JPH1090314A - Power failure detection method - Google Patents
Power failure detection methodInfo
- Publication number
- JPH1090314A JPH1090314A JP8243331A JP24333196A JPH1090314A JP H1090314 A JPH1090314 A JP H1090314A JP 8243331 A JP8243331 A JP 8243331A JP 24333196 A JP24333196 A JP 24333196A JP H1090314 A JPH1090314 A JP H1090314A
- Authority
- JP
- Japan
- Prior art keywords
- power failure
- voltage
- phase
- data
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Current Or Voltage (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、UPSやSPSと
呼ばれる無停電電源装置において、商用電源電圧の瞬断
による停電(以下、瞬停という)や残留電圧が残るよう
な緩慢な停電を高速に検出する停電検出方法に関し、特
に、無停電電源装置の制御モードの切り替えや無瞬断で
の出力電圧の供給を行って安定動作を確保するための停
電検出方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible power supply called UPS or SPS, which is capable of reducing a power failure due to an instantaneous interruption of a commercial power supply voltage (hereinafter referred to as an instantaneous power failure) or a slow power failure in which a residual voltage remains. More particularly, the present invention relates to a power failure detection method for switching a control mode of an uninterruptible power supply and supplying an output voltage without instantaneous interruption to ensure stable operation.
【0002】[0002]
【従来の技術】図6は、従来の停電検出回路を示すブロ
ック図である。図において、11は停電を検出するべき
商用電源の三相電力系統に接続された三相全波整流回
路、12は全波整流波形からリプル分を除去するための
フィルタ、13はフィルタ12の出力と予め設定された
停電検出レベルとを比較して停電判定出力を得るコンパ
レータである。2. Description of the Related Art FIG. 6 is a block diagram showing a conventional power failure detection circuit. In the figure, reference numeral 11 denotes a three-phase full-wave rectifier circuit connected to a three-phase power system of a commercial power supply for detecting a power failure, 12 denotes a filter for removing a ripple component from a full-wave rectified waveform, and 13 denotes an output of the filter 12. And a preset power failure detection level to obtain a power failure determination output.
【0003】[0003]
【発明が解決しようとする課題】上記構成において、仮
に図7の時刻t1で瞬停が発生したとしても、フィルタ
12の時定数に起因して停電判定出力は時刻t2まで遅
れてしまう。また、一相のみの停電では、系統電圧を全
波整流しているため、電圧の低下を認識するのが遅れて
しまう等の問題があった。In the above configuration, even if a momentary power failure occurs at time t1 in FIG. 7, the power failure determination output is delayed until time t2 due to the time constant of the filter 12. In addition, in the case of a single-phase power failure, since the system voltage is full-wave rectified, there is a problem that it is delayed to recognize the voltage drop.
【0004】そこで本発明は、瞬停のような高速の停電
や残留電圧のある低速な停電を高速に検出でき、また、
一相のみの停電も確実に検出可能とした停電検出方法を
提供しようとするものである。Accordingly, the present invention can detect a high-speed power failure such as an instantaneous power failure or a low-speed power failure with a residual voltage at a high speed.
An object of the present invention is to provide a power failure detection method capable of reliably detecting a power failure of only one phase.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、交流電圧の1周期を隔てた
二つのサンプリング時点のデータの差を所定の停電判定
レベルと比較して停電を検出するものである。すなわ
ち、交流電圧の1周期前のあるサンプリング時点のデー
タと、現在の同一サンプリング時点のデータとの差が一
定の値を持つ場合には、停電発生と判定する。In order to solve the above-mentioned problem, the invention according to claim 1 compares a difference between data at two sampling points separated by one cycle of an AC voltage with a predetermined power failure judgment level. This is to detect a power failure. That is, when the difference between the data at a certain sampling point one cycle before the AC voltage and the data at the same sampling point at present has a constant value, it is determined that a power failure has occurred.
【0006】請求項2記載の発明は、三相の交流電圧を
各相、個別に絶対値演算し、各相の絶対値の加算値と所
定の停電判定レベルとを比較して停電を検出するもので
ある。ここで、停電判定レベルは、正常時における各相
絶対値の加算値の最低レベルよりも低く設定される。According to a second aspect of the present invention, the absolute value of each of the three-phase AC voltages is calculated individually for each phase, and the sum of the absolute values of each phase is compared with a predetermined power failure determination level to detect a power failure. Things. Here, the power failure determination level is set lower than the lowest level of the sum of the absolute values of each phase in the normal state.
【0007】請求項3記載の発明は、交流電圧の変化率
を演算し、この変化率と所定の停電判定レベルとを比較
して停電を検出するものである。なお、本発明におい
て、変化率の絶対値を演算して単一の停電判定レベルと
比較し、あるいは、停電判定レベルを正負両側に設定し
て変化率と比較しても良い。According to a third aspect of the present invention, a power failure is detected by calculating a rate of change of the AC voltage and comparing the rate of change with a predetermined power failure determination level. In the present invention, the absolute value of the change rate may be calculated and compared with a single power failure determination level, or the power failure determination level may be set on both positive and negative sides and compared with the change rate.
【0008】請求項4記載の発明は、交流電圧の絶対値
とこの交流電圧の変化率の絶対値とを演算し、両絶対値
のレベルを合わせて加算すると共に、この加算値と所定
の停電判定レベルとを比較して停電を検出するものであ
る。本発明において、上記加算値はリプルのない直流値
となり、この直流値とそれより小さい停電判定レベルと
の比較によって停電を検出することができる。According to a fourth aspect of the present invention, the absolute value of the AC voltage and the absolute value of the rate of change of the AC voltage are calculated, the levels of the absolute values are added together, and the added value is added to a predetermined power failure. The power failure is detected by comparing with a determination level. In the present invention, the added value is a DC value without ripple, and a power failure can be detected by comparing this DC value with a smaller power failure determination level.
【0009】[0009]
【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、図1は請求項1〜4に記載した各
発明の実施形態に用いられる停電検出回路のブロック図
である。図において、21は商用電源である三相電力系
統の各相電圧を検出する電圧検出器、22は検出された
アナログ信号としての電圧をディジタル信号に変換する
A/D変換器、23はA/D変換器22の出力信号を一
定周期でサンプリングして種々の演算処理や停電判定処
理を実行するプロセッサ、24はプロセッサ23による
演算結果が格納されるメモリである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 1 is a block diagram of a power failure detection circuit used in each embodiment of the present invention. In the figure, reference numeral 21 denotes a voltage detector which detects each phase voltage of a three-phase power system which is a commercial power supply, 22 denotes an A / D converter which converts a detected analog signal voltage into a digital signal, and 23 denotes an A / D converter. A processor that samples the output signal of the D converter 22 at a constant cycle and executes various arithmetic processing and power failure determination processing. A memory 24 stores the arithmetic result of the processor 23.
【0010】図2は、請求項1に記載した発明の実施形
態を示す波形図である。この実施形態では、前記電圧検
出器21により検出した一相分の電圧(例えばR相電
圧)をA/D変換器22によりディジタル信号に変換
し、電圧に同期した一定の電気角(例えば30°)でサ
ンプリングしてそのデータをメモり24に逐次、記憶し
ておく。FIG. 2 is a waveform diagram showing an embodiment of the present invention. In this embodiment, the voltage for one phase (for example, R-phase voltage) detected by the voltage detector 21 is converted into a digital signal by the A / D converter 22, and a constant electrical angle synchronized with the voltage (for example, 30 °) ), And the data is sequentially stored in the memory 24.
【0011】そして、プロセッサ23は、現サンプリン
グ時点のデータ(図2におけるVkとする)と、1周期
前の同一サンプリング時点のデータ(Vk-1とする)と
を読み出し、両者の偏差ΔV(=Vk-1−Vk)を演算す
る。仮に、停電がなく電圧波形が正常であればΔV=0
となり、この1周期の間に停電が発生していればΔVは
ある値を持つから、適宜な停電判定レベルを予め設定し
ておいてΔVと比較することにより、停電の有無を検出
することができる。ここで、停電判定レベルを小さくす
れば、検出感度の向上が可能である。The processor 23 reads out the data at the current sampling point (V k in FIG. 2) and the data at the same sampling point one cycle before (V k−1 ), and calculates the deviation ΔV between the two. (= V k−1 −V k ). If there is no power failure and the voltage waveform is normal, ΔV = 0
If a power failure occurs during this one cycle, ΔV has a certain value. Therefore, it is possible to detect the presence or absence of a power failure by setting an appropriate power failure determination level in advance and comparing it with ΔV. it can. Here, if the power failure determination level is reduced, the detection sensitivity can be improved.
【0012】なお、図2における時間軸では、便宜上、
電圧の各周期における同一サンプリング時点を示すため
に、時刻t1,t2,t3,……を繰り返し用いてい
る。この実施形態において、停電検出速度を最高にする
ためには、上述のごとく1周期前のデータVk-1を用い
ればよいが、検出速度の点で差し支えなければ2周期
前、3周期前のデータを用いても良い。In the time axis of FIG. 2, for convenience,
The times t1, t2, t3,... Are repeatedly used to indicate the same sampling point in each voltage cycle. In this embodiment, in order to maximize the power failure detection speed, the data V k−1 one cycle before may be used as described above. Data may be used.
【0013】本実施形態によれば、演算結果をフィルタ
処理しないため商用電源電圧の瞬停を高速に検出するこ
とができ、無停電電源装置における制御モードの切り替
え等を迅速に行うことが可能になる。また、一相のみの
停電も瞬時に検出することができる。According to this embodiment, since the operation result is not filtered, an instantaneous interruption of the commercial power supply voltage can be detected at a high speed, and the switching of the control mode in the uninterruptible power supply can be performed quickly. Become. Further, a power failure of only one phase can be detected instantaneously.
【0014】次に、請求項2に記載した発明の実施形態
を説明する。この実施形態では、電圧検出器21により
検出した三相の各相電圧を個別に絶対値演算し、A/D
変換器22を介してプロセッサ23によりディジタル信
号として三相加算する。Next, an embodiment of the present invention will be described. In this embodiment, the absolute values of the three-phase voltages detected by the voltage detector 21 are individually calculated, and the A / D
The three-phase addition is performed as a digital signal by the processor 23 via the converter 22.
【0015】図3は、R,S,T各相の絶対値及び三相
加算値を示す波形図である。停電判定レベルは、三相加
算値のリプル分の最も低い部分(最低レベル)を基準と
してそれよりも低く設定しておき、三相加算値の最低レ
ベルがこの停電判定レベルを下回ったか否かによって停
電を判定する。FIG. 3 is a waveform diagram showing the absolute values of the R, S, and T phases and the three-phase addition values. The power failure determination level is set lower than the lowest part (lowest level) of the ripple of the three-phase addition value, and is determined depending on whether the lowest level of the three-phase addition value is lower than the power failure determination level. Determine the power outage.
【0016】この実施形態においても、演算結果をフィ
ルタ処理しないため高速に停電を検出することができ
る。また、三相各相の絶対値の加算結果を停電判定に用
いるので、一相のみが停電した場合にも確実にこれを検
出することが可能である。Also in this embodiment, a power failure can be detected at a high speed because the calculation result is not filtered. Further, since the addition result of the absolute values of the three phases is used for the power failure determination, it is possible to reliably detect the power failure even when only one phase has failed.
【0017】次いで、請求項3に記載した発明の実施形
態を説明する。この実施形態では、ある相(例えばR
相)の電圧を電圧検出器21により検出し、これをA/
D変換器22によりディジタル信号に変換した後、プロ
セッサ23により電圧変化率を演算する。Next, an embodiment of the invention described in claim 3 will be described. In this embodiment, certain phases (eg, R
Phase) is detected by the voltage detector 21 and this is detected as A /
After the digital signal is converted by the D converter 22, the voltage change rate is calculated by the processor 23.
【0018】図4に示すように、R相電圧の電圧変化率
はR相電圧波形よりも90°位相が進んだ波形となる。
いま、図4の時刻t1で停電が発生したとすると、負側
に増加した電圧変化率が停電判定レベルを超えるため、
両者の比較によって停電を検出することができる。な
お、図示されていないが、電圧変化率の絶対値を演算
し、この絶対値を単一の停電判定レベルと比較しても良
い。あるいは、図4の方法で停電判定レベルを電圧変化
率の正負両側に設定しておいてもよい。この実施形態で
も、瞬停や一相のみの停電を高速かつ確実に検出可能で
ある。As shown in FIG. 4, the voltage change rate of the R-phase voltage is a waveform whose phase is advanced by 90 ° from the R-phase voltage waveform.
Now, if a power failure occurs at time t1 in FIG. 4, the voltage change rate that has increased to the negative side exceeds the power failure determination level.
A power outage can be detected by comparing the two. Although not shown, the absolute value of the voltage change rate may be calculated, and this absolute value may be compared with a single power failure determination level. Alternatively, the power failure determination level may be set on both the positive and negative sides of the voltage change rate by the method of FIG. Also in this embodiment, a momentary power failure or a power failure of only one phase can be detected quickly and reliably.
【0019】最後に、請求項4に記載した発明の実施形
態を説明する。この実施形態では、まず請求項3の発明
の実施形態と同様にある相(例えばR相)の電圧を電圧
検出器21により検出し、これをA/D変換器22によ
りディジタル信号に変換した後、プロセッサ23により
電圧変化率を演算する。Finally, an embodiment of the present invention will be described. In this embodiment, first, a voltage of a certain phase (for example, R phase) is detected by a voltage detector 21 and converted to a digital signal by an A / D converter 22 in the same manner as in the third embodiment of the present invention. And the processor 23 calculates the voltage change rate.
【0020】その後、プロセッサ23によりR相電圧の
絶対値を演算すると共に、電圧変化率の絶対値を演算
し、これに所定のゲインを掛けて図5のように平常時の
R相電圧の絶対値とレベルを合わせたうえ、両者を加算
する。この加算結果は、リプルの少ない直流値となる。
この直流値とそのレベル以下に設定された停電判定レベ
ルとを比較することで、停電を検出する。すなわち、停
電発生後は上述した直流値が低下するので、直流値が停
電判定レベルを下回ったことから停電の判定が可能にな
る。Thereafter, the processor 23 calculates the absolute value of the R-phase voltage, calculates the absolute value of the voltage change rate, and multiplies the absolute value by a predetermined gain, as shown in FIG. After matching the value and level, add both. The result of this addition is a DC value with little ripple.
The power failure is detected by comparing the DC value with a power failure determination level set to a level lower than the DC value. That is, since the above-described DC value decreases after the occurrence of the power failure, the power failure can be determined because the DC value has fallen below the power failure determination level.
【0021】本実施形態もフィルタ処理を必要としない
ので、高速に停電を検出できると共に、一相のみの停電
も確実に検出することができる。また、残留電圧があっ
て比較的緩慢に電圧が低下する低速の停電も高速に検出
することができる。Since the present embodiment does not require any filter processing, a power failure can be detected at high speed, and a power failure of only one phase can be reliably detected. Also, a low-speed power failure in which the voltage drops relatively slowly due to the residual voltage can be detected at a high speed.
【0022】なお、本発明は無停電電源装置向けのみな
らず、交流電圧全般の停電検出に適用することができ
る。The present invention can be applied not only to an uninterruptible power supply, but also to power failure detection of AC voltage in general.
【0023】[0023]
【発明の効果】以上のように本発明によれば、交流電圧
の1周期を隔てた同一サンプリング時点のデータの差、
交流電圧の絶対値の三相加算値、電圧変化率、または交
流電圧の絶対値と電圧変化率の絶対値との加算値を所定
の停電判定レベルと比較することにより、瞬停や残留電
圧のある停電を高速に検出することができ、一相のみの
停電も確実に検出することができる。これにより、無停
電電源装置における商用電源停電時の制御モードの切り
替えを迅速に行うことができ、信頼性の高い安定した電
源供給が可能になる。As described above, according to the present invention, the difference between the data at the same sampling point separated by one cycle of the AC voltage,
By comparing the three-phase addition value of the absolute value of the AC voltage, the voltage change rate, or the addition value of the absolute value of the AC voltage and the absolute value of the voltage change rate with a predetermined power failure determination level, the instantaneous power failure or residual voltage A certain power failure can be detected at high speed, and a power failure of only one phase can be reliably detected. As a result, the control mode of the uninterruptible power supply at the time of commercial power outage can be quickly switched, and stable and reliable power supply can be achieved.
【図1】本発明の実施形態に用いられる装置構成を示す
ブロック図である。FIG. 1 is a block diagram illustrating a device configuration used in an embodiment of the present invention.
【図2】請求項1に記載した発明の実施形態を説明する
ための波形図である。FIG. 2 is a waveform chart for explaining the embodiment of the invention described in claim 1;
【図3】請求項2に記載した発明の実施形態を説明する
ための波形図である。FIG. 3 is a waveform chart for explaining the embodiment of the invention described in claim 2;
【図4】請求項3に記載した発明の実施形態を説明する
ための波形図である。FIG. 4 is a waveform chart for explaining the embodiment of the invention described in claim 3;
【図5】請求項4に記載した発明の実施形態を説明する
ための波形図である。FIG. 5 is a waveform chart for explaining the embodiment of the invention described in claim 4;
【図6】従来の停電検出回路を示すブロック図である。FIG. 6 is a block diagram showing a conventional power failure detection circuit.
【図7】従来の停電検出方法を示す波形図である。FIG. 7 is a waveform chart showing a conventional power failure detection method.
21 電圧検出器 22 A/D変換器 23 プロセッサ 24 メモリ Reference Signs List 21 voltage detector 22 A / D converter 23 processor 24 memory
Claims (4)
リング時点のデータの差を停電判定レベルと比較して停
電を検出することを特徴とする停電検出方法。1. A power failure detection method, wherein a power failure is detected by comparing a difference between data at two sampling points separated by one cycle of an AC voltage with a power failure determination level.
算し、各相の絶対値の加算値と停電判定レベルとを比較
して停電を検出することを特徴とする停電検出方法。2. A power failure detection method comprising: calculating an absolute value of a three-phase AC voltage for each phase individually; and comparing the sum of the absolute values of each phase with a power failure determination level to detect a power failure. .
と停電判定レベルとを比較して停電を検出することを特
徴とする停電検出方法。3. A power failure detection method comprising calculating a rate of change of an AC voltage and comparing the rate of change with a power failure determination level to detect a power failure.
率の絶対値とを演算し、両絶対値のレベルを合わせて加
算すると共に、この加算値と停電判定レベルとを比較し
て停電を検出することを特徴とする停電検出方法。4. The power failure is calculated by calculating the absolute value of the AC voltage and the absolute value of the rate of change of the AC voltage, adding the levels of both absolute values together, and comparing the added value with the power failure determination level. Detecting a power failure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8243331A JPH1090314A (en) | 1996-09-13 | 1996-09-13 | Power failure detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8243331A JPH1090314A (en) | 1996-09-13 | 1996-09-13 | Power failure detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1090314A true JPH1090314A (en) | 1998-04-10 |
Family
ID=17102242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8243331A Withdrawn JPH1090314A (en) | 1996-09-13 | 1996-09-13 | Power failure detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1090314A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001169554A (en) * | 1999-12-06 | 2001-06-22 | Okuma Corp | Power converter |
KR100333305B1 (en) * | 2000-03-27 | 2002-04-25 | 김철환 | Method for detecting voltage sag by using wavelet transform |
JP2008128897A (en) * | 2006-11-22 | 2008-06-05 | Denso Wave Inc | Power supply device |
CN102854369A (en) * | 2012-09-28 | 2013-01-02 | 深圳市华力特电气股份有限公司 | Voltage transient detection method, device and processor |
JP2015171253A (en) * | 2014-03-07 | 2015-09-28 | オムロン株式会社 | Controller, power converter, power supply system, and program |
JP2017138313A (en) * | 2016-02-03 | 2017-08-10 | 富士電機株式会社 | Voltage abnormality detection device, program, and voltage abnormality detection method |
US10481184B2 (en) | 2015-08-04 | 2019-11-19 | Sumitomo Electric Industries, Ltd. | Input-voltage-abnormality detection method and power source device |
-
1996
- 1996-09-13 JP JP8243331A patent/JPH1090314A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001169554A (en) * | 1999-12-06 | 2001-06-22 | Okuma Corp | Power converter |
KR100333305B1 (en) * | 2000-03-27 | 2002-04-25 | 김철환 | Method for detecting voltage sag by using wavelet transform |
JP2008128897A (en) * | 2006-11-22 | 2008-06-05 | Denso Wave Inc | Power supply device |
JP4548407B2 (en) * | 2006-11-22 | 2010-09-22 | 株式会社デンソーウェーブ | Power supply |
CN102854369A (en) * | 2012-09-28 | 2013-01-02 | 深圳市华力特电气股份有限公司 | Voltage transient detection method, device and processor |
JP2015171253A (en) * | 2014-03-07 | 2015-09-28 | オムロン株式会社 | Controller, power converter, power supply system, and program |
US10481184B2 (en) | 2015-08-04 | 2019-11-19 | Sumitomo Electric Industries, Ltd. | Input-voltage-abnormality detection method and power source device |
JP2017138313A (en) * | 2016-02-03 | 2017-08-10 | 富士電機株式会社 | Voltage abnormality detection device, program, and voltage abnormality detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4641042A (en) | Power supply system and a control method thereof | |
US10418851B2 (en) | Uninterruptible power supply device | |
EP0822651B1 (en) | A bemf zero-crossing detection system of a multiple-phase motor | |
KR101806595B1 (en) | Apparatus for controlling inverter | |
JPH1090314A (en) | Power failure detection method | |
JPH09247952A (en) | Uninterrupted operation method and uninterrupted power supply apparatus | |
JPH02231922A (en) | Inrush current prevention system for motor driver upon recovery from instantaneous power interruption | |
JP2004187435A (en) | Negative phase/open phase detection device for three-phase four-wire ac power supply | |
JPH05297030A (en) | Detection method of voltage drop | |
JP2922575B2 (en) | DC current controller for rectifier | |
JP2000193686A (en) | Voltage detection method detecting abnormality of ac voltage | |
JP3370768B2 (en) | Continuous monitoring system for AC power system | |
JPH04262272A (en) | Judging device for input state of three phase | |
JPH1014113A (en) | Operation of system-linked inverter | |
US20230400489A1 (en) | Inverter and method for detecting insulation impedance of inverter | |
JP2000014041A (en) | Power converter | |
JPH07184316A (en) | Open phase detecting circuit | |
JP2000116186A (en) | Ac servomotor controller and phase interruption detecting circuit | |
KR100319137B1 (en) | Method and apparatus for speed control of a brushless DC motor | |
JP2003304634A (en) | Power converter | |
JP2003116223A (en) | Offset adjustment method for high-frequency link type inverter | |
JPH0223032A (en) | Parallel operation control system | |
JP2000253673A (en) | Inverter apparatus | |
JP2733450B2 (en) | Power failure detection device | |
JPH04197005A (en) | Switcher at the time of abnormal synchronous position signal of linear motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031202 |