JP2008128897A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2008128897A
JP2008128897A JP2006315732A JP2006315732A JP2008128897A JP 2008128897 A JP2008128897 A JP 2008128897A JP 2006315732 A JP2006315732 A JP 2006315732A JP 2006315732 A JP2006315732 A JP 2006315732A JP 2008128897 A JP2008128897 A JP 2008128897A
Authority
JP
Japan
Prior art keywords
power supply
phase
voltage
power failure
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315732A
Other languages
Japanese (ja)
Other versions
JP4548407B2 (en
Inventor
Akifumi Enomoto
聡文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2006315732A priority Critical patent/JP4548407B2/en
Publication of JP2008128897A publication Critical patent/JP2008128897A/en
Application granted granted Critical
Publication of JP4548407B2 publication Critical patent/JP4548407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device capable of more rapidly detecting instant service interruption of AC power supply even when a capacitor is inserted between AC power supply lines on the input side of a direct current power supply circuit. <P>SOLUTION: An instant service interruption detecting circuit 5 monitors the gradients of the voltage waveforms of two phases (R phase and S phase) of a three-phase commercial AC power supply 2 and the potential difference between the two phases (R phase and S phase), and, when the all the gradients are under a threshold or the state that the potential difference is under a threshold continues for predetermined time or longer, detects the instant service interruption of the commercial AC power supply 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、三相交流電源より交流電源線を介して供給される交流電力を整流して直流化する直流電源回路と、前記交流電源線間に挿入されるコンデンサとを備えた電源装置に関する。   The present invention relates to a power supply device that includes a DC power supply circuit that rectifies AC power supplied from a three-phase AC power supply via an AC power supply line into a DC, and a capacitor that is inserted between the AC power supply lines.

商用交流電源より電力供給を受けている電気、電子機器においては、その電力供給が瞬間的に停止する、いわゆる瞬時停電が発生することを想定して、瞬時停電の発生を検出すると所定の処理を行うものがある。例えばマイコンを使用している機器においては、制御データが破壊されるのを防ぐためにデータを退避させるなどの処理を行う。特許文献1には、交流電源電圧を正方向側のみの波形に変換して監視し、この電圧がしきい値電圧を下回ると、運転状況を表示するLEDを消灯させて電力消費を抑え、マイコンの記憶内容を保持するための電力を維持するといった無停電装置が開示されている。このものによれば、入力される交流電源電圧が基準電圧値よりも低下した場合に瞬時停電の発生を検出するようにしている。
特開平10−080073号公報
In electrical and electronic equipment that is supplied with power from a commercial AC power supply, if the occurrence of a momentary power failure is detected, assuming that the power supply momentarily stops, that is, a momentary power failure occurs, a predetermined process is performed. There is something to do. For example, in a device using a microcomputer, processing such as saving data is performed in order to prevent destruction of control data. In Patent Document 1, the alternating current power supply voltage is converted into a waveform only on the positive direction side and monitored. When this voltage falls below the threshold voltage, the LED indicating the operation status is turned off to reduce power consumption, and the microcomputer An uninterruptible device is disclosed that maintains the power to hold the stored contents of. According to this, when the input AC power supply voltage falls below the reference voltage value, the occurrence of an instantaneous power failure is detected.
Japanese Patent Laid-Open No. 10-080073

しかしながら、入力側の交流電源線間には、電源線に重畳されるノイズを除去する目的でコンデンサを挿入する場合が多い。このため、瞬時停電が発生しても、交流電圧のレベルは、上記コンデンサに蓄積された電荷により直ちに低下することなく、しきい値電圧を下回るまでに比較的長い時間を要してしまう。従って、瞬時停電の検出が遅れてしまうという問題がある。   However, a capacitor is often inserted between the AC power supply lines on the input side for the purpose of removing noise superimposed on the power supply lines. For this reason, even if an instantaneous power failure occurs, the AC voltage level does not immediately decrease due to the electric charge accumulated in the capacitor, and it takes a relatively long time to fall below the threshold voltage. Therefore, there is a problem that detection of instantaneous power failure is delayed.

本発明は上記事情に鑑みてなされたものであり、その目的は、直流電源回路の入力側における交流電源線間にコンデンサが挿入されている場合でも、交流電源の瞬時停電をより早く検出できる電源装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power supply that can detect an instantaneous power failure of an AC power supply more quickly even when a capacitor is inserted between AC power supply lines on the input side of the DC power supply circuit. To provide an apparatus.

請求項1記載の電源装置によれば、三相交流電源のうち、何れか二相の電圧波形の傾きを監視し、これら電圧波形の傾きが双方共にしきい値未満となる状態が所定時間以上継続すると、交流電源に瞬時停電が発生したことを検出する。瞬時停電が発生すると、各相電圧は、各相間に挿入されたコンデンサの影響により緩やかに低下するが、このときの電圧波形の傾きは通常時に比べて小さくなる。瞬停検出手段は、このような電圧波形の傾きの変化に基づいて瞬時停電を検出するので、各相間にコンデンサが挿入されている場合でも瞬時停電を速やかに検出できる。   According to the power supply device of claim 1, the slope of any two-phase voltage waveform of the three-phase AC power supply is monitored, and the state in which both of the voltage waveform slopes are less than the threshold value is a predetermined time or more. If it continues, it detects that an instantaneous power failure occurred in the AC power supply. When an instantaneous power failure occurs, the voltage of each phase gradually decreases due to the influence of a capacitor inserted between the phases, but the slope of the voltage waveform at this time becomes smaller than in normal times. Since the instantaneous power failure detection means detects the instantaneous power failure based on such a change in the slope of the voltage waveform, the instantaneous power failure can be detected quickly even when a capacitor is inserted between the phases.

請求項2記載の電源装置によれば、前記二相間の電圧差も監視し、この電圧差がしきい値未満となる状態が所定時間以上継続する条件が成立した場合にも、瞬時停電が発生したことを検出する。瞬時停電が発生すれば、各相間の電圧差はほとんどなくなるので、瞬停検出手段は、この電圧差も監視して瞬時停電をより確実に検出することができる。   According to the power supply device of claim 2, the voltage difference between the two phases is also monitored, and an instantaneous power failure occurs even when the condition that the voltage difference is less than the threshold value continues for a predetermined time or more is satisfied. Detect that If an instantaneous power failure occurs, the voltage difference between the phases is almost eliminated, so that the instantaneous power failure detection means can also detect the instantaneous power failure more reliably by monitoring this voltage difference.

請求項3記載の電源装置によれば、請求項1および請求項2における所定時間を、交流電源周期の2周期以上に設定するので、ノイズ等の影響による一時的な電源変動に基づく誤検出を排除して、確実に瞬時停電を検出することができる。   According to the power supply device of the third aspect, the predetermined time in the first and second aspects is set to two or more of the AC power supply period, so that erroneous detection based on temporary power supply fluctuation due to the influence of noise or the like is performed. Eliminating it, it is possible to reliably detect an instantaneous power failure.

請求項4記載の電源装置によれば、前記二相の電圧レベルを所定周期毎に検出し、各相間における現在の検出値と過去の検出値との変化量を算出する。そして、カウント手段は、この変化量が何れもしきい値未満のときにカウントを行い、何れか一方がしきい値以上であればカウント値をリセットし、カウント値が予め設定された検出値に達すると瞬時停電を検出する。従って、電圧波形の傾き変化が小さくなった期間をカウント手段により積算し、その積算値に基づいて瞬時停電を検出することができる。   According to a fourth aspect of the present invention, the voltage level of the two phases is detected every predetermined period, and the amount of change between the current detection value and the past detection value between the phases is calculated. The counting means counts when the amount of change is less than the threshold value, and resets the count value if either one is greater than or equal to the threshold value, and the count value reaches a preset detection value. Then, an instantaneous power failure is detected. Therefore, the period during which the change in the slope of the voltage waveform is small can be integrated by the counting means, and an instantaneous power failure can be detected based on the integrated value.

請求項5記載の電源装置によれば、カウント手段は、同一の検出タイミングにおける前記二相間の電圧検出値の差を求め、その差がしきい値未満となる条件が成立した場合にもカウントを行い、この検出値の差がしきい値以上であればカウント値をリセットするので、電圧検出値の差が小さくなった場合も請求項4と同様にしてカウント手段により積算を行うことで、瞬時停電をより確実に検出することができる。   According to the power supply device of the fifth aspect, the counting means calculates a difference between the voltage detection values between the two phases at the same detection timing, and counts even when a condition that the difference is less than the threshold value is satisfied. If the difference between the detected values is equal to or greater than the threshold value, the count value is reset. Therefore, even when the difference between the detected voltage values is reduced, the integration is performed by the counting means in the same manner as in the fourth aspect. A power failure can be detected more reliably.

以下、本発明をロボットのアクチュエータに電源供給を行う電源装置に適用した場合の一実施例について図面を参照しながら説明する。
図1は、電源装置の電気的構成を示している。電源装置1は、例えば三相200Vの商用交流電源(三相交流電源に相当)2より供給される電力を整流および平滑して、負荷たる産業用ロボット3に供給するための直流電源回路4と、商用交流電源2における瞬時停電を検出するための瞬停検出回路(瞬停検出手段に相当)5とから構成されている。
Hereinafter, an embodiment in which the present invention is applied to a power supply apparatus that supplies power to an actuator of a robot will be described with reference to the drawings.
FIG. 1 shows an electrical configuration of the power supply apparatus. The power supply device 1 includes a DC power supply circuit 4 for rectifying and smoothing power supplied from, for example, a three-phase 200 V commercial AC power supply (corresponding to a three-phase AC power supply) 2 and supplying the rectified and smoothed power to the industrial robot 3 as a load. In addition, an instantaneous power failure detection circuit (corresponding to an instantaneous power failure detection means) 5 for detecting an instantaneous power failure in the commercial AC power source 2 is configured.

直流電源回路4は、全波整流回路6および平滑用コンデンサ7を有して構成されており、商用交流電源2のR,S,Tの各相出力は、開閉器8および交流電源線9r、9s、9tを介して全波整流回路6の入力側に接続されている。各交流電源線9r〜9t間には、それぞれノイズ除去用のコンデンサ10、11、12が接続されている。全波整流回路6より出力される直流電源は、直流電源線13a,13bを介してロボット3に供給されており、これら直流電源線13a,13b間には平滑用コンデンサ7が接続されている。なお、全波整流回路6は、6個の整流素子を三相ブリッジ形に接続してなる周知構成のものである。   The DC power supply circuit 4 includes a full-wave rectifier circuit 6 and a smoothing capacitor 7, and R, S, and T phase outputs of the commercial AC power supply 2 are connected to a switch 8 and an AC power supply line 9 r. It is connected to the input side of the full-wave rectifier circuit 6 through 9s and 9t. Noise removing capacitors 10, 11, and 12 are connected between the AC power supply lines 9r to 9t, respectively. The DC power output from the full-wave rectifier circuit 6 is supplied to the robot 3 via DC power lines 13a and 13b, and a smoothing capacitor 7 is connected between the DC power lines 13a and 13b. The full-wave rectifier circuit 6 has a known configuration in which six rectifier elements are connected in a three-phase bridge shape.

一方、瞬停検出回路5は、商用交流電源2の瞬時停電を検出する制御部(変化量算出手段およびカウント手段に相当)14と、入力された電圧のレベルを制御部14に入力可能なレベルに変換して出力するレベル変換回路15とから構成されている。レベル変換回路15には、交流電源線9r,9sよりR相およびS相の交流電圧が入力されており、レベル変換回路15は、入力された交流電圧をレベル変換した電圧信号Vr,Vsとして制御部14に出力するようになっている。   On the other hand, the instantaneous power failure detection circuit 5 includes a control unit (corresponding to a change amount calculation unit and a count unit) 14 that detects an instantaneous power failure of the commercial AC power supply 2 and a level at which the input voltage level can be input to the control unit 14. And a level conversion circuit 15 that outputs the converted signal. The level conversion circuit 15 is supplied with R-phase and S-phase AC voltages from the AC power supply lines 9r and 9s, and the level conversion circuit 15 controls the input AC voltage as voltage signals Vr and Vs obtained by level conversion. It outputs to the part 14.

制御部14は、CPU14a、A/D変換器14b、メモリ14cなどを有するマイクロコンピュータを主体として構成されており、詳細は後述するが、レベル変換回路15からの電圧信号Vr,Vsに基づいて商用交流電源2の瞬時停電を検出するようになっている。そして、瞬時停電を検出すると、ロボット3のアクチュエータを駆動制御するエンジンボード(図示せず)に対して瞬停検出信号Saを出力する。   The control unit 14 is mainly configured by a microcomputer having a CPU 14a, an A / D converter 14b, a memory 14c, and the like. Although details will be described later, the control unit 14 is commercialized based on voltage signals Vr and Vs from the level conversion circuit 15. An instantaneous power failure of the AC power supply 2 is detected. When an instantaneous power failure is detected, an instantaneous power failure detection signal Sa is output to an engine board (not shown) that drives and controls the actuator of the robot 3.

制御部14に入力された電圧信号Vr,Vsは、A/D変換器14bによりデジタル値に変換され、CPU14aは、この変換データを所定周期、本実施例では1ms毎にサンプリングしてメモリ14cに書き込むように構成されている。また、制御部14における基準(グランド)電位は、直流電源線13bと同電位であり、このため、電圧信号Vr,Vsの波形は、図2に示す半波整流されたような脈流波形となる。   The voltage signals Vr and Vs input to the control unit 14 are converted into digital values by the A / D converter 14b, and the CPU 14a samples the converted data in a predetermined cycle, every 1 ms in this embodiment, and stores it in the memory 14c. Configured to write. In addition, the reference (ground) potential in the control unit 14 is the same potential as that of the DC power supply line 13b. Therefore, the waveforms of the voltage signals Vr and Vs are pulsating current waveforms that are half-wave rectified as shown in FIG. Become.

なお、図2においては、電圧信号Vrの最新の変換データをnewVr,1ms前の変換データをold1Vr,2ms前のデータをold2Vr,3ms前のデータをold3Vrというように示している。また、電圧信号Vsについても、同様にnewVs,old1Vs,old2Vs,old3Vsと表記している。   In FIG. 2, the latest conversion data of the voltage signal Vr is indicated as newVr, the conversion data before 1 ms is indicated as old1Vr, the data before 2 ms is indicated as old2Vr, and the data before 3 ms is indicated as old3Vr. Similarly, the voltage signal Vs is expressed as newVs, old1Vs, old2Vs, old3Vs.

次に、上記構成の作用について図3も参照して説明する。
図3は、瞬時停電検出処理時におけるCPU14aの制御内容を示すフローチャートである。CPU14aは、ステップS1にて初期設定を行うとともに、Δフラグ(delta_flg)、比較フラグ(comp_flg)およびカウント値(cnt)をリセットする。ステップS2では、サンプリング間隔である1msの経過待ちをして、1ms経過するとステップS3以降へと進む。
Next, the operation of the above configuration will be described with reference to FIG.
FIG. 3 is a flowchart showing the control contents of the CPU 14a during the instantaneous power failure detection process. The CPU 14a performs initial setting in step S1, and resets the Δ flag (delta_flg), the comparison flag (comp_flg), and the count value (cnt). In step S2, the process waits for 1 ms, which is the sampling interval, and proceeds to step S3 and subsequent steps after 1 ms.

ステップS3では、下記式に基づいてその時点の電圧信号Vrの最新サンプリングデータnewVrと3ms前のデータold3Vrとの差分データΔVrを算出する。また電圧信号Vsについても、同様にΔVsを算出する。
ΔVr=newVr−old3Vr
ΔVs=newVs−old3Vs
上記ΔVrおよびΔVsは、交流電圧波形の傾きおよび交流電圧の変化量に相当する。
In step S3, difference data ΔVr between the latest sampling data newVr of voltage signal Vr at that time and data old3Vr 3 ms before is calculated based on the following equation. Similarly, ΔVs is calculated for the voltage signal Vs.
ΔVr = newVr-old3Vr
ΔVs = newVs-old3Vs
ΔVr and ΔVs correspond to the gradient of the AC voltage waveform and the amount of change in the AC voltage.

続いて、算出したΔVrとΔVsの値を確認し、それらが何れもしきい値Vth(詳細は後述するが、例えば400mV)以下の場合(ステップS4、S5の両方で「YES」)には、電圧信号Vr,Vsの上昇度合が何れも小さい状態を示しているのでステップS6へ進み、Δフラグをセットする(delta_flg=1)。そして、ΔVrおよびΔVsの値のうち、何れか一方がしきい値Vthより大きい場合(ステップS4、S5の何れかで「NO」)には、交流電源電圧の上昇度合が正常である状態を示しているのでステップS7に進み、Δフラグをリセットする(delta_flg=0)。   Subsequently, the calculated values of ΔVr and ΔVs are confirmed, and when both are equal to or lower than the threshold value Vth (details will be described later, for example, 400 mV) (“YES” in both steps S4 and S5), the voltage Since both of the rising degrees of the signals Vr and Vs indicate a small state, the process proceeds to step S6, and the Δ flag is set (delta_flg = 1). If either one of ΔVr and ΔVs is larger than the threshold value Vth (“NO” in any of steps S4 and S5), it indicates a state in which the degree of increase in the AC power supply voltage is normal. In step S7, the Δ flag is reset (delta_flg = 0).

ステップS8では、その時点における電圧データnewVrとnewVsとの差分Aを算出する。ステップS9では、算出した差分データAの値を確認してその値がしきい値Vth(例えば400mV)以下の場合(「YES」)には、商用交流電源2の二相間電位差が小さいと判断してステップS10に進み、比較フラグをセットする(comp_flg=1)。そして、差分データAの値がしきい値Vthより大きい場合(「NO」)には、商用交流電源2の二相間電位差は正常であると判断してステップS11に進み、比較フラグをリセットする(comp_flg=0)。   In step S8, a difference A between the voltage data newVr and newVs at that time is calculated. In step S9, the value of the calculated difference data A is confirmed, and when the value is equal to or lower than a threshold value Vth (for example, 400 mV) (“YES”), it is determined that the two-phase potential difference of the commercial AC power supply 2 is small. In step S10, the comparison flag is set (comp_flg = 1). If the value of the difference data A is greater than the threshold value Vth (“NO”), it is determined that the two-phase potential difference of the commercial AC power supply 2 is normal, the process proceeds to step S11, and the comparison flag is reset ( comp_flg = 0).

上記しきい値Vthは、交流電力の供給状態が正常である場合における、電圧信号Vr,Vsが上昇している間の変化量よりも小さく、且つ、エンジンボードがロボット3のアクチュエータをPWM制御する場合に電圧信号Vr,Vsに重畳されるノイズよりも大きい値に設定する必要がある。そこで、正常時におけるこれらの値を測定した結果、電圧信号上昇時(本実施例では3ms間とする)の変化量は、商用交流電源2の状態が207V/47Hz(最も電圧変化量が小さくなる条件)のときに約600mVとなり、電圧信号に重畳されるノイズは、商用交流電源2の状態が253V/63Hz(最もPWMノイズが大きくなる条件)のときに約325mVとなった。従って、本実施例においては、上記しきい値Vthを、これらの間の値である400mVに設定している。   The threshold value Vth is smaller than the amount of change while the voltage signals Vr and Vs are rising when the supply state of AC power is normal, and the engine board performs PWM control of the actuator of the robot 3. In this case, it is necessary to set a value larger than the noise superimposed on the voltage signals Vr and Vs. Therefore, as a result of measuring these values in the normal state, the amount of change when the voltage signal rises (in this embodiment, for 3 ms) is 207 V / 47 Hz in the state of the commercial AC power supply 2 (the voltage change amount is the smallest). Condition), the noise superimposed on the voltage signal was about 325 mV when the state of the commercial AC power supply 2 was 253 V / 63 Hz (a condition that maximizes the PWM noise). Therefore, in this embodiment, the threshold value Vth is set to 400 mV which is a value between them.

さて、ステップS12においてはΔフラグの状態を確認し、Δフラグがセットされている場合(「YES」)はステップS13に進み、カウント値をインクリメントする(cnt=cnt+1)。また、Δフラグがリセットされている場合(「NO」)はステップS14に進み、比較フラグの状態を確認する。そして、比較フラグがセットされている場合(「YES」)はステップS13に進む。また、比較フラグがリセットされている場合(「NO」)はステップS15に進み、カウント値をリセットする(cnt=0)。   In step S12, the state of the Δ flag is confirmed. If the Δ flag is set (“YES”), the process proceeds to step S13, and the count value is incremented (cnt = cnt + 1). If the Δ flag has been reset (“NO”), the process proceeds to step S14 to check the state of the comparison flag. If the comparison flag is set (“YES”), the process proceeds to step S13. If the comparison flag is reset ("NO"), the process proceeds to step S15, and the count value is reset (cnt = 0).

ステップS16では、カウント値を確認し、カウント値が瞬停検出値「45」以上(cnt≧45)である場合(「YES」)には、交流電源電圧の変化が異常である状態が45ms継続したことを示すので、エンジンボードに対して瞬停検出信号Saを出力し(ステップS17)処理を終了する。すると、エンジンボードは、例えばアクチュエータの駆動を停止するなどの異常処理を行う。一方、カウント値が「45」未満である場合(「NO」)には、ステップS2へ戻る。
なお、上記瞬停検出値は、商用交流電源2の周波数が47Hzであると想定した場合(最も周期が長くなる条件)、その2倍の周期(1/47Hz×2≒43ms)よりも大きな値に設定している。
In step S16, the count value is confirmed. If the count value is equal to or greater than the instantaneous power failure detection value “45” (cnt ≧ 45) (“YES”), the state where the change in the AC power supply voltage is abnormal continues for 45 ms. Therefore, the instantaneous power failure detection signal Sa is output to the engine board (step S17), and the process is terminated. Then, the engine board performs an abnormality process such as stopping the driving of the actuator, for example. On the other hand, when the count value is less than “45” (“NO”), the process returns to step S2.
When the frequency of the commercial AC power supply 2 is assumed to be 47 Hz (a condition in which the period is the longest), the instantaneous power failure detection value is a value larger than twice the period (1/47 Hz × 2≈43 ms). Is set.

以上説明した本実施例によれば、次のような効果が得られる。
瞬停検出回路5は、三相の商用交流電源2のうち、二相(R相、S相)の電圧波形の傾きを監視し、その傾きが何れもしきい値未満となる状態が所定時間以上継続すると、商用交流電源2の瞬時停電を検出するようにした。具体的には、CPU14aは、電圧信号Vr,Vsについて、電圧波形の傾きΔVr,ΔVsを算出し、ΔVr,ΔVsが何れもしきい値Vth未満のときにカウントを行い、何れか一方がしきい値Vth以上であればカウント値をリセットし、カウント値が予め設定した瞬時停電検出値(所定時間)に達すると瞬時停電を検出する。すなわち、瞬時停電が発生すると、各相電圧はノイズ除去用のコンデンサ10〜12の影響により緩やかに低下するが、このときの電圧波形の傾きは通常に比べて小さくなる。そこで、上記したように電圧波形の傾きの変化に基づいて瞬時停電を検出することで、各相間にコンデンサ10〜12が挿入されている場合であっても、瞬時停電を速やかに検出することができる。
According to the present embodiment described above, the following effects can be obtained.
The instantaneous power failure detection circuit 5 monitors the slope of the voltage waveform of the two phases (R phase and S phase) of the three-phase commercial AC power supply 2, and the state where both of the slopes are less than the threshold value is longer than a predetermined time. If it continues, the instantaneous power failure of the commercial AC power supply 2 was detected. Specifically, the CPU 14a calculates the slopes ΔVr and ΔVs of the voltage waveform for the voltage signals Vr and Vs, performs counting when both ΔVr and ΔVs are less than the threshold value Vth, and one of them is the threshold value. If it is Vth or more, the count value is reset, and when the count value reaches a preset instantaneous power failure detection value (predetermined time), an instantaneous power failure is detected. That is, when an instantaneous power failure occurs, the voltage of each phase gradually decreases due to the influence of the noise removing capacitors 10 to 12, but the slope of the voltage waveform at this time becomes smaller than usual. Therefore, by detecting the instantaneous power failure based on the change in the slope of the voltage waveform as described above, the instantaneous power failure can be detected quickly even when the capacitors 10 to 12 are inserted between the phases. it can.

また、瞬停検出回路5は、三相の商用交流電源2のうち、二相(R相、S相)間の電位差も監視し、その電位差がしきい値未満となる状態が所定時間以上継続する条件が成立した場合にも、商用交流電源2の瞬時停電を検出するようにした。具体的には、CPU14aは、電圧信号Vr,Vsについて、同一のサンプリングタイミングにおけるデータの差分Aも算出し、この差分Aがしきい値Vth未満のときにも上記カウントを行い、しきい値Vth以上であればカウント値をリセットする。すなわち、瞬時停電が発生すると、各相間の電位差はほとんどなくなるので、このように二相間の電位差も併せて監視することで瞬時停電をより確実に検出することができる。   The instantaneous power failure detection circuit 5 also monitors the potential difference between the two phases (R phase and S phase) of the three-phase commercial AC power supply 2, and the state where the potential difference is less than the threshold value continues for a predetermined time or more. Even when the condition to do so is satisfied, an instantaneous power failure of the commercial AC power supply 2 is detected. Specifically, the CPU 14a also calculates a data difference A at the same sampling timing for the voltage signals Vr and Vs, performs the above counting even when the difference A is less than the threshold value Vth, and sets the threshold value Vth. If it is above, the count value is reset. That is, when an instantaneous power failure occurs, there is almost no potential difference between the phases. Thus, by monitoring the potential difference between the two phases as well, the instantaneous power failure can be detected more reliably.

さらに、上記所定時間(瞬時停電検出値)を、商用交流電源2の電源周期の2周期以上となる45ms(カウント値「45」)に設定したので、ノイズ等の影響による一時的な電源変動に基づく誤検出を排除して、確実に瞬時停電を検出することができる。
そして、制御部14は、上記のように瞬時停電を検出した後、速やかにエンジンボードに対して瞬停検出信号Saを出力するので、エンジンボードにおいて、遅延なく瞬時停電後の各処理を実行することが可能となる。
Furthermore, since the predetermined time (instantaneous power failure detection value) is set to 45 ms (count value “45”) that is two cycles or more of the power cycle of the commercial AC power supply 2, temporary power fluctuation due to the influence of noise or the like is caused. It is possible to reliably detect an instantaneous power failure by eliminating the erroneous detection based on it.
And since the control part 14 outputs the instantaneous power failure detection signal Sa to an engine board immediately after detecting an instantaneous power failure as mentioned above, each process after an instantaneous power failure is performed in an engine board without a delay. It becomes possible.

なお、本発明は上記し且つ図面に記載した実施例に限定されるものではなく、次のような変形又は拡張が可能である。
電圧信号Vr,Vsのサンプリング間隔およびしきい値Vthは、商用交流電源2の電圧、周波数および重畳されるノイズなどの電源条件や、瞬時停電の検出精度に応じて適宜変更可能である。
The present invention is not limited to the embodiments described above and shown in the drawings, and the following modifications or expansions are possible.
The sampling intervals of the voltage signals Vr and Vs and the threshold value Vth can be appropriately changed according to the power supply conditions such as the voltage and frequency of the commercial AC power supply 2 and superimposed noise, and the detection accuracy of the instantaneous power failure.

瞬時停電を検出するための所定時間は、交流電源周期の2周期未満であってもよい。
同一の検出タイミングにおける電圧信号VrとVsとの差分Aに基づく瞬時停電状態の判断については、使用する電源の状態等に応じて設ければよい。
単相200V、もしくは100Vの交流電源を使用するものに適用してもよい。
電源装置1は、産業用ロボットに対して電源を供給するものに限らず、その他の電気、電子機器に対して電源を供給するものであってもよい。
The predetermined time for detecting the instantaneous power failure may be less than two AC power supply cycles.
The determination of the instantaneous power failure state based on the difference A between the voltage signals Vr and Vs at the same detection timing may be provided according to the state of the power source to be used.
You may apply to what uses the alternating current power supply of single phase 200V or 100V.
The power supply device 1 is not limited to supplying power to an industrial robot, but may be one that supplies power to other electric and electronic devices.

本発明の一実施例を示すもので、電源装置の電気的構成図1 shows an embodiment of the present invention, and is an electrical configuration diagram of a power supply device. 電圧信号Vr,Vsの波形を示す図The figure which shows the waveform of the voltage signals Vr and Vs 瞬時停電検出処理時における制御内容を示すフローチャートFlow chart showing control contents during instantaneous power failure detection processing

符号の説明Explanation of symbols

図面中、1は電源装置、2は商用交流電源(三相交流電源)、4は直流電源回路、5は瞬停検出回路(瞬停検出手段)、9r,9s,9tは交流電源線、10〜12はコンデンサ、14は制御部(変化量算出手段、カウント手段)を示す。   In the drawings, 1 is a power supply device, 2 is a commercial AC power supply (three-phase AC power supply), 4 is a DC power supply circuit, 5 is an instantaneous power failure detection circuit (instantaneous power failure detection means), 9r, 9s, and 9t are AC power wires. -12 is a capacitor | condenser, 14 shows a control part (change amount calculation means, count means).

Claims (5)

三相交流電源より交流電源線を介して供給される交流電力を整流して直流化する直流電源回路と、前記交流電源線間に挿入されるコンデンサとを備えた電源装置において、
前記三相のうち何れか二相について電圧波形の傾きを監視し、その傾きが双方共にしきい値未満となる状態が所定時間以上継続すると、前記交流電源の瞬時停電を検出する瞬停検出手段を備えることを特徴とする電源装置。
In a power supply device comprising a DC power supply circuit that rectifies AC power supplied from a three-phase AC power supply via an AC power supply line into a DC, and a capacitor inserted between the AC power supply lines,
An instantaneous power failure detection means for monitoring an instantaneous power failure of the AC power supply when monitoring a slope of a voltage waveform for any two phases of the three phases, and when both slopes are less than a threshold value for a predetermined time or longer. A power supply apparatus comprising:
前記瞬停検出手段は、前記二相間の電圧差も監視し、その電圧差がしきい値未満となる状態が前記所定時間以上継続する条件が成立した場合にも、前記交流電源の瞬時停電を検出することを特徴とする請求項1記載の電源装置。   The instantaneous power failure detection means also monitors the voltage difference between the two phases, and even if the condition that the voltage difference is less than a threshold value continues for the predetermined time or longer is satisfied, the AC power supply may be instantaneously interrupted. The power supply device according to claim 1, wherein the power supply device is detected. 前記所定時間を、前記交流電源周期の2周期以上に設定することを特徴とする請求項1または2記載の電源装置。   The power supply apparatus according to claim 1 or 2, wherein the predetermined time is set to two cycles or more of the AC power supply cycle. 前記瞬停検出手段は、前記各相の電圧レベルを所定周期毎に検出し、
前記各相毎に、現在の検出値と過去の検出値との変化量を算出する変化量算出手段と、
この変化量算出手段により算出された各相電圧の変化量が何れもしきい値未満のときにカウントを行い、何れか一方が前記しきい値以上であればカウント値をリセットするカウント手段とを備え、
前記カウント手段のカウント値が予め設定された検出値に達すると、前記瞬時停電を検出することを特徴とする請求項1ないし3の何れかに記載の電源装置。
The instantaneous power failure detection means detects the voltage level of each phase every predetermined period,
A change amount calculating means for calculating a change amount between the current detection value and the past detection value for each phase;
Counting means for counting when the change amount of each phase voltage calculated by the change amount calculation means is less than the threshold value, and resetting the count value when either one is equal to or greater than the threshold value. ,
The power supply device according to any one of claims 1 to 3, wherein the instantaneous power failure is detected when a count value of the counting means reaches a preset detection value.
前記カウント手段は、同一の検出タイミングにおける前記各相間の電圧検出値の差を求め、その差がしきい値未満となる条件が成立した場合にもカウントを行い、前記検出値の差が前記しきい値以上であればカウント値をリセットすることを特徴とする請求項4記載の電源装置。   The counting means obtains a difference in voltage detection values between the phases at the same detection timing, and counts even when a condition that the difference is less than a threshold is satisfied. 5. The power supply device according to claim 4, wherein the count value is reset if the threshold value is exceeded.
JP2006315732A 2006-11-22 2006-11-22 Power supply Expired - Fee Related JP4548407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315732A JP4548407B2 (en) 2006-11-22 2006-11-22 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315732A JP4548407B2 (en) 2006-11-22 2006-11-22 Power supply

Publications (2)

Publication Number Publication Date
JP2008128897A true JP2008128897A (en) 2008-06-05
JP4548407B2 JP4548407B2 (en) 2010-09-22

Family

ID=39554856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315732A Expired - Fee Related JP4548407B2 (en) 2006-11-22 2006-11-22 Power supply

Country Status (1)

Country Link
JP (1) JP4548407B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162617A (en) * 2009-01-13 2010-07-29 Denso Wave Inc Robot
CN103368497A (en) * 2012-04-05 2013-10-23 发那科株式会社 Motor drive device
JP2015047021A (en) * 2013-08-29 2015-03-12 株式会社明電舎 Dead-time compensation apparatus of power conversion apparatus
JP2017045127A (en) * 2015-08-24 2017-03-02 新電元工業株式会社 Control circuit and power supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101723047B1 (en) * 2015-06-22 2017-04-05 주식회사 유라코퍼레이션 Circuit and method for detecting power failure, and battery charging apparatus of electric vehicle having the same
CN106707019A (en) * 2017-01-15 2017-05-24 禾思凯尔智能科技(东莞)有限公司 Service robot electric quantity monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320227U (en) * 1986-07-21 1988-02-10
JPH05312845A (en) * 1992-05-14 1993-11-26 Hitachi Ltd Control circuit of electric apparatus
JPH1090314A (en) * 1996-09-13 1998-04-10 Fuji Electric Co Ltd Power failure detection method
JP2003061262A (en) * 2001-08-10 2003-02-28 Densei Lambda Kk Uninterruptible power supply and voltage failure detecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320227U (en) * 1986-07-21 1988-02-10
JPH05312845A (en) * 1992-05-14 1993-11-26 Hitachi Ltd Control circuit of electric apparatus
JPH1090314A (en) * 1996-09-13 1998-04-10 Fuji Electric Co Ltd Power failure detection method
JP2003061262A (en) * 2001-08-10 2003-02-28 Densei Lambda Kk Uninterruptible power supply and voltage failure detecting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162617A (en) * 2009-01-13 2010-07-29 Denso Wave Inc Robot
CN103368497A (en) * 2012-04-05 2013-10-23 发那科株式会社 Motor drive device
JP2013219875A (en) * 2012-04-05 2013-10-24 Fanuc Ltd Motor driving device having dc link low voltage alarm detection level variable function
DE102013103342A1 (en) 2012-04-05 2013-11-21 Fanuc Corporation MOTOR CONTROLLER WITH VARIOUS LOW VOLTAGE ALARM DETECTION LEVEL
US8736215B2 (en) 2012-04-05 2014-05-27 Fanuc Corporation Motor drive device having function of varying DC link low-voltage alarm detection level
CN103368497B (en) * 2012-04-05 2015-01-21 发那科株式会社 Motor drive device
DE102013103342B4 (en) * 2012-04-05 2015-06-11 Fanuc Corporation MOTOR CONTROLLER WITH VARIOUS LOW VOLTAGE ALARM DETECTION LEVEL
JP2015047021A (en) * 2013-08-29 2015-03-12 株式会社明電舎 Dead-time compensation apparatus of power conversion apparatus
JP2017045127A (en) * 2015-08-24 2017-03-02 新電元工業株式会社 Control circuit and power supply device

Also Published As

Publication number Publication date
JP4548407B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4548407B2 (en) Power supply
WO2016043099A1 (en) Charging device
JP5255747B2 (en) Phase loss detection circuit and electrical equipment
JP2011155803A (en) Motor driving apparatus having power failure detection function
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
US10215815B2 (en) Power supply monitoring device, electronic apparatus, and power supply monitoring method
JP2006254664A (en) Power conditioner
US9285410B2 (en) Control circuit, and power generation device having the same
JP2007129875A (en) Rush current prevention circuit
JP2008172910A (en) Power conversion device
JP2009115634A (en) Power supply system and current measurement method of power supply system
JP5660222B2 (en) Elevator control device
JP6344558B2 (en) Fault detection device for semiconductor power converter
JP5985126B1 (en) Converter device
JP2004023878A (en) Converter with power supply phase interruption detection circuit
JP2007181357A (en) Capacitor input type rectifier circuit with overcurrent detecting function, and inverter device using same
JP2005192353A (en) Power supply anomaly detector and power supply device using the same
JP2006033904A (en) Three-phase phase interruption detector and air conditioner using it
JP2005160214A (en) Power conversion apparatus
JP2007012578A (en) Heater disconnection detecting device
JP2003005872A (en) Operation processor
JP5790813B2 (en) AC voltage period and phase detection apparatus and method
JP3926634B2 (en) Power failure detection device
JP2002084678A (en) Instantaneous voltage drop remedying device
WO2017195370A1 (en) Electrical power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4548407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees