en) 2013-08-29 2013-08-29 Power converter dead time compensator

Publications (2)

Publication Number Publication Date
JP2015047021A true JP2015047021A (en) 2015-03-12
JP6303334B2 JP6303334B2 (en) 2018-04-04

Family

ID=52672091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177445A Expired - Fee Related JP6303334B2 (en) 2013-08-29 2013-08-29 Power converter dead time compensator

Country Status (1)

Country Link
JP (1) JP6303334B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450036A (en) * 2015-12-19 2016-03-30 蒋小春 High-precision dead-time compensation method and device based on FPGAs
JP6376239B1 (en) * 2017-04-12 2018-08-22 株式会社明電舎 Control device for power conversion circuit
CN115967294A (en) * 2023-03-16 2023-04-14 哈尔滨工业大学 Digital closed-loop modulation method for inverter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196523A (en) * 1989-01-26 1990-08-03 Fujitsu Ltd Test circuit for delta sigma modulation type a/d converter
JPH08266064A (en) * 1995-03-23 1996-10-11 Okuma Mach Works Ltd Controller for inverter
JPH10164831A (en) * 1996-11-27 1998-06-19 Yutaka Denki Seisakusho:Kk Power conversion device
JP2000101523A (en) * 1998-09-22 2000-04-07 Yokogawa Electric Corp Sigma delta ad converter
JP2000244324A (en) * 1999-02-22 2000-09-08 Yokogawa Electric Corp Σδa/d converter
JP2006333063A (en) * 2005-05-26 2006-12-07 Oki Electric Ind Co Ltd Data transfer network
JP2008099362A (en) * 2006-10-06 2008-04-24 Canon Inc DeltaSigma MODULATION CIRCUIT AND SWITCHING POWER SUPPLY EQUIPPED WITH THE DeltaSigma MODULATION CIRCUIT
JP2008128897A (en) * 2006-11-22 2008-06-05 Denso Wave Inc Power supply device
US20090066384A1 (en) * 2007-09-07 2009-03-12 Renesas Technology Corp. Semiconductor integrated circuit, pwm signal output device, and power conversion control apparatus
US20100172161A1 (en) * 2009-01-07 2010-07-08 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in ac drives
EP2219040A1 (en) * 2001-06-08 2010-08-18 Eaton Electric Limited Combined toroid/shunt measuring device
US20110043393A1 (en) * 2009-08-21 2011-02-24 Denso Corporation Device for converting analog signal into digital values and correcting the values

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196523A (en) * 1989-01-26 1990-08-03 Fujitsu Ltd Test circuit for delta sigma modulation type a/d converter
JPH08266064A (en) * 1995-03-23 1996-10-11 Okuma Mach Works Ltd Controller for inverter
JPH10164831A (en) * 1996-11-27 1998-06-19 Yutaka Denki Seisakusho:Kk Power conversion device
JP2000101523A (en) * 1998-09-22 2000-04-07 Yokogawa Electric Corp Sigma delta ad converter
JP2000244324A (en) * 1999-02-22 2000-09-08 Yokogawa Electric Corp Σδa/d converter
EP2219040A1 (en) * 2001-06-08 2010-08-18 Eaton Electric Limited Combined toroid/shunt measuring device
JP2006333063A (en) * 2005-05-26 2006-12-07 Oki Electric Ind Co Ltd Data transfer network
JP2008099362A (en) * 2006-10-06 2008-04-24 Canon Inc DeltaSigma MODULATION CIRCUIT AND SWITCHING POWER SUPPLY EQUIPPED WITH THE DeltaSigma MODULATION CIRCUIT
JP2008128897A (en) * 2006-11-22 2008-06-05 Denso Wave Inc Power supply device
US20090066384A1 (en) * 2007-09-07 2009-03-12 Renesas Technology Corp. Semiconductor integrated circuit, pwm signal output device, and power conversion control apparatus
JP2009065516A (en) * 2007-09-07 2009-03-26 Renesas Technology Corp Semiconductor integrated circuit, pwm signal output unit, and power conversion control unit
US20100172161A1 (en) * 2009-01-07 2010-07-08 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in ac drives
US20110043393A1 (en) * 2009-08-21 2011-02-24 Denso Corporation Device for converting analog signal into digital values and correcting the values
JP2011044920A (en) * 2009-08-21 2011-03-03 Denso Corp A/d converting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450036A (en) * 2015-12-19 2016-03-30 蒋小春 High-precision dead-time compensation method and device based on FPGAs
CN105450036B (en) * 2015-12-19 2018-01-12 四川中大华瑞能源技术有限公司 Dead-zone compensation method and device based on FPGA
JP6376239B1 (en) * 2017-04-12 2018-08-22 株式会社明電舎 Control device for power conversion circuit
WO2018190076A1 (en) * 2017-04-12 2018-10-18 株式会社明電舎 Device for controlling power conversion circuit
JP2018182886A (en) * 2017-04-12 2018-11-15 株式会社明電舎 Controller of power conversion circuit
US10826411B2 (en) 2017-04-12 2020-11-03 Meidensha Corporation Device for controlling power conversion circuit
CN115967294A (en) * 2023-03-16 2023-04-14 哈尔滨工业大学 Digital closed-loop modulation method for inverter
CN115967294B (en) * 2023-03-16 2023-05-23 哈尔滨工业大学 Inverter digital closed-loop modulation method

Also Published As

Publication number Publication date
JP6303334B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Kwak et al. Switching strategy based on model predictive control of VSI to obtain high efficiency and balanced loss distribution
Chierchie et al. Dead-time distortion shaping
Kwak et al. Predictive current control methods with reduced current errors and ripples for single-phase voltage source inverters
JP5136384B2 (en) Output current detection method for series multiple inverters
US20140097821A1 (en) Control device for dc-dc converter and control method controlling the same
CN109245570B (en) PWM rectifier control method and device based on extended state observer
EP3104516B1 (en) Method and system for dead time compensation in a pwm controlled inverter
JP6303334B2 (en) Power converter dead time compensator
US10826411B2 (en) Device for controlling power conversion circuit
JP2013240133A (en) Polyphase power conversion circuit
Buso et al. A nonlinear wide-bandwidth digital current controller for DC–DC and DC–AC converters
Weerakoon et al. A novel dead-time compensation scheme for PWM VSI drives
JP6007511B2 (en) Power converter
Jarzebowicz Impact of low switching-to-fundamental frequency ratio on predictive current control of PMSM: A simulation study
KR20160059077A (en) Voltage compensaton apparatus for driving induction motor and voltage compensaton method usinig the same
JP3070606B1 (en) Power converter
Pikulin Subharmonic oscillations and chaos in DC-DC switching converters
CN113949249A (en) Electronic device comprising a switched output stage, corresponding circuit arrangement and method
JP4779442B2 (en) Control device for power converter
KR101944877B1 (en) Controller, controlling method, and digital dc-dc converter using the controller and the controlling method
KR20170015946A (en) Voltage compensaton apparatus for driving induction motor and voltage compensaton method usinig the same
Mouton et al. Predictive control vs. linear control for current control of a single-leg inverter
Yang et al. An improved model-free finite control set predictive power control for PWM rectifiers
JP2014509182A (en) Simplified control method for a three-phase AC voltage to DC voltage converter
KR20170137272A (en) Current Control Methods for Single-Phase Voltage Source Inverters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees