JP4527158B2 - Leakage recovery device in submersible construction method - Google Patents

Leakage recovery device in submersible construction method Download PDF

Info

Publication number
JP4527158B2
JP4527158B2 JP2008053515A JP2008053515A JP4527158B2 JP 4527158 B2 JP4527158 B2 JP 4527158B2 JP 2008053515 A JP2008053515 A JP 2008053515A JP 2008053515 A JP2008053515 A JP 2008053515A JP 4527158 B2 JP4527158 B2 JP 4527158B2
Authority
JP
Japan
Prior art keywords
air
caisson
leak
recovery
air leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008053515A
Other languages
Japanese (ja)
Other versions
JP2009209581A (en
Inventor
直昭 上月
紀夫 近藤
秀雄 今村
Original Assignee
大豊建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊建設株式会社 filed Critical 大豊建設株式会社
Priority to JP2008053515A priority Critical patent/JP4527158B2/en
Publication of JP2009209581A publication Critical patent/JP2009209581A/en
Application granted granted Critical
Publication of JP4527158B2 publication Critical patent/JP4527158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、潜函工法における漏気回収装置に関するものである。   The present invention relates to a leak recovery apparatus in a submerged method.

橋脚基礎構造などの構築に用いられる工法として、ケーソンを水底地盤中に沈設する潜函工法が知られている。潜函工法では、筒状のケーソン本体の下端に地盤に貫入する刃口部を設けるとともに、ケーソン本体の内周側に天井スラブを形成し、刃口部の内周側かつ天井スラブの下方にケーソン作業室を隔成して、ケーソン作業室内に圧縮空気を供給しながら、その内部地盤を掘削してケーソン本体を地盤中に沈設する。   As a construction method used for construction of a pier foundation, etc., a submerged construction method in which a caisson is set in the bottom of the water is known. In the submersion method, a blade piercing part that penetrates the ground is provided at the lower end of the cylindrical caisson body, a ceiling slab is formed on the inner peripheral side of the caisson body, and a caisson is formed on the inner peripheral side of the blade throat and below the ceiling slab. While separating the work chamber and supplying compressed air to the caisson work chamber, the internal ground is excavated and the caisson main body is set in the ground.

この場合、ケーソン作業室内に供給された圧縮空気は、その一部がケーソン本体の刃口部先端を潜り抜けて外部に漏気しやすく、このような漏気をそのまま放置しておくと、地盤中の透水層を通って思わぬ場所に噴出し、隣接構造物等に悪影響を及ぼすことになる。   In this case, a part of the compressed air supplied into the caisson work chamber can easily leak through the tip of the caisson main body and leak to the outside. It will erupt to an unexpected place through the water permeable layer inside and adversely affect adjacent structures.

そこで、従来では、ケーソン本体の刃口部直上外面に漏気回収装置を設けたが、回収効率が悪かった。回収効率を上げる方法として、特許文献1に開示されているように、ケーソン本体の刃口部直上外面に漏気回収フィルターを周回形成し、この漏気回収フィルターにケーソン本体の内部側から揚水管を接続し、この揚水管の他端に接続した真空ポンプ等の揚水手段を作動させることにより、ケーソン作業室からケーソン本体の刃口部先端を潜り抜けて外部に漏れた漏気を漏気回収フィルターで吸入して回収するようにした漏気回収装置が提案されている。
特開2002−88770号公報
Therefore, in the past, an air leakage recovery device was provided on the outer surface directly above the blade edge of the caisson body, but the recovery efficiency was poor. As a method for increasing the recovery efficiency, as disclosed in Patent Document 1, a leak recovery filter is formed around the outer edge of the caisson body so as to circulate, and a pumping pipe is connected to the leak recovery filter from the inside of the caisson body. , And by operating a pumping means such as a vacuum pump connected to the other end of this pumping pipe, leak the leaked air leaking outside through the tip of the caisson body from the caisson working room. There has been proposed an air-leakage recovery device that is inhaled and recovered by a filter.
JP 2002-88770 A

しかしながら、上述のような漏気回収装置では、揚水手段としての真空ポンプを個別に用意しなければならないため、漏気回収装置の構成が複雑化するという難点がある。   However, in the above air leakage recovery apparatus, since the vacuum pump as the pumping means has to be prepared individually, there is a problem that the configuration of the air leakage recovery apparatus becomes complicated.

本発明は、このような事情に鑑みてなされたものであり、簡素な構成により、ケーソン作業室内から外方に漏れた漏気を回収でき、好ましくは漏気中に含まれる空気と地下水とを確実に分離して還元することができ、さらに漏気の量を最小限に抑制することのできる潜函工法における漏気回収装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and with a simple configuration, it is possible to collect leakage leaked outward from the caisson work chamber, preferably air and groundwater contained in the leakage. It is an object of the present invention to provide a leak recovery device in a submerged construction method that can be reliably separated and reduced, and further can suppress the amount of leak.

かかる課題を解決するために、本発明の請求項1に記載の発明は、筒状のケーソン本体の外周壁下端に、地盤に貫入する刃口部を設けるとともに、前記外周壁の内周側に天井スラブを形成し、前記刃口部の内周側かつ前記天井スラブの下方にケーソン作業室を隔成し、前記ケーソン作業室内に圧縮空気を供給しながら、その内部地盤を掘削して前記ケーソン本体を地盤中に沈設し、その際に前記ケーソン作業室内から前記刃口部を潜って外部に漏れた圧縮空気を回収する潜函工法における漏気回収装置において、前記ケーソン本体の外周面に開口する漏気回収孔と、一端が前記漏気回収孔に繋がり、他端が大気に連通する漏気回収通路と、一端が前記漏気回収通路の前記漏気回収孔に近い部分に繋がる送気通路と、前記送気通路の他端に繋がる圧縮空気送気手段とを備えてなる潜函工法における漏気回収装置としたことを特徴とする。   In order to solve such a problem, the invention according to claim 1 of the present invention is provided with a blade opening portion penetrating into the ground at the lower end of the outer peripheral wall of the cylindrical caisson body, and on the inner peripheral side of the outer peripheral wall. Forming a ceiling slab, separating a caisson working chamber on an inner peripheral side of the blade edge portion and below the ceiling slab, and excavating the internal ground while supplying compressed air to the caisson working chamber; In the leak recovery device in the submerged construction method in which the main body is set in the ground and the compressed air leaked outside through the blade opening from the caisson working chamber is opened to the outer peripheral surface of the caisson main body. A leak recovery hole, a leak recovery passage having one end connected to the leak recovery hole and the other end communicating to the atmosphere, and an air supply passage having one end connected to a portion of the leak recovery passage close to the leak recovery hole And connected to the other end of the air supply passage. Characterized in that the air leakage recovery device in caisson method comprising a compressed air blowing means.

また、本発明の請求項2に記載の発明は、請求項1に記載の構成に加え、前記漏気回収孔を前記ケーソン本体外周面の水平方向に沿って複数箇所に配置した潜函工法における漏気回収装置としたことを特徴とする。   Further, the invention according to claim 2 of the present invention, in addition to the configuration according to claim 1, is a leakage in a submerged construction method in which the leak collection holes are arranged at a plurality of locations along the horizontal direction of the outer peripheral surface of the caisson body. It is characterized by being a gas recovery device.

さらに、本発明の請求項3に記載の発明は、請求項1に記載の構成に加え、前記漏気回収通路の大気連通側端部に地下水還元手段を設けた潜函工法における漏気回収装置としたことを特徴とする。   Furthermore, the invention according to claim 3 of the present invention is the leak recovery apparatus in the submerged method, in addition to the configuration according to claim 1, wherein groundwater reduction means is provided at the end of the leak recovery passage at the atmosphere communication side. It is characterized by that.

そして、本発明の請求項4に記載の発明は、請求項3に記載の構成に加え、前記地下水還元手段を、前記漏気回収通路に流入する地下水と漏気とを分離し、前記地下水を地下に、前記漏気を大気中に、それぞれと還元させる分離用貯留槽とした潜函工法における漏気回収装置としたことを特徴とする。   The invention according to claim 4 of the present invention, in addition to the configuration according to claim 3, separates the groundwater reduction means from the groundwater flowing into the leak recovery passage and the leak, It is characterized by having a leak recovery device in a submerged construction method in the basement as a separation storage tank for reducing the leak to the atmosphere.

また、本発明の請求項5に記載の発明は、請求項3に記載の構成に加え、前記地下水還元手段を、前記漏気回収通路の大気連通側端部を前記ケーソン本体の前記天井スラブ上に設けられる荷重水貯留部の水面上に開口させた潜函工法における漏気回収装置としたことを特徴とする。   Further, the invention according to claim 5 of the present invention, in addition to the configuration according to claim 3, the groundwater reduction means, the air communication side end of the leak recovery passage is located on the ceiling slab of the caisson main body. It is set as the air leak collection | recovery apparatus in the submerged construction method opened on the water surface of the load water storage part provided in this.

さらに、本発明の請求項6に記載の発明は、請求項1乃至5のいずれかに記載の構成に加え、前記漏気回収通路の大気連通側端部に、前記圧縮空気の漏気を検出する漏気検出装置と、この漏気検出装置の作動に連動して警報を発令する警報装置とを設けた潜函工法における漏気回収装置としたことを特徴とする。   Furthermore, in the invention described in claim 6 of the present invention, in addition to the configuration described in any one of claims 1 to 5, the leakage of the compressed air is detected at the end of the leakage communication passage at the atmosphere communication side end. The leak detection device in the submerged construction method is provided with a leak detection device that performs the above and an alarm device that issues an alarm in conjunction with the operation of the leak detection device.

また、本発明の請求項7に記載の発明は、請求項1乃至6のいずれかに記載の構成に加え、前記漏気回収孔に土砂等の詰まりを防止する詰まり防止手段を設けた潜函工法における漏気回収装置としたことを特徴とする。   Further, the invention according to claim 7 of the present invention is a submerged method in which in addition to the structure according to any one of claims 1 to 6, clogging prevention means for preventing clogging of earth and sand is provided in the leak recovery hole. It is characterized by having set it as the air leak collection | recovery apparatus in.

さらに、本発明の請求項8に記載の発明は、請求項1に記載の構成に加え、前記圧縮空気送気手段として、前記ケーソン作業室内に圧縮空気を供給する圧縮空気供給手段を兼用した潜函工法における漏気回収装置としたことを特徴とする。   Furthermore, the invention according to claim 8 of the present invention is a submersible that also uses compressed air supply means for supplying compressed air into the caisson work chamber as the compressed air supply means in addition to the configuration according to claim 1. It is characterized by being a leak recovery device in the construction method.

請求項1に係る発明によれば、圧縮空気送気手段により送気通路から漏気回収通路に圧縮空気を送気し、これにより漏気回収孔に負圧を発生させてケーソン外部に漏れた空気を漏気回収孔から吸入して回収するため、従来からケーソン作業室に圧縮空気を供給するために備えられている圧縮空気供給手段をそのまま圧縮空気送気手段として用いることができ、これにより真空ポンプ等の機材を個別に用意する必要なくなり、簡素な構成によってケーソン作業室内から外方に漏れた漏気を確実に回収することができる。   According to the first aspect of the present invention, compressed air is supplied from the air supply passage to the leakage recovery passage by the compressed air supply means, thereby generating a negative pressure in the leakage recovery hole and leaking outside the caisson. Since air is sucked and collected from the air leakage collection hole, the compressed air supply means conventionally provided for supplying the compressed air to the caisson working chamber can be used as it is as the compressed air supply means. It is no longer necessary to separately prepare equipment such as a vacuum pump, and air leakage leaked outward from the caisson work chamber can be reliably recovered with a simple configuration.

請求項2に係る発明によれば、複数設けられた漏気回収孔により、より効率良く漏気を回収することができる。   According to the invention which concerns on Claim 2, leak can be collect | recovered more efficiently with the multiple leak collection holes provided.

請求項3に係る発明によれば、地下水還元手段により、漏気中に含まれる空気と地下水とを分離して還元することができる。   According to the invention which concerns on Claim 3, the ground water reduction means can isolate | separate and reduce the air and ground water which are contained in the air leak.

請求項4に係る発明によれば、簡素な構成により、漏気中に含まれる空気と地下水とをより確実に分離して還元することができる。   According to the invention which concerns on Claim 4, it can isolate | separate and reduce | restore more reliably the air and groundwater which are contained in the air leak by simple structure.

請求項5に係る発明によれば、漏気回収通路の大気連通側端部の高さを低くして揚程を低め、地下水と漏気の抜出を容易にすることができる。   According to the invention which concerns on Claim 5, the height of the air | atmosphere communication side edge part of an air leak collection | recovery channel | path can be made low, a lift can be lowered | hung, and extraction of groundwater and an air leak can be made easy.

請求項6に係る発明によれば、漏気が検出されると同時に警報が発令されるため、これに連動してケーソン作業室に供給する圧縮空気の量を減少させれば、ケーソンからの漏気の量を最小限に抑制することができる。   According to the sixth aspect of the invention, since an alarm is issued at the same time as air leakage is detected, if the amount of compressed air supplied to the caisson work chamber is reduced in conjunction with this, leakage from the caisson can be achieved. The amount of qi can be minimized.

請求項7に係る発明によれば、漏気回収孔の詰まりを防止してケーソン外部への漏気回収性を向上させることができる。   According to the invention which concerns on Claim 7, the clogging of the air leak collection | recovery hole can be prevented, and the air leak collection | recovery property outside a caisson can be improved.

以下、本発明の実施の形態を図1乃至図4に基づいて説明する。
[実施の形態1]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[Embodiment 1]

図1は、本発明の実施の形態1に係る漏気回収装置10が適用されたケーソン本体11の縦断面図であり、図2は図1のII矢視による平面図であり、図3は図1のIII部を拡大した縦断面図である。   FIG. 1 is a longitudinal sectional view of a caisson body 11 to which an air leakage recovery apparatus 10 according to Embodiment 1 of the present invention is applied. FIG. 2 is a plan view taken along the arrow II in FIG. It is the longitudinal cross-sectional view which expanded the III section of FIG.

ケーソン本体11は、一般に鉄筋コンクリートで筒状に形成され、その外周部をなす外周壁12の下端に、刃口部14が設けられるとともに、外周壁12の内周側に水平面状の天井スラブ15が形成され、天井スラブ15の下方かつ刃口部14の内周側にケーソン作業室16が隔成されている。   The caisson main body 11 is generally formed of reinforced concrete in a cylindrical shape, and a blade edge portion 14 is provided at the lower end of the outer peripheral wall 12 forming the outer peripheral portion thereof, and a horizontal plane ceiling slab 15 is provided on the inner peripheral side of the outer peripheral wall 12. A caisson working chamber 16 is formed below the ceiling slab 15 and on the inner peripheral side of the blade edge portion 14.

ケーソン本体11は、この実施の形態1では水平断面形状が正方形に形成されているが、丸型、楕円形、三角形、多角形等でも良い。刃口部14は、その先端部から上方に向かうに連れ、かつケーソン本体11の中方に向かうに連れて厚みが増す楔状断面である。   In the first embodiment, the caisson main body 11 is formed in a square shape in the horizontal cross section, but may be a round shape, an oval shape, a triangle shape, a polygonal shape, or the like. The blade opening portion 14 has a wedge-shaped cross section that increases in thickness as it goes upward from the tip portion and toward the middle of the caisson main body 11.

ケーソン作業室16には外部から送気管17が接続され、送気管17の外端側にはエアーコンプレッサ18等の圧縮空気供給手段が接続される。図中に符号19および20で示した部分は、下端がケーソン作業室16に繋がるマンロックとマテリアルロックである。   An air supply pipe 17 is connected to the caisson working chamber 16 from the outside, and compressed air supply means such as an air compressor 18 is connected to the outer end side of the air supply pipe 17. The portions indicated by reference numerals 19 and 20 in the figure are manlocks and material locks whose lower ends are connected to the caisson working chamber 16.

潜函工法では、このように形成されたケーソン本体11を、その刃口部14を地盤G中に貫入させ、エアーコンプレッサ18の圧縮空気を送気管17からケーソン作業室16内に供給しながらケーソン作業室16の内部に設置した図示しない掘削装置によりケーソン作業室16内部の地盤Gを掘削し、ケーソン本体11をその自重により地盤G中に沈降させて最終的に橋脚等の基礎として地盤G中に深く埋設する。なお、ケーソン本体11の重量を増して、地盤G中の揚圧力に対抗して沈設させるために、ケーソン本体11の天井スラブ15上に荷重水21が貯留される場合が多い。   In the submerged method, the caisson main body 11 formed in this way is inserted into the ground G with its blade edge portion 14 and the compressed air of the air compressor 18 is supplied into the caisson working chamber 16 from the air supply pipe 17. The ground G inside the caisson working chamber 16 is excavated by an unillustrated excavator installed inside the chamber 16, and the caisson main body 11 is submerged in the ground G by its own weight and finally enters the ground G as a foundation of a bridge pier or the like. Embed deeply. In addition, in order to increase the weight of the caisson body 11 and set it against the lifting pressure in the ground G, the load water 21 is often stored on the ceiling slab 15 of the caisson body 11.

漏気回収装置10は、漏気回収孔24と、漏気回収通路25と、送気通路26と、圧縮空気送気手段と地下水還元手段等を備えて構成されている。圧縮空気送気手段としては、先述のエアーコンプレッサ18が兼用されている。   The air leakage recovery device 10 includes an air leakage recovery hole 24, an air leakage recovery passage 25, an air supply passage 26, a compressed air supply means, a groundwater reduction means, and the like. As the compressed air supply means, the above-described air compressor 18 is also used.

漏気回収孔24は、図3にも拡大して示すように、ケーソン本体11の刃口部14の下端よりも0.1m〜3m程度上方となる外周面に開口しており、土砂等の詰まりを防止する詰まり防止手段として、フィルター28が嵌め込まれている。このフィルター28により、ケーソン作業室16内において地盤Gが掘削される際の土砂や泥等が漏気回収孔24に詰まることを防止し、漏気の回収性を向上させることができる。   As shown in an enlarged view in FIG. 3, the air leakage collection hole 24 opens to the outer peripheral surface that is about 0.1 m to 3 m above the lower end of the blade opening 14 of the caisson body 11, such as earth and sand. A filter 28 is fitted as a clogging prevention means for preventing clogging. The filter 28 can prevent clogging of the earth and mud when the ground G is excavated in the caisson working chamber 16 in the air leakage collection hole 24 and improve the air leakage recovery performance.

漏気回収通路25は、外周壁12内部の外表面近くに、例えば金属パイプを鉛直方向に埋設することにより形成され、その一端(下端)が外方に直角に屈曲して漏気回収孔24に繋がり、他端が漏気回収孔24よりも高い位置で大気に連通している。この実施形態では、漏気回収通路25が漏気回収孔24から外周壁12の内部を上方に延びてケーソン本体11の上端部から外部上方に抜けている。   The air leakage collection passage 25 is formed near the outer surface inside the outer peripheral wall 12 by, for example, embedding a metal pipe in the vertical direction, and one end (lower end) of the air leakage collection passage 25 is bent outward at a right angle to form the air leakage collection hole 24. The other end communicates with the atmosphere at a position higher than the air leakage collection hole 24. In this embodiment, the air leakage collection passage 25 extends upward from the air leakage collection hole 24 to the inside of the outer peripheral wall 12 and extends upward from the upper end portion of the caisson main body 11.

漏気回収孔24と漏気回収通路25は、ケーソン本体11の外周面の水平方向に沿って複数箇所に配置されている。本実施形態では、四角形断面に形成されたケーソン本体11(外周壁12)の各隅角部と、外周壁12の4辺の中間部との合計8箇所に漏気回収孔24と漏気回収通路25とがそれぞれ等間隔に設けられているが、この数はケーソン本体11の大きさに応じて増減するため、8箇所のみに限定されない。また、このように漏気回収孔24をケーソン本体11の外周面の水平方向に沿って複数箇所に配置しつつ、鉛直方向にも多段に設けて漏気回収孔24の数を増やしても良い。   The air leakage collection holes 24 and the air leakage collection passages 25 are arranged at a plurality of locations along the horizontal direction of the outer peripheral surface of the caisson main body 11. In the present embodiment, the air leakage recovery holes 24 and the air leakage recovery are made at a total of 8 locations including the corners of the caisson body 11 (outer peripheral wall 12) formed in a square cross section and the intermediate portions of the four sides of the outer peripheral wall 12. The passages 25 are provided at equal intervals, but this number increases or decreases depending on the size of the caisson main body 11 and is not limited to only eight places. In addition, the number of the air leakage collection holes 24 may be increased by arranging the air leakage collection holes 24 at a plurality of locations along the horizontal direction of the outer peripheral surface of the caisson main body 11 in this manner and also by providing multiple stages in the vertical direction. .

8本の漏気回収通路25の上端は、ケーソン本体11の上部で環状に配設された漏気連結管30にそれぞれ連通する。漏気連結管30は、ケーソン本体11の上部開口部の形状に沿う四角い環状に形成され、その4辺がなす隅角部と各辺の中間部に8本の漏気回収通路25の上端が繋がる。漏気連結管30の一辺は漏気延長管30aとして水平に延び、この漏気延長管30aの自由端部が大気に開放されている。なお、漏気連結管30を設けずに、各漏気回収通路25をケーソン本体11の内部で集合させて1本に纏め、この纏めた管をケーソン本体11の外部に引き出して大気に連通させる構成としても良い。   The upper ends of the eight air leak collection passages 25 communicate with the air leak connection pipes 30 that are annularly arranged at the upper part of the caisson main body 11. The air leakage connection pipe 30 is formed in a square annular shape along the shape of the upper opening of the caisson main body 11, and the upper ends of the eight air leakage recovery passages 25 are formed at the corners formed by the four sides and at the middle of each side. Connected. One side of the air leakage connection pipe 30 extends horizontally as a air leakage extension pipe 30a, and the free end of the air leakage extension pipe 30a is open to the atmosphere. In addition, without providing the air leakage connection pipe 30, the air leakage collection passages 25 are gathered inside the caisson main body 11 and collected into one, and the collected pipes are drawn out of the caisson main body 11 to communicate with the atmosphere. It is good also as a structure.

漏気延長管30aには地下水還元手段としての分離用貯留槽31が接続されている。この分離用貯留槽31は気液分離タンク状に構成され、その一面に漏気延長管30aが接続され、反対側の面から空気還元パイプ32と地下水還元パイプ33とが延出している。空気還元パイプ32には漏気検出装置35が接続され、さらにこの漏気検出装置35に警報手段としてのブザー36が接続されている。   A storage tank 31 for separation as groundwater reduction means is connected to the air leakage extension pipe 30a. The separation storage tank 31 is configured in the form of a gas-liquid separation tank, and a leakage extension pipe 30a is connected to one surface thereof, and an air reduction pipe 32 and a groundwater reduction pipe 33 extend from the opposite surface. An air leakage detection device 35 is connected to the air reduction pipe 32, and a buzzer 36 as an alarm means is further connected to the air leakage detection device 35.

このため、漏気回収通路25は漏気連結管30と漏気延長管30aと分離用貯留槽31と空気還元パイプ32を経て大気に連通している。   For this reason, the air leakage collection passage 25 communicates with the atmosphere via the air leakage connection pipe 30, the air leakage extension pipe 30 a, the separation storage tank 31, and the air reduction pipe 32.

漏気検出装置35は漏気延長管30a内を大気開放側に向かって流れる空気を漏気として検出するものである。漏気検出装置35が漏気を検出するとブザー36が作動して警報が発令される。ブザー36の代わりに点滅ランプ等の視覚的警報手段を用いても良い。   The air leak detection device 35 detects air flowing in the air leak extension pipe 30a toward the atmosphere opening side as air leak. When the air leak detection device 35 detects air leak, the buzzer 36 is activated and an alarm is issued. Instead of the buzzer 36, visual warning means such as a blinking lamp may be used.

一方、送気通路26は、漏気回収通路25と同様に外周壁12の内部に金属パイプ等を鉛直方向に埋設することにより形成されている。送気通路26は漏気回収通路25と同じく8本が配設され、その各々が漏気回収通路25の内側に平行し、各送気通路26の一端が、近接する漏気回収通路25の下端付近、即ち漏気回収孔24に近い部分に繋がり、そこから外周壁12の内部を漏気回収通路25の内側に沿って上方に延び、他端がケーソン本体11の外部上方に抜けている。   On the other hand, the air supply passage 26 is formed by embedding a metal pipe or the like in the vertical direction inside the outer peripheral wall 12 in the same manner as the air leakage collection passage 25. Eight air supply passages 26 are arranged in the same manner as the air leakage recovery passages 25, each of which is parallel to the inside of the air leakage recovery passage 25, and one end of each air supply passage 26 is connected to the adjacent air leakage recovery passage 25. It is connected to the vicinity of the lower end, that is, a portion close to the air leakage collection hole 24, and from there, the inside of the outer peripheral wall 12 extends upward along the inside of the air leakage collection passage 25, and the other end extends out of the caisson body 11. .

8本の送気通路26の上端は、ケーソン本体11の上部で環状に配設された送気連結管38にそれぞれ連通する。送気連結管38は、漏気連結管30と同様に、ケーソン本体11の上部開口部の形状に沿う四角い環状に形成され、平面視で漏気連結管30の内周側に配設されて、その4辺がなす角部と各辺の中間部に8本の送気通路26の上端が繋がっている。   The upper ends of the eight air supply passages 26 communicate with the air supply connection pipes 38 that are annularly arranged at the upper part of the caisson main body 11. Similarly to the air leakage connection tube 30, the air supply connection tube 38 is formed in a square annular shape along the shape of the upper opening of the caisson main body 11, and is disposed on the inner peripheral side of the air leakage connection tube 30 in plan view. The upper ends of the eight air supply passages 26 are connected to the corner portion formed by the four sides and the middle portion of each side.

送気連結管38の一辺は送気延長管38aとして水平に延び、この送気延長管38aの自由端側が送気管17に接続されて、最終的に圧縮空気送気手段であるエアーコンプレッサ18に繋がっている。送気延長管38aの中間部には流量調整バルブ39が接続されている。なお、送気連結管38を設けずに、各送気通路26をケーソン本体11の内部で集合させて1本に纏め、この纏めた管をケーソン本体11の外部に引き出して送気管17に接続する構成としても良い。   One side of the air supply connecting pipe 38 extends horizontally as an air supply extension pipe 38a, and the free end side of the air supply extension pipe 38a is connected to the air supply pipe 17, and finally to the air compressor 18 which is a compressed air supply means. It is connected. A flow rate adjustment valve 39 is connected to an intermediate portion of the air supply extension pipe 38a. In addition, without providing the air supply connecting pipe 38, the air supply passages 26 are gathered inside the caisson main body 11 and gathered into one, and the collected pipes are pulled out of the caisson main body 11 and connected to the air supply pipe 17. It is good also as composition to do.

以上のように構成された漏気回収装置10を備えたケーソン本体11を用いて潜函工事を行う際には、前述のように、エアーコンプレッサ18の圧縮空気を送気管17からケーソン作業室16内に供給しながら、ケーソン作業室16内部の地盤Gを掘削し、ケーソン本体11をその自重により地盤G中に沈降させて行く。   When performing submergence work using the caisson main body 11 provided with the air leakage recovery device 10 configured as described above, the compressed air of the air compressor 18 is supplied from the air supply pipe 17 into the caisson working chamber 16 as described above. The ground G inside the caisson working chamber 16 is excavated while being fed to the ground, and the caisson main body 11 is allowed to sink into the ground G by its own weight.

この作業に伴い、ケーソン作業室16内部に地下水Wを溜めるが、地下水Wの水位は送気管18から供給される圧縮空気の圧力を加減することにより調整される。エアーコンプレッサ18から送気される圧縮空気の圧力を増してケーソン作業室16の内部気圧を高めることにより、地下水Wの水位を下げて掘削作業性を向上させることができる。   Along with this operation, the groundwater W is accumulated in the caisson working chamber 16, and the water level of the groundwater W is adjusted by adjusting the pressure of the compressed air supplied from the air supply pipe 18. By increasing the pressure of the compressed air sent from the air compressor 18 and increasing the internal pressure of the caisson working chamber 16, the level of the groundwater W can be lowered and the excavation workability can be improved.

しかし、ケーソン作業室16内における地下水Wの水位が低下すると、圧縮空気の一部が刃口部14の先端を潜り抜けて外部に漏気しやすくなる。このようにケーソン作業室16内から外部に漏れた漏気は、以下のように漏気回収装置10により回収される。   However, when the water level of the groundwater W in the caisson working chamber 16 decreases, a part of the compressed air easily passes through the tip of the blade opening 14 and leaks to the outside. In this way, the air leaking from the caisson working chamber 16 to the outside is recovered by the air leak recovery device 10 as follows.

即ち、送気延長管38aの流量調整バルブ39を開くことにより、エアーコンプレッサ18の圧縮空気の一部が送気延長管38aと送気連結管38を経て8本の送気通路26に分配され、漏気回収通路25の下端付近に圧縮空気が送気される。漏気回収通路25の内部には漏気回収孔24から地下水が自然流入しているため、送気通路26から漏気回収通路25の下端付近に圧縮空気が送気されることにより、漏気回収通路25内部の地下水が押し上げられて上方に揚水され、これにより漏気回収通路25内を上方に向かって流れる気液流F(図3参照)が形成され、漏気回収孔24に負圧が発生する。   That is, by opening the flow rate adjusting valve 39 of the air supply extension pipe 38a, a part of the compressed air of the air compressor 18 is distributed to the eight air supply passages 26 through the air supply extension pipe 38a and the air supply connection pipe 38. Compressed air is sent to the vicinity of the lower end of the leak recovery passage 25. Since groundwater naturally flows into the inside of the air leakage collection passage 25 from the air leakage collection hole 24, the compressed air is supplied from the air supply passage 26 to the vicinity of the lower end of the air leakage collection passage 25, thereby causing air leakage. The groundwater in the recovery passage 25 is pushed up and pumped upward, thereby forming a gas-liquid flow F (see FIG. 3) that flows upward in the leakage recovery passage 25, and negative pressure is applied to the leakage recovery hole 24. Will occur.

このため、図1中に矢印で示すように、ケーソン作業室16内から刃口部14の先端を潜り抜けて外部に漏れた空気(漏気)が、ケーソン11の外周面に沿って上方に流れる途中で漏気回収孔24に吸入され、このように吸入された空気が漏気回収通路25を上方に流れる上述の気液流Fに混合し、漏気連結管30と漏気延長管30aとを経て分離用貯留槽31に流入する。   For this reason, as indicated by an arrow in FIG. 1, the air (leakage) leaked outside through the tip of the blade opening 14 from inside the caisson working chamber 16 upward along the outer peripheral surface of the caisson 11. During the flow, the air is sucked into the air leakage collection hole 24, and the air thus sucked is mixed with the above-described gas-liquid flow F flowing upward through the air leakage collection passage 25, and the air leakage connection pipe 30 and the air leakage extension pipe 30a. And then flows into the separation reservoir 31.

分離用貯留槽31に流入した気液流は、水と空気(漏気)とに分離され、水は地下水還元パイプ33を経て地中に還元され、空気は空気還元パイプ32を経て大気中に還元される。   The gas-liquid flow that has flowed into the separation storage tank 31 is separated into water and air (leakage), the water is reduced to the ground via the groundwater reduction pipe 33, and the air is returned to the atmosphere via the air reduction pipe 32. Reduced.

この漏気回収装置10によれば、非常に簡素な構成によってケーソン作業室16内部から外部に漏れた漏気を回収することができ、しかも漏気中に含まれる空気と地下水とを確実に分離して還元することができる。   According to this air leak recovery device 10, it is possible to recover air leaked from the caisson work chamber 16 to the outside with a very simple configuration, and to reliably separate the air contained in the air leak from the groundwater. And can be reduced.

特に、ケーソン作業室16に圧縮空気を供給するための圧縮空気供給手段として備えられているエアーコンプレッサ18を、そのまま圧縮空気送気手段として用いることができるため、従来のように漏気を吸引する負圧を生むための真空ポンプ等の機材を個別に用意する必要がなく、非常に簡素な構成によって確実に漏気を回収することができる。   In particular, since the air compressor 18 provided as the compressed air supply means for supplying the compressed air to the caisson working chamber 16 can be used as the compressed air supply means as it is, the air leakage is sucked in the conventional manner. There is no need to separately prepare equipment such as a vacuum pump for generating negative pressure, and air leakage can be reliably recovered with a very simple configuration.

また、漏気回収孔をケーソン11外周面の水平方向に沿って複数箇所に配置したため、ケーソン作業室16からの漏気をより効率良く回収することができる。   Moreover, since the air leak collection holes are arranged at a plurality of locations along the horizontal direction of the outer peripheral surface of the caisson 11, the air leak from the caisson working chamber 16 can be collected more efficiently.

さらに、漏気回収通路25の大気連通側端部である漏気延長管30aに地下水還元手段としての分離用貯留槽31を接続したため、漏気中に含まれる空気と地下水とを確実に分離して還元することができ、建設工事に伴いがちな環境の破壊を最小限に留めることができる。   Further, since the separation storage tank 31 as the groundwater reduction means is connected to the leakage extension pipe 30a that is the end of the leakage collection passage 25 on the atmosphere communication side, the air contained in the leakage and the groundwater are reliably separated. The environmental damage that tends to occur during construction work can be minimized.

また、分離用貯留槽31の空気還元パイプ32に漏気検出装置35とブザー36とを設けたため、空気還元パイプ32に空気が流れた場合にはそれが漏気検出装置35により漏気として直ちに検出され、さらにブザー36が作動して警報が発令される。従って、これに連動してケーソン作業室16に供給する圧縮空気の量を減少させれば、ケーソン作業室16からの漏気を最小限に抑制することができる。 In addition, since the air leakage detection device 35 and the buzzer 36 are provided in the air reduction pipe 32 of the separation storage tank 31, when air flows through the air reduction pipe 32, it is immediately detected as air leakage by the air leakage detection device 35. Then, the buzzer 36 is activated and an alarm is issued. Therefore, if the amount of compressed air supplied to the caisson working chamber 16 is decreased in conjunction with this, air leakage from the caisson working chamber 16 can be minimized.

図4は、本発明の実施の形態2に係る漏気回収装置50が適用されたケーソン本体11の縦断面図である。ここにおいて、漏気回収装置50以外の構成は、図1に示す実施の形態1のものと同様であるため、同一符号を付して説明を省略する。   FIG. 4 is a longitudinal sectional view of the caisson body 11 to which the air leak recovery apparatus 50 according to Embodiment 2 of the present invention is applied. Here, since the configuration other than the air leak recovery device 50 is the same as that of the first embodiment shown in FIG.

漏気回収装置50は、漏気回収孔51と、漏気回収通路52と、送気通路53と、圧縮空気送気手段と、地下水還元手段等を備えて構成されている。圧縮空気送気手段はエアーコンプレッサ18である。   The air leakage recovery device 50 includes an air leakage recovery hole 51, an air leakage recovery passage 52, an air supply passage 53, compressed air supply means, groundwater reduction means, and the like. The compressed air supply means is an air compressor 18.

漏気回収孔51の形状、構造、設置位置等は実施の形態1における漏気回収装置10の漏気回収孔24と同様である。   The shape, structure, installation position, etc. of the air leakage recovery hole 51 are the same as those of the air leakage recovery hole 24 of the air leakage recovery device 10 in the first embodiment.

漏気回収通路52は金属管等により形成され、その凡そ下半分程が外周壁12の内部に埋設され、その下端が外方に直角に屈曲して漏気回収孔51に繋がっている。また、漏気回収通路52の中間部以上の部分は内方に直角に屈曲してケーソン本体11の天井スラブ15上に設けられる荷重水貯留部54内に進入してから上方に延び、その先端開口部52aが荷重水21の水面上に開口し、かつ大気に連通している。   The air leakage collection passage 52 is formed of a metal pipe or the like, and its lower half is embedded in the outer peripheral wall 12, and its lower end is bent outward at a right angle and connected to the air leakage collection hole 51. Further, the portion above the middle portion of the air leakage collection passage 52 is bent inward at a right angle and extends upward after entering the load water storage portion 54 provided on the ceiling slab 15 of the caisson main body 11, and its tip. The opening 52a opens on the water surface of the load water 21 and communicates with the atmosphere.

このように、漏気回収通路52の先端開口部52aを荷重水21の水面上に開口させることにより、漏気回収通路52自体が地下水還元手段として機能する。   Thus, by opening the front end opening 52a of the air leakage recovery passage 52 on the water surface of the load water 21, the air leakage recovery passage 52 itself functions as a groundwater reduction means.

送気通路53は、実施の形態1における送気通路26と同様に、その一端が漏気回収通路52の漏気回収孔51に近い部分に繋がり、送気通路53の上端はケーソン本体11の上部で環状に配設された送気連結管55に繋がる。送気連結管55の一辺は送気延長管55aとして水平に延び、この送気延長管55aの自由端側が送気管17に接続されて、最終的に圧縮空気送気手段であるエアーコンプレッサ18に繋がっている。送気延長管55aの中間部には流量調整バルブ56が接続される。   As with the air supply passage 26 in the first embodiment, one end of the air supply passage 53 is connected to a portion near the air leakage recovery hole 51 of the air leakage recovery passage 52, and the upper end of the air supply passage 53 is connected to the caisson main body 11. It connects with the air supply connection pipe | tube 55 arrange | positioned circularly by the upper part. One side of the air supply connecting pipe 55 extends horizontally as an air supply extension pipe 55a, and the free end side of the air supply extension pipe 55a is connected to the air supply pipe 17, and finally to the air compressor 18 which is a compressed air supply means. It is connected. A flow rate adjusting valve 56 is connected to an intermediate portion of the air supply extension pipe 55a.

流量調整バルブ56を開くと、エアーコンプレッサ18の圧縮空気の一部が送気延長管55aと送気連結管55とを経て8本の送気通路53に分配され、漏気回収通路52の下端付近に圧縮空気が送気される。漏気回収通路52の内部には漏気回収孔51から地下水が自然流入しているため、送気通路53から漏気回収通路52の下端付近に圧縮空気が送気されることにより、漏気回収通路52内部の地下水が押し上げられて上方に揚水され、これにより漏気回収通路52内を上方に向かって流れる気液流が形成され、漏気回収孔51に負圧が発生する。   When the flow rate adjusting valve 56 is opened, a part of the compressed air of the air compressor 18 is distributed to the eight air supply passages 53 through the air supply extension pipe 55 a and the air supply connection pipe 55, and the lower end of the air leakage recovery passage 52. Compressed air is sent in the vicinity. Since groundwater naturally flows into the inside of the air leakage collection passage 52 from the air leakage collection hole 51, the compressed air is supplied from the air supply passage 53 to the vicinity of the lower end of the air leakage collection passage 52. The groundwater in the recovery passage 52 is pushed up and pumped upward, whereby a gas-liquid flow that flows upward in the leakage recovery passage 52 is formed, and a negative pressure is generated in the leakage recovery hole 51.

このため、図4中に矢印で示すように、ケーソン作業室16内から刃口部14の先端を潜り抜けて外部に漏れた空気(漏気)が、ケーソン11の外周面に沿って上方に流れる途中で漏気回収孔51に吸入され、このように吸入された空気が漏気回収通路52内を上方に流れる上述の気液流に混合し、この気液流が漏気回収通路52の先端開口部52aから荷重水貯留部54に放流される。   For this reason, as indicated by an arrow in FIG. 4, air (leakage) that leaks out from the caisson working chamber 16 through the tip of the blade edge portion 14 moves upward along the outer peripheral surface of the caisson 11. In the middle of the flow, the air is sucked into the air leakage collection hole 51, and the air thus sucked is mixed with the above-described gas-liquid flow that flows upward in the air leakage collection passage 52. The water is discharged from the tip opening 52a to the load water reservoir 54.

荷重水貯留部54に放流された気液流は空気と水とに分離され、水は荷重水21としてそのまま荷重水貯留部54に貯留され、空気は大気中に還元される。荷重水貯留部54における過剰な荷重水21は図示しないウォーターポンプにより外部に排出される。   The gas-liquid flow discharged to the load water reservoir 54 is separated into air and water, the water is stored as the load water 21 as it is in the load water reservoir 54, and the air is reduced to the atmosphere. Excess load water 21 in the load water reservoir 54 is discharged to the outside by a water pump (not shown).

この漏気回収装置50によれば、漏気回収通路52を非常に短く形成できるため、漏気回収通路52内を上方に流れる気液流の揚程(水頭)を小さくでき、揚水を容易にすることができる。従って、ケーソン本体11の規模が同じであるならば、この漏気回収装置50の方が実施の形態1における漏気回収装置10よりも少ないエネルギー(負圧)で漏気を回収することができる。   According to this air leak recovery device 50, since the air leak recovery passage 52 can be formed very short, the head (water head) of the gas-liquid flow flowing upward in the air leak recovery passage 52 can be reduced, and pumping is facilitated. be able to. Therefore, if the scale of the caisson main body 11 is the same, the leak recovery device 50 can recover leak with less energy (negative pressure) than the leak recovery device 10 in the first embodiment. .

また、漏気回収通路52の大気連通側端部を荷重水21の水面上に開口させることにより、漏気回収通路52自体を地下水還元手段として機能させたため、専用の地下水還元手段を別途設ける必要がなく、漏気回収装置50を非常に簡素化することができる。   In addition, since the end of the air communication side of the air leakage collection passage 52 is opened on the surface of the load water 21, the air leakage collection passage 52 itself functions as the ground water reduction means. Therefore, it is necessary to separately provide a dedicated ground water reduction means. The leak recovery device 50 can be greatly simplified.

なお、上記実施の形態1,2の漏気回収装置10(50)において、図5に好適な例を示すように、送気通路26(53)が漏気回収通路25(52)に繋がる接続区間26a(53a)を、送気通路26(53)の下端から漏気回収通路25(52)に向かって上昇するように傾斜させて、接続区間26a(53a)を鋭角な角度で漏気回収通路25(52)に合流させれば、漏気回収通路25(52)内を上方に向かって流れる気液流Fの流速を高めて漏気回収孔24(51)に発生する負圧を大きくし、漏気の回収性を飛躍的に向上させることができる。   In addition, in the leak recovery device 10 (50) of the first and second embodiments, as shown in a preferred example in FIG. 5, the connection in which the air supply passage 26 (53) is connected to the leak recovery passage 25 (52). The section 26a (53a) is inclined so as to rise from the lower end of the air supply passage 26 (53) toward the air leakage collection passage 25 (52), and the connection section 26a (53a) is leaked at an acute angle. If it merges with the passage 25 (52), the flow rate of the gas-liquid flow F flowing upward in the leak recovery passage 25 (52) is increased to increase the negative pressure generated in the leak recovery hole 24 (51). In addition, it is possible to dramatically improve the air leak recovery.

本発明の実施の形態1に係る漏気回収装置が適用されたケーソン本体の縦断面図である。It is a longitudinal cross-sectional view of the caisson main body to which the air leak collection | recovery apparatus which concerns on Embodiment 1 of this invention was applied. 同実施の形態1に係る図1のII矢視による平面図である。It is a top view by the II arrow of FIG. 同実施の形態1に係る図1のIII部を拡大した縦断面図である。It is the longitudinal cross-sectional view to which the III section of FIG. 1 which concerns on the same Embodiment 1 was expanded. 本発明の実施の形態2に係る漏気回収装置が適用されたケーソン本体の縦断面図である。It is a longitudinal cross-sectional view of the caisson main body to which the air leak collection | recovery apparatus which concerns on Embodiment 2 of this invention was applied. 同実施の形態1,2のより好適な例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the more suitable example of Embodiment 1,2.

符号の説明Explanation of symbols

10 漏気回収装置
11 ケーソン本体
12 外周壁
14 刃口部
15 天井スラブ
16 ケーソン作業室
17 送気管
18 圧縮空気送気手段であるエアーコンプレッサ
21 荷重水
24 漏気回収孔
25 漏気回収通路
26 送気通路
28 詰まり防止手段であるフィルター
31 地下水還元手段である分離用貯留槽
35 漏気検出装置
36 警報装置であるブザー
54 荷重水貯留部
G 地盤
W 地下水
DESCRIPTION OF SYMBOLS 10 Leak recovery apparatus 11 Caisson main body 12 Peripheral wall 14 Cutting edge 15 Ceiling slab 16 Caisson working room 17 Air supply pipe 18 Air compressor which is compressed air supply means 21 Load water 24 Leak recovery hole 25 Leak recovery path 26 Air passage 28 Filter 31 as clogging prevention means 31 Separation storage tank as groundwater reduction means 35 Leakage detection device 36 Buzzer as alarm device 54 Loaded water storage part G Ground W Groundwater

Claims (8)

筒状のケーソン本体の外周壁下端に、地盤に貫入する刃口部を設けるとともに、前記外周壁の内周側に天井スラブを形成し、前記刃口部の内周側かつ前記天井スラブの下方にケーソン作業室を隔成し、前記ケーソン作業室内に圧縮空気を供給しながら、その内部地盤を掘削して前記ケーソン本体を地盤中に沈設し、その際に前記ケーソン作業室内から前記刃口部を潜って外部に漏れた圧縮空気を回収する潜函工法における漏気回収装置において、
前記ケーソン本体の外周面に開口する漏気回収孔と、
一端が前記漏気回収孔に繋がり、他端が大気に連通する漏気回収通路と、
一端が前記漏気回収通路の前記漏気回収孔に近い部分に繋がる送気通路と、
前記送気通路の他端に繋がる圧縮空気送気手段と、
を備えてなることを特徴とする潜函工法における漏気回収装置。
Provided at the lower end of the outer peripheral wall of the cylindrical caisson body is a blade opening that penetrates the ground, and forms a ceiling slab on the inner peripheral side of the outer peripheral wall, and on the inner peripheral side of the blade opening and below the ceiling slab The caisson working chamber is separated from the caisson working chamber, the compressed air is supplied to the caisson working chamber, the internal ground is excavated, and the caisson body is set in the ground. In the air leak recovery device in the submersible construction method that recovers compressed air that leaks outside by diving,
Leak recovery hole that opens to the outer peripheral surface of the caisson body,
A leak recovery passage, one end of which is connected to the leak recovery hole and the other end of which is connected to the atmosphere;
An air supply passage connected at one end to a portion of the air leakage recovery passage close to the air leakage recovery hole;
Compressed air supply means connected to the other end of the air supply passage;
An air leakage recovery device in a submerged construction method, comprising:
前記漏気回収孔を前記ケーソン本体外周面の水平方向に沿って複数箇所に配置したことを特徴とする請求項1に記載の潜函工法における漏気回収装置。   2. The air leakage recovery device according to claim 1, wherein the air leakage recovery holes are arranged at a plurality of locations along a horizontal direction of the outer peripheral surface of the caisson body. 前記漏気回収通路の大気連通側端部に地下水還元手段を設けたことを特徴とする請求項1に記載の潜函工法における漏気回収装置。   The leak recovery apparatus for a submerged method according to claim 1, wherein groundwater reduction means is provided at an end of the leak recovery passage on the atmosphere communication side. 前記地下水還元手段は、前記漏気回収通路に流入する地下水と漏気とを分離し、前記地下水を地下に、前記漏気を大気中に、それぞれと還元させる分離用貯留槽であることを特徴とする請求項3に記載の潜函工法における漏気回収装置。   The groundwater reduction means is a separation storage tank that separates groundwater and airflow flowing into the airflow collection passage, and reduces the groundwater to the ground and the airflow to the atmosphere. The air leak recovery device in the submersible construction method according to claim 3. 前記地下水還元手段は、前記漏気回収通路の大気連通側端部を前記ケーソン本体の前記天井スラブ上に設けられる荷重水貯留部の水面上に開口させたものであることを特徴とする請求項3に記載の潜函工法における漏気回収装置。   The groundwater reducing means is characterized in that an end portion on the atmosphere communication side of the air leakage collection passage is opened on a water surface of a load water storage portion provided on the ceiling slab of the caisson body. 3. A leak recovery device in the submersible construction method according to 3. 前記漏気回収通路の大気連通側端部に、前記圧縮空気の漏気を検出する漏気検出装置と、この漏気検出装置の作動に連動して警報を発令する警報装置とを設けたことを特徴とする請求項1乃至5のいずれかに記載の潜函工法における漏気回収装置。   An air leakage detection device that detects leakage of the compressed air and an alarm device that issues an alarm in conjunction with the operation of the air leakage detection device are provided at the end of the air communication side of the air leakage collection passage. An air leakage recovery device in a submerged construction method according to any one of claims 1 to 5. 前記漏気回収孔に土砂等の詰まりを防止する詰まり防止手段を設けたことを特徴とする請求項1乃至6のいずれかに記載の潜函工法における漏気回収装置。   7. The leak recovery apparatus for a submerged construction method according to claim 1, wherein the leak recovery hole is provided with a clog prevention means for preventing clogging of earth and sand. 前記圧縮空気送気手段として、前記ケーソン作業室内に圧縮空気を供給する圧縮空気供給手段を兼用したことを特徴とする請求項1に記載の潜函工法における漏気回収装置。   The leak recovery apparatus in a submerged construction method according to claim 1, wherein the compressed air supply means is also used as a compressed air supply means for supplying compressed air into the caisson work chamber.
JP2008053515A 2008-03-04 2008-03-04 Leakage recovery device in submersible construction method Active JP4527158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053515A JP4527158B2 (en) 2008-03-04 2008-03-04 Leakage recovery device in submersible construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053515A JP4527158B2 (en) 2008-03-04 2008-03-04 Leakage recovery device in submersible construction method

Publications (2)

Publication Number Publication Date
JP2009209581A JP2009209581A (en) 2009-09-17
JP4527158B2 true JP4527158B2 (en) 2010-08-18

Family

ID=41183007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053515A Active JP4527158B2 (en) 2008-03-04 2008-03-04 Leakage recovery device in submersible construction method

Country Status (1)

Country Link
JP (1) JP4527158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314090A (en) * 2014-08-29 2015-01-28 中铁八局集团建筑工程有限公司 Deep foundation pit bedrock drainage culvert and drainage system and drainage construction method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368186B2 (en) * 2009-06-24 2013-12-18 大成建設株式会社 Air leak detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105031A (en) * 1979-02-07 1980-08-12 Japanese National Railways<Jnr> Air leakage treatment for air compression method
JPS5616733A (en) * 1979-07-20 1981-02-18 Takuo Mochizuki Caisson method
JPH0559731A (en) * 1991-08-27 1993-03-09 Daiho Constr Co Ltd Air supply and discharge system for pneumatic caisson lock
JPH08134924A (en) * 1994-11-14 1996-05-28 Konoike Constr Ltd Harmful gas exhausting method in underground construction
JPH0921137A (en) * 1995-07-04 1997-01-21 Daiho Constr Co Ltd Device for relieving disturbance in surrounding natural ground in pneumatic caisson
JP2001262584A (en) * 2000-03-22 2001-09-26 Kajima Corp Draining device in pneumatic caisson box
JP2002088770A (en) * 2000-09-13 2002-03-27 Ohbayashi Corp Air leakage recovering apparatus for use in caisson method
JP2002256538A (en) * 2001-02-28 2002-09-11 Seiko Kogyo Kk Method and device for returning underground water again underground by pumping up underground water
JP2006348482A (en) * 2005-06-13 2006-12-28 Shiraishi Corp System for automatically adjusting water level in workroom in pneumatic caisson construction method, method and program for managing water level in workroom in pneumatic caisson construction method, and recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105031A (en) * 1979-02-07 1980-08-12 Japanese National Railways<Jnr> Air leakage treatment for air compression method
JPS5616733A (en) * 1979-07-20 1981-02-18 Takuo Mochizuki Caisson method
JPH0559731A (en) * 1991-08-27 1993-03-09 Daiho Constr Co Ltd Air supply and discharge system for pneumatic caisson lock
JPH08134924A (en) * 1994-11-14 1996-05-28 Konoike Constr Ltd Harmful gas exhausting method in underground construction
JPH0921137A (en) * 1995-07-04 1997-01-21 Daiho Constr Co Ltd Device for relieving disturbance in surrounding natural ground in pneumatic caisson
JP2001262584A (en) * 2000-03-22 2001-09-26 Kajima Corp Draining device in pneumatic caisson box
JP2002088770A (en) * 2000-09-13 2002-03-27 Ohbayashi Corp Air leakage recovering apparatus for use in caisson method
JP2002256538A (en) * 2001-02-28 2002-09-11 Seiko Kogyo Kk Method and device for returning underground water again underground by pumping up underground water
JP2006348482A (en) * 2005-06-13 2006-12-28 Shiraishi Corp System for automatically adjusting water level in workroom in pneumatic caisson construction method, method and program for managing water level in workroom in pneumatic caisson construction method, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314090A (en) * 2014-08-29 2015-01-28 中铁八局集团建筑工程有限公司 Deep foundation pit bedrock drainage culvert and drainage system and drainage construction method thereof

Also Published As

Publication number Publication date
JP2009209581A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5291927B2 (en) Fresh water storage and intake system
JP5724222B2 (en) Pumping unit, soft soil improvement method, ground excavation method, contaminated soil purification method, and condensate method
JP6338890B2 (en) Water intake equipment
KR200460536Y1 (en) Vacuum deep well drainage system for underground water level lowering method
JP5780855B2 (en) Groundwater pumping equipment
JP4527158B2 (en) Leakage recovery device in submersible construction method
CN106400805A (en) Construction method for pile bottom hole cleaning of pile foundation construction
JP5142348B2 (en) How to prevent ground liquefaction
JP4476972B2 (en) Water collecting pipe for well
CN210658408U (en) Foundation pit dewatering well and plugging structure thereof
KR100719444B1 (en) Level of underground water lowering method and deep well point system thereof
JP3838011B2 (en) Leakage recovery device in submersible construction method
CN211816350U (en) Structure for controlling diving, water stopping and water lowering
JP2003268759A (en) Underground water pumping method
JP4679597B2 (en) Leakage prevention device in submersible construction method
JP3706368B2 (en) Method and apparatus for pumping up groundwater and returning it to the basement again
JP2003328344A (en) High lift wellpoint apparatus
JP2002256538A (en) Method and device for returning underground water again underground by pumping up underground water
JP2012172384A (en) Long term stabilizing method for water catchment function of groundwater removal construction
JP5038248B2 (en) Leakage prevention device in submersible construction method
CN220394602U (en) Positive and negative pressure combined device for deep well precipitation
CN207277350U (en) A kind of relief well of deep foundation pit
JPH1037173A (en) Landslide suppression well
CN218148462U (en) Pipeless dewatering well
CN218263954U (en) Vacuum composite pipe well device for complex geology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4