JP4753631B2 - Automatic water level management method in the work room in the pneumatic caisson method. - Google Patents

Automatic water level management method in the work room in the pneumatic caisson method. Download PDF

Info

Publication number
JP4753631B2
JP4753631B2 JP2005172561A JP2005172561A JP4753631B2 JP 4753631 B2 JP4753631 B2 JP 4753631B2 JP 2005172561 A JP2005172561 A JP 2005172561A JP 2005172561 A JP2005172561 A JP 2005172561A JP 4753631 B2 JP4753631 B2 JP 4753631B2
Authority
JP
Japan
Prior art keywords
water level
caisson
pressure
air
subsidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005172561A
Other languages
Japanese (ja)
Other versions
JP2006348482A (en
Inventor
純一郎 竹内
隆幸 佐宗
俊宏 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Shiraishi Corp
Original Assignee
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Shiraishi Corp filed Critical Oriental Shiraishi Corp
Priority to JP2005172561A priority Critical patent/JP4753631B2/en
Publication of JP2006348482A publication Critical patent/JP2006348482A/en
Application granted granted Critical
Publication of JP4753631B2 publication Critical patent/JP4753631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、建設分野におけるニューマチックケーソン工法(以下、ケーソン工法と略記する)における作業室内自動水位調整システム及びその管理方法、並びにそのプログラムと記録媒体に関する。   The present invention relates to a work room automatic water level adjustment system and a management method thereof in a pneumatic caisson method (hereinafter abbreviated as caisson method) in the construction field, a program thereof, and a recording medium.

従来のケーソン工法において、作業室内の作業機械や作業機器類等を無人遠隔操作で操作し、人間が作業室内に入室することなく、地上の遠隔操作室にて点検作業を行うものが知られている(特許文献1参照)。   In the conventional caisson method, it is known that the work machine or work equipment in the work room is operated by unattended remote operation, and the inspection work is performed in the remote control room on the ground without human being entering the work room. (See Patent Document 1).

そして、作業室内には、通常、地下水圧に相当する空気圧となるように調整された圧縮空気が送り込まれ、作業室内における地盤の掘削に伴うケーソンの沈下に応じて、作業室内の気圧を所定の設定圧に安定させることで、作業室掘削地盤の地下水位が一定に保たれるように管理して、円滑な掘削作業が安全に行われるように作業空間を維持している。   Then, compressed air adjusted to an air pressure corresponding to the groundwater pressure is normally sent into the work chamber, and the air pressure in the work chamber is set to a predetermined pressure according to caisson settlement due to excavation of the ground in the work chamber. By stabilizing the set pressure, the groundwater level of the work room excavation ground is managed to be kept constant, and the work space is maintained so that smooth excavation work can be performed safely.

特開2004−346591号公報JP 2004-346591 A

しかし、上記のような作業状況下において、作業室内の気圧変化の管理は、特に、地下40m以深に沈設させるケーソンの大深度化に伴い、作業員の健康、安全のみならず、周辺環境の保全等において重要な要素であるが、従来では、管理員が、気圧変化を過去の履歴情報に基づいて判断し、気圧を所定の設定圧に設定しているのが現状である。   However, under the above work conditions, the management of atmospheric pressure changes in the working room is not only about the caisson depth that is submerged 40 meters deep, but also the maintenance of the surrounding environment as well as the health and safety of workers. However, in the past, the manager has determined the change in atmospheric pressure based on past history information and has set the atmospheric pressure to a predetermined set pressure.

このため、上述したような人手による管理作業では、手間が掛かり、しかも、危険性を含み、また、設定圧の精度が低いばかりでなく、誤認し易く、さらには、作業の一時中断で工期の短縮化にも影響を及ぼしていることから、函内気圧変化の管理もまた無人化が切望されている。   For this reason, in the management work by the above-mentioned manual work, it takes time and is dangerous, and the accuracy of the set pressure is not only low, but it is easy to misunderstand. Because it has an effect on shortening, the management of changes in the air pressure in Kanko is also eagerly desired to be unmanned.

ところが、作業室内における気圧変化を管理する場合、構造物構築現場の土質、掘削状況、ケーソンの傾斜、掘削深度に伴い変化する掘削土質の透水係数による定常水位回復までの時間差などの様々な要素を考慮して、気圧を適正に設定する必要がある。   However, when managing changes in atmospheric pressure in the working room, various factors such as soil quality at the construction site, excavation status, caisson inclination, and time difference until steady water level recovery due to hydraulic conductivity of excavated soil that changes with the depth of excavation are taken into account. In consideration, it is necessary to set the atmospheric pressure appropriately.

すなわち、作業室における気圧の設定圧が低ければ、地下水圧との均衡状態が崩れて作業室内の水位が上昇して水没する。一方、気圧の設定圧が高ければ、作業室内の水位が下降して、地下水圧と作業室内に送り込まれる圧縮空気による送気圧との差圧分の空気がケーソンの刃口から漏出し、この漏出した空気が気泡となって噴出し、ケーソンの周囲地盤を緩めてしまうばかりでなく、ケーソン付近の地質、地盤状況によっては、数百mの範囲に拡散したり、井戸や地下室に噴出したりして、周囲の環境汚染等に悪影響を及ぼす。また、気圧の設定圧が高いままでは、設定値を下げない限り、地下水圧との差圧分の空気がケーソンの刃口から漏出するため、その漏出量を補うには、圧縮空気をより多く製造し送気しなければならず、作業室内に圧縮空気を製造し送気する空気圧縮機を稼動させるに要する電力消費量も増大する。   That is, if the set pressure of the atmospheric pressure in the working chamber is low, the equilibrium state with the groundwater pressure is lost, and the water level in the working chamber rises and is submerged. On the other hand, if the set pressure of the atmospheric pressure is high, the water level in the working chamber will drop, and air equivalent to the differential pressure between the groundwater pressure and the feed pressure by the compressed air sent into the working chamber will leak from the caisson blade, and this leakage will occur. Not only does the air blown out into bubbles and loosen the ground surrounding the caisson, but it can also diffuse into the range of several hundred meters depending on the geology and ground conditions in the vicinity of the caisson. Adversely affect the surrounding environmental pollution. In addition, if the set pressure of the atmospheric pressure remains high, unless the set value is lowered, air corresponding to the pressure difference from the groundwater pressure leaks from the caisson blade, so more compressed air can be used to compensate for the leak amount. It must be manufactured and supplied with air, and the power consumption required to operate an air compressor that manufactures and supplies compressed air in the working chamber is also increased.

その結果、従来では、作業室内における気圧変化の管理システムを自動化するには、上述したような種々の困難性があるという問題があった。   As a result, conventionally, there has been a problem that there are various difficulties as described above in order to automate the management system of the atmospheric pressure change in the working chamber.

本発明が解決しようとする課題は、作業室内における掘削地盤の釜場の水位を基準として、作業室内に送気される圧縮空気の送気圧及び送気量をコンピュータにより自動的に調整制御することにより、気圧を安定的に維持管理し、また、想定される気圧変化の要因となるすべての状況を、総合的に考慮してプログラム化し、汎用パソコン上の操作で容易に認識し、誤りなく判断できるように音声/文字、図形等を表示させるとともに、送気圧の設定値の変更を、簡単かつ容易に行うことができるようにしたニューマチックケーソン工法における作業室内自動水位調整システム及びその管理方法、並びにそのプログラムと記録媒体を提供することを目的とする。   The problem to be solved by the present invention is to automatically adjust and control the air pressure and the air supply amount of compressed air supplied into the work room with a computer based on the water level of the pothole of the excavation ground in the work room. To stably maintain and manage the atmospheric pressure, and program all the conditions that may cause the assumed atmospheric pressure change in a comprehensive manner. Automatic water level adjustment system in the work room in the pneumatic caisson method and its management method, in which voice / characters, graphics, etc. are displayed so that the set value of the air pressure can be changed easily and easily, It is another object of the present invention to provide a program and a recording medium.

(1)本発明のニューマチックケーソン工法における作業室内自動水位管理方法は、ニューマチックケーソンにおける作業室内に圧縮空気を送気して、作業室内気圧を所定の設定気圧に保持する送気手段と、ケーソンの沈下の有無を検出する沈下検出手段と、予め掘削地盤に凹設された釜場の水面の水位を検出する水位検出手段と、作業室内における作業室内気圧の変化を検出する作業室内気圧検出手段と、ケーソンの傾斜を検出する傾斜検出手段と、これら各検出手段からの各種データを基に、送気手段による圧縮空気の送気圧及び送気量を調整して、釜場の水位が、自動的に所定の設定水位に維持されるようにコンピュータにて制御する制御手段とを備え、前記ケーソンの作業室内における掘削地盤に凹設される釜場の水位の変化を水位計により検出し、釜場の水位が、予め設定された設定水位の許容範囲を超えたとき、作業室内に送気される圧縮空気量を、水位の変化量に応じた送気圧及び送気量に自動的に調整制御し、設定水位に応じた作業室内気圧に安定的に維持管理するステップと、前記ケーソンの沈下の有無を沈下計にて検出し、ケーソンの沈下による相対的な釜場の水位が設定水位の許容範囲より上昇したとき、ケーソンの沈下量と、ケーソンの傾斜角θによる刃口底面の下降及び上昇に伴う最高刃口高さに基づいて圧縮空気を作業室内に送気するステップと、前記ケーソンが沈下せずに、釜場の水位が、設定水位の許容範囲より低下したとき、設定水位に応じた作業室内気圧に下げるように調整制御するステップと、前記ケーソンが沈下せずに、釜場の水位が、設定水位の許容範囲より上昇したとき、設定水位に応じた作業室内気圧に上げるように調整制御するステップと、前記釜場の水位が、所定の設定時間経過後でも設定水位に回復せず、かつ水位の回復傾向が見られないとき、警告し、水位管理を手動に切り替えるステップとを含むことを特徴とする。
(1) The work room automatic water level management method in the pneumatic caisson method of the present invention is configured to supply compressed air to the work chamber in the pneumatic caisson, and to maintain the work chamber pressure at a predetermined set pressure. A subsidence detection means for detecting the presence or absence of caisson subsidence, a water level detection means for detecting the water level of the water surface of the pottery recessed in advance in the excavation ground, and a pressure detection in the work room for detecting a change in the pressure in the work room. Based on the means, the inclination detection means for detecting the inclination of the caisson, and various data from each of these detection means, the air pressure and the air supply amount of the compressed air by the air supply means are adjusted, and the water level of the kettle is And a control means for controlling by a computer so that the water level is automatically maintained at a predetermined set water level, and a change in the water level of the pot place recessed in the excavation ground in the work room of the caisson is performed. The amount of compressed air sent into the work chamber when the water level in the pot place exceeds the preset allowable water level range is changed to the air pressure and the air supply amount corresponding to the amount of change in the water level. A step of automatically adjusting and controlling to stably maintain the atmospheric pressure in the work chamber according to the set water level, and detecting the presence or absence of the caisson subsidence with a subsidence meter, and the relative water level in the pottery due to the caisson subsidence. Step of supplying compressed air into the working chamber based on the amount of caisson settlement and the maximum blade edge height associated with the lowering and rising of the blade bottom due to the inclination angle θ of the caisson. The caisson does not sink, and when the water level in the pot is lower than the allowable range of the set water level, the adjustment control is performed so that the pressure in the working chamber is lowered according to the set water level; and the caisson does not sink The water level in Kamaba A step of adjusting and controlling the pressure in the working chamber to increase to the working room pressure corresponding to the set water level when the water level rises above the allowable range of the constant water level; Warning when the water level recovery tendency is not seen, and switching the water level management to manual.

本発明によれば、作業室内における掘削地盤の掘削面に掘削される釜場の水位を基準として、作業室内に送気される圧縮空気の送気圧及び送気量をコンピュータにより自動的に調整制御しているため、気圧を安定的に維持管理することができ、また、想定される気圧変化の要因となるすべての状況を、総合的に考慮してプログラム化し、汎用パソコン上の操作で容易に認識し、誤りなく判断できるように音声/文字、図形等を表示させるとともに、送気圧及び送気量の設定値の変更を、簡単かつ容易に行うことができる。   According to the present invention, the computer automatically adjusts and controls the air pressure and the air supply amount of the compressed air supplied into the work chamber based on the water level of the potyard drilled on the excavation surface of the excavation ground in the work chamber. Therefore, the atmospheric pressure can be stably maintained and managed, and all situations that cause the assumed atmospheric pressure change can be programmed comprehensively and easily operated by operation on a general-purpose computer. It is possible to display voice / characters, graphics, etc. so that they can be recognized and judged without error, and can easily and easily change the set values of the air pressure and the amount of air supplied.

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明すると、図1は、本発明に係るニューマチックケーソン工法におけるケーソンの沈設状態を概略的に示す縦断側面図、図2は、作業室内自動管理システムの全体構成例を示す説明図、図3は、水位計による気圧の変化の検知状況を示す説明図、図4は、ケーソンの傾斜による気圧の変化状況を示す説明図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view schematically showing a caisson set-up state in the pneumatic caisson method according to the present invention. FIG. 3 is an explanatory diagram showing an example of the overall configuration of an automatic management system in a work room, FIG. 3 is an explanatory diagram showing a detection state of a change in atmospheric pressure by a water gauge, and FIG. It is.

本実施形態では、図1に示すように、構造物構築現場の地盤上に設置されるケーソン1の内底部に形成される作業室2の天井スラブ3の下面に、ガイドレール4を敷設し、このガイドレール4に沿って掘削機5を走行可能に組み付けるとともに、この掘削機5により、作業室2内の掘削地盤の掘削面Gを掘削しながら、ケーソン1を沈設させるように構成されている。   In this embodiment, as shown in FIG. 1, a guide rail 4 is laid on the lower surface of the ceiling slab 3 of the work chamber 2 formed on the inner bottom of the caisson 1 installed on the ground of the structure construction site, The excavator 5 is assembled so as to be able to travel along the guide rail 4, and the caisson 1 is set by the excavator 5 while excavating the excavation surface G of the excavation ground in the work chamber 2. .

前記掘削機5は、作業室2内に設置された複数台の監視カメラ6、6で監視されて、その状況が、通信ライン7を介して、地上に仮設された遠隔操作室8のパーソナルコンピュータ(以下、CPUと略記する)9に送信され、監視用モニタ10に表示されるようにして、監視者または点検者(以下、管理員という)OPにて監視し、得られる情報に基づいて、掘削機5を遠隔操作することにより、作業室2内の掘削地盤の掘削面Gを掘削するようになっている。なお、前記CPU9には、予め、過去の経験値、測量値等で収集した履歴情報に基づいた各種のデータが格納されている。   The excavator 5 is monitored by a plurality of monitoring cameras 6, 6 installed in the work room 2, and the situation is personal computer of the remote operation room 8 temporarily installed on the ground via the communication line 7. (Hereinafter abbreviated as CPU) 9 and displayed on the monitoring monitor 10 for monitoring by a supervisor or inspector (hereinafter referred to as a manager) OP, and based on the obtained information, By remotely operating the excavator 5, the excavation surface G of the excavation ground in the work chamber 2 is excavated. The CPU 9 stores in advance various data based on history information collected from past experience values, survey values, and the like.

ところで、ケーソン工法では、沈設時、ケーソン1の作業室2内における空気が地中へ漏出するのを防止するにおいて、根幹であるケーソン1の作業室2内における気圧力を、常にケーソン1の刃口底面1aより僅かに上昇した水圧に等しい値に設定するために、ケーソン1の刃口底面1aにおける正確な地下水圧を把握することが重要である。   By the way, in the caisson method, the air pressure in the work chamber 2 of the caisson 1 that is the base is always used to prevent the air in the work chamber 2 of the caisson 1 from leaking into the ground when it is installed. In order to set a value equal to the water pressure slightly elevated from the bottom surface 1a, it is important to grasp the accurate groundwater pressure at the blade bottom surface 1a of the caisson 1.

そこで、本実施形態では、図2に示すように、前記ケーソン1に、前記通信ライン7を介して遠隔操作室8内のCPU9にそれぞれ接続される沈下計11、水位計12、気圧計13及び傾斜計14が設置されており、これら各機器11、12、13及び14の各種データは、CPU9に取り込まれ、このCPU9に一旦格納された後、監視用モニタ10のパソコン画面上に文字、数値、図形等で表示されるようになっている。   Therefore, in the present embodiment, as shown in FIG. 2, a subsidence meter 11, a water level meter 12, a barometer 13, and a barometer 13 respectively connected to the caisson 1 via the communication line 7 and the CPU 9 in the remote operation room 8. An inclinometer 14 is installed, and various data of these devices 11, 12, 13, and 14 are captured by the CPU 9, and once stored in the CPU 9, characters and numerical values are displayed on the personal computer screen of the monitoring monitor 10. , It is displayed as a graphic.

前記沈下計11は、例えば投光素子11aからの光を、受光素子11bに向けて投光し、その反射光を測定することにより、ケーソン1の沈下深さDを地上を基準として算出し検出する。前記水位計12は、例えば超音波水位計等からなり、図3に示すように、作業室2内の天井スラブ3の下面に設置されて、その直下の作業室2内における掘削地盤の掘削面Gに、例えば、深さ50cm、直径40〜50cm程度の深さに予め掘削された釜場15の水面Wの水位W・Lを算出し検出する。前記気圧計13は、作業室2内の気圧変化を検出する。前記傾斜計14は、図4に示すように、作業室2内の天井スラブ3の上面に設置されて、沈設時に、ケーソン1の傾斜角θによる刃口底面1aの下降及び上昇に伴う最高刃口高さHを、釜場15の水面Wと、図4に二点鎖線で示す傾斜前におけるケーソン1の刃口底面1aの位置を基準として算出し検出するようになっている。   The subsidence meter 11 calculates and detects the subsidence depth D of the caisson 1 with respect to the ground by projecting light from the light projecting element 11a toward the light receiving element 11b and measuring the reflected light, for example. To do. The water level gauge 12 is composed of, for example, an ultrasonic water level gauge or the like, and is installed on the lower surface of the ceiling slab 3 in the work room 2 as shown in FIG. 3, and the excavation surface of the excavation ground in the work room 2 immediately below it. In G, for example, the water level W · L of the water surface W of the pottery 15 excavated in advance to a depth of about 50 cm and a diameter of about 40 to 50 cm is calculated and detected. The barometer 13 detects a change in atmospheric pressure in the work chamber 2. As shown in FIG. 4, the inclinometer 14 is installed on the upper surface of the ceiling slab 3 in the work chamber 2, and when set up, the highest blade accompanying the lowering and raising of the blade bottom surface 1 a due to the inclination angle θ of the caisson 1. The mouth height H is calculated and detected on the basis of the water surface W of the pottery 15 and the position of the blade bottom face 1a of the caisson 1 before the inclination shown by the two-dot chain line in FIG.

これにより、特に、水位計12を基に、ケーソン1の刃口底面1aが、常に一定となるように設定された水位W・Lから水没するように、作業室2から空気を大気中に作業室内から排気する排気調整弁16aの開度及び排気速度、又は作業室2内に空気圧縮機で製造される圧縮空気を送気する送気調整弁16bの開度及び送気速度を制御して、掘削作業に支障のない環境が構築されるように、ケーソン1の作業室内自動管理システムを構成している。   Thereby, in particular, based on the water level gauge 12, the air from the working chamber 2 is worked into the atmosphere so that the blade bottom surface 1a of the caisson 1 is submerged from the water level W · L set so as to be always constant. By controlling the opening degree and exhaust speed of the exhaust adjustment valve 16a exhausted from the room, or the opening degree and air supply speed of the air supply adjustment valve 16b that sends compressed air produced by the air compressor into the work chamber 2. The work room automatic management system of the caisson 1 is configured so that an environment that does not hinder excavation work is constructed.

ここで、作業室2内における釜場15の水面Wが低下する要因としては、3点の理由が経験的に挙げられる。第1には、作業室2内の地盤の掘削による地質の透水性の変化で、一定時間を過ぎても釜場15の水面Wの水位W・Lが回復しないか、復水速度が遅れる点、第2には、釜場15が崩壊して、釜場15内の水が、一時的に他の低地の方に流出する点、第3には、作業室2内における気圧が上昇する点である。   Here, there are three reasons why the water level W of the kettle 15 in the working chamber 2 is lowered. First, the change in geological permeability due to excavation of the ground in the work chamber 2 does not recover the water level W · L of the water surface W of the Kamaba 15 after a certain time, or the condensing speed is delayed. Secondly, the point of Kamaba 15 collapses, and the water in Kamaba 15 temporarily flows out to other lowlands, and thirdly, the pressure in the work chamber 2 rises. It is.

また、作業室2内における釜場15の水面Wが上昇する要因としては、4点の理由が経験的に挙げられる。第1には、ケーソン1が所定値以上に沈下する点、第2は、水位計12から釜場15の水面に向けて投射される超音波の反射波が、人為的または何らかの機械的原因で遮断されている点、第3には、釜場15が崩壊している点、第4には、ケーソン1の傾斜による刃口底面1aが釜場15の水面Wより上昇し、作業室2の空気が地中に漏出して、気圧が低下する点である。   Further, there are four reasons why the water level W of the kettle 15 in the working chamber 2 rises empirically. The first is that the caisson 1 sinks above a predetermined value, and the second is that the reflected wave of the ultrasonic wave projected from the water level gauge 12 toward the surface of the pottery 15 is caused by human or some mechanical cause. Third, the point where the pot 15 is collapsed, and third, the blade bottom 1a due to the inclination of the caisson 1 rises above the water surface W of the pot 15 and the working chamber 2 The air leaks into the ground and the air pressure drops.

本実施例では、上述した要因を主たる構成要素として、ケーソン1の作業室内自動管理システムが構成されているようになっている。   In the present embodiment, the work room automatic management system of the caisson 1 is configured with the above-described factors as main components.

次に、本実施形態のケーソン工法におけるケーソン1の作業室内自動管理システムの管理手順を、図5、図6に示すフローチャートに基づいて説明する。なお、水位計12による釜場15の水位W・Lの許容変化値(±3cm)及び復水の許容回復時間(5分)、ケーソン1の傾斜角θによる刃口底面1aの下降及び上昇に伴う最高刃口高さHの許容変化値(15cm)は、過去の履歴情報に基づいて設定されている。ここで実際には、施工条件が一様でないことから、上記の括弧内数値は汎用的なものではないが、以降の説明のために数値は固定しておく。   Next, the management procedure of the work room automatic management system for the caisson 1 in the caisson method of the present embodiment will be described based on the flowcharts shown in FIGS. In addition, the allowable change value (± 3 cm) and the allowable recovery time (5 minutes) of the water level W · L of the kettle 15 by the water level gauge 12, the lowering and rising of the blade bottom 1 a due to the inclination angle θ of the caisson 1 The allowable change value (15 cm) of the maximum blade edge height H is set based on past history information. Actually, since the construction conditions are not uniform, the above numerical value in parentheses is not general purpose, but the numerical value is fixed for the following explanation.

図5に示すように、まず、ケーソン1の沈下の有無が沈下計11により検出され、ステップST1において、「沈下した」と判定されると、ステップST2に進む。   As shown in FIG. 5, first, the presence / absence of caisson 1 is detected by subsidence meter 11, and if it is determined in step ST1 that it “sinked”, the process proceeds to step ST2.

ステップST2では、ケーソン1の沈下により、釜場15の水位W・Lが、どの程度上昇したかが判断され、「設定水位より3cm以内」と判定されると、ステップST3に進む。   In step ST2, it is determined how much the water level W · L of the pottery 15 has risen due to the sinking of the caisson 1, and if it is determined “within 3 cm from the set water level”, the process proceeds to step ST3.

ステップST3では、作業室2内における気圧を変えずにステップST1に戻り、上述した手順を繰り返し実行する。   In step ST3, the process returns to step ST1 without changing the atmospheric pressure in the work chamber 2, and the above-described procedure is repeatedly executed.

ステップST2において、ケーソン1の沈下により、釜場15の水位W・Lが、相対的に「設定水位より3cm以上上昇した」と判定されると、ステップST4に進み、ケーソン1の沈下量と最高刃口高さHを考慮し、図示しない空気圧縮機の送気調整弁16bの開度及び送気圧並びに送気速度を調整制御して、圧縮空気を作業室2内に送気し、ステップST5で、履歴情報に基づいて設定された、気圧の復元が可能な時間としての「5分経過後」、ステップST1に戻り、上述した手順を繰り返し実行する。 If it is determined in step ST2 that the water level W · L of the pottery 15 has relatively “raised 3 cm or more from the set water level” due to the caisson 1 sinking, the process proceeds to step ST4, where the caisson 1 sinking amount and the maximum In consideration of the blade height H , the opening degree, the air supply pressure and the air supply speed of the air supply adjustment valve 16b of the air compressor (not shown) are adjusted and controlled, and the compressed air is supplied into the working chamber 2, and step ST5. Thus, “after 5 minutes”, which is set based on the history information and is a time during which the atmospheric pressure can be restored, returns to step ST1 and repeats the above-described procedure.

ステップST1において、ケーソン1が、「沈下しない」と判定された場合には、ステップST6に進む。   If it is determined in step ST1 that the caisson 1 “does not sink”, the process proceeds to step ST6.

ステップST6では、上述したケーソン1の作業室2内における設定水位の低下要因及び上昇要因による釜場15の設定水位W・Lの状況が判断される。ステップST6において、釜場15の水位W・Lが、「設定水位より3cm以上低下した」と判定されると、ステップST7に進む。   In step ST6, the state of the set water level W · L of the kettle 15 due to the lowering factor and the rising factor of the set water level in the work chamber 2 of the caisson 1 is determined. If it is determined in step ST6 that the water level W · L of the pottery 15 is “decreased by 3 cm or more from the set water level”, the process proceeds to step ST7.

ステップST7では、釜場15の掘返し状況が判断され、釜場15を「掘った」と判定されると、ステップST8に進む。   In step ST7, the state of digging back in Kamaba 15 is determined, and if it is determined that the kamaba 15 is "digged", the process proceeds to step ST8.

ステップST8では、釜場15の水位W・Lの回復状況が判断され、「5分後、設定水位が元に戻った」と判定されると、ステップST3にリターンし、上述した手順を繰り返し実行する。   In step ST8, the recovery status of the water level W / L in the Kamba 15 is determined. If it is determined that “the set water level has returned to the original level after 5 minutes”, the process returns to step ST3 and the above-described procedure is repeatedly executed. To do.

ステップST7において、釜場15を「掘ってない」と判定された場合には、ステップST9に進む。   If it is determined in step ST7 that “Kamaba 15 has not been dug”, the process proceeds to step ST9.

ステップST9では、釜場15内の水の流出が判断され、釜場15内の水が「他の低地に流出した」と判定されると、ステップST8に戻り、上述した手順を繰り返し実行する。   In step ST9, it is determined that the water in Kamaba 15 has flowed out. If it is determined that the water in Kamaba 15 has "flowed out to other lowlands", the process returns to step ST8 and the above-described procedure is repeated.

ステップST9において、釜場15内の水が「他の低地に流出していない」と判定された場合には、ステップST10に進む。   If it is determined in step ST9 that the water in Kamaba 15 has not flowed out to other lowlands, the process proceeds to step ST10.

ステップST10では、作業室2内における気圧が上昇したと判断され、排気調整弁16aの開度及び排気速度を調整制御して、作業室内に充満する圧縮空気の一部を大気中に放出することで、釜場15の設定水位W・Lに応じた気圧となるように下げ、ステップST11で、履歴情報に基づいて設定された、気圧の復元が可能な時間としての「5分経過後」、ステップST1に戻り、上述した手順を繰り返し実行する。   In step ST10, it is determined that the air pressure in the work chamber 2 has increased, and the opening degree and the exhaust speed of the exhaust adjustment valve 16a are adjusted and controlled, and a part of the compressed air filling the work chamber is released into the atmosphere. Then, the pressure is lowered to a pressure corresponding to the set water level W · L of Kamaba 15, and “after 5 minutes” is set as the time at which the pressure can be restored, which is set based on the history information in step ST11. Returning to step ST1, the above-described procedure is repeatedly executed.

ステップST8において、釜場15の水位W・Lが「5分経過しても、元の設定水位に戻らない」と判定された場合には、ステップST12に進む。   In Step ST8, when it is determined that the water level W · L of the Kamaba 15 does not return to the original set water level even after 5 minutes, the process proceeds to Step ST12.

ステップST12では、釜場15の水位W・Lの回復状況が再び判断され、「水位が回復傾向にある」と判定されると、ステップST13に進む。   In step ST12, the recovery status of the water level W · L in the pot place 15 is determined again, and if it is determined that “the water level is in a recovery tendency”, the process proceeds to step ST13.

ステップST13では、掘削地盤Gにおける地質の透水係数の変化による釜場15の掘削に伴う水位W・Lの復水速度が、前回釜場掘削時の復水速度と比較判断され、「前回釜場掘削時の復水速度と同じ傾向にある」と判定されると、ステップST14に進み、履歴記録に基づいて設定された、水位の回復可能な時間としての「5分経過後」、ステップST8にリターンし、上述した手順を繰り返し実行する。   In step ST13, the condensate speed of the water level W / L accompanying the excavation of the Kamba 15 due to the change in the hydraulic conductivity of the geology in the excavation ground G is determined to be compared with the condensate speed at the previous excavation in the Kamba. If it is determined that the condensate speed is the same as the condensate speed during excavation, the process proceeds to step ST14, and “after 5 minutes” as the water level recoverable time set based on the history record, the process proceeds to step ST8. Return and repeat the above procedure.

ステップST13において、「前回釜場掘削時の復水速度と同じ傾向にない」と判定された場合には、ステップST15に進む。   If it is determined in step ST13 that “there is not the same tendency as the condensate speed at the previous excavation at Kamaba”, the process proceeds to step ST15.

ステップST15では、掘削地盤Gにおける土質の変化が判断され、「掘削土質が変わらない」と判定されると、ステップST14に戻り、上述した手順を繰り返し実行する。   In step ST15, the soil change in the excavated ground G is determined. If it is determined that “the excavated soil does not change”, the process returns to step ST14 and the above-described procedure is repeatedly executed.

ステップST15において、「掘削土質が変わった」と判定されると、自動管理が不可能と判断し、ステップST16に進み、水位管理を「手動」に切替えて終了する。このとき、必要に応じて、監視用モニタ10のパソコン画面上に、音声または文字等により警告がなされる。   If it is determined in step ST15 that “the excavated soil quality has changed”, it is determined that automatic management is impossible, the process proceeds to step ST16, the water level management is switched to “manual”, and the process ends. At this time, a warning is given on the personal computer screen of the monitor 10 for monitoring by voice or text as necessary.

一方、ステップST12においても、釜場15の水位が、「回復傾向にない」と判定された場合、例えば図4に示すように、ケーソン1の傾斜により、刃口底面1aの最高刃口高さHが15cm以上となり、設定水位W・Lから上に露出した場合にも、自動管理が不可能と判断し、そのままステップST16に進み、水位管理を「手動」に切替えて終了する。このときもまた、必要に応じて、監視用モニタ10のパソコン画面上に、音声/文字等により警告がなされる。   On the other hand, also in step ST12, when it is determined that the water level in the pottery 15 is “not prone to recovery”, for example, as shown in FIG. Even when H becomes 15 cm or more and is exposed upward from the set water level W · L, it is determined that automatic management is impossible, the process proceeds to step ST16, and the water level management is switched to “manual” and terminated. Also at this time, a warning is given by voice / characters or the like on the personal computer screen of the monitoring monitor 10 as necessary.

また一方、ステップST6において、上述した釜場15の水面Wの上昇要因により、釜場15の水位W・Lが、「設定水位より上昇した」と判定された場合には、図6に示すステップST17に進む。   On the other hand, when it is determined in step ST6 that the water level W · L of the pottery 15 has risen from the set water level due to the above-described rise factor of the water surface W of the pottery 15, the step shown in FIG. Proceed to ST17.

ステップST17では、釜場15の水位W・Lが、どの程度上昇したかが判断され、「設定水位より3cm以内」と判定されると、図5に示すステップST8にリターンし、上述した手順を繰り返し実行する。   In step ST17, it is determined how much the water level W · L of Kamaba 15 has risen. If it is determined that “within 3 cm from the set water level”, the process returns to step ST8 shown in FIG. Run repeatedly.

ステップST17において、釜場15の水位W・Lが、「設定水位より3cm以上上昇した」と判定された場合には、ステップST18に進む。   If it is determined in step ST17 that the water level W · L of the pottery 15 has risen by 3 cm or more from the set water level, the process proceeds to step ST18.

ステップST18では、水位計12による反射波に対する機械的な遮蔽を含む人為的な遮蔽状況が判断され、「人為的な遮蔽がある」と判定されると、ステップST19に進み、他の手段により遮蔽物を除去する。この時、上記プログラムは一時的にストップさせる。遮蔽物を除去した後、上記プログラムを再開し、図5に示すステップST1にリターンし、上述した手順を繰り返し実行する。   In step ST18, an artificial shielding situation including mechanical shielding against the reflected wave by the water level gauge 12 is determined. If it is determined that "there is artificial shielding", the process proceeds to step ST19, and shielding is performed by other means. Remove objects. At this time, the program is temporarily stopped. After removing the shielding object, the program is restarted, the process returns to step ST1 shown in FIG. 5, and the above-described procedure is repeatedly executed.

ステップST18において、水位計12による反射波に対する人為的な遮蔽が、「ない」と判定された場合には、ステップST20に進む。   If it is determined in step ST18 that there is no artificial shielding against the reflected wave by the water level gauge 12, the process proceeds to step ST20.

ステップST20では、釜場15の崩壊状況が判断され、「釜場が崩壊している」と判定されると、ステップST21に進み、上記プログラムを一時停止させて、他の手段により釜場15を掘り直した後、この一時停止させたプログラムを再開し、図5に示すステップST8にリターンし、上述した手順を繰り返し実行する。   In step ST20, the collapse status of the pot hall 15 is determined. If it is determined that “the pot hall is collapsed”, the process proceeds to step ST21, the program is temporarily stopped, and the pot hall 15 is set by other means. After re-digging, the temporarily stopped program is resumed, the process returns to step ST8 shown in FIG. 5, and the above-described procedure is repeatedly executed.

ステップST20において、「釜場が崩壊していない」と判定された場合には、ると、ステップST22に進み、作業室2内における気圧が低下したと判断され、釜場15の設定水位W・Lに応じた気圧となるように、図示しない空気圧縮機の送気調整弁16bの開度及び送気圧並びに送気速度を調整制御して、気圧を上げ、ステップST23で、履歴情報に基づいて設定された、気圧の復元が可能な時間としての「5分経過後」、図5に示すステップST1にリターンし、上述した手順を繰り返し実行する。   If it is determined in step ST20 that “Kamaba has not collapsed”, the process proceeds to step ST22, where it is determined that the atmospheric pressure in the working chamber 2 has decreased, and the set water level W · The air pressure adjustment valve 16b of the air compressor (not shown), the air supply pressure, and the air supply speed are adjusted and controlled so that the air pressure corresponds to L, and the air pressure is increased. In step ST23, based on the history information After “5 minutes have elapsed” as the set time during which the atmospheric pressure can be restored, the process returns to step ST1 shown in FIG. 5, and the above-described procedure is repeatedly executed.

以上のように、本実施形態によれば、上記した作業室内自動管理システムの一連の処理フローは、CPU9のハードウェアにより実行させることができるし、ソフトウェアにより実行させるもできる。そして、ソフトウェアにより実行させる場合には、その一連の処理フローをコード化して、プログラムに変換した後、これらのプログラムをCD−ROM等の記録媒体に格納しておけば、プログラムを販売する場合にも便利である。   As described above, according to the present embodiment, a series of processing flows of the above-described work room automatic management system can be executed by the hardware of the CPU 9 or can be executed by software. When the program is executed by software, the series of processing flow is encoded and converted into a program, and then stored in a recording medium such as a CD-ROM, the program is sold. Is also convenient.

本発明に係るニューマチックケーソン工法におけるケーソンの沈設状態を概略的に示す縦断側面図である。It is a vertical side view which shows roughly the sinking state of the caisson in the pneumatic caisson method which concerns on this invention. 作業室内自動管理システムの全体構成例を示す説明図である。(実施例)It is explanatory drawing which shows the example of whole structure of a working chamber automatic management system. (Example) 水位計による気圧の変化の検知状況を概略的に示す説明図である。It is explanatory drawing which shows roughly the detection condition of the change of the atmospheric pressure by a water level meter. ケーソンの傾斜による気圧の変化状況を概略的に示す説明図である。It is explanatory drawing which shows roughly the change condition of the atmospheric | air pressure by the inclination of a caisson. 作業室内自動管理システムの管理手順を示すフローチャートである。It is a flowchart which shows the management procedure of the working room automatic management system. 作業室内自動管理システムの管理手順を示す結合フローチャートである。It is a joint flowchart which shows the management procedure of a working room automatic management system.

符号の説明Explanation of symbols

1 ケーソン
1a 刃口底面
2 作業室
3 天井スラブ
4 ガイドレール
5 掘削機
6 監視カメラ
7 通信ライン
8 遠隔操作室
9 パーソナルコンピュータ(CPU)
10 監視用モニタ
11 沈下計
11a 投光素子
11b 受光素子
12 水位計
13 気圧計
14 傾斜計
15 釜場
16a 作業室内からの排気調整弁
16b 空気圧縮機の送気調整弁
H 最高刃口高さ
D 沈下深さ
W 水面
W・L 水位
OP 管理員
DESCRIPTION OF SYMBOLS 1 Caisson 1a Bottom of blade edge 2 Work room 3 Ceiling slab 4 Guide rail 5 Excavator 6 Surveillance camera 7 Communication line 8 Remote operation room 9 Personal computer (CPU)
DESCRIPTION OF SYMBOLS 10 Monitoring monitor 11 Subsidence meter 11a Light emitting element 11b Light receiving element 12 Water level gauge 13 Barometer 14 Inclinometer 15 Kamba 16a Exhaust adjustment valve from work room 16b Air compressor adjustment valve H Maximum blade height D Subsidence depth W Water surface W / L Water level OP Manager

Claims (1)

ニューマチックケーソンにおける作業室内に圧縮空気を送気して、作業室内気圧を所定の設定気圧に保持する送気手段と、
ケーソンの沈下の有無を検出する沈下検出手段と、
予め掘削地盤に凹設された釜場の水位を検出する水位検出手段と、
作業室内における作業室内気圧の変化を検出する作業室内気圧検出手段と、
ケーソンの傾斜を検出する傾斜検出手段と、
これら各検出手段からの各種データを基に、送気手段による圧縮空気の送気圧及び送気量を調整して、釜場の水位が、自動的に所定の設定水位に維持されるようにコンピュータにて制御する制御手段とを備え、
前記ケーソンの作業室内における掘削地盤に凹設される釜場の水位の変化を水位計により検出し、釜場の水位が、予め設定された設定水位の許容範囲を超えたとき、作業室内に送気される圧縮空気量を、水位の変化量に応じた送気圧及び送気量に自動的に調整制御し、設定水位に応じた作業室内気圧に安定的に維持管理するステップと、
前記ケーソンの沈下の有無を沈下計にて検出し、ケーソンの沈下による相対的な釜場の水位が設定水位の許容範囲より上昇したとき、ケーソンの沈下量と、ケーソンの傾斜角θによる刃口底面の下降及び上昇に伴う最高刃口高さに基づいて圧縮空気を作業室内に送気するステップと、
前記ケーソンが沈下せずに、釜場の水位が、設定水位の許容範囲より低下したとき、設定水位に応じた作業室内気圧に下げるように調整制御するステップと、
前記ケーソンが沈下せずに、釜場の水位が、設定水位の許容範囲より上昇したとき、設定水位に応じた作業室内気圧に上げるように調整制御するステップと、
前記釜場の水位が、所定の設定時間経過後でも設定水位に回復せず、かつ水位の回復傾向が見られないとき、警告し、水位管理を手動に切り替えるステップとを含むことを特徴とするニューマチックケーソン工法における作業室内自動水位管理方法。
An air supply means for supplying compressed air into the work chamber in the pneumatic caisson and maintaining the work chamber pressure at a predetermined set pressure;
Subsidence detecting means for detecting the presence or absence of caisson subsidence;
Water level detection means for detecting the water level of the pottery recessed in advance in the excavation ground;
Working chamber pressure detecting means for detecting a change in the working chamber pressure in the working chamber;
An inclination detecting means for detecting the inclination of the caisson;
Based on the various data from each of these detection means, the computer adjusts the air pressure and the air supply amount of the compressed air by the air supply means so that the water level in the pot is automatically maintained at a predetermined set water level. Control means for controlling at
Changes in the water level at the pothole recessed in the excavation ground in the caisson's work chamber are detected by a water level gauge, and when the water level at the kettle exceeds the preset water level tolerance, it is sent to the work chamber. Automatically adjusting and controlling the amount of compressed air to be fed to the air pressure and the air amount according to the amount of change in the water level, and stably maintaining and managing the pressure in the working chamber according to the set water level;
The presence or absence of caisson subsidence is detected with a subsidence meter, and when the relative water level of the cauldron due to caisson subsidence rises above the allowable range of the set water level, the amount of caisson subsidence and the blade edge based on the caisson inclination angle θ A step of supplying compressed air into the working chamber based on the highest blade height associated with lowering and rising of the bottom surface ;
When the caisson does not sink and the water level of the pottery falls below the allowable range of the set water level, the step of adjusting and controlling to lower the working room pressure according to the set water level;
When the caisson does not sink and the water level in the pottery rises above the allowable range of the set water level, the adjustment control is performed so as to increase the pressure in the working chamber according to the set water level;
A step of warning and switching the water level management to manual when the water level of the Kamaba does not recover to the set water level even after a predetermined set time elapses and no tendency to recover the water level is observed. Automatic water level management method in the working room in the pneumatic caisson method.
JP2005172561A 2005-06-13 2005-06-13 Automatic water level management method in the work room in the pneumatic caisson method. Expired - Fee Related JP4753631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172561A JP4753631B2 (en) 2005-06-13 2005-06-13 Automatic water level management method in the work room in the pneumatic caisson method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172561A JP4753631B2 (en) 2005-06-13 2005-06-13 Automatic water level management method in the work room in the pneumatic caisson method.

Publications (2)

Publication Number Publication Date
JP2006348482A JP2006348482A (en) 2006-12-28
JP4753631B2 true JP4753631B2 (en) 2011-08-24

Family

ID=37644611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172561A Expired - Fee Related JP4753631B2 (en) 2005-06-13 2005-06-13 Automatic water level management method in the work room in the pneumatic caisson method.

Country Status (1)

Country Link
JP (1) JP4753631B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527158B2 (en) * 2008-03-04 2010-08-18 大豊建設株式会社 Leakage recovery device in submersible construction method
JP5132506B2 (en) * 2008-09-26 2013-01-30 大豊建設株式会社 Air leakage prevention device and air leakage prevention method in pneumatic caisson method
CN109853603A (en) * 2019-03-05 2019-06-07 中交第二航务工程局有限公司 Pneumatic caisson excavating device and its application method
CN117687325A (en) * 2024-01-30 2024-03-12 中国海洋大学 Remote control system for offshore caisson shipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145216A (en) * 1979-05-01 1980-11-12 Kajima Corp Settling method of large cassion
JPS6019376B2 (en) * 1980-02-07 1985-05-16 大成建設株式会社 Air pressure control device inside the canister
JPS63189529A (en) * 1987-01-30 1988-08-05 Sumitomo Kensetsu Kk Regulation of water level in caisson in pneumatic caisson work
JPH01187228A (en) * 1988-01-19 1989-07-26 Kajima Corp Settling control system for pneumatic caisson

Also Published As

Publication number Publication date
JP2006348482A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
CA2477683C (en) Method and system for controlling well circulation rate
US20150226004A1 (en) Technique to verify underground targets utilizing virtual reality imaging and controlled excavation
US7921573B1 (en) Monitoring verticality of a sinking caisson
CN110528550A (en) The hard soil layer in caisson cutting edge position is broken and slag cleaning device and its construction method
JP4753631B2 (en) Automatic water level management method in the work room in the pneumatic caisson method.
NO341444B1 (en) System and method for monitoring physical condition of production well equipment and controlling well production
US11168559B2 (en) Controlling a coiled tubing unit at a well site
CN206205886U (en) Underwater platform for exploring sampling or in-situ test
CN109469085B (en) Construction method of deepwater rock-socketed bearing platform foundation
KR101021057B1 (en) Apparatus and Method for Measuring Vertical Straightness
CN103388333A (en) Construction process for carrying out construction on interlocking pile by adopting rotary drilling rig and mud protection wall method
JP2007284903A (en) Method of suppressing amount of settlement of ground in shield construction
EP3418452A1 (en) Mechanized, remote controlled, guided lowering of a pneumatic caisson
EA022638B1 (en) Digging method and assembly for laying a pipeline in the bed of a body of water
CN112965538A (en) Foundation pit dewatering control system based on dynamic anti-surge
CN110080261A (en) A kind of control system of barrel type structure
CN106836236A (en) A kind of ultra-deep steel pipe concrete continuous underground wall structure and its construction method
JP5648311B2 (en) Vertical accuracy measurement system for back struts
JPH0565658B2 (en)
JP5356478B2 (en) In-hole water level stabilization system for cast-in-place piles
NO322952B1 (en) System for cutting materials in wellbores
US20080016726A1 (en) Method for Automatically Profiling Ground in Waters
CN103628485A (en) Foundation-pit support structure construction process
JP6401575B2 (en) Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.
JP2021060243A (en) Monitoring system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees