JPH01187228A - Settling control system for pneumatic caisson - Google Patents

Settling control system for pneumatic caisson

Info

Publication number
JPH01187228A
JPH01187228A JP1052388A JP1052388A JPH01187228A JP H01187228 A JPH01187228 A JP H01187228A JP 1052388 A JP1052388 A JP 1052388A JP 1052388 A JP1052388 A JP 1052388A JP H01187228 A JPH01187228 A JP H01187228A
Authority
JP
Japan
Prior art keywords
excavation
caisson
computer
sinking
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1052388A
Other languages
Japanese (ja)
Other versions
JPH0565658B2 (en
Inventor
Kosuke Takano
高野 耕輔
Nobuyuki Matsui
信行 松井
Yuji Hiramatsu
雄二 平松
Teruo Matsushima
松島 輝男
Kiroku Tezuka
手塚 喜六
Masami Ito
雅美 伊藤
Nobuo Yoshikawa
吉川 信男
Masatoshi Ouchi
正敏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Shiraishi Co Ltd
Original Assignee
Kajima Corp
Shiraishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Shiraishi Co Ltd filed Critical Kajima Corp
Priority to JP1052388A priority Critical patent/JPH01187228A/en
Publication of JPH01187228A publication Critical patent/JPH01187228A/en
Publication of JPH0565658B2 publication Critical patent/JPH0565658B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive unmanned operations with high efficiency at construction site by providing monitors connected to television camera attached to an excavating mechanism and a pneumatic operation room, a computer, and an excavation operating board for the centralized control room of the ground's surface. CONSTITUTION:An excavator mechanism 11 movable along rails 10 is set on the downside of the bottom board 1a of a caisson 1, and an excavator camera 12 and a caisson camera 13 are attached to the downside of the bottom 1a and the mechanism 11. In the centralized control room 26 of the ground's surface, a personal computer 27, a printer 28, an excavation operating board 33, and CRT excavation monitor 30 connected with the cameras 12 and 13 and an operating room monitor 31 are set. The settling and excavating conditions of caisson and the condition of surrounding ground are grasped through various sensors, and data are quickly processed. A series of control and operation can thus be performed only the the centralized control room 26 while watching the screen 30 and 31.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧気下で地下を掘削して地下構造物を構築す
るニューマチックケーソンの沈設管理システムに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a system for managing the submergence of pneumatic caissons for constructing underground structures by excavating underground under pressure.

〔従来の技術とその課題〕[Conventional technology and its issues]

従来ケーソンの施工に際しては沈下機構が理論的に解明
されていないため、沈設手順は施工時のオーダーを概略
的に把握するものであった。
Conventionally, when constructing a caisson, the sinking mechanism had not been theoretically elucidated, so the sinking procedure was based on a rough understanding of the order at the time of construction.

また、各種測定計によって沈下性態を計測するにしても
ケーソン沈下前後の静的データを結果論的に確認するに
過ぎず、工程及び安全管理は経験的に積重ねによる要素
に頼っていた。
In addition, even if the settlement behavior was measured using various measuring instruments, it was only a matter of theoretically confirming the static data before and after the caisson settlement, and process and safety management relied on elements based on experience.

一方、ニューマチックケーソン工法は、ケーソン躯体の
他に止水構造物を必要とせず、沈設が確実でかつ急性し
にくく、また躯体の剛性が大きい長所があり、さらに人
間が掘削盤で作業するため障害物が人為的に処理でき、
また地盤の確認と支持力試験ができる長所をもっている
On the other hand, the pneumatic caisson construction method does not require a water-stop structure in addition to the caisson frame, has the advantage of being reliable and difficult to sink, and has a high rigidity of the frame. Obstacles can be handled artificially,
It also has the advantage of being able to confirm the ground and test its bearing capacity.

しかし、高圧気下の作業であるため、作業員と作業の方
法に医学的その他限定事項がある。すなわち、高圧気の
ため潜函病の発生、高濃度酸素の作業環境にあるため燃
焼し易い状態にあり、また密閉された環境のため有害ガ
ス、酸欠の問題、さらに圧気圧が高くなるほど作業時間
を短縮しなくてはならないため(法的規制がある。)作
業能率が低いなどの短所がある。
However, because the work is under high pressure, there are medical and other limitations on the workers and work methods. In other words, the high-pressure air causes the occurrence of incubation disease, the work environment has high concentrations of oxygen, which makes it easy to burn, and the closed environment causes problems with harmful gases and oxygen deficiency, and the higher the pressure, the shorter the working time. Because the process must be shortened (there are legal regulations), there are disadvantages such as low work efficiency.

前記データによる工程及び安全管理に関しては、出願人
は先に各種センサーによる計測に加えて、沈下量、沈下
速度の制御を行うために掘削パターン、自動調圧沈下を
行う際のエアコントロールを決定し、さらにこれらとコ
ンビエータ処理によりフィードバックする科学的施工管
理と施工手段によって機構の信頬性、姿勢制御等の信頬
性をもたらすことができるケーソンの沈下方法を特願昭
54−53627号(特公昭61−27527号公報)
として提案した。
Regarding process and safety management based on the above data, the applicant has previously determined the excavation pattern to control the amount and speed of subsidence, and the air control when performing automatic pressure regulation subsidence, in addition to measurements using various sensors. Furthermore, we have proposed a caisson sinking method that can bring about reliability of the mechanism and attitude control through scientific construction management and construction methods that feed back these and comviator processing. 61-27527)
proposed as.

また、作業性の問題に関しては、実公昭55−3659
7号公報にケーソン本体の圧気作業室に掘削機構を移動
自在に設は掘削機構により自動的に掘削された土砂を自
動的に地上に排出するようにした潜函装置における自動
土砂掘削排出装置において、ケーソン本体の圧気作業室
本体付近において、その外部に、圧気作業室とは気密で
あってその作業を直接監視し得る大気に通じる運転室を
設けた監視装置が示されている。
Regarding workability issues, please refer to Utility Model Publication No. 55-3659
Publication No. 7 discloses an automatic earth and sand excavation and discharge device in a submersible box device in which an excavation mechanism is movably installed in a pressurized working chamber of a caisson body, and the earth and sand excavated by the excavation mechanism are automatically discharged to the ground. A monitoring device is shown in which an operator's cab is provided outside of the caisson body near the main body of the pressurized air work chamber, which is airtight from the pressurized air work chamber and communicates with the atmosphere so that the work can be directly monitored.

しかし、この実公昭55−36597号公報のものは、
掘削作業は圧気作業室付近の運転室で行うので、前記デ
ータによる施工及び安全管理と連携させることはできな
かった。
However, this Utility Model Publication No. 55-36597,
Since the excavation work is carried out in the operator's room near the pressurized air work room, it was not possible to coordinate the construction and safety management using the above data.

本発明の目的は、作業における完全無人化を実現すると
ともに、一連の管理及び操作を地上の中央管理制御室の
みで行えるようにしてより一層のシステム化が達成でき
るニューマチックケーソンの沈設管理システムを提供す
ることにある。
The purpose of the present invention is to provide a pneumatic caisson submersion management system that achieves complete unmanned operation and allows a series of management and operations to be performed only in a central management control room on the ground, thereby achieving further systemization. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するため、ケーソン本体の圧気
作業室に掘削機構を移動自在に設け、該掘削機構と圧気
作業室内にテレビカメラを取付け、地上の中央管理制御
室には掘削監視モニター画面、作業室監視モニター画面
、コンピュータ、プリンター及び掘削操作盤を設置し、
各種センサーからの検出値をコンピュータに導入してケ
ーソンの抵抗と荷重がバランスした状態の掘削゛パター
ンを算出し、その掘削パターンに従って掘削監視モニタ
ー画面及び作業室監視モニター画面を見ながら掘削操作
盤で掘削機構を遠隔操作し、次に掘削操作盤で送気流量
弁を制御して自動的にケーソンを沈下させ、かつ前記掘
削中の自然沈下中の諸情報をコンピュータ処理し、フィ
トバックして沈下管理をなしつつ前記掘削と自動沈下を
繰返すことを要旨とするものである。
In order to achieve the above object, the present invention provides a movable excavation mechanism in the pneumatic work chamber of the caisson body, a television camera is installed in the excavation mechanism and the pneumatic work chamber, and an excavation monitoring monitor screen is installed in the central control room on the ground. , installed work room monitoring monitor screen, computer, printer and excavation operation panel,
The detection values from various sensors are input into a computer to calculate an excavation pattern in which the resistance and load of the caisson are balanced, and according to the excavation pattern, the excavation operation panel is operated while viewing the excavation monitoring monitor screen and the work room monitoring monitor screen. The excavation mechanism is controlled remotely, and then the air supply flow rate valve is controlled from the excavation control panel to automatically sink the caisson, and the computer processes various information on the natural settlement during excavation to cause phytoback and subsidence. The gist of this is to repeat the excavation and automatic subsidence under controlled conditions.

〔作用〕[Effect]

本発明によれば、たえずニューマチックケーソンの位置
(深度、傾斜、移動)から沈下掘削を管理するので、精
度の良い沈設ができ、また異常発生時、計測結果が即時
フィードバックされるので、トラブルは大きくなる前に
回避されたり、未然に防げる。さらに、ケーソンの沈下
掘削状況と共に周辺地盤の状況が正確に把握でき、その
データはコンピュータで迅速に処理され、沈設に伴う周
辺地盤の沈下も防止でき、常時、ケーソン躯体の位置が
正確に計測されるので、繁雑な測量作業が減らせ、また
、熟練者の勘にたよることなく、コンピュータで最適な
沈下掘削管理ができるので、ケーソン沈設管理の標準化
が図れる。
According to the present invention, since subsidence excavation is constantly managed based on the position (depth, inclination, movement) of the pneumatic caisson, it is possible to perform subsidence excavation with high precision, and when an abnormality occurs, the measurement results are immediately fed back, so troubles can be avoided. It can be avoided or prevented before it grows. Furthermore, the situation of the surrounding ground can be accurately grasped as well as the sinking excavation status of the caisson, and this data is quickly processed by a computer, preventing the surrounding ground from sinking due to sinking, and the position of the caisson frame can be accurately measured at all times. This reduces complicated surveying work, and allows optimal subsidence excavation management to be performed using a computer without relying on the intuition of experts, thereby standardizing caisson sinking management.

しかも、オペレータは中央管理制御室内で掘削操作やエ
アーコントロールを含めたすべての作業を行える。
Moreover, operators can perform all operations, including excavation operations and air control, from within the central management control room.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明のニューマチックケーソンの沈設管理シ
ステムの1実施例を示す説明図で、図中1はケーソン躯
体、laはその底盤、1bは刃先、2は該刃先1bで形
成される圧気作業室である。
FIG. 1 is an explanatory diagram showing one embodiment of the pneumatic caisson sinking management system of the present invention, in which 1 is the caisson frame, la is the bottom plate, 1b is the cutting edge, and 2 is the pressure air formed by the cutting edge 1b. This is a work room.

底盤1aに、マテリアルロック3が接続する穴4と、マ
ンロック5が接続する六6とを設け、さらにコンプレッ
サ7の送気管8端も底盤1a下の圧気作業室2内に開口
する。図中9は、マテリアルロソク3を介して穴4から
圧気作業室2内へ降ろされる排土用パケットである。
A hole 4 to which the material lock 3 is connected and a hole 6 to which the manlock 5 is connected are provided in the bottom panel 1a, and an end of the air supply pipe 8 of the compressor 7 also opens into the pressurized air work chamber 2 below the bottom panel 1a. Reference numeral 9 in the figure indicates a soil removal packet that is lowered into the pressurized air work chamber 2 from the hole 4 via the material candle 3.

以上は従来のニューマチックケーソンと同じであるが、
底盤1aの下面にレール10を設け、このレール10に
沿って掘削機構11を移動自在に設けた。
The above is the same as a conventional pneumatic caisson, but
A rail 10 is provided on the lower surface of the bottom plate 1a, and an excavation mechanism 11 is provided movably along the rail 10.

該掘削機構11は一例としてターンテーブルllaによ
りブームllbが支承されるシャベルタイプのものであ
り、圧気作業室2内の隅々にまで作業範囲が及ぶもので
ある。
The excavation mechanism 11 is, for example, a shovel type in which a boom llb is supported by a turntable lla, and its working range extends to every corner of the pneumatic work chamber 2.

なお、掘削機構11としては他に、サイド力フタを有す
るスクレーバータイプのものや無線又は有線により運転
されるトラクタショベルのごときものを用いてもよい。
In addition, as the excavation mechanism 11, a scraper type mechanism having a side power cover or a tractor shovel operated wirelessly or by wire may be used.

この掘削機構11にテレビカメラによる掘削機カメラ1
2を取付け、また圧気作業室2内で底盤1aの下面にテ
レビカメラによる面内カメラ13を取付ける。
An excavator camera 1 using a television camera is attached to this excavation mechanism 11.
2 is attached, and an in-plane camera 13 including a television camera is attached to the lower surface of the bottom plate 1a in the pressurized air work chamber 2.

第2図は本発明のブロック回路図であるが、先に本発明
で用いるセンサー類を述べると、沈下及び掘削中でのリ
アルタイムに情報を得るものとして、(間隙)水圧計1
4、鉄筋計15、コンクリート応力計16がケーソン躯
体1内に埋設され、さらに、第3図に示すように固定式
傾斜計17、気圧計18、可燃性ガス検知器19や酸素
濃度検出器20、送気温度検出器21、送気流量検出器
22、送気流量発信器23なども設けられる。
Fig. 2 is a block circuit diagram of the present invention. First, to describe the sensors used in the present invention, a (pore) water pressure gauge 1 is used to obtain information in real time during subsidence and excavation.
4. A reinforcing bar gauge 15 and a concrete stress gauge 16 are buried in the caisson frame 1, and as shown in FIG. , an air supply temperature detector 21, an air supply flow rate detector 22, an air supply flow rate transmitter 23, etc. are also provided.

一方、周辺地盤などの状況を把握するものとして、傾斜
計17′や各種沈下計24.24’、変位計25などが
適宜個所に設けられる。
On the other hand, inclinometers 17', various subsidence gauges 24, 24', displacement gauges 25, etc. are provided at appropriate locations to grasp the situation of the surrounding ground.

図中26は地上に設けられる中央管理制御室で、その内
部にはパーソナルコンピュータ27と、これに接続する
プリンタ28、及び前記掘削機カメラ12と同軸ケーブ
ル29で接続するCRTの掘削監視モニター画面30、
面内カメラ13と同じく同軸ケーブル29で接続するC
RTの作業室監視モニター画面31を設置し、さらにこ
れらに掘削機構11を遠隔操作し、また送気管8の途中
に設けた送気流量弁32を開度調整する掘削操作盤33
を隣接した。
In the figure, reference numeral 26 denotes a central management control room installed on the ground, inside which there is a personal computer 27, a printer 28 connected thereto, and a CRT excavation monitoring monitor screen 30 connected to the excavator camera 12 via a coaxial cable 29. ,
C connected with the coaxial cable 29 like the in-plane camera 13
An excavation operation panel 33 is installed with a RT work room monitoring monitor screen 31, which remotely controls the excavation mechanism 11, and also adjusts the opening of the air supply flow rate valve 32 provided in the middle of the air supply pipe 8.
adjacent.

なお、前記パーソナルコンピュータ27は周辺機器とし
てCRT34やフロッピーディスク入出力装置35を有
する。
The personal computer 27 has a CRT 34 and a floppy disk input/output device 35 as peripheral devices.

前記各種センサー類は入力モジュール36を介してコン
ピュータ27と接続され、各情報をコンピュータ27に
入力するが、計測情報の他に掘削機構11の位置、アー
ム角度、パケット角度、旋回角′などや送気流量弁32
の開度などの情報も同様に入力される。
The various sensors are connected to the computer 27 via the input module 36 and input various information to the computer 27, but in addition to measurement information, the position of the excavation mechanism 11, arm angle, packet angle, rotation angle', etc. Air flow valve 32
Information such as the degree of opening is also input in the same way.

第4図は実施の概要を示すフローチャートで、躯体形状
寸法、土質条件、スペック(許容誤差等)および安全関
係法規に基づく作業詩画内圧等がコンピュータ27に予
め設定される(ステソプイ)。
FIG. 4 is a flowchart showing an overview of the implementation, in which the shape and dimensions of the building frame, soil conditions, specifications (tolerances, etc.), internal pressure for work, etc. based on safety-related laws and regulations are preset in the computer 27 (Stesopui).

これらの条件に合わせて沈下及び掘削中時点での各種セ
ンサーでの検出値と土の挙動等の沈下に係わる主なデー
タがコンピュータ27に入力される(ステップ口)。
In accordance with these conditions, main data related to the subsidence, such as values detected by various sensors and soil behavior during subsidence and excavation, are input into the computer 27 (step port).

該コンピュータ27は、これらの各種センサーによる計
測値を物理量に換算し制御値を計算することになる。
The computer 27 converts the measured values from these various sensors into physical quantities and calculates control values.

具体的には、土性値と形状をパラメータとした静的な最
大地盤抵抗力を算定する理論計算、及び当該現場におけ
る前の数ステップで得られたデータを基に、次のステッ
プの諸量を回帰式に基づき外挿的に推定する統計的処理
、さらに多数の実績を基に静的な最大地盤抵抗力を土質
のタイプ別等に層別して見積もる経験方式に基づく計算
が行われる(ステソプハ)。
Specifically, based on theoretical calculations to calculate the static maximum ground resistance using soil properties and shape as parameters, and data obtained in the previous few steps at the site, various quantities for the next step are calculated. Statistical processing is performed to extrapolatively estimate the ground resistance based on a regression formula, and calculations are performed based on an empirical method that estimates static maximum ground resistance stratified by soil type based on a large number of actual results (Stesopha). .

これらの計算の結果、掘削パターンと沈下指示のデータ
がCRT34等に出力される(ステソプニ)。
As a result of these calculations, the excavation pattern and sinking instruction data are output to the CRT 34 or the like (Stesopuni).

沈下調圧指示は、センサー出力により傾斜、沈設速度及
び沈下量等の判定項目が参配され、沈下が過大になりそ
うな場合には減圧停止又は増圧の指示が行われる。
The subsidence pressure adjustment instruction takes into consideration judgment items such as inclination, sinking speed, and subsidence amount based on sensor output, and if the subsidence is likely to become excessive, an instruction to stop depressurization or increase pressure is issued.

また、前記沈下に係わる主なデータは各沈下サイクル毎
に土の移動状況、力学的特性を測定し、次のステップの
ため最も信頬度の高いデータを得るよう構成される。
In addition, the main data related to the settlement is configured to measure the movement status and mechanical properties of the soil for each subsidence cycle, and to obtain the most reliable data for the next step.

以上のコンピュータ27よりCRT34に出力される掘
削パターンにもとづいて、中央管理制御室26内のオペ
レータは、掘削監視モニター画面30及び作業室監視モ
ニター画面31を見ながら、掘削操作盤33で掘削機構
11を操作し、圧気作業室2内の地盤を掘削する。
Based on the excavation pattern output from the computer 27 to the CRT 34, the operator in the central management control room 26 controls the excavation mechanism 11 with the excavation operation panel 33 while looking at the excavation monitoring monitor screen 30 and the work room monitoring monitor screen 31. to excavate the ground inside the pressurized air work chamber 2.

次いで、予測計算の設定値に基づいて掘削操作盤33で
送気流量弁32の開度を調整し、調圧沈下用のエアーコ
ントロールにより自動的にケーソン躯体1を沈下させる
Next, the opening degree of the air supply flow rate valve 32 is adjusted using the excavation operation panel 33 based on the set value of the predicted calculation, and the caisson frame 1 is automatically lowered by the air control for pressure regulation and lowering.

この作業は、過大な沈下量、沈下速度にならないように
、ケーソン躯体1を沈下させるものである(以上ステッ
プホ)。
This work is to sink the caisson frame 1 so as not to cause excessive sinking amount or sinking speed (step E).

ところで、ケーソン躯体1は作業室2内の掘削時におい
ても僅かながら地盤沈下する。そこで掘削中および自動
調圧沈下中の前記各種センサーからえられる諸情報はコ
ンピュータ27の処理よりリアルタイムでフィードバッ
クして沈下管理をなしつつ前記掘削と自動沈下を繰返し
、所定深さにケーソン躯体1を沈設させる。
Incidentally, the caisson frame 1 also sinks slightly when the work chamber 2 is excavated. Therefore, the various information obtained from the various sensors during excavation and automatic pressure regulation settling is fed back in real time from the processing of the computer 27, and the excavation and automatic settling are repeated while managing settlement, and the caisson frame 1 is placed at a predetermined depth. to be submerged.

また、このようにケーソン躯体1の沈下掘削状況の他に
沈下計24.24’や変位計25等から周辺地盤の状況
もコンピュータ27へ入力され、そのデータはコンピュ
ータ27で処理されるので沈設に伴う周辺地盤の沈下も
防止できる。
Furthermore, in addition to the subsidence excavation status of the caisson frame 1, the surrounding ground status is also input to the computer 27 from the subsidence gauge 24, 24', displacement gauge 25, etc., and the data is processed by the computer 27, so that it can be used for sinking. The accompanying subsidence of the surrounding ground can also be prevented.

そして、これらのデータはフロッピーディスクに保存さ
れ、また必要ならばプリンタ28により帳表出力できる
These data are stored on a floppy disk, and can be outputted in a form by the printer 28 if necessary.

[発明の効果〕 以上述べたように本発明のニューマチックケーソンの沈
設管理システムは、各種センサーによる計測に加えて、
沈下量、沈下速度の制御を行うために掘削パターン、自
動調圧沈下を行う際のエアコントロールを決定し、さら
にこれらとコンピュータ処理により科学的施工管理が実
現できるものである。またこの処理結果をもとに同じ中
央管理制御室内で掘削及びエアコントロールの作業を行
えるので、施工現場は全くの無人化とすることができ、
潜函病、火災、有害ガス、酸欠の発生、およびケーソン
事故等による躯体の過性下による人身事故もなくなり、
しかも作業時間を大きくとれるため高能率化を図ること
ができるものである。
[Effects of the Invention] As described above, the pneumatic caisson sinking management system of the present invention, in addition to measurements using various sensors,
In order to control the amount and speed of subsidence, the excavation pattern and air control for automatic pressure regulation subsidence are determined, and these and computer processing enable scientific construction management. In addition, excavation and air control work can be carried out in the same central management control room based on the processing results, so the construction site can be completely unmanned.
Occurrence of incubation disease, fire, toxic gas, oxygen deficiency, and accidents resulting in death due to excessive stress of the structure due to caisson accidents, etc. are eliminated.
Moreover, since the working time can be increased, high efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のニューマチックケーソンの沈下管理シ
ステムの1実施例を示す説明図、第2図は同上ブロック
回路図、第3図は計測系の説明図、第4図は概略を示す
フローチャートである。 1・・・ケーソン躯体  1a・・・底盤lb・・・刃
先     2・・・圧気作業室3・・・マテリアルロ
ック5・・・マンロック4.6・・・穴     7・
・・コンプレッサ8・・・送気管     9・・・排
土用バケット10・・・レール     11・・・掘
削機構11a・・・ターンテーブルllb・・・ブーム
12・・・掘削機カメラ  13・・・面内カメラ14
・・・水圧計     15・・・鉄筋計16・・・コ
ンクリート応力計 17.17’・・・傾斜針 18・・・気圧計     19・・・可燃性ガス検知
器20・・・酸素濃度検出器 21・・・送気温度検出
器22・・・送気流量検出器 23・・・送気流量発信
器24.24’・・・沈下計  25・・・変位計26
・・・中央管理制御室 27・・・パーソナルコンピュータ 28・・・プリンタ    29・・・同軸ケーブル3
0・・・掘削監視モニター画面 31・・・作業室監視モニター画面 32・・・送気流量弁   33・・・掘削操作盤34
・・・CRT 35・・・フロッピーディスク入出力装置36・・・入
力モジュール
Fig. 1 is an explanatory diagram showing one embodiment of the pneumatic caisson settlement management system of the present invention, Fig. 2 is a block circuit diagram of the same as above, Fig. 3 is an explanatory diagram of the measurement system, and Fig. 4 is a flowchart showing an outline. It is. 1... Caisson body 1a... Bottom plate lb... Cutting edge 2... Pressure work chamber 3... Material lock 5... Manlock 4.6... Hole 7.
...Compressor 8...Air pipe 9...Earth removal bucket 10...Rail 11...Excavation mechanism 11a...Turntable llb...Boom 12...Excavator camera 13... In-plane camera 14
...Water pressure gauge 15...Reinforcement gauge 16...Concrete stress meter 17.17'...Inclination needle 18...Barometer 19...Combustible gas detector 20...Oxygen concentration detector 21...Air supply temperature detector 22...Air supply flow rate detector 23...Air supply flow rate transmitter 24.24'...Sinkage meter 25...Displacement meter 26
... Central management control room 27 ... Personal computer 28 ... Printer 29 ... Coaxial cable 3
0... Excavation monitoring monitor screen 31... Working room monitoring monitor screen 32... Air supply flow rate valve 33... Excavation operation panel 34
...CRT 35...Floppy disk input/output device 36...Input module

Claims (1)

【特許請求の範囲】[Claims] ケーソン本体の圧気作業室に掘削機構を移動自在に設け
、該掘削機構と圧気作業室内にテレビカメラを取付け、
地上の中央管理制御室には掘削監視モニター画面、作業
室監視モニター画面、コンピュータ、プリンター及び掘
削操作盤を設置し、各種センサーからの検出値をコンピ
ュータに導入してケーソンの抵抗と荷重がバランスした
状態の掘削パターンを算出し、その掘削パターンに従っ
て掘削監視モニター画面及び作業室監視モニター画面を
見ながら掘削操作盤で掘削機構を遠隔操作し、次に掘削
操作盤で送気流量弁を制御して自動的にケーソンを沈下
させ、かつ前記掘削中の自然沈下および自動沈下中の諸
情報をコンピュータ処理し、フィードバックして沈下管
理をなしつつ前記掘削と自動沈下を繰返すことを特徴と
するニューマチックケーソンの沈設管理システム。
A movable excavation mechanism is installed in the pressurized air work chamber of the caisson body, a television camera is installed in the excavation mechanism and the pressurized air work chamber,
The central management control room on the ground is equipped with an excavation monitoring monitor screen, a work room monitoring monitor screen, a computer, a printer, and an excavation operation panel, and the detected values from various sensors are input into the computer to balance the resistance and load of the caisson. Calculate the current excavation pattern, remotely control the excavation mechanism using the excavation control panel while viewing the excavation monitoring monitor screen and work room monitoring monitor screen according to the excavation pattern, and then control the air supply flow rate valve using the excavation control panel. A pneumatic caisson that automatically sinks the caisson and repeats the excavation and automatic sinking while controlling the sinking by processing and feeding back various information on the natural sinking and automatic sinking by a computer. Submergence management system.
JP1052388A 1988-01-19 1988-01-19 Settling control system for pneumatic caisson Granted JPH01187228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052388A JPH01187228A (en) 1988-01-19 1988-01-19 Settling control system for pneumatic caisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052388A JPH01187228A (en) 1988-01-19 1988-01-19 Settling control system for pneumatic caisson

Publications (2)

Publication Number Publication Date
JPH01187228A true JPH01187228A (en) 1989-07-26
JPH0565658B2 JPH0565658B2 (en) 1993-09-20

Family

ID=11752605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052388A Granted JPH01187228A (en) 1988-01-19 1988-01-19 Settling control system for pneumatic caisson

Country Status (1)

Country Link
JP (1) JPH01187228A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271423A (en) * 1990-03-22 1991-12-03 Daiho Constr Co Ltd Remote operation system for excavating machine for pneumatic caisson
JPH03275810A (en) * 1990-03-23 1991-12-06 Daiho Constr Co Ltd Recovery device for excavator for pneumatic caisson
JP2006348482A (en) * 2005-06-13 2006-12-28 Shiraishi Corp System for automatically adjusting water level in workroom in pneumatic caisson construction method, method and program for managing water level in workroom in pneumatic caisson construction method, and recording medium
EP3418452A1 (en) * 2017-06-19 2018-12-26 Volker Staal en Funderingen BV Mechanized, remote controlled, guided lowering of a pneumatic caisson
JP2019214900A (en) * 2018-06-14 2019-12-19 鹿島建設株式会社 Blade section insertion width measuring device and caisson immersion method
JP2019218728A (en) * 2018-06-18 2019-12-26 鹿島建設株式会社 Cutting edge part intrusion width measurement system and caisson immersion method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115479B2 (en) 2014-01-15 2017-04-19 トヨタ紡織株式会社 Vehicle seat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536597U (en) * 1978-08-31 1980-03-08
JPS6127527A (en) * 1984-07-17 1986-02-07 Canon Inc Pressure plate of camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536597U (en) * 1978-08-31 1980-03-08
JPS6127527A (en) * 1984-07-17 1986-02-07 Canon Inc Pressure plate of camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271423A (en) * 1990-03-22 1991-12-03 Daiho Constr Co Ltd Remote operation system for excavating machine for pneumatic caisson
JPH0684634B2 (en) * 1990-03-22 1994-10-26 大豊建設株式会社 Excavator monitoring system for pneumatic caisson
JPH03275810A (en) * 1990-03-23 1991-12-06 Daiho Constr Co Ltd Recovery device for excavator for pneumatic caisson
JP2006348482A (en) * 2005-06-13 2006-12-28 Shiraishi Corp System for automatically adjusting water level in workroom in pneumatic caisson construction method, method and program for managing water level in workroom in pneumatic caisson construction method, and recording medium
EP3418452A1 (en) * 2017-06-19 2018-12-26 Volker Staal en Funderingen BV Mechanized, remote controlled, guided lowering of a pneumatic caisson
JP2019214900A (en) * 2018-06-14 2019-12-19 鹿島建設株式会社 Blade section insertion width measuring device and caisson immersion method
JP2019218728A (en) * 2018-06-18 2019-12-26 鹿島建設株式会社 Cutting edge part intrusion width measurement system and caisson immersion method

Also Published As

Publication number Publication date
JPH0565658B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
AU2018200482B2 (en) Stress or accumulated damage monitoring system
US20180058046A1 (en) Stress or accumulated damage monitoring system
US5682311A (en) Apparatus and method for controlling a hydraulic excavator
US4888890A (en) Laser control of excavating machine digging depth
RU2553814C2 (en) Device for soil material excavation under water
SE1050635A1 (en) Control system for the tool coupling on an excavator
CN107269274A (en) Tunneling machine cutting control system and control method
US20080010869A1 (en) Underwater dredging system
EP0201503A4 (en) Casting of structural walls.
JPH01187228A (en) Settling control system for pneumatic caisson
US20210293131A1 (en) Drill pipe segment life monitor
JPH03221617A (en) Method for managing execution in pneumatic caisson method
JP4753631B2 (en) Automatic water level management method in the work room in the pneumatic caisson method.
JPH02115492A (en) Drilling machine controller
JPH03241118A (en) Automatic excavator of underground continuous wall
CN115434687A (en) Intelligent adjusting system based on pile driving
JP3018052B2 (en) Solidification material filling method in cast-in-place foundation work, etc.
JPS6127527B2 (en)
JP7358668B1 (en) Material lock automatic control system and program
JPS63189529A (en) Regulation of water level in caisson in pneumatic caisson work
JP4824077B2 (en) Remote automatic operation method and apparatus for earth resistance test equipment
KR100397054B1 (en) Lower angle gauge of loader bucket
JPH0415850B2 (en)
JPH06248630A (en) Trencher excavator
CN117552455A (en) Control mechanism and method for open caisson cutting edge soil sampling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 15

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 15