JP5356478B2 - In-hole water level stabilization system for cast-in-place piles - Google Patents

In-hole water level stabilization system for cast-in-place piles Download PDF

Info

Publication number
JP5356478B2
JP5356478B2 JP2011198035A JP2011198035A JP5356478B2 JP 5356478 B2 JP5356478 B2 JP 5356478B2 JP 2011198035 A JP2011198035 A JP 2011198035A JP 2011198035 A JP2011198035 A JP 2011198035A JP 5356478 B2 JP5356478 B2 JP 5356478B2
Authority
JP
Japan
Prior art keywords
water level
hole
supply
cast
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011198035A
Other languages
Japanese (ja)
Other versions
JP2013060707A (en
Inventor
忠良 石橋
善則 谷口
宏文 池本
旭弘 和田
隆 岩瀬
雅春 齋藤
茂嗣 竹田
康夫 山村
基彰 栗栖
博之 高島
俊洋 町永
晋司 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2011198035A priority Critical patent/JP5356478B2/en
Publication of JP2013060707A publication Critical patent/JP2013060707A/en
Application granted granted Critical
Publication of JP5356478B2 publication Critical patent/JP5356478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a borehole water level stabilization system for a cast-in-place pile, capable of stabilizing a water level of a stabilizer inside a pile hole even on a site where a groundwater level is high or a site where a position to drill the pile hole and an installation position of a tank are separated. <P>SOLUTION: In a borehole water level stabilization system 1 for the cast-in-place pile including supply means 4 for supplying the stabilizer to a drilling hole H, discharge means 5 for discharging slurry from the drilling hole H together with drilled sediment, water level detection means 6 for detecting the water level of the stabilizer supplied into the pile hole H, and control means 7 for controlling them, the supply means 4 includes a stabilizer tank 40 for storing the stabilizer, a feed pump 42 for sending out the stabilizer from the stabilizer tank into the pile hole, and a supply route 44 from the stabilizer tank 40 to the inside of the pile hole H. A check valve 44b is provided near a proximal end to be a feed pump side of the supply route 44, a motor valve 44a is provided near a distal end to be the side of the pile hole H, and the stabilizer is made storable inside the supply route 44 between both valves. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

この発明は、地中に場所打ち杭を構築する際に地盤に掘削した孔の孔壁崩壊を防ぐために供給する安定液の水位を安定化させる場所打ち杭の孔内水位安定化システムに関するものである。   The present invention relates to a water level stabilization system for a cast-in-place pile that stabilizes the water level of a stabilizing liquid supplied to prevent hole wall collapse of a hole excavated in the ground when the cast-in-place pile is constructed in the ground. is there.

従来、構造物の建設場所において、構造物の支持に耐え得る支持層まで到達する杭を、地面に孔を掘って鉄筋籠を挿入し、そこにコンクリートを打設することにより構築する場所打ち杭の構築工法として、アースドリル工法、リバースサーキュレーション工法、BH工法などが知られている。杭孔の掘削は、被圧地下水層などを突き破って掘り進んでいくこととなるため、掘削孔内に地下水が流入し易く、その流入に伴って周辺の孔壁が崩壊してしまうという問題があり、これらの工法では、掘削孔内に安定液(分離しない水溶液であって水より比重が重くセメント成分と化学反応しないベントナイト水溶液などの泥水、又は清水、以下同じ)を注水してその水頭圧で地下水の流入を防止して掘削孔内の孔壁崩壊を防ぎながら杭孔を掘削していく。   Conventionally, a cast-in-place pile built by digging a hole in the ground and inserting a reinforcing bar into a pile that reaches the support layer that can withstand the support of the structure at the construction site of the structure, and placing concrete there As the construction method, an earth drill method, a reverse circulation method, a BH method and the like are known. Since the excavation of a pile hole is carried out through a pressurized groundwater layer, groundwater tends to flow into the excavation hole, and the surrounding hole wall collapses with the inflow. Yes, in these methods, a stable liquid (an aqueous solution that is not separated and has a higher specific gravity than water and mud water such as bentonite aqueous solution that does not chemically react with cement components, or fresh water, the same shall apply hereinafter) is injected. The pile hole is excavated while preventing the inflow of groundwater and preventing the collapse of the hole wall in the excavation hole.

しかし、いずれの工法においても、杭孔を掘り進むに従って、孔壁として現れる地下層も砂礫層や粘土層などというように刻々と変化して行き、水の浸透性が著しく相違するため、安定液の孔内水位を一定に保つことが難しいという問題があった。   However, in either method, as the pile hole is dug, the underground layer that appears as the hole wall changes every moment, such as a gravel layer or clay layer, and the water permeability is significantly different. There was a problem that it was difficult to keep the water level in the hole constant.

このような問題を解決するため、特許文献1には、掘削孔90内に安定液80の水位検知手段30を配置し、この水位検知手段30で安定液80の下限水位を検知したときに供給ポンプ22を作動させて、安定液80をタンク21から掘削孔90に供給し、上限水位を検知したときに供給ポンプ22を停止して安定液80の供給を停止するとともに、制御装置40により、供給ポンプ22の作動開始後の安定液80の供給継続時間を計測し、供給ポンプ22が予め定めた所定時間後に作動を停止しないときに、異常と判定して異常信号を送信し、異常の発生を外部装置に通知する水位管理システムが開示されている(特許文献1の図4等参照)。   In order to solve such a problem, Patent Document 1 discloses that the water level detection means 30 of the stabilizing liquid 80 is disposed in the excavation hole 90 and is supplied when the lower limit water level of the stabilizing liquid 80 is detected by the water level detection means 30. The pump 22 is operated to supply the stable liquid 80 from the tank 21 to the excavation hole 90, and when the upper limit water level is detected, the supply pump 22 is stopped and the supply of the stable liquid 80 is stopped. The supply duration of the stabilizing liquid 80 after the start of the operation of the supply pump 22 is measured, and when the supply pump 22 does not stop the operation after a predetermined time, it is determined as abnormal and an abnormal signal is transmitted to generate an abnormality. Has been disclosed (see, for example, FIG. 4 of Patent Document 1).

また、特許文献2には、掘削孔90内における安定液80の基準水位を設定する安定液の基準水位設定装置であって、掘削孔90に充填した安定液80の水位を所定時間毎に基準位置からの距離で測定する水位センサ2と、この測定結果に基づき基準水位を設定する設定制御装置10と、を備え、設定制御装置10は、水位センサ2による測定量と前回の測定量との差分を演算する差分演算手段と、前記差分演算手段の差分が0となる測定量が連続して所定回得られたとき、当該水位を基準水位として記憶手段に設定する設定手段と、を有することを特徴とする安定液の基準水位設定装置が開示されている(特許文献2の図1等参照)。   Patent Document 2 discloses a reference liquid level setting device for a stable liquid that sets the reference water level of the stabilizing liquid 80 in the excavation hole 90, and the water level of the stabilizing liquid 80 filled in the excavation hole 90 is set as a reference every predetermined time. A water level sensor 2 that measures the distance from the position, and a setting control device 10 that sets a reference water level based on the measurement result. The setting control device 10 includes a measurement amount measured by the water level sensor 2 and a previous measurement amount. Difference calculating means for calculating the difference, and setting means for setting the water level in the storage means as a reference water level when a measurement amount at which the difference of the difference calculating means is 0 is obtained continuously a predetermined number of times. A reference liquid level setting device for a stabilizing liquid is disclosed (see FIG. 1 of Patent Document 2).

しかし、特許文献1や特許文献2に開示されている水位管理システムでは、自動で安定液の供給・停止を行なう自動給水システムに関しては、フロート式や超音波式の水位センサを用いて、下限水位まで減少したときに安定液の供給を開始し、上限水位まで貯留されたときに安定液の供給を停止する点では、従来の自動給水システムと何ら変わりなく、孔内水位の変動が大きく、孔壁崩壊のおそれを払拭することができない点については解決がなされていないという問題がある。   However, in the water level management systems disclosed in Patent Document 1 and Patent Document 2, an automatic water supply system that automatically supplies and stops a stable liquid uses a float-type or ultrasonic-type water level sensor, and a lower limit water level. The point is that the supply of the stable liquid is started when the water level is reduced and the supply of the stable liquid is stopped when the water level is stored up to the upper limit water level. There is a problem that no solution has been made to the point that the possibility of wall collapse cannot be eliminated.

特に、地下水位が比較的高く、地表面から杭上端までの距離が短く、安定液の注水高さに余裕を持たせることができない場合、地層やその亀裂などから安定液が漏れて孔内水位が低下してしまい孔壁崩壊のおそれが高まったり、給水停止が間に合わず安定液が地表面にあふれたりすることを防ぐことが困難であった。また、駅周辺や都心近郊などの現場では、安定液を溜めて置く貯留槽の設置スペースが限られており、杭孔を掘削する位置と、安定液の貯留槽の設置位置とが離れている場合(200m〜300m離れている場合も多々ある)が多く、給水ポンプが起勣してから杭孔に供給されるまでのタイムラグが長くなって、そのタイムラグの間に孔内水位が更に大きく変動してしまうという問題があり、前述の特許文献1や特許文献2に開示されている水位管理システムでは、これらの問題を解決することができなかった。   In particular, if the groundwater level is relatively high, the distance from the ground surface to the top of the pile is short, and there is no allowance for the injection height of the stable liquid, the stable liquid leaks from the formation and its cracks and the water level in the borehole It was difficult to prevent the stability of the hole from collapsing and increasing the risk of collapse of the hole wall, or the stoppage of the water supply in time and the stable liquid overflowing to the ground surface. In addition, the installation space for the storage tank for storing the stable liquid is limited at sites such as around the station and in the suburbs of the city, and the position for excavating the pile hole and the installation position for the storage tank for the stable liquid are far apart. In many cases (there is often 200m to 300m), the time lag from when the water supply pump rises until it is supplied to the pile hole becomes longer, and the water level in the hole fluctuates further during that time lag. However, the water level management system disclosed in Patent Document 1 and Patent Document 2 described above cannot solve these problems.

特開2010−265637号公報JP 2010-265637 A 特開2010−265638号公報JP 2010-265638 A

そこで、この発明は、前記従来の技術の問題を解決し、地下水位が高い現場や杭孔を掘削する位置と安定液の貯留槽の設置位置とが離れている現場であっても、安定液が地表に溢れたり安定液の水位が下がり過ぎて孔壁崩壊のおそれが高まったりすることがなく、杭孔内の安定液の水位を安定させることができる場所打ち杭の孔内水位安定化システムを提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems of the prior art, and even if the site where the groundwater level is high or the site where the pile hole is excavated and the location where the stabilizer storage tank is installed are separated, In-hole water level stabilization system for cast-in-place piles that can stabilize the water level of the stable liquid in the pile hole without overflowing the surface of the earth or the risk of collapse of the hole wall due to excessive drop of the stable liquid level The purpose is to provide.

前記課題を解決するために、請求項1に記載の発明は、場所打ち杭の掘削孔に安定液を供給する供給手段と、前記掘削孔から掘削土砂とともに泥水を排出する排出手段と、前記杭孔内に供給した安定液の水位を検知する水位検知手段と、これらを制御する制御手段と、を備えた場所打ち杭の孔内水位安定化システムにおいて、前記供給手段は、安定液を貯留する安定液槽と、この安定液槽から安定液を杭孔内に送り出す給水ポンプと、安定液槽から杭孔内まで達する供給経路と、を有し、この供給経路の給水ポンプ側となる基端近傍に逆止弁を設けるとともに、杭孔側となる先端近傍に電動弁を設け、前記両弁間の供給経路内に安定液を貯留可能としたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a supply means for supplying a stabilizing liquid to a drilling hole of a cast-in-place pile, a discharge means for discharging mud together with excavated soil from the drilling hole, and the pile In a cast-in-place water level stabilization system for a cast-in-place pile provided with a water level detection means for detecting the level of the stable liquid supplied into the hole and a control means for controlling these, the supply means stores the stable liquid. A stable liquid tank, a water supply pump that feeds the stable liquid from the stable liquid tank into the pile hole, and a supply path that reaches the pile hole from the stable liquid tank, and a base end that is on the water supply pump side of the supply path A check valve is provided in the vicinity, and an electric valve is provided in the vicinity of the tip on the pile hole side, so that the stabilizing liquid can be stored in the supply path between the two valves.

請求項2に記載の発明は、請求項1に記載の場所打ち杭の孔内水位安定化システムにおいて、第2の供給手段を備え、この第2の供給手段は、安定液槽から安定液を杭孔内に送り出す第2の給水ポンプと、安定液槽から杭孔内まで達する第2の供給経路と、を有することを特徴とする。   The invention according to claim 2 provides the in-hole water level stabilization system for cast-in-place piles according to claim 1, further comprising second supply means, and the second supply means supplies the stable liquid from the stable liquid tank. It has the 2nd water supply pump sent out in a pile hole, and the 2nd supply path which reaches from a stable liquid tank to the inside of a pile hole, It is characterized by the above-mentioned.

請求項3に記載の発明は、請求項1又は2に記載の場所打ち杭の孔内水位安定化システムにおいて、前記制御手段は、前記水位検知手段で検知した測定水位に基づいて前記供給手段の供給量及び前記排出手段の排出量をフィードバック制御することを特徴とする。   According to a third aspect of the present invention, in the in-hole water level stabilization system for cast-in-place piles according to the first or second aspect, the control means is configured to control the supply means based on the measured water level detected by the water level detection means. Feedback control is performed on the supply amount and the discharge amount of the discharge means.

請求項4に記載の発明は、請求項3に記載の場所打ち杭の孔内水位安定化システムにおいて、前記フィードバック制御はPID制御であることを特徴とする。   According to a fourth aspect of the present invention, in the cast-in-place pile water level stabilization system according to the third aspect, the feedback control is PID control.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の場所打ち杭の孔内水位安定化システムにおいて、前記制御手段は、商用電源と発電機との切り換えが可能な電源切換盤から無停電電源装置を介して電源供給されていることを特徴とする。   According to a fifth aspect of the present invention, in the in-hole water level stabilization system for a cast-in-place pile according to any one of the first to fourth aspects, the control means is a power source switching capable of switching between a commercial power source and a generator. Power is supplied from the panel via an uninterruptible power supply.

この発明は、前記のようであって、請求項1に記載の発明によれば、場所打ち杭の掘削孔に安定液を供給する供給手段と、前記掘削孔から掘削土砂とともに泥水を排出する排出手段と、前記杭孔内に供給した安定液の水位を検知する水位検知手段と、これらを制御する制御手段と、を備えた場所打ち杭の孔内水位安定化システムにおいて、前記供給手段は、安定液を貯留する安定液槽と、この安定液槽から安定液を杭孔内に送り出す給水ポンプと、安定液槽から杭孔内まで達する供給経路と、を有し、この供給経路の給水ポンプ側となる基端近傍に逆止弁を設けるとともに、杭孔側となる先端近傍に電動弁を設けて、前記両弁間の供給経路内に安定液を貯留可能としたので、制御手段で安定液の水位が低下したと判断してから給水ポンプを駆動させても、供給経路内に貯留していた安定液を直ぐに供給可能であり、地下水位が高い現場や杭孔を掘削する位置と安定液の貯留槽の設置位置とが離れている現場であっても、安定液が地表に溢れたり安定液の水位が下がり過ぎて孔壁崩壊のおそれが高まったりすることがなく、杭孔内の安定液の水位を安定させることができる。   This invention is as described above. According to the invention described in claim 1, the supply means for supplying a stabilizing liquid to the excavation hole of the cast-in-place pile, and the discharge for discharging the mud together with the excavation sediment from the excavation hole In the system for stabilizing the water level in a hole of a cast-in-place pile, comprising: a means; a water level detecting means for detecting the level of the stabilizing liquid supplied into the pile hole; and a control means for controlling the water level detecting means. A water supply pump for supplying the stable liquid, a water supply pump for sending the stable liquid from the stable liquid tank into the pile hole, and a supply path extending from the stable liquid tank to the inside of the pile hole. A check valve is provided in the vicinity of the base end on the side, and an electric valve is provided in the vicinity of the tip on the pile hole side so that the stable liquid can be stored in the supply path between the valves. Drive the water supply pump after judging that the liquid level has dropped. However, the stable liquid stored in the supply path can be supplied immediately, and the site where the groundwater level is high or where the pile hole is excavated and where the stable liquid storage tank is installed are separated. However, it is possible to stabilize the water level of the stabilizing liquid in the pile hole without overflowing the surface of the stabilizing liquid or excessively lowering the level of the stabilizing liquid and increasing the possibility of collapse of the hole wall.

請求項2に記載の発明によれば、請求項1に記載の場所打ち杭の孔内水位安定化システムにおいて、第2の供給手段を備え、この第2の供給手段は、安定液槽から安定液を杭孔内に送り出す第2の給水ポンプと、安定液槽から杭孔内まで達する第2の供給経路と、を有するので、前記作用効果に加え、いずれか一方の供給手段を通常稼動させておき、制御手段で安定液の水位が低下したと判断してからもう一方の供給手段を駆動させることで、更に応答性の速い安定液の供給が可能となる。   According to a second aspect of the present invention, in the in-hole water level stabilization system for cast-in-place piles according to the first aspect, the second supply means is provided, and the second supply means is stabilized from the stable liquid tank. Since it has the 2nd water supply pump which sends a liquid in a pile hole, and the 2nd supply path which reaches from a stable liquid tank to the inside of a pile hole, in addition to the above-mentioned effect, one of the supply means is operated normally In addition, by driving the other supply means after it is determined by the control means that the water level of the stable liquid has decreased, it is possible to supply the stable liquid with a quicker response.

請求項3に記載の発明によれば、請求項1又は2に記載の場所打ち杭の孔内水位安定化システムにおいて、前記制御手段は、前記水位検知手段で検知した測定水位に基づいて前記供給手段の供給量及び前記排出手段の排出量をフィードバック制御するので、前記作用効果に加え、杭孔内の安定液の水位を更に安定させることができる。   According to a third aspect of the present invention, in the in-hole water level stabilization system for cast-in-place piles according to the first or second aspect, the control means is configured to supply the supply based on the measured water level detected by the water level detection means. Since the supply amount of the means and the discharge amount of the discharge means are feedback-controlled, the water level of the stabilizing liquid in the pile hole can be further stabilized in addition to the above effects.

請求項4に記載の発明によれば、請求項3に記載の場所打ち杭の孔内水位安定化システムにおいて、前記フィードバック制御はPID制御であるので、前記作用効果に加え、積分動作や微分動作により更に安定した水位制御が可能となる。   According to the invention described in claim 4, in the in-hole water level stabilization system for cast-in-place pile according to claim 3, since the feedback control is PID control, in addition to the function and effect, integral operation and differential operation Thus, more stable water level control becomes possible.

請求項5に記載の発明によれば、請求項1ないし4のいずれかに記載の場所打ち杭の孔内水位安定化システムにおいて、前記制御手段は、商用電源と発電機との切り換えが可能な電源切換盤から無停電電源装置を介して電源供給されているので、前記作用効果に加え、停電時において商用電源と発電機との切り換えの僅かな時間も制御手段に電源供給が可能であるため、システムがダウンすることなく、安全に運転可能である。   According to a fifth aspect of the present invention, in the cast-in-place pile water level stabilization system according to any one of the first to fourth aspects, the control means can switch between a commercial power source and a generator. Since power is supplied from the power switching board via the uninterruptible power supply, in addition to the above effects, it is possible to supply power to the control means even for a short time of switching between the commercial power source and the generator at the time of power failure. The system can be operated safely without going down.

リバースサーキュレーション工法の工程を説明する説明図であり、(a)〜(h)の順に工程が進む。It is explanatory drawing explaining the process of a reverse circulation construction method, and a process progresses in order of (a)-(h). 実施例に係る場所打ち杭の孔内水位安定化システムの全体構成を示す構成説明図である。It is composition explanatory drawing which shows the whole structure of the in-hole water level stabilization system of the cast-in-place pile which concerns on an Example.

この発明の一実施の形態を、図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

本発明の場所打ち杭の孔内水位安定化システムは、場所打ち杭の杭孔掘削時の孔壁保護のために注水される安定液の水位を所定高さに維持するために用いられるものであり、実施の形態に係る場所打ち杭の孔内水位安定化システムを、リバースサーキュレーション工法により場所打ち杭を構築する際に用いる場合で説明する。   The cast-in-place pile water level stabilization system of the present invention is used to maintain the water level of a stable liquid poured to protect the hole wall during drilling of cast-in-place pile holes at a predetermined height. There will be described a case where the in-hole water level stabilization system for a cast-in-place pile according to the embodiment is used when a cast-in-place pile is constructed by a reverse circulation method.

はじめに、図1を用いて、リバースサーキュレーション工法の工程について簡単に説明する。図1は、リバースサーキュレーション工法の工程を説明する説明図であり、(a)〜(h)の順に工程が進む。
先ず、杭構築位置の地表に杭径よりも150mm〜200mm程度大きい外径を有する鋼製管からなるスタンドパイプをバイブロハンマーなどを用いて振動させながら圧入して立設する。
First, the process of the reverse circulation method will be briefly described with reference to FIG. FIG. 1 is an explanatory diagram for explaining the process of the reverse circulation method, and the process proceeds in the order of (a) to (h).
First, a stand pipe made of a steel pipe having an outer diameter larger by 150 mm to 200 mm than the pile diameter is press-fitted and vibrated on a ground surface at a pile construction position using a vibro hammer or the like.

次に、スタンドパイプ内をハンマーグラブなどを用いて先行掘削してスペースを作る。そして、このスペースに掘削用の回転ビット、ドリリングパイプを装備したうえ、スタンドパイプ上端にロータリーテーブルを装着し、このロータリーテーブルを用いて回転ビットを緩やかに回転させて掘り進んで行く。前述のドリリングパイプは、後述の排水管に接続されており、このドリリングパイプ内を掘削した土砂が水と一緒に逆循環方式で吸い上げられることにより排土される。   Next, a space is made by excavating the inside of the stand pipe using a hammer grab or the like. Then, a rotary bit for drilling and a drilling pipe are installed in this space, and a rotary table is mounted on the upper end of the stand pipe, and the rotary bit is slowly rotated using this rotary table. The above-described drilling pipe is connected to a drain pipe described later, and the earth and sand excavated in this drilling pipe is discharged by sucking up with water in a reverse circulation manner.

杭孔の掘削が完了すると、鉄筋籠を吊り込んで挿入し、スライム処理を施した後、トレミー管を用いて底部からコンクリートを打設し、スタンドパイプを引き抜いた後、杭頭上方の空間を土砂等で埋め戻すことで場所打ちコンクリート杭が構築される手順となっている。   When the excavation of the pile hole is completed, the rebar is suspended and inserted, subjected to slime treatment, concrete is laid from the bottom using a tremy tube, the stand pipe is pulled out, and the space above the pile head is removed. Cast-in-place concrete piles are constructed by backfilling with earth and sand.

このようにリバースサーキュレーション工法により場所打ち杭を構築する場合は、地下水位と水頭差が原則2.0m以上となるように安定液の水位を保つことで、その静水圧を0.02N/mm以上に保って地下水流入を防ぎ、杭孔の孔壁を保護することが必要であり、本実施の形態に係る場所打ち杭の孔内水位安定化システムは、この安定液の水位管理に用いられるものである。 Thus, when a cast-in-place pile is constructed by the reverse circulation method, the hydrostatic pressure is maintained at 0.02 N / mm by maintaining the water level of the stabilizing liquid so that the difference between the groundwater level and the water head is 2.0 m or more in principle. It is necessary to prevent the inflow of groundwater by maintaining at least 2 and protect the hole wall of the pile hole. The in-hole water level stabilization system for cast-in-place piles according to this embodiment is used for water level management of this stabilizing liquid. It is

次に、実施の形態に係る場所打ち杭の孔内水位安定化システムの全体構成を、図2を用いて説明する。
本実施の形態に係る場所打ち杭の孔内水位安定化システム1は、孔内水位制御システム2と、孔内水位監視システム3とから主に構成され、場所打ち杭の掘削孔内の安定液の水位を管理して安定化させる機能を有している。
Next, the whole structure of the in-hole water level stabilization system of the cast-in-place pile which concerns on embodiment is demonstrated using FIG.
The in-hole water level stabilization system 1 for a cast-in-place pile according to the present embodiment is mainly composed of an in-hole water level control system 2 and an in-hole water level monitoring system 3, and the stabilizing liquid in the bored hole of the cast-in-place pile. It has a function to control and stabilize the water level.

(孔内水位制御システム)
孔内水位制御システム2は、掘削孔H内に安定液を供給する供給手段4と、掘削孔H底部から水と一緒に掘削土砂を揚重・排出する排出手段5と、掘削孔H内の安定液の水位を検知する水位検知手段6と、これらを制御する制御手段7などから構成され、掘削孔H内の安定液の水位を制御して安定化させる機能を有している。
(In-hole water level control system)
The borehole water level control system 2 includes a supply means 4 for supplying a stable liquid into the excavation hole H, a discharge means 5 for lifting and discharging excavated sediment together with water from the bottom of the excavation hole H, and an inside of the excavation hole H. It is composed of a water level detection means 6 for detecting the level of the stable liquid and a control means 7 for controlling these, and has a function of controlling and stabilizing the level of the stable liquid in the excavation hole H.

供給手段4は、安定液を貯留する安定液槽40と、この安定液槽40から安定液を杭孔H内に送り出す第1の給水ポンプ41と、第2の給水ポンプ42と、これらの給水ポンプ41,42から杭の掘削孔H内まで給水・送泥する供給経路である第1の給水管43,第2の給水管44などから構成されている。   The supply means 4 includes a stabilizing liquid tank 40 that stores the stabilizing liquid, a first water supply pump 41 that sends the stabilizing liquid from the stabilizing liquid tank 40 into the pile hole H, a second water supply pump 42, and these water supplies It comprises a first water supply pipe 43, a second water supply pipe 44, and the like that are supply paths for supplying water and mud from the pumps 41 and 42 into the excavation hole H of the pile.

第1の給水ポンプ41と、第2の給水ポンプ42は、単純な電源のON/OFF動作のみで駆動・停止する、泥水を送り出すことが可能な一般的な給水ポンプであり、図に示すように、停電時に使用する発電機と通常使用する商用電源とを切り換える電源切換盤にポンプ起動盤を介して接続されており、万が一停電になった場合でも一定時間安定液の供給が行なえる仕組みとなっている。なお、このポンプ起動盤は、少ない電力でポンプのモーターを起動させることができる装置である。   The first water supply pump 41 and the second water supply pump 42 are general water supply pumps that can be driven / stopped only by a simple ON / OFF operation of a power source and can send out muddy water, as shown in the figure. In addition, it is connected to a power switching board that switches between a generator to be used at the time of a power failure and a commercial power supply that is normally used via a pump start-up panel, so that even if a power failure occurs, a stable liquid can be supplied for a certain period of time. It has become. In addition, this pump starting board is an apparatus which can start the motor of a pump with little electric power.

給水管43,44は、安定液槽40から杭孔H内へ通じる管である点では共通するが、本実施の形態では、第1の給水ポンプ41と第1の給水管43がメインの供給手段となっており、第2の給水ポンプ42及び第2の給水管44は、補助の供給手段となっている。
また、第1の給水管43には、特に電動弁等は設けられていないが、第2の給水管44には、給水方向先端側に電動弁44aが設けられ、給水方向基端側である給水ポンプ42付近に逆止弁44bが設けられている。
Although the water supply pipes 43 and 44 are common in that they are pipes that lead from the stabilizing liquid tank 40 into the pile hole H, in the present embodiment, the first water supply pump 41 and the first water supply pipe 43 are the main supply. The second water supply pump 42 and the second water supply pipe 44 are auxiliary supply means.
The first water supply pipe 43 is not particularly provided with an electric valve or the like, but the second water supply pipe 44 is provided with an electric valve 44a on the water supply direction front end side, which is on the water supply direction base end side. A check valve 44 b is provided in the vicinity of the water supply pump 42.

この電動弁44aは、弁の開閉量を調整して供給量を調節できる構成でも構わないが、泥が詰まって動作不良になることを考慮し、本実施の形態では、後述の制御手段7の指令により動作する、全開又は全閉のみのシンプルな電磁弁から構成されている。   The motor-operated valve 44a may be configured to be able to adjust the supply amount by adjusting the opening / closing amount of the valve. However, in consideration of the fact that mud becomes clogged and malfunctions, in this embodiment, the control means 7 described later is used. It consists of a simple solenoid valve that operates by command and is only fully open or fully closed.

このように第2の給水管44は、泥水の給水方向先端側に電動弁44aが、給水方向基端側に逆止弁44bが設けられているため、常時管内を安定液で満たすことが可能となっており、後述の制御手段7の指令で電動弁44aを開放すると、タイムラグが殆ど無く即座に安定液を掘削孔H内に送泥することが可能となっている。   As described above, the second water supply pipe 44 is provided with the electric valve 44a on the distal end side in the muddy water supply direction and the check valve 44b on the proximal end side in the water supply direction. Thus, when the motor-operated valve 44a is opened by a command from the control means 7 described later, there is almost no time lag, and the stabilizing liquid can be immediately fed into the excavation hole H.

排出手段5は、前述のドリリングパイプを通じて掘削土砂と泥水とを一緒に吸引・揚重する排水ポンプ50と、ドリリングパイプ上端に接続され、図示しない土砂分離機までの泥水の排出経路である排水管51と、から主に構成されている。
この排水ポンプ50は、サクションポンプと呼ばれる大型の自吸式ポンプであり、後述の制御手段7からの指令で動作する電動弁50aで、ポンプ吸引側にエアーを混入してその分泥水の吸い上げ量を減少させることにより、泥水の吸い上げ量を調整可能となっている。
なお、自吸式ポンプに備えられたバキュームポンプ(真空ポンプ)に接続する系統の一部を大気に開放して吸気圧を弱くすることにより、泥水の吸い上げ量を調整する構成とすることもできる。
The discharge means 5 includes a drainage pump 50 that sucks and lifts the excavated sediment and mud together through the drilling pipe, and a drainpipe that is connected to the upper end of the drilling pipe and serves as a mud drainage path to a sediment separator (not shown). 51.
This drainage pump 50 is a large self-priming pump called a suction pump, and is an electric valve 50a that operates in response to a command from the control means 7 described later. The amount of muddy water sucked up can be adjusted.
In addition, it can also be set as the structure which adjusts the amount of sucking up of muddy water by releasing a part of the system | strain connected to the vacuum pump (vacuum pump) with which the self-priming pump was equipped to air | atmosphere, and making intake pressure weak. .

水位検知手段6は、後述の制御手段7に接続する水位センサ60などからなり、この水位センサ60は、レーザ光線を水面に照射して、反射して返ってくるまでの時間に基づいて水位を測定するレーザ式センサである。
勿論、従来のフロート式、超音波式、静電容量式、圧力式、電極式などの他の方式の水位センサであっても構わないが、後述のフィードバック制御に用いられる所定時間ごとに所定の計測レベル範囲内でリアルタイムの安定液の水位を計測可能であることが要求される。
なお、安定液に清水を使用する場合は、レーザ式だと計測精度が落ちるためフロート式、超音波式等の他の方式の水位センサを用いるとよい。
The water level detection means 6 comprises a water level sensor 60 connected to the control means 7 described later. This water level sensor 60 irradiates the water surface with a laser beam and reflects the water level based on the time it takes to reflect back. It is a laser type sensor to measure.
Of course, other water level sensors such as the conventional float type, ultrasonic type, capacitance type, pressure type, electrode type, etc. may be used. It is required to be able to measure the water level of the stable liquid in real time within the measurement level range.
In addition, when using fresh water for a stable liquid, since a measurement accuracy falls if it is a laser type, it is good to use the water level sensor of other systems, such as a float type and an ultrasonic type.

制御手段7は、マイクロプロセッサを有するPLC(programmable logic controller)などからなる親子2つの制御盤70,71から主に構成され、所定のプログラムに従って、前述の供給手段4、排出手段5、水位検知手段6を制御して、安定液の水位を制御する機能を有している。制御盤が親子2局に分かれているのは、背景技術で述べたように駅周辺や都心近郊などの現場において、前述の土砂分離機(図示せず)、安定液槽40、給水ポンプ41,42などが配置された泥水プラント設置場所と、場所打ち杭の施工位置とが離れている場合に対応するためである。   The control means 7 is mainly composed of two control panels 70 and 71 composed of a PLC (programmable logic controller) having a microprocessor or the like, and according to a predetermined program, the supply means 4, the discharge means 5, and the water level detection means described above. 6 to control the water level of the stabilizing liquid. As described in the background art, the control panel is divided into two parent and child stations, such as the above-mentioned earth and sand separator (not shown), the stable liquid tank 40, the feed pump 41, This is to cope with a case where the location of the muddy water plant where 42 is placed and the construction position of the cast-in-place pile are separated.

制御盤70,71は、それぞれ無停電電源装置を介して前述の電源切換盤に接続されており、電源切換盤で停電時に商用電源から発電機に切り換える際の時間も安定して電源供給を受けられるようになっている。
この親局制御盤70は、前述の第2の給水管44の電動弁44aと、排水ポンプ50の電動弁50aと、水位センサ60とに接続され、これらを制御し、子局制御盤71は、ポンプ起動盤に接続され、このポンプ起動盤を通じて第1の給水ポンプ41と第2の給水ポンプ42を制御する構成となっている。そして、親局制御盤70と子局制御盤71は、互いに接続され、親局制御盤70の指令に基づいて連携して制御可能となっている。
The control panels 70 and 71 are each connected to the above-mentioned power switching board via an uninterruptible power supply, and the power switching board is stably supplied with power even when switching from a commercial power source to a generator in the event of a power failure. It is supposed to be.
The master station control panel 70 is connected to and controls the electric valve 44a of the second water supply pipe 44, the electric valve 50a of the drainage pump 50, and the water level sensor 60. The first water supply pump 41 and the second water supply pump 42 are controlled through the pump starter panel. The master station control board 70 and the slave station control board 71 are connected to each other and can be controlled in cooperation based on a command from the master station control board 70.

また、制御盤70,71には、緑、黄、赤色の3色のランプを点灯・消灯可能な状態表示灯72、73がそれぞれ接続され、後述の動作に従って安定液の水位の状態等を表示可能となっている。
なお、制御盤としてPLCを例に挙げて説明したがPC(Personal Computer)などのコンピュータでも代替可能である。しかし、比較的大電流である動力電源を制御するため、PLCの方が、安全性、安定性が高くて好ましい。
The control panels 70 and 71 are connected to status indicator lights 72 and 73 that can turn on / off the three color lamps of green, yellow, and red, respectively, and display the state of the level of the stable liquid according to the operation described later. It is possible.
In addition, although PLC was mentioned as an example and demonstrated as a control board, it can substitute also with computers, such as PC (Personal Computer). However, the PLC is preferable because it controls a power source having a relatively large current because it has higher safety and stability.

(孔内水位監視システム)
次に、孔内水位監視システム3について説明する。
孔内水位監視システム3は、水位検知手段8と、その制御手段9などから構成され、杭孔H内の水位を監視するとともに、異常時に予め定めた所定のメールアドレスに警報メールを発信する機能を有している。
この水位検知手段8は、前述の水位センサ60と同構成の水位センサ80などからなり、前述の水位センサ60と併せてダブルチェックすることで、孔H内の水位検知の正確性を期している。なお、更に、正確性を期すため、所定の水位を超えたか否かのみ検知可能な故障しにくい電極方式の水位計を別途設け、この水位計で後述の警戒水位などの所定の絶対水位を検知するようにしてもよい。
(In-hole water level monitoring system)
Next, the in-hole water level monitoring system 3 will be described.
The in-hole water level monitoring system 3 is composed of a water level detection means 8 and its control means 9 and the like, and monitors the water level in the pile hole H and transmits an alarm mail to a predetermined mail address determined in advance when an abnormality occurs. have.
The water level detection means 8 includes a water level sensor 80 having the same configuration as the water level sensor 60 described above, and double-checks together with the water level sensor 60 described above to ensure the accuracy of detection of the water level in the hole H. . In addition, for the sake of accuracy, an electrode-type water level meter that can detect only whether or not a predetermined water level has been exceeded is provided separately, and this water level meter detects a predetermined absolute water level such as a warning water level described later. You may make it do.

制御手段9は、所定のプログラムがインストールされた一般的なノート型のPC90からなり、このPC90は、無停電電源装置を介して前述の電源切換盤に接続されている。また、PC90は、水位センサ80に接続され、水位センサ80の発信する電気信号から水位を割り出し、記憶装置に記憶するとともに、工事担当者などの所定の工事関係者のメールアドレス等(携帯電話を含む)を記憶し、水位センサ80が孔内水位が後述の警戒水位以下となったことを検知した場合に警報メールを一斉発信するようになっている。
なお、PC90と親局制御盤70とは、双方向通信可能に接続され、互いに水位センサ60,80の計測値が入力可能となっている。
The control means 9 is composed of a general notebook type PC 90 in which a predetermined program is installed, and this PC 90 is connected to the above-described power supply switching board via an uninterruptible power supply. Further, the PC 90 is connected to the water level sensor 80, calculates the water level from the electric signal transmitted from the water level sensor 80, stores it in the storage device, and the e-mail address of a predetermined construction person such as a construction worker (cell phone). And the water level sensor 80 broadcasts an alarm mail when the water level sensor 80 detects that the water level in the hole is below the warning water level described below.
The PC 90 and the master station control panel 70 are connected so as to be capable of bidirectional communication, and the measurement values of the water level sensors 60 and 80 can be input to each other.

次に、図2を用いて孔内水位安定化システム1の動作について説明する。
(通常時)
通常時の孔内水位安定化システム1は、制御手段7により、孔内水位制御システム2の水位センサ60から得られる孔内水位の計測値と目標水位との偏差に基づいて、第1の給水ポンプ41の制御時間あたりの駆動時間(duty比)を算出し、ON/OFFの間欠運転で制御(PWM制御)するとともに、排水ポンプ50の電動弁50aを制御してバルブの開度を変更することで所望の排出量に調整する。
なお、この目標水位は、地下水位との水頭差が原則2.0m以上となるように杭の高さや掘削位置の地下水位、地質などを総合的に勘案して設定される。
Next, the operation of the in-hole water level stabilization system 1 will be described with reference to FIG.
(Normal time)
The normal water level stabilization system 1 in the normal state uses the first water supply based on the deviation between the measured value of the water level in the hole obtained from the water level sensor 60 of the water level control system 2 in the hole and the target water level by the control means 7. The drive time (duty ratio) per control time of the pump 41 is calculated and controlled by intermittent ON / OFF operation (PWM control), and the motor valve 50a of the drainage pump 50 is controlled to change the valve opening. To adjust to the desired amount of discharge.
The target water level is set by comprehensively considering the height of the piles, the groundwater level at the excavation position, the geology, etc. so that the head difference from the groundwater level is 2.0 m or more in principle.

これらの制御・調整は、水位センサ60により所定時間ごとに孔内水位を計測することでフィードバックしながら継続運転される。このように、第1の給水ポンプ41や排水ポンプ50の制御は、計測値と目標水位との偏差に基づいてフィードバック制御すればよいが、本実施例に係る孔内水位安定化システム1では、安定液の水位が目標水位付近で安定するようPID制御により制御されている。   These controls / adjustments are continuously operated while feedback is provided by measuring the water level in the hole at predetermined intervals by the water level sensor 60. As described above, the control of the first water supply pump 41 and the drainage pump 50 may be feedback control based on the deviation between the measured value and the target water level. In the in-hole water level stabilization system 1 according to the present embodiment, It is controlled by PID control so that the water level of the stabilizing liquid is stabilized near the target water level.

つまり、制御手段7により、水位センサ60の計測水位と目標水位との偏差の一次関数に基づいて供給量、排出量を算出し(比例動作)、この供給・排出動作でも依然として目標水位まで達しない残留偏差を矯正するため、偏差の積分値に比例するように矯正値を算出し(積分動作)、この矯正値によるオーバーシュートなどを防止するため、供給・排出量の変化の大きさに比例した補正値を算出し(微分動作)、これらの合計値に実際の供給量、排出量がなるように、第1の給水ポンプ41の間欠運転、排水ポンプ50の電動弁50aを制御している。
このため、積分動作や微分動作により実際の安定液の水位を目標水位近傍で推移させることができ、安定した水位制御が可能となる。
That is, the control means 7 calculates the supply amount and discharge amount based on a linear function of the deviation between the measured water level of the water level sensor 60 and the target water level (proportional operation), and the target water level still does not reach even in this supply / discharge operation. In order to correct the residual deviation, the correction value is calculated to be proportional to the integral value of the deviation (integration operation), and in order to prevent overshoot due to this correction value, it is proportional to the magnitude of the change in supply / discharge amount. The correction value is calculated (differentiation operation), and the intermittent operation of the first water supply pump 41 and the motor-operated valve 50a of the drainage pump 50 are controlled so that the actual supply amount and discharge amount are equal to these total values.
For this reason, the actual water level of the stable liquid can be shifted in the vicinity of the target water level by the integral operation and the differential operation, and stable water level control is possible.

このような通常時は、本実施例の孔内水位安定化システム1は、制御盤70,71からの指令により前述の状態表示灯72,73に緑のランプを点灯させ、異常がない旨の表示をする。   In such a normal time, the in-hole water level stabilization system 1 according to the present embodiment turns on the green lamps on the above-described status display lamps 72 and 73 in response to a command from the control panels 70 and 71, indicating that there is no abnormality. Display.

(水位低下時)
本実施例の孔内水位安定化システム1は、水位センサ60の計測水位と目標水位との偏差が所定値より大きくなったとき、或いは、この偏差の拡大速度が速く(拡大の角度が大きく)なったとき、即ち、偏差の時間による微分値が所定値より大きくなったときは、制御手段7は、水位低下時と判断し、以下の動作を行う指令を出す。
(When water level drops)
In the in-hole water level stabilization system 1 of the present embodiment, when the deviation between the measured water level of the water level sensor 60 and the target water level is larger than a predetermined value, or the speed of expansion of the deviation is fast (the angle of expansion is large). When the differential value due to the deviation time becomes larger than a predetermined value, the control means 7 determines that the water level is low and issues a command to perform the following operation.

子局制御盤71により補助供給手段である第2の給水ポンプ42をポンプ起動盤を通じて駆動させるとともに、親局制御盤70により電動弁44aを開放し、電動弁50aを制御して排出量減少させる。また、親局制御盤70、子局制御盤71それぞれから指令を発して状態表示灯72,73に黄色のランプを点灯させ、作業員及び工事担当者に孔内水位が低下している旨を知らせる。   The slave station control panel 71 drives the second water supply pump 42 as auxiliary supply means through the pump activation panel, and the master station control panel 70 opens the electric valve 44a and controls the electric valve 50a to reduce the discharge amount. . In addition, a command is issued from each of the master station control panel 70 and the slave station control panel 71 to turn on the yellow lamps on the status display lamps 72 and 73 to inform the worker and the construction staff that the water level in the hole has decreased. Inform.

(異常時)
また、本実施例の孔内水位安定化システム1は、水位センサ60の計測水位が基準水位を下回った場合、第1の給水ポンプ41、第2の給水ポンプ42を駆動させた状態のまま排水ポンプ50を停止し、状態表示灯72,73にそれぞれ赤色のランプを点灯させる。
この基準水位は、地下水位などから作業中止の基準として定められた水位であり、赤ランプの点灯を見た作業員及び工事担当者は、掘削などの他の作業を中止し、孔内水位の回復を最優先とする。
(When abnormal)
In addition, the in-hole water level stabilization system 1 according to the present embodiment allows the first water supply pump 41 and the second water supply pump 42 to remain in a driven state when the measured water level of the water level sensor 60 falls below the reference water level. The pump 50 is stopped, and the status lamps 72 and 73 are turned on with red lamps, respectively.
This reference water level is the water level set as the standard for canceling work from the groundwater level, etc., and workers and construction personnel who have seen the red lamps cease other work such as excavation and Restoration is the top priority.

更に、水位センサ60の計測水位が基準水位より下の警戒水位を下回った場合、前述の孔内水位監視システム3により、工事関係者に警報メールが一斉発信される。警報メールを受け取った工事関係者は、関係各署に連絡するとともに、公衆の安全確保を図る。また、水位低下の原因を究明し、対策を講じ、周辺地盤への影響の有無を確認する。   Furthermore, when the water level measured by the water level sensor 60 falls below the warning water level below the reference water level, the above-mentioned water level monitoring system 3 in the hole sends a warning mail all at once to construction personnel. The construction personnel who received the warning mail will contact the relevant stations and ensure the safety of the public. Also, investigate the cause of the water level drop, take countermeasures, and confirm whether there is any impact on the surrounding ground.

なお、孔内水位制御システム2の水位センサ60と、孔内水位監視システム3の水位センサ80との計測値に相違が生じた場合、状態表示灯72,73を点滅させるなどして、通知するようにする。このような場合、各水位センサを点検する。   In addition, when a difference arises in the measured value of the water level sensor 60 of the in-hole water level control system 2 and the water level sensor 80 of the in-hole water level monitoring system 3, the status display lights 72 and 73 are notified by blinking. Like that. In such a case, check each water level sensor.

このような実施の形態に係る場所打ち杭の孔内水位安定化システム1によれば、制御手段7により水位センサ60の測定水位と目標水位との偏差の増減から安定液の水位が低下したと判断してから補助の供給手段である第2の給水ポンプ42や電動弁44aを駆動させても、電動弁44aが掘削孔H近傍にあり、且つ、第2の排水管44内に安定液を貯留しているため、第2の排水管44内に貯留していた安定液を直ぐに掘削孔H内に供給可能であり、安定液の急激な水位の変動にも対応することができる。このため、地下水位が高い現場や杭孔を掘削する位置と安定液の貯留槽の設置位置とが離れている現場であっても、安定液が地表に溢れたり安定液の水位が下がり過ぎて孔壁崩壊のおそれが高まったりすることがなく、杭孔内の安定液の水位を安定させることができる。   According to the in-hole water level stabilization system 1 of the cast-in-place pile according to such an embodiment, the level of the stable liquid is lowered by the control means 7 due to the increase / decrease in the deviation between the measured water level of the water level sensor 60 and the target water level. Even if the second water supply pump 42 or the motorized valve 44a, which is an auxiliary supply means, is driven after the determination, the motorized valve 44a is in the vicinity of the excavation hole H and the stabilizing liquid is supplied into the second drainage pipe 44. Since it is stored, the stable liquid stored in the second drain pipe 44 can be immediately supplied into the excavation hole H, and it is possible to cope with a sudden fluctuation in the water level of the stable liquid. For this reason, even if the site where the groundwater level is high or the location where the pile hole is excavated is far from the location where the stabilizing liquid storage tank is installed, the stabilizing liquid overflows the ground surface or the level of the stabilizing liquid drops too low. The fear of the hole wall collapse does not increase, and the level of the stabilizing liquid in the pile hole can be stabilized.

以上のように、この発明の一実施の形態に係る孔内水位安定化システムを説明したが、孔内水位制御システム2の供給手段4、排出手段5、水位検知手段6、制御手段7などは、特許請求の範囲で他の既知の手段と代替可能であり、孔内水位監視システム3自体がなくても孔内水位安定化システムを稼動させることは可能である。   As described above, the in-hole water level stabilization system according to the embodiment of the present invention has been described. However, the supply means 4, the discharge means 5, the water level detection means 6, the control means 7 and the like of the in-hole water level control system 2 are as follows. In addition, the present invention can be replaced with other known means in the scope of claims, and it is possible to operate the in-hole water level stabilization system without the in-hole water level monitoring system 3 itself.

特に、供給手段4をメインの供給手段と補助の供給手段とからなるものを例示して説明したが、1つの供給手段としてもよいし、3つ以上の供給手段に分けても構わない。要するに、緊急時(異常時)を想定して十分な供給量を有する供給手段であり、少なくともいずれかの供給手段のうちの一つにおいて、給水管の基端側(給水ポンプ近傍)に逆止弁が設けられ、先端側(杭孔近傍)に電動弁が設けられていればよい。   In particular, the supply means 4 has been described by exemplifying a main supply means and an auxiliary supply means. However, the supply means 4 may be one supply means or may be divided into three or more supply means. In short, it is a supply means that has a sufficient supply amount in case of an emergency (in the event of an abnormality), and at least one of the supply means is non-returned to the proximal end of the water supply pipe (near the water supply pump). It is only necessary that a valve is provided and an electric valve is provided on the tip side (near the pile hole).

また、安定液の水位が目標値より下回る場合で説明したが、同様に、地下水位の流入が止まらず、目標水位を上回ってしまう場合でも、基準水位、警戒水位をそれぞれ目標水位より所定上方に設定することで対応することが可能である。   In addition, although the case where the level of the stabilizing liquid is lower than the target value has been described, similarly, even if the inflow of the groundwater level does not stop and exceeds the target level, the reference water level and the warning water level are respectively set above the target level. It is possible to respond by setting.

1 孔内水位安定化システム
2 孔内水位制御システム
4 供給手段
40 安定液槽
41 (第1の)給水ポンプ
42 (第2の)給水ポンプ
43 (第1の)給水管(供給経路)
44 (第2の)給水管(供給経路)
44a 電動弁
44b 逆止弁
5 排出手段
50 排水ポンプ
51 排水管(排出経路)
6 水位検知手段
60 水位センサ
7 制御手段
3 孔内水位監視システム
8 水位検知手段
80 水位センサ
9 制御手段
DESCRIPTION OF SYMBOLS 1 In-hole water level stabilization system 2 In-hole water level control system 4 Supply means 40 Stabilizing liquid tank 41 (1st) feed pump 42 (2nd) feed pump 43 (1st) feed pipe (supply path)
44 (second) water supply pipe (supply path)
44a Motorized valve 44b Check valve 5 Discharge means 50 Drain pump 51 Drain pipe (discharge path)
6 Water level detection means 60 Water level sensor 7 Control means 3 In-hole water level monitoring system 8 Water level detection means 80 Water level sensor 9 Control means

Claims (5)

場所打ち杭の掘削孔に安定液を供給する供給手段と、前記掘削孔から掘削土砂とともに泥水を排出する排出手段と、前記杭孔内に供給した安定液の水位を検知する水位検知手段と、これらを制御する制御手段と、を備えた場所打ち杭の孔内水位安定化システムにおいて、
前記供給手段は、安定液を貯留する安定液槽と、この安定液槽から安定液を杭孔内に送り出す給水ポンプと、安定液槽から杭孔内まで達する供給経路と、を有し、この供給経路の給水ポンプ側となる基端近傍に逆止弁を設けるとともに、杭孔側となる先端近傍に電動弁を設け、前記両弁間の供給経路内に安定液を貯留可能としたことを特徴とする場所打ち杭の孔内水位安定化システム。
A supply means for supplying a stable liquid to the excavation hole of the cast-in-place pile, a discharge means for discharging muddy water together with excavated sediment from the excavation hole, a water level detection means for detecting the level of the stable liquid supplied into the pile hole, In the in-hole water level stabilization system of the cast-in-place pile provided with a control means for controlling these,
The supply means has a stabilizing liquid tank for storing the stabilizing liquid, a feed water pump for sending the stabilizing liquid from the stabilizing liquid tank into the pile hole, and a supply path reaching from the stabilizing liquid tank to the inside of the pile hole. A check valve is provided in the vicinity of the base end on the supply water pump side of the supply path, and an electric valve is provided in the vicinity of the tip on the pile hole side, so that the stable liquid can be stored in the supply path between the valves. In-hole water level stabilization system for cast-in-place piles.
請求項1に記載の場所打ち杭の孔内水位安定化システムにおいて、
第2の供給手段を備え、この第2の供給手段は、安定液槽から安定液を杭孔内に送り出す第2の給水ポンプと、安定液槽から杭孔内まで達する第2の供給経路と、を有することを特徴とする場所打ち杭の孔内水位安定化システム。
In the in-hole water level stabilization system of the cast-in-place pile according to claim 1,
The second supply means includes a second water supply pump that feeds the stable liquid from the stabilizing liquid tank into the pile hole, and a second supply path that reaches from the stable liquid tank to the inside of the pile hole. In-situ water level stabilization system for cast-in-place piles, characterized by comprising:
請求項1又は2に記載の場所打ち杭の孔内水位安定化システムにおいて、
前記制御手段は、前記水位検知手段で検知した測定水位に基づいて前記供給手段の供給量及び前記排出手段の排出量をフィードバック制御することを特徴とする場所打ち杭の孔内水位安定化システム。
In the in-hole water level stabilization system for cast-in-place piles according to claim 1 or 2,
The control means feedback-controls the supply amount of the supply means and the discharge amount of the discharge means based on the measured water level detected by the water level detection means.
請求項3に記載の場所打ち杭の孔内水位安定化システムにおいて、
前記フィードバック制御はPID制御であることを特徴とする場所打ち杭の孔内水位安定化システム。
In the in-hole water level stabilization system for cast-in-place piles according to claim 3,
The in-hole water level stabilization system for cast-in-place piles, wherein the feedback control is PID control.
請求項1ないし4のいずれかに記載の場所打ち杭の孔内水位安定化システムにおいて、
前記制御手段は、商用電源と発電機との切り換えが可能な電源切換盤から無停電電源装置を介して電源供給されていることを特徴とする場所打ち杭の孔内水位安定化システム。
In the in-hole water level stabilization system of a cast-in-place pile according to any one of claims 1 to 4,
The in-hole water level stabilization system for cast-in-place piles, wherein the control means is supplied with power via an uninterruptible power supply from a power switching board capable of switching between a commercial power source and a generator.
JP2011198035A 2011-09-12 2011-09-12 In-hole water level stabilization system for cast-in-place piles Active JP5356478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198035A JP5356478B2 (en) 2011-09-12 2011-09-12 In-hole water level stabilization system for cast-in-place piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198035A JP5356478B2 (en) 2011-09-12 2011-09-12 In-hole water level stabilization system for cast-in-place piles

Publications (2)

Publication Number Publication Date
JP2013060707A JP2013060707A (en) 2013-04-04
JP5356478B2 true JP5356478B2 (en) 2013-12-04

Family

ID=48185595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198035A Active JP5356478B2 (en) 2011-09-12 2011-09-12 In-hole water level stabilization system for cast-in-place piles

Country Status (1)

Country Link
JP (1) JP5356478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007261A (en) * 2017-06-27 2019-01-17 鉄建建設株式会社 Control system to stabilize water level in hole for cast-in-place pile
CN109853606B (en) * 2019-04-10 2024-04-02 四川路桥华东建设有限责任公司 Construction system and method for automatically discharging construction slurry of bored pile
CN111593731A (en) * 2020-06-24 2020-08-28 中建四局土木工程有限公司 Gas lift slag returning system and construction method adopting same
CN115012416B (en) * 2022-07-18 2023-01-24 唐山中地地质工程有限公司 Clear hole device of drilling bored concrete pile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194317A (en) * 1986-02-20 1987-08-26 Ohbayashigumi Ltd Highly viscous mud water supply system for mud-water excavation work
JP5249850B2 (en) * 2009-05-13 2013-07-31 ジャパンパイル株式会社 Stabilizing liquid level management device, level management method, and level management system

Also Published As

Publication number Publication date
JP2013060707A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5356478B2 (en) In-hole water level stabilization system for cast-in-place piles
CN109056706A (en) A kind of Karst Geological Landscape poured pile base construction method
JP2014101661A (en) Groundwater level raising system, and groundwater level raising method
JP2009121063A (en) Service well, method of constructing service well, and structure of service well
CN112411530A (en) Construction method for controlling verticality of sea-filling stratum casing secant pile
CN211500533U (en) Hole guiding device for geological static pressure pile in rich thick sand layer
CN116290047B (en) Automatic-monitoring deep foundation pit transverse connection type net-shaped precipitation construction method
CN116676974A (en) Water-pouring construction method for pipe jacking engineering
JP3383157B2 (en) Chemical injection method
JP4861782B2 (en) Ground drilling method
CN107489140B (en) A kind of method of accurate control CFG stake top elevation
CN207525767U (en) A kind of recharge system
JP2019007261A (en) Control system to stabilize water level in hole for cast-in-place pile
CN115787627A (en) Construction method for manually driving cast-in-place pile
CN115821961A (en) Construction method of omnibearing high-pressure rotary spraying deep confined water-stop curtain
CN211690479U (en) Pile top displacement recovery device
JP4111329B2 (en) Pile rotary press-fitting control device
JP6006110B2 (en) Foundation pile construction method
CN110984862A (en) Hole guiding device for geological static pressure pile in rich thick sand layer and construction method
CN112983265A (en) Drilling construction process
CN113006055A (en) Cast-in-situ bored pile construction method
CN217734129U (en) Intelligent alarm control system for slurry water head height of cast-in-situ bored pile
JP5249850B2 (en) Stabilizing liquid level management device, level management method, and level management system
CN217870570U (en) Underground water pumping and draining device for foundation pit dewatering well
CN216275632U (en) Blind hole construction elevation control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250