JPH03221617A - Method for managing execution in pneumatic caisson method - Google Patents

Method for managing execution in pneumatic caisson method

Info

Publication number
JPH03221617A
JPH03221617A JP1679990A JP1679990A JPH03221617A JP H03221617 A JPH03221617 A JP H03221617A JP 1679990 A JP1679990 A JP 1679990A JP 1679990 A JP1679990 A JP 1679990A JP H03221617 A JPH03221617 A JP H03221617A
Authority
JP
Japan
Prior art keywords
excavation
room
pneumatic
work
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1679990A
Other languages
Japanese (ja)
Other versions
JPH0796782B2 (en
Inventor
Mikio Nakagawa
幹雄 中川
Tsutomu Imagawa
勉 今川
Katsumasa Kawamoto
河本 克正
Tatsuro Sato
竜郎 佐藤
Yoshiro Ikeda
池田 芳郎
Toshio Sakuma
佐久間 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Shiraishi Co Ltd
Original Assignee
Kajima Corp
Shiraishi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Shiraishi Co Ltd filed Critical Kajima Corp
Priority to JP2016799A priority Critical patent/JPH0796782B2/en
Publication of JPH03221617A publication Critical patent/JPH03221617A/en
Publication of JPH0796782B2 publication Critical patent/JPH0796782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To precisely carry out the remote control of a drilling unit in a pressurized air operation room by analyzing the measured data of an ultrasonic sensor mounted on the drilling unit by a computer in a management control room and jointly using along with a monitor TV. CONSTITUTION:TV cameras 16, 17 are installed in a drilling unit and a pressurized air operation room and a plurality of distance measuring sensors such as ultrasonic sensors 18A-18D, 19, etc., are mounted on the drilling unit. Distance measurement is performed as the drilling unit is traveled, the measured data thereby are analyzed by a computer 27 in a management control room on a land to graphically indicate high and low difference of the faces of drilling in the pressurized air operation room. Monitor TV's 30, 31 installed in the management control room are used together with it to grasp the drilling conditions so that the drilling unit is remote controlled safely and precisely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ニューマチックケーソン工法における圧気作
業室内の掘削装置の制御や掘削個所の判断を行うための
施工管理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a construction management method for controlling an excavation device in a pressurized work chamber and determining excavation locations in a pneumatic caisson construction method.

(従来の技術) 周知のごとくニューマチックケーソン工法は、作業室内
への水の侵入を空気の圧力で防く原理を利用した工法で
あり、ケーソンを形成する函体底部に気密な作業室を設
置し、ここに圧縮空気を送り込むことにより地下水の侵
入を防ぎ、掘削作業に従事する人間がこの圧気作業室に
入って作業することが大きな特徴である。
(Prior technology) As is well known, the pneumatic caisson construction method is a construction method that utilizes the principle of preventing water from entering the working chamber using air pressure, and an airtight working chamber is installed at the bottom of the box that forms the caisson. A major feature of the excavation chamber is that compressed air is pumped into the chamber to prevent groundwater from entering, and the people working on the excavation work must enter this pressurized air chamber.

その他にも、圧気作業室内の掘削地盤がドライな状態で
あるため地上と同様に作業できること、掘削面を直接監
視しながら作業ができること、障害物を容易に撤去でき
ること、地下水位の低下がないため周辺地盤に影響を与
えないこと、沈設管理が精度良く安全に行えること、最
終支持地盤の状態を地耐力試験などで直接確認できるこ
と、といったオープンケーソン工法にはない長所がある
In addition, the excavated ground in the pressurized work room is dry, so work can be done in the same way as above ground, the work can be done while directly monitoring the excavation surface, obstacles can be easily removed, and there is no drop in the groundwater level. It has advantages that the open caisson construction method does not have, such as not affecting the surrounding ground, being able to manage the submergence accurately and safely, and being able to directly check the condition of the final supporting ground through soil bearing capacity tests.

しかしながら、圧気作業室内に人間が入って作業するた
めに、作業時間には大きな節約を受け、例えば3気圧の
作業気圧の場合、1日1回の作業に限定しても圧気下で
の作業時間は3.5時間、減圧時間が2.5時間程度と
なり、1日8時間の作業には2人の作業員が必要である
However, because a person enters the pressurized work room to work, there is a significant saving in work time.For example, in the case of a work pressure of 3 atm, even if the work is limited to once a day, the work time under pressure is reduced. 3.5 hours, decompression time is about 2.5 hours, and two workers are required to work 8 hours a day.

そこで、出願人は先に圧気作業室内の作業における完全
無人化を実現するとともに、一連の管理及び操作を地上
の中央管理制御室のみで行えるようにしてより一層のシ
ステム化が達成できるニューマチックケーソンの沈設管
理システムを特願昭63−10523号(特開平1−1
87228号)として提案した。
Therefore, the applicant has developed a pneumatic caisson that can achieve complete unmanned operation in the pressurized work room, and also achieve further systemization by allowing a series of management and operations to be performed only in the central control room on the ground. Japanese Patent Application No. 10523/1983 (Japanese Unexamined Patent Publication No. 1/1999)
No. 87228).

これは、ケーソンを形成する函体底部の圧気作業室天井
に走行、旋回、アームの俯仰、伸縮、およびバケットの
俯仰が自在な掘削装置を架設し、また、掘削装置と圧気
作業室内にテレビカメラを取付ける。
A drilling rig that can travel, swivel, raise and lower its arm, extend and retract, and raise and lower its bucket is installed on the ceiling of the pressurized air work room at the bottom of the caisson. Install.

そして、地上の中央管理制御室には前記テレビカメラか
らの映像を写す掘削監視モニター画面、作業室監視モニ
ター画面と、・コンピュータ、プリンター及び掘削操作
盤を設置し、各種センサーからの検出値をコンピュータ
に導入してケーソンの抵抗と荷重がバランスした状態の
掘削パターンを算出し、その掘削パターンに従って掘削
監視モニター画面及び作業室監視モニター画面を見なが
ら掘削操作盤で掘削機構を遠隔操作し、次に掘削操作盤
で送気流量弁を制御して自動的にケーソンを沈下させ、
かつ前記掘削中の自然沈下中の諸情報をコンピュータ処
理し、フィードバックして沈下管理をなしつつ前記掘削
と自動沈下を繰返すことを内容とするものである。
The central control room on the ground is equipped with an excavation monitoring monitor screen that displays images from the television camera, a work room monitoring monitor screen, a computer, a printer, and an excavation operation panel, and a computer that records the detected values from various sensors. Calculate the excavation pattern in which the caisson resistance and load are balanced, remotely control the excavation mechanism from the excavation control panel while watching the excavation monitoring monitor screen and the work room monitoring monitor screen according to the excavation pattern, and then The caisson is automatically lowered by controlling the air supply flow rate valve from the excavation operation panel.
Further, the content is that various information during the natural settlement during the excavation is processed by a computer and fed back to perform settlement management while repeating the excavation and automatic settlement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この特願昭63−10523号のニューマチッ
クケーソンの沈設管理システムでは掘削個所の判断はも
っばらテレビカメラによる監視だけにたよるものであっ
た。
However, in the pneumatic caisson sinking control system disclosed in Japanese Patent Application No. 63-10523, the determination of excavation locations was solely based on monitoring by television cameras.

本発明の目的は前記従来例の不都合を解消し、テレビカ
メラによる監視だけにたよる遠隔操作に比べ、作業効率
、安全性、沈設精度が大幅に向上するニューマチックケ
ーソン工法における施工管理方法を提供することにある
The purpose of the present invention is to provide a construction management method for the pneumatic caisson construction method that eliminates the disadvantages of the conventional method and greatly improves work efficiency, safety, and sinking accuracy compared to remote control that relies only on monitoring by television cameras. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記目的を達成するため、ケーソンを形成する
函体底部の作業室を圧気状態に維持し、圧気作業室天井
に架設した走行、旋回、アームの俯仰、伸縮、およびバ
ケットの俯仰が自在な掘削装置により作業室底部を掘削
して函体を順次沈設するニューマチックケーソン工法に
おいて、掘削装置と圧気作業室内にテレビカメラを設置
し、また、掘削装置に超音波センサー等による距離測定
用センサーを複数個取付け、掘削装置を走行させながら
距離測定用センサーによる距離測定を行い、このデータ
を地上の管理制御室内のコンピュータで解析し、圧気作
業室内の掘削面の高低差をグラフィック表示し、一方、
管理制御室内に設置した圧気作業室内を監視するモニタ
ーテレビを併用して掘削個所の判断を行い、地上管理制
御室内から圧気作業室内の掘削装置を遠隔操作すること
を要旨とするものである。
In order to achieve the above object, the present invention maintains the working chamber at the bottom of the box forming the caisson in a pressurized state, and allows the arm installed on the ceiling of the pressurized working room to travel, swivel, move up and down, extend and contract, and move the bucket up and down. In the pneumatic caisson construction method, in which the bottom of the work chamber is excavated using an excavating device and the boxes are successively deposited, a television camera is installed inside the excavator and the pressurized work chamber, and distance measurement sensors such as ultrasonic sensors are installed on the excavator. The distance measurement sensor measures the distance while the excavation equipment is running, and this data is analyzed by a computer in the management control room on the ground, and the difference in height of the excavation surface in the pneumatic work room is displayed graphically. ,
The gist of this project is to use a monitor TV installed in the control room to monitor the air pressure work room to determine where to excavate, and to remotely control the excavation equipment inside the air pressure work room from the ground management control room.

〔作用〕[Effect]

請求項第1項記載の本発明によれば、距離測定用センサ
ーは複数個設置されており、それぞれ計測ポイントが異
なっていて、距離測定用センサーがケーソン刃口部に対
面するように掘削装置の掘削機を固定し、掘削機がレー
ル上を走行することにより、ケーソン刃口部の掘削形状
が連続的に計測される。
According to the invention as set forth in claim 1, a plurality of distance measurement sensors are installed, each having a different measurement point, and the distance measurement sensor is mounted on the excavation rig such that it faces the caisson cutting edge. By fixing the excavator and running it on the rail, the excavation shape of the caisson blade mouth is continuously measured.

このようにして、ケーソン沈設管理に重要な影響を及ぼ
すケーソン刃口部の掘削状況を量的にとらえることがで
き、沈設管理を精度良く行うことができる。
In this way, the excavation status of the caisson cutting edge, which has an important influence on caisson sinking management, can be quantitatively grasped, and the sinking management can be performed with high precision.

また、沈設管理用のデータを直ちに掘削装置のオペレー
タにフィードバックできる。
In addition, data for sinking management can be immediately fed back to the drilling rig operator.

請求項第2項記載の本発明によれば、前記作用に加えて
、地上から掘削装置を遠隔操作しても、圧気作業室内の
掘削機の位置、アームの角度、バケットの状態等をリア
ルタイムに地上でモニターできるため、監視用テレビカ
メラ等だけでは判断が難しい、掘削機械の位置、姿勢の
詳細な情報も得ることができ、遠隔操作をスムーズに安
全に行うことができる。
According to the present invention as set forth in claim 2, in addition to the above-mentioned effects, even if the excavator is remotely operated from the ground, the position of the excavator in the pneumatic work chamber, the angle of the arm, the status of the bucket, etc. can be monitored in real time. Since it can be monitored on the ground, it is possible to obtain detailed information on the position and attitude of the excavating machine, which is difficult to judge using only surveillance television cameras, etc., and allows for smooth and safe remote control.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明のニューマチックケーソン工法における
施工管理方法の1実施例を示す要部の側面図、第2図は
全体の外観説明図で、図中1はケーソン躯体をなす函体
、laはその底盤、1bは刃先、2は該刃先1bで形成
される圧気作業室である。
Fig. 1 is a side view of the main parts showing one embodiment of the construction management method in the pneumatic caisson construction method of the present invention, and Fig. 2 is an explanatory view of the overall appearance. 1b is the bottom plate, 1b is the cutting edge, and 2 is the pressurized air working chamber formed by the cutting edge 1b.

底盤1aに、マテリアルロック3が接続する穴と、マン
ロック4が接続する穴とを設け、さらにコンプレッサ5
の送気管6端も底盤1a下の圧気作業室2内に開口する
。図中7は、マテリアルロック3を介して圧気作業室2
内へ降ろされる排土用バケット、8はマテリアルロック
3のロック制御盤である。
A hole to which the material lock 3 is connected and a hole to which the man lock 4 is connected are provided in the bottom plate 1a, and a hole to which the material lock 3 is connected and a hole to which the man lock 4 is connected are provided, and a compressor 5 is also provided.
The 6 ends of the air supply pipes also open into the pressurized air work chamber 2 below the bottom plate 1a. 7 in the figure indicates the pressurized air work chamber 2 via the material lock 3.
The soil removal bucket 8 is lowered into the interior, and 8 is the lock control panel of the material lock 3.

前記圧気作業室2内に設ける掘削装置としては、底盤1
aの下面すなわち圧気作業室2の天井に走行レールlO
を設け、ここに掘削機11を移動自在に設けた。該掘削
機11は、走行レール10に吊り下げられ、自在に移動
する走行台車12に旋回円盤13を介して伸縮かつ俯仰
自在なアーム14が支承され、このアーム14の先端に
バケット15を俯仰角度自在に設けたシャベルタイプの
ものであり、圧気作業室2内の隅々にまで作業範囲が及
ぶものである。
The excavation equipment installed in the pressurized air work chamber 2 includes a bottom plate 1
Running rail lO on the lower surface of a, that is, the ceiling of the pressurized air work chamber 2.
An excavator 11 is movably provided here. The excavator 11 is suspended from a traveling rail 10 and has an arm 14 that is extendable and tiltable supported on a freely movable traveling cart 12 via a rotating disk 13, and a bucket 15 is attached to the tip of the arm 14 at a tilting angle. It is of a shovel type that can be freely installed, and its working range extends to every corner of the pressurized air work chamber 2.

この掘削W111にテレビカメラによる掘削機カメラ1
6を取付け、また圧気作業室2内で底盤1aの下面にテ
レビカメラによる白肉カメラ17を取付ける。
Excavator camera 1 by TV camera on this excavation W111
6 is attached, and a white meat camera 17 using a television camera is attached to the lower surface of the bottom plate 1a in the pressurized air work chamber 2.

以上は前記従来例と同じであるが、本発明は掘削機11
に距離測定用センサーとして超音波センサー18A、1
8B、18C,18Dを刃口部計測用として設け、また
、超音波センサー19を補正用基準センサーとして設け
、さらにコンピュータ20を取付けた。
The above is the same as the conventional example, but the present invention provides the excavator 11
Ultrasonic sensor 18A, 1 is used as a distance measurement sensor.
8B, 18C, and 18D were provided for blade edge measurement, an ultrasonic sensor 19 was provided as a reference sensor for correction, and a computer 20 was also installed.

前記刃口部計測用の超音波センサー18A、18B。Ultrasonic sensors 18A and 18B for measuring the blade edge.

18C,18Dはそれぞれ計測ポイントが異なっている
ものである。
18C and 18D have different measurement points.

なお、本実施例では4ケの超音波センサーを使用したが
、超音波センサーの個数、角度等は、目的に応じて種々
選択できる。さらに、赤外線センサー等の光センサーや
その他のセンサーを前記超音波センサーに代えて距離測
定用センサーとして使用することも考えられる。
Although four ultrasonic sensors were used in this embodiment, the number, angle, etc. of the ultrasonic sensors can be variously selected depending on the purpose. Furthermore, it is also possible to use an optical sensor such as an infrared sensor or other sensor as a distance measuring sensor instead of the ultrasonic sensor.

図中26は地上に設けられる管理制御室で、その内部に
はパーソナルコンピュータ27と、これに接続するプリ
ンタ28、及び前記掘削機カメラ16と同軸ケーブル2
9で接続するCRTの掘削監視モニターテレビ30、白
肉カメラ17と同じく同軸ケーブル29で接続するCR
Tの作業室監視モニターテレビ31を設置し、さらに掘
削機11を遠隔操作し、また送気管6の途中に設けた送
気流量弁32を開度調整する操作盤33を設置した。
In the figure, reference numeral 26 denotes a management control room installed on the ground, inside of which there is a personal computer 27, a printer 28 connected to this, the excavator camera 16, and a coaxial cable 2.
CRT excavation monitoring monitor TV 30 connected with 9, CR connected with coaxial cable 29 as well as white meat camera 17
A working room monitoring television 31 was installed, and an operation panel 33 was also installed to remotely control the excavator 11 and adjust the opening of the air flow rate valve 32 provided in the middle of the air pipe 6.

また、第4図に示すように前記掘削機11には、走行距
離測定用センサー41、旋回角度測定用センサー42、
アーム俯仰角度測定用センサー43、アーム伸縮量測定
用センサー44、バケット俯仰角度測定用センサー45
を設け、さらに旋回角度補正用近接スイッチ46、アー
ム俯仰角度補正用近接スイッチ47、アーム伸縮量補正
用近接スイッチ48、バケット俯仰角度補正用近接スイ
ッチ49を設ける。
Further, as shown in FIG. 4, the excavator 11 includes a sensor 41 for measuring travel distance, a sensor 42 for measuring turning angle,
Sensor 43 for measuring arm elevation angle, sensor 44 for measuring arm extension/contraction amount, sensor 45 for measuring bucket elevation angle
Further, a proximity switch 46 for correcting the turning angle, a proximity switch 47 for correcting the arm elevation angle, a proximity switch 48 for correcting the arm extension/contraction amount, and a proximity switch 49 for correcting the bucket elevation angle are provided.

前記センサー41〜45にはインクリメント光学式のロ
ータリーエンコーダーを使用するが、ロータリーエンコ
ーダーでの測定値は累積誤差を持つことから、高周波発
振式近接スイッチ46〜49を併用してこの近接スイッ
チが作動するごとに、測定値を既定値あるいは原点の値
に戻すようにした。
Incremental optical rotary encoders are used for the sensors 41 to 45, but since the values measured by the rotary encoders have cumulative errors, these proximity switches are operated in conjunction with high frequency oscillation type proximity switches 46 to 49. Each time, the measured value is returned to the default value or the origin value.

この近接スイ・7チ46〜49の使用で、掘削機11の
実動作と測定値の誤差は、必ず一定の値以下におさえる
ことができ、精度のよいモニターシステムとなる。
By using the proximity switches 46 to 49, the error between the actual operation of the excavator 11 and the measured value can be kept to a certain value or less, resulting in a highly accurate monitoring system.

第5図は本発・明の実施例を示すブロック図であるが、
前記センサー41〜45や近接スイッチ46〜49は計
測・制御ケーブル22でパーソナルコンピュータ27と
接続され、また、超音波センサー18A、 18B  
18c、 18D及び補正用基準センサーである超音波
センサー19はコンピュータ20を介してパーソナルコ
ンピュータ27と接続される。
FIG. 5 is a block diagram showing an embodiment of the present invention.
The sensors 41 to 45 and proximity switches 46 to 49 are connected to a personal computer 27 via a measurement/control cable 22, and ultrasonic sensors 18A and 18B.
18c, 18D and an ultrasonic sensor 19 serving as a reference sensor for correction are connected to a personal computer 27 via a computer 20.

なお、掘削機11のケーソン内での位置を正確に把握す
ることは、掘削機11と圧気作業室2内の他の機器、ケ
ーブル、ワイヤー等との接触、衝突防止のために重要な
事項である。そこで、前記走行距離測定用センサー41
においては、天井に設置された掘削機走行用レール10
の座標が正確にわかっていることから、掘削機11と走
行用レール11の位置関係を測定することで、掘削機1
1の圧気作業室2内での正確な位置を求めるものとする
。このセンサー41は、走行用レール10に設置された
チェーン21に歯車を噛み合わせて、チェーン21上の
走行距離を測定する。また、走行距離の累積誤差を防ぐ
ためにレール上に数ケ所のチエツクポイントを設け、こ
こに近接スイッチ50〜54を設置し、このポイントを
通過するごとに測定値を既定値にリセットするようにし
た。
In addition, accurately grasping the position of the excavator 11 within the caisson is an important matter in order to prevent contact and collision between the excavator 11 and other equipment, cables, wires, etc. in the pneumatic work chamber 2. be. Therefore, the distance measuring sensor 41
, an excavator running rail 10 installed on the ceiling
Since the coordinates of the excavator 11 are accurately known, by measuring the positional relationship between the excavator 11 and the traveling rail 11, the excavator 1
1 in the pressurized air work chamber 2. This sensor 41 measures the travel distance on the chain 21 by meshing gears with the chain 21 installed on the traveling rail 10. In addition, in order to prevent cumulative errors in travel distance, several check points were installed on the rail, and proximity switches 50 to 54 were installed at these points, and the measured value was reset to the default value each time the vehicle passed through these points. .

先に述べたように、超音波センサー18A、18B。As mentioned earlier, ultrasonic sensors 18A, 18B.

18C,1’8Dはそれぞれ計測ポイントが異なってい
るものである。そこで、第3図に示すようにセンサー1
8A、18B、18c、18Dがケーソン刃口部に対面
するように掘削機11を固定し、掘削機11がレール1
0上を走行することにより、ケーソン刃口部の掘削形状
が連続的に計測される。
18C and 1'8D have different measurement points. Therefore, as shown in Figure 3, the sensor 1
The excavator 11 is fixed so that 8A, 18B, 18c, and 18D face the caisson blade part, and the excavator 11 is attached to the rail 1.
0, the excavated shape of the caisson blade mouth is continuously measured.

また、圧気作業室2内では空気密度が変化するため音速
が変化し、超音波センサー18A、18B。
In addition, since the air density changes in the pressurized air work chamber 2, the sound speed changes, and the ultrasonic sensors 18A and 18B.

18C18Dの測定値は正しい距離値を示さないおそれ
がある。そこで、測定値補正用の基準センサーである超
音波センサー19を設置した。この超音波センサー19
は、センサーより距離1mのところにある反射板までの
距離を常に計測するように設置されており、この計測値
で刃口部の超音波センサー18A、18B、18C,1
8Dの計測値を補正することで、どのように作業気圧が
変化しても正しい距離の値を算出することができる。
The measured value of 18C18D may not indicate the correct distance value. Therefore, an ultrasonic sensor 19 was installed as a reference sensor for correcting measured values. This ultrasonic sensor 19
is installed so as to always measure the distance from the sensor to the reflector located 1m away, and based on this measurement value, the ultrasonic sensors 18A, 18B, 18C, 1 at the blade mouth are activated.
By correcting the 8D measurement value, it is possible to calculate the correct distance value no matter how the working pressure changes.

この超音波センサー18A、18B、18C,18Dの
距離測定値は、コンピュータ20を介して中央管理制御
室26のパーソナルコンピュータ27へ送られるが、コ
ンピュータ27で解析し、圧気作業室2内の掘削面の高
低差をグラフィック表示する。
The distance measurement values of the ultrasonic sensors 18A, 18B, 18C, and 18D are sent to the personal computer 27 in the central management control room 26 via the computer 20, where they are analyzed and Displays the height difference graphically.

第6a図、第6b図にこのグラフィック表示の状態を示
すが、ケーソン刃口部の掘削状況を第6a図に示すよう
な展開図や第6b図に示すような断面図で表示する。こ
の表示画面より、掘削が不足している個所、ケーソンの
傾き修正時の掘削個所の判断を行うことができる。
The state of this graphical display is shown in FIGS. 6a and 6b, and the state of excavation of the caisson cutting edge portion is displayed in a developed view as shown in FIG. 6a and a sectional view as shown in FIG. 6b. From this display screen, it is possible to judge where excavation is insufficient and where to excavate when correcting the caisson inclination.

さらに、モニターテレビ30.31を併用して掘削個所
の判断を行い、地上管理制御室26内から圧気作業室2
内の掘削機1.1を遠隔操作する。
Furthermore, the excavation location is determined using the monitor TV 30 and 31, and the pressurized air work room 2 is
Remotely control the excavator 1.1 inside.

この掘削機11の遠隔操作については、コンピュータ2
7で前記センサー41〜45からの信号を解析して、掘
削機11の圧気作業室2内での位置・姿勢を第7図、第
8図に示すようにグラフィック表示して掘削1ullの
動きをリアルタイムに地上でモニターしながらおこなう
For remote control of this excavator 11, the computer 2
7, the signals from the sensors 41 to 45 are analyzed, and the position and posture of the excavator 11 in the pressurized air work chamber 2 are graphically displayed as shown in FIGS. This is done while monitoring on the ground in real time.

このように画面内の掘削機11が実動作に合わせてリア
ルタイムに動き、掘削機11と圧気作業室2内の他の機
器、ケーブル、ワイヤー等と位置関係を正確に表示する
。さらにオペレーターは、監視用モニターテレビ30.
31と併用して使用することで、より詳細で確実な情報
を得ることができる。
In this way, the excavator 11 on the screen moves in real time in accordance with the actual operation, and the positional relationship between the excavator 11 and other equipment, cables, wires, etc. in the pneumatic work chamber 2 is accurately displayed. Furthermore, the operator monitors the monitoring television 30.
By using it in conjunction with 31, more detailed and reliable information can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明のニューマチックケーソン工法
における施工管理方法は、ケーソン沈設管理に重要な影
響を及ぼすケーソン刃口部の掘削状況を量的にとらえる
ことができ、沈設管理を精度良く行うことができ、その
結果、遠隔操作をスムーズにしかも安全で正確に行うこ
とができるものである。
As described above, the construction management method in the pneumatic caisson construction method of the present invention can quantitatively grasp the excavation status of the caisson cutting edge, which has an important influence on caisson sinking management, and enables accurate sinking management. As a result, remote control can be performed smoothly, safely, and accurately.

ニューマチックケーソン工法の高気圧下での作業では、
作業時間の制約、安全性、労働環境等、多くの問題があ
るが、このように本発明によれば、地上遠隔操作の利用
で従来限界とされてきた深度のケーソンも施工可能とな
るものである。
When working under high pressure using the pneumatic caisson construction method,
Although there are many problems such as work time constraints, safety, and working environment, the present invention makes it possible to construct caissons at depths that were previously thought to be the limit by using ground-based remote control. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のニューマチックケーソン工法における
施工管理方法の1実施例を示す要部の側面図、第2図は
全体の外観説明図、第3図は要部の説明図、第4図は掘
削機の側面図、第5図は実施例を示すブロック図、第6
a図はケーソン刃口部の掘削状況をグラフインク表示し
た展開図、第6b図は同上断面図、第7図は掘削機の動
きをグラフィック表示した平面図、第8図は同上側面図
である。 ■・・・函体      1a・・・底盤1b・・・刃
先     2・・・圧気作業室3・・・マテリアルロ
ック4・−・マンロック5・・・コンプレッサ  6・
・・送気管7・・・排土用バケット 8・・・ロック制
御盤10・・・走行レール   11・・・掘削機12
・・・走行台車    13・・−旋回円盤14・・・
アーム     I5・・・バケット16・・・掘削機
カメラ  17・・・白肉カメラ18A、18B、18
C,18D、19・・・超音波センサー20・・・コン
ピュータ  21・・・チェーン22・・・計測・制御
ケーブル 26・・・地上管理制御室 27・・・パーソナルコンピュータ 28・・・プリンタ    29・・・同軸ケーブル3
0・・・掘削監視モニターテレビ 31・・・作業室監視モニターテレビ 32・・・送気流量弁   33・・・操作盤41〜4
5・・・センサー  46〜4つ・・・近接スイッチ5
0〜54・・・近接スイッチ
Fig. 1 is a side view of the main parts showing one embodiment of the construction management method in the pneumatic caisson construction method of the present invention, Fig. 2 is an explanatory view of the overall appearance, Fig. 3 is an explanatory view of the main parts, and Fig. 4 is a side view of the excavator, FIG. 5 is a block diagram showing an embodiment, and FIG. 6 is a side view of the excavator.
Figure a is a developed view showing the excavation status of the caisson blade opening in graphic ink, Figure 6b is a sectional view of the same as above, Figure 7 is a plan view graphically displaying the movement of the excavator, and Figure 8 is a side view of the same as above. . ■...Box 1a...Bottom plate 1b...Blade tip 2...Pressure working chamber 3...Material lock 4--Manlock 5...Compressor 6-
... Air pipe 7 ... Soil removal bucket 8 ... Lock control panel 10 ... Traveling rail 11 ... Excavator 12
...Traveling trolley 13...-Swivel disc 14...
Arm I5...Bucket 16...Excavator camera 17...White meat camera 18A, 18B, 18
C, 18D, 19... Ultrasonic sensor 20... Computer 21... Chain 22... Measurement/control cable 26... Ground management control room 27... Personal computer 28... Printer 29.・・Coaxial cable 3
0... Excavation monitoring monitor TV 31... Working room monitoring monitor TV 32... Air supply flow rate valve 33... Operation panel 41-4
5...Sensor 46~4...Proximity switch 5
0~54...Proximity switch

Claims (2)

【特許請求の範囲】[Claims] (1)ケーソンを形成する函体底部の作業室を圧気状態
に維持し、圧気作業室天井に架設した走行、旋回、アー
ムの俯仰、伸縮、およびバケットの俯仰が自在な掘削装
置により作業室底部を掘削して函体を順次沈設するニュ
ーマチックケーソン工法において、掘削装置と圧気作業
室内にテレビカメラを設置し、また、掘削装置に超音波
センサー等による距離測定用センサーを複数個取付け、
掘削装置を走行させながら距離測定用センサーによる距
離測定を行い、このデータを地上の管理制御室内のコン
ピュータで解析し、圧気作業室内の掘削面の高低差をグ
ラフィック表示し、一方、管理制御室内に設置した圧気
作業室内を監視するモニターテレビを併用して掘削個所
の判断を行い、地上管理制御室内から圧気作業室内の掘
削装置を遠隔操作することを特徴としたニューマチック
ケーソン工法における施工管理方法。
(1) The work chamber at the bottom of the box that forms the caisson is maintained in a pressurized state, and the bottom of the work chamber is operated by an excavator that is installed on the ceiling of the pressurized work chamber and is capable of traveling, turning, raising and lowering the arm, extending and contracting, and raising and lowering the bucket. In the pneumatic caisson construction method, which excavates and sequentially deposits the boxes, a television camera is installed in the excavation equipment and the pressurized work room, and multiple distance measurement sensors such as ultrasonic sensors are installed on the excavation equipment.
While the drilling rig is running, a distance measurement sensor measures the distance, and this data is analyzed by a computer in the management control room on the ground, and the difference in height of the excavation surface in the pneumatic work room is displayed graphically. A construction management method for the pneumatic caisson construction method, which is characterized by determining the excavation location using a monitor TV that monitors the installed pneumatic work room, and remotely controlling the excavation equipment in the pneumatic work room from the ground management control room.
(2)掘削装置の遠隔操作は、掘削装置に走行距離、旋
回角度、アームの俯仰角度、伸縮量、およびバケットの
俯仰角度等を検知するセンサーを設け、地上に設置した
管理制御室内のコンピュータで前記センサーからの信号
を解析して掘削装置の圧気作業室内での位置・姿勢をグ
ラフィック表示して掘削装置の動きをリアルタイムに地
上でモニターしながらおこなう請求項第1項記載のニュ
ーマチックケーソン工法における施工管理方法。
(2) Remote control of the excavation equipment is possible by installing sensors on the excavation equipment to detect travel distance, rotation angle, arm elevation angle, extension/contraction amount, bucket elevation angle, etc., and using a computer in the management control room installed on the ground. 2. The pneumatic caisson construction method according to claim 1, wherein the movement of the drilling rig is monitored on the ground in real time by analyzing the signal from the sensor and graphically displaying the position and posture of the drilling rig in the pressurized work chamber. Construction management method.
JP2016799A 1990-01-25 1990-01-25 Construction management method in pneumatic caisson method Expired - Fee Related JPH0796782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016799A JPH0796782B2 (en) 1990-01-25 1990-01-25 Construction management method in pneumatic caisson method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016799A JPH0796782B2 (en) 1990-01-25 1990-01-25 Construction management method in pneumatic caisson method

Publications (2)

Publication Number Publication Date
JPH03221617A true JPH03221617A (en) 1991-09-30
JPH0796782B2 JPH0796782B2 (en) 1995-10-18

Family

ID=11926202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016799A Expired - Fee Related JPH0796782B2 (en) 1990-01-25 1990-01-25 Construction management method in pneumatic caisson method

Country Status (1)

Country Link
JP (1) JPH0796782B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229826A (en) * 2014-06-03 2015-12-21 清水建設株式会社 Caisson immersion management system and caisson immersion management method
JP2017082463A (en) * 2015-10-27 2017-05-18 大成建設株式会社 Excavation state management system
JP2018155619A (en) * 2017-03-17 2018-10-04 大成建設株式会社 Distance measurement device and drilling situation management system
JP2018178471A (en) * 2017-04-10 2018-11-15 清水建設株式会社 Caisson and method for settling caisson
JP2019049142A (en) * 2017-09-11 2019-03-28 大成建設株式会社 System, method and program for calculating caisson opening ratio
JP2019218728A (en) * 2018-06-18 2019-12-26 鹿島建設株式会社 Cutting edge part intrusion width measurement system and caisson immersion method
JP2019218740A (en) * 2018-06-19 2019-12-26 鹿島建設株式会社 Cutting edge part boundary identification device and caisson immersion method
JP2021025231A (en) * 2019-07-31 2021-02-22 清水建設株式会社 Excavation management device and method
JP6915181B1 (en) * 2021-02-02 2021-08-04 オリエンタル白石株式会社 Blade edge judgment system and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137017A (en) * 1987-11-24 1989-05-30 Taisei Corp Operation controller for excavator in pneumatic caisson work
JPH0213615A (en) * 1988-06-29 1990-01-18 Daiho Constr Co Ltd Installing method of pneumatic caisson

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137017A (en) * 1987-11-24 1989-05-30 Taisei Corp Operation controller for excavator in pneumatic caisson work
JPH0213615A (en) * 1988-06-29 1990-01-18 Daiho Constr Co Ltd Installing method of pneumatic caisson

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229826A (en) * 2014-06-03 2015-12-21 清水建設株式会社 Caisson immersion management system and caisson immersion management method
JP2017082463A (en) * 2015-10-27 2017-05-18 大成建設株式会社 Excavation state management system
JP2018155619A (en) * 2017-03-17 2018-10-04 大成建設株式会社 Distance measurement device and drilling situation management system
JP2018178471A (en) * 2017-04-10 2018-11-15 清水建設株式会社 Caisson and method for settling caisson
JP2019049142A (en) * 2017-09-11 2019-03-28 大成建設株式会社 System, method and program for calculating caisson opening ratio
JP2019218728A (en) * 2018-06-18 2019-12-26 鹿島建設株式会社 Cutting edge part intrusion width measurement system and caisson immersion method
JP2019218740A (en) * 2018-06-19 2019-12-26 鹿島建設株式会社 Cutting edge part boundary identification device and caisson immersion method
JP2021025231A (en) * 2019-07-31 2021-02-22 清水建設株式会社 Excavation management device and method
JP6915181B1 (en) * 2021-02-02 2021-08-04 オリエンタル白石株式会社 Blade edge judgment system and program
JP2022118591A (en) * 2021-02-02 2022-08-15 オリエンタル白石株式会社 Cutting edge boundary determination system and program

Also Published As

Publication number Publication date
JPH0796782B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US5682311A (en) Apparatus and method for controlling a hydraulic excavator
US7810260B2 (en) Control system for tool coupling
US5933346A (en) Bucket depth and angle controller for excavator
JPH03187420A (en) Laser control of drilling depth of drilling machine
CN109790702A (en) Engineering machinery
JPH03221617A (en) Method for managing execution in pneumatic caisson method
KR101629716B1 (en) Coordinate Measuring System for Excavating Work and Method Thereof
JP5823841B2 (en) Tunnel face shaping system and shaping method
JP3699976B2 (en) Groove excavator, groove wall shape display method and groove wall shape correction method in groove excavator
JP6915181B1 (en) Blade edge judgment system and program
US11761167B2 (en) Automatic depth control system
JPH01187228A (en) Settling control system for pneumatic caisson
KR200397423Y1 (en) Working display apparatus of excavator
JP2874859B2 (en) Drilling support method for pneumatic caisson excavator
JPH01137017A (en) Operation controller for excavator in pneumatic caisson work
JP2554986B2 (en) Attitude display method of excavator for pneumatic caisson
WO1998009026A1 (en) Measurement and display of load of excavating blasted ground
JP7330008B2 (en) Excavation management apparatus and method
CN111749243B (en) Semi-automatic excavator digital earthwork site elevation control construction method
JPS6342073B2 (en)
JP4024421B2 (en) Horizontal installation method of free section excavator
JPS60105908A (en) Drilling depth display apparatus
JPS6113053B2 (en)
JPH0673755A (en) Automatic detector for position of excavation of backhoe
JPH0213615A (en) Installing method of pneumatic caisson

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees