JP4751644B2 - Method for producing tetraazaporphyrin compound - Google Patents

Method for producing tetraazaporphyrin compound

Info

Publication number
JP4751644B2
JP4751644B2 JP2005147072A JP2005147072A JP4751644B2 JP 4751644 B2 JP4751644 B2 JP 4751644B2 JP 2005147072 A JP2005147072 A JP 2005147072A JP 2005147072 A JP2005147072 A JP 2005147072A JP 4751644 B2 JP4751644 B2 JP 4751644B2
Authority
JP
Japan
Prior art keywords
group
general formula
compound represented
formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005147072A
Other languages
Japanese (ja)
Other versions
JP2006321925A (en
Inventor
甲也 小島
康浩 抜井
秀樹 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP2005147072A priority Critical patent/JP4751644B2/en
Publication of JP2006321925A publication Critical patent/JP2006321925A/en
Application granted granted Critical
Publication of JP4751644B2 publication Critical patent/JP4751644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明はDVD−RやCD−Rなどの追記型光ディスク用材料、プラズマディスプレイパネルなどの光学フィルター用材料等に有用なテトラアザポルフィリン化合物の製造方法に関する。   The present invention relates to a method for producing a tetraazaporphyrin compound useful for write-once optical disc materials such as DVD-R and CD-R, and optical filter materials such as plasma display panels.

テトラアザポルフィリン化合物は耐光性が高い、吸光係数が高い等有益な物性を有する色素として知られ、近年、電子写真用光導電体、DVD-RやCD-Rなどの追記型光ディスク材料、プラズマディスプレイパネルなどの光学フィルター用材料等への活用に関する研究が活発になされている。このような状況により、テトラアザポルフィリン化合物の製造法に関する研究も盛んに行われるようになってきている。   Tetraazaporphyrin compounds are known as pigments having useful properties such as high light resistance and high extinction coefficient. Recently, photoconductors for electrophotography, write-once optical disk materials such as DVD-R and CD-R, and plasma displays. Research on utilization of optical filter materials such as panels has been actively conducted. Under such circumstances, research on methods for producing tetraazaporphyrin compounds has been actively conducted.

テトラアザポルフィリン化合物の製造法として、例えば、マレオニトリル化合物または2,5−ジイミノピロール化合物を、金属または遷移金属カルボン酸塩等の金属誘導体と、ジアザビシクロウンデセンやジアザビシクロノネン等の有機塩基を反応させる方法が特開平11−116574号公報に開示されている(特許文献1を参照。)。また、アルキル置換トリシアノエチレン化合物と、金属または遷移金属ハロゲン化物や遷移金属カルボン酸塩等の金属誘導体と、モリブデン酸アンモニウムを反応させる方法が特開平11−35837号公報に開示されている(特許文献2を参照。)。
特開平11−116574号公報 特開平11−35837号公報
Examples of the method for producing a tetraazaporphyrin compound include a maleonitrile compound or a 2,5-diiminopyrrole compound, a metal derivative such as a metal or transition metal carboxylate, and an organic compound such as diazabicycloundecene or diazabicyclononene. A method of reacting a base is disclosed in JP-A-11-116574 (see Patent Document 1). Japanese Patent Application Laid-Open No. 11-35837 discloses a method of reacting an alkyl-substituted tricyanoethylene compound with a metal derivative such as a metal or transition metal halide or transition metal carboxylate and ammonium molybdate (patent). See reference 2.)
JP 11-116574 A JP 11-35837 A

しかしながら、前記のテトラアザポルフィリン化合物の製造方法は収率に改善の余地があること、また、前記の方法で得られるテトラアザポルフィリン化合物は高純度が要求される用途に使用するには再結晶等の精製が必要であることなどの改善すべき余地がある。   However, the production method of the tetraazaporphyrin compound has room for improvement in yield, and the tetraazaporphyrin compound obtained by the above method is recrystallized for use in applications requiring high purity. There is room for improvement, such as the need for purification.

したがって、本発明は、高純度なテトラアザポルフィリン化合物を収率良く製造する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a highly pure tetraazaporphyrin compound with high yield.

本発明者らは、上記課題を解決するために鋭意検討した結果、特定の金属化合物をアンモニアで処理した後、マレオニトリル誘導体と反応させることにより、比較的純度の高いテトラアザポルフィリン化合物が収率良く得られることを見出し本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors treated a specific metal compound with ammonia, and then reacted with a maleonitrile derivative, whereby a tetraazaporphyrin compound having a relatively high purity was obtained in a high yield. As a result, the present invention was found.

すなわち、本発明は、
後述する一般式(4)で表される化合物と、アンモニアとを、0度から40度の温度で反応させて、一般式(1)で表される化合物を得る工程と、該工程で得られた一般式(1)
That is, the present invention
A step of obtaining a compound represented by the general formula (1) by reacting a compound represented by the general formula (4), which will be described later, with ammonia at a temperature of 0 to 40 degrees, and obtained in this step. the general formula (1)

[式中、Mは1価〜5価の金属原子を表し、Rはヒドロキシ基、アルキル基、フェニル基、−OSi(CH3)3又は酸素原子を表し、Xはハロゲン原子を表し、aは0〜4の整数、b及びcは各々1〜6の整数、dは0〜6の整数を表す。]で表される化合物と、一般式(2) [Wherein, M represents a monovalent to pentavalent metal atom, R represents a hydroxy group, an alkyl group, a phenyl group, —OSi (CH 3) 3 or an oxygen atom, X represents a halogen atom, and a represents 0 -4, b and c each represent an integer of 1-6, d represents an integer of 0-6. And a compound represented by the general formula (2)

〔式中、R1およびR2はそれぞれ独立に水素原子、アルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオ基を表す〕で表される化合物を反応させる、一般式(3) [Wherein R1 and R2 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group, or an arylthio group] And general formula (3)

〔式中R3〜10は、それぞれ独立に水素原子、アルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオ基を表し、Mは2価の金属原子、3価または4価の置換金属原子、あるいはオキシ金属を表す〕で表される化合物の製造方法に関するものである。 [Wherein R3 to 10 each independently represents a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group, or an arylthio group, and M represents a divalent metal atom, Represents a trivalent or tetravalent substituted metal atom or an oxy metal].

本発明によれば、高純度なテトラアザポルフィリン化合物を収率良く製造する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing a highly purified tetraazaporphyrin compound with a sufficient yield can be provided.

本発明の製造方法は、一般式(1)で表される化合物と一般式(2)で表される化合物を反応させて一般式(3)で表される化合物を製造することを特徴とする。   The production method of the present invention is characterized in that a compound represented by the general formula (3) is produced by reacting a compound represented by the general formula (1) with a compound represented by the general formula (2). .

一般式(1)中のMは1価〜5価の金属原子表し、Rはヒドロキシ基、アルキル基、フェニル基、−OSi(CH3)3又は酸素原子を表し、Xはハロゲン原子を表し、aは0〜4の整数、b及びcは各々1〜6の整数、dは0〜6の整数を表す。   M in the general formula (1) represents a monovalent to pentavalent metal atom, R represents a hydroxy group, an alkyl group, a phenyl group, —OSi (CH 3) 3 or an oxygen atom, X represents a halogen atom, a Represents an integer of 0 to 4, b and c each represents an integer of 1 to 6, and d represents an integer of 0 to 6.

一般式(1)中のMとしては、Cr、Si、Zr、Al、Ga、In、Tl、Cu、Zn、Fe、Co、Ni、Ru、Pd、Pt、Mn、Mg、Ti、Be、Ca、Ba、Cd、Hg、Pb、Sn、Ge等の1〜5価の金属原子が挙げられる。   As M in the general formula (1), Cr, Si, Zr, Al, Ga, In, Tl, Cu, Zn, Fe, Co, Ni, Ru, Pd, Pt, Mn, Mg, Ti, Be, Ca , Ba, Cd, Hg, Pb, Sn, Ge, etc. 1-5 pentavalent metal atoms.

一般式(1)中、Rのアルキル基としては特に制限はないが、炭素数1〜8のアルキル基が好ましいものとして挙げられる。   In general formula (1), the alkyl group for R is not particularly limited, but an alkyl group having 1 to 8 carbon atoms is preferable.

一般式(2)中のRおよびRはそれぞれ独立に水素原子、アルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基又はアリールチオ基を表す。 R 1 and R 2 in the general formula (2) each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group or an arylthio group.

一般式(2)中、R1およびR2のアルキル基としては特に限定されないが、炭素数1〜20のアルキル基が好ましいものとして挙げられる。   In general formula (2), the alkyl group of R1 and R2 is not particularly limited, but an alkyl group having 1 to 20 carbon atoms is preferable.

なお、アルキル基は、アルコキシ基、シクロ炭化水素基等の置換基で置換されていてもよい。   The alkyl group may be substituted with a substituent such as an alkoxy group or a cyclohydrocarbon group.

一般式(2)中、R1およびR2のアラルキル基としては特に限定されないが、炭素数7〜20のアラルキル基が好ましいものとして挙げられる。   In the general formula (2), the aralkyl group of R1 and R2 is not particularly limited, but an aralkyl group having 7 to 20 carbon atoms is preferable.

なお、アラルキル基はアルキル基、ニトロ基、シアノ基、ヒドロキシ基、ハロゲノ基、ハロゲン化炭素基で置換されていてもよい。   The aralkyl group may be substituted with an alkyl group, a nitro group, a cyano group, a hydroxy group, a halogeno group, or a halogenated carbon group.

一般式(2)中、R1およびR2のアルコキシ基としては炭素数1〜20のアルコキシ基が好ましいものとして挙げられる。   In the general formula (2), the alkoxy group of R1 and R2 is preferably an alkoxy group having 1 to 20 carbon atoms.

一般式(2)中、R1およびR2のアルキルチオ基としては炭素数1〜20のアルキルチオ基が好ましいものとして挙げられる。   In general formula (2), the alkylthio group of R1 and R2 is preferably an alkylthio group having 1 to 20 carbon atoms.

一般式(2)中、R1およびR2のアリール基としては炭素数6〜20のアリール基が好ましいものとして挙げられる。   In general formula (2), the aryl group of R1 and R2 is preferably an aryl group having 6 to 20 carbon atoms.

なお、アリール基はアルコキシ基、アミノ基、アルキル基、ニトロ基、シアノ基、ヒドロキシ基、ハロゲノ基、ハロゲン化炭素基で置換されていてもよい。   The aryl group may be substituted with an alkoxy group, amino group, alkyl group, nitro group, cyano group, hydroxy group, halogeno group, or halogenated carbon group.

一般式(2)中、R1およびR2のヘテロアリール基としては炭素数4〜20のヘテロアリール基が好ましいものとして挙げられる。   In general formula (2), the heteroaryl group of R1 and R2 is preferably a heteroaryl group having 4 to 20 carbon atoms.

一般式(2)中、R1およびR2のアリールオキシ基としては炭素数6〜20のアリールオキシ基が好ましいものとして挙げられる。   In general formula (2), the aryloxy group of R1 and R2 is preferably an aryloxy group having 6 to 20 carbon atoms.

なお、アリールオキシ基はアルキル基および/またはアルコキシ基で置換されていてもよい。   The aryloxy group may be substituted with an alkyl group and / or an alkoxy group.

一般式(2)中、R1およびR2のアリールチオ基としては炭素数6〜20のアリールチオ基が好ましいものとして挙げられる。   In general formula (2), the arylthio group of R1 and R2 is preferably an arylthio group having 6 to 20 carbon atoms.

なお、アリールチオ基はアルキル基および/またはアルコキシ基で置換されていてもよい。   The arylthio group may be substituted with an alkyl group and / or an alkoxy group.

一般式(3)中、R〜R10は、それぞれ独立に水素原子、置換または無置換のアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオ基を表し、Mは2価の金属原子あるいはオキシ金属を表す。 In general formula (3), R 3 to R 10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group, and an arylthio group. the stands, M is a divalent metal source core Rui represents an oxy metal.

一般式(3)中、R〜R10の置換または無置換のアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオ基は、前記の一般式(2)中の各基の定義と同義である。 In general formula (3), the substituted or unsubstituted alkyl group, aralkyl group, alkoxy group, alkylthio group, aryl group, heteroaryl group, aryloxy group, and arylthio group of R 3 to R 10 are represented by the above general formula ( It is synonymous with the definition of each group in 2).

一般式(3)中、Mの2価の金属原子としては、Cu(II)、Zn(II)、Fe(II)、Co(II)、Ni(II)、Ru(II)、Rh(II)、Pd(II)、Pt(II)、Mn(II)、Mg(II)、Ti(II)、Be(II)、Ca(II)、Ba(II)、Cd(II)、Hg(II)、Pb(II)、Sn(II)等が挙げられる。   In the general formula (3), as the divalent metal atom of M, Cu (II), Zn (II), Fe (II), Co (II), Ni (II), Ru (II), Rh (II ), Pd (II), Pt (II), Mn (II), Mg (II), Ti (II), Be (II), Ca (II), Ba (II), Cd (II), Hg (II ), Pb (II), Sn (II) and the like.

般式(3)中、Mのオキシ金属としては、VO、MnO、TiO等が挙げられる。 In one general formula (3), as the oxy metal M, VO, MnO, TiO, and the like.

一般式(1)で表される化合物と一般式(2)で表される化合物との反応には反応溶媒を必ずしも必要としないが、温度制御および/または攪拌効率を考慮すれば、反応溶媒を用いるのが好ましい。   A reaction solvent is not necessarily required for the reaction between the compound represented by the general formula (1) and the compound represented by the general formula (2). However, if temperature control and / or stirring efficiency are taken into consideration, the reaction solvent is not used. It is preferable to use it.

反応溶媒は一般式(3)で表される化合物の生成を妨げるものでなければ特に限定されない。このような反応溶媒としては、例えば、トルエン、キシレン等の炭化水素類、ペンタノール、ブタノール、オクタノール等のアルコール類、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン等の高沸点親水性溶媒等が挙げられる。これらの中でも、一般式(2)で表される化合物及び一般式(3)で表される化合物の溶解性が高いアルコール類は好ましい。   The reaction solvent is not particularly limited as long as it does not prevent the formation of the compound represented by the general formula (3). Examples of such a reaction solvent include hydrocarbons such as toluene and xylene, alcohols such as pentanol, butanol and octanol, N, N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and 1,3-dimethyl. And high boiling hydrophilic solvents such as imidazolidinone. Among these, alcohols having high solubility of the compound represented by the general formula (2) and the compound represented by the general formula (3) are preferable.

一般式(1)で表される化合物と一般式(2)で表される化合物との反応の反応条件としては、通常、温度は0〜100℃、圧力は0.01〜1MPa、雰囲気は空気または窒素やヘリウム、アルゴン等の不活性ガス雰囲気である。   As reaction conditions for the reaction of the compound represented by the general formula (1) and the compound represented by the general formula (2), the temperature is usually 0 to 100 ° C., the pressure is 0.01 to 1 MPa, and the atmosphere is air. Or an inert gas atmosphere such as nitrogen, helium, or argon.

一般式(1)で表される化合物は市販品として入手できるものもあるが、一般式(4)   Some of the compounds represented by the general formula (1) are commercially available, but the general formula (4)

[式中、Mは1価〜5価の金属原子を表し、Rはヒドロキシ基、アルキル基、フェニル基、−OSi(CH3)3又は酸素原子を表し、Xはハロゲン原子を表し、aは0〜4の整数、cは1〜6の整数、dは0〜6の整数を表す。]で表される化合物とアンモニアを反応させて製造することができる。例えば、一般式(1)で表される化合物は新実験化学講座(昭和52年6月20日発行、8巻1294ページ)に記載された方法に準じて製造することができる。具体的には塩化ニッケルに濃アンモニア水を加え、1時間ほど空気を通じて製造する。 [Wherein, M represents a monovalent to pentavalent metal atom, R represents a hydroxy group, an alkyl group, a phenyl group, —OSi (CH 3) 3 or an oxygen atom, X represents a halogen atom, and a represents 0 -4, c represents an integer of 1-6, d represents an integer of 0-6. It can be produced by reacting a compound represented by For example, the compound represented by the general formula (1) can be produced according to the method described in the New Experimental Chemistry Course (issued June 20, 1977, Vol. 8, page 1294). Specifically, concentrated ammonia water is added to nickel chloride, and it is produced through air for about 1 hour.

一般式(2)で表される化合物は市販品として入手できるものもあるが、例えば、下記一般式(5)   Some of the compounds represented by the general formula (2) are available as commercial products. For example, the following general formula (5)

[式中のR1およびR2は一般式(2)のR1およびR2と同義である。]で表される1,2−ジブロモエタン化合物をシアン化ナトリウムやシアン化銅と反応させて得ることもできる。 [Wherein R1 and R2 have the same meanings as R1 and R2 in formula (2). It can also be obtained by reacting a 1,2-dibromoethane compound represented by the formula with sodium cyanide or copper cyanide.

一般式(4)で表される化合物とアンモニアを反応させて形成された一般式(1)で表される化合物と一般式(2)で表される化合物とを反応させることにより一般式(3)で表される化合物を製造することもできる。   By reacting the compound represented by the general formula (1) formed by reacting the compound represented by the general formula (4) with ammonia, the compound represented by the general formula (2) is reacted with the compound represented by the general formula (3). ) Can also be produced.

一般式(4)で表される化合物とアンモニアを反応させて形成された一般式(1)で表される化合物と一般式(2)で表される化合物とを反応させて一般式(3)で表される化合物を製造する方法に特に制限はないが、例えば、前記の反応溶媒に溶解させた一般式(4)で表される化合物の溶液にアンモニアを添加した後、この反応混合物に一般式(2)で表される化合物を添加する方法及び一般式(4)で表される化合物と一般式(2)で表される化合物の混合物にアンモニアを添加して反応させる方法等が挙げられる。これらの方法のうち、前者の方法は反応収率及び純度の点で好ましい。   The compound represented by the general formula (1) formed by reacting the compound represented by the general formula (4) with ammonia is reacted with the compound represented by the general formula (2) to obtain the general formula (3). There is no particular limitation on the method for producing the compound represented by general formula (4). For example, after adding ammonia to the solution of the compound represented by the general formula (4) dissolved in the reaction solvent, The method of adding the compound represented by Formula (2), the method of adding ammonia to the mixture of the compound represented by General Formula (4), and the compound represented by General Formula (2), etc. are mentioned. . Among these methods, the former method is preferable in terms of reaction yield and purity.

例えば、一般式(4)中のMがCuである化合物とアンモニアを反応させ(1)中のMがCuである化合物を単離することなく一般式(2)で表される化合物と反応させることにより一般式(3)中のMがCuである化合物を製造することができる。また、一般式(4)中のMがVである化合物とアンモニアを反応させた後、一般式(1)中のMがVである化合物を単離することなく一般式(2)で表される化合物と反応させることにより一般式(3)中のMがVOである化合物を製造することができる。 For example, a compound in which M in general formula (4) is Cu and ammonia are reacted, and a compound in which M in Cu is (1) is reacted with a compound represented by general formula (2) without isolation. Thus, a compound in which M in the general formula (3) is Cu can be produced. In addition, after reacting ammonia in the general formula (4) with a compound in which M is V, the compound in which the M in the general formula (1) is V is represented by the general formula (2) without isolation. A compound in which M in the general formula (3) is VO can be produced by reacting with the compound.

一般式(4)で表される化合物とアンモニアとの反応に使用するアンモニアガスの量は、一般式(4)で表される化合物中のハロゲン原子1モルに対して1乃至3モル、好ましくは1.5乃至2.5モル、より好ましくは1.8乃至2.2モルである。   The amount of ammonia gas used for the reaction between the compound represented by the general formula (4) and ammonia is 1 to 3 mol, preferably 1 mol per 1 mol of the halogen atom in the compound represented by the general formula (4). The amount is 1.5 to 2.5 mol, more preferably 1.8 to 2.2 mol.

一般式(4)で表される化合物とアンモニアとの反応の反応温度は、通常、100℃以下であるが、0乃至40℃の範囲で行うのが好ましい。   The reaction temperature of the reaction between the compound represented by the general formula (4) and ammonia is usually 100 ° C. or lower, but it is preferably performed in the range of 0 to 40 ° C.

一般式(3)で表される化合物の反応混合物からの分離は、通常、反応混合物から反応溶媒の大部分を蒸留により除去した後、一般式(3)で表される化合物の溶解度が低い溶媒を添加し、析出した一般式(3)で表される化合物の固体を濾過して分離することができる。   The separation of the compound represented by the general formula (3) from the reaction mixture is usually performed by removing most of the reaction solvent from the reaction mixture by distillation, and then the solvent represented by the general formula (3) having a low solubility. And the precipitated solid of the compound represented by the general formula (3) can be separated by filtration.

一般式(3)で表される化合物の溶解度が低い溶媒としては、例えば、メタノール、エタノール、水、ヘキサン等が挙げられる。 これらの溶媒は2種以上を混合して使用することができるが、含水メタノールを好ましいものとして挙げることができる。   As a solvent with low solubility of the compound represented by General formula (3), methanol, ethanol, water, hexane etc. are mentioned, for example. These solvents can be used as a mixture of two or more thereof, and water-containing methanol can be mentioned as a preferable one.

以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

なお、以下の各実施例中の純度が記載された化合物の純度の測定は、高速液体クロマトグラフィー(以下、「HPLC」と略記する。)に依った。   In addition, the measurement of the purity of the compound in which the purity in each following Example was described was based on the high performance liquid chromatography (henceforth "HPLC").

HPLC分析の条件は次のとおりである。
カラム: 株式会社ワイエムシィ製 YMC−Pack ODS−A A−312
カラムオーブン温度: 40℃
溶離液: THF:メタノール比=1:6の混合溶媒
検出波長: 254nm
The conditions for HPLC analysis are as follows.
Column: YMC-Pack ODS-A A-312 manufactured by YMC Co., Ltd.
Column oven temperature: 40 ° C
Eluent: THF: methanol ratio = 1: 6 mixed solvent Detection wavelength: 254 nm

1−ペンタノール50gに三塩化バナジウム1.57gを装入し、20℃でアンモニアガス1.02gを1時間かけて導入した。アンモニアガスは反応液中へ導入した。アンモニア導入中は発熱を伴った。20乃至30℃で1時間攪拌を行った後、下記式(6)で表される化合物(市販品)5.38gを装入し、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、メタノール水(メタノールと水の重量比は1:1)を装入して無定形の下記式(7)で表される化合物を析出させた。析出した式(7)で表される化合物を濾過して回収し、乾燥させて式(7)で表される化合物5.46gを得た。乾燥後の式(7)で表される化合物をHPLC分析した結果、その純度は94%、収率は85%であった。式(7)で表される化合物の元素分析結果およびFD−MS測定結果は次のとおりであった。   50 g of 1-pentanol was charged with 1.57 g of vanadium trichloride, and 1.02 g of ammonia gas was introduced at 20 ° C. over 1 hour. Ammonia gas was introduced into the reaction solution. There was an exotherm during the introduction of ammonia. After stirring at 20 to 30 ° C. for 1 hour, 5.38 g of a compound (commercial product) represented by the following formula (6) was charged, and the temperature was raised to 125 ° C. After completion of the temperature increase, stirring was continued at 125 ° C. for 6 hours. Next, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water (the weight ratio of methanol to water was 1: 1) was charged to obtain an amorphous compound represented by the following formula (7). Precipitated. The precipitated compound represented by the formula (7) was collected by filtration and dried to obtain 5.46 g of a compound represented by the formula (7). As a result of HPLC analysis of the compound represented by the formula (7) after drying, the purity was 94% and the yield was 85%. The elemental analysis results and FD-MS measurement results of the compound represented by formula (7) were as follows.

元素分析結果 C H N FD−MS
(m/z)
化合物(7) 63.70 6.71 18.55 603
理論値(%) 63.67 6.68 18.56 603
Elemental analysis results C H N FD-MS
(M / z)
Compound (7) 63.70 6.71 18.55 603
Theoretical value (%) 63.67 6.68 18.56 603

化合物(7)の合成
1−ペンタノール50gに三塩化バナジウム1.57g、前記式(6)で表される化合物5.38gを装入し、20℃でアンモニアガス1.02gを1時間かけて導入した。アンモニアガスは反応液中へ導入した。アンモニア導入中は発熱を伴った。20乃至30℃で1時間攪拌を行った後、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、重量比1:1のメタノール水を装入して無定形の前記式(7)で表される化合物を析出させた。析出した前記式(7)で表される化合物を濾過して回収し、乾燥させて式(7)で表される化合物5.00gを得た。乾燥後の式(7)で表される化合物をHPLC分析した結果、その純度は94%、収率は78%であった。式(7)で表される化合物の元素分析結果およびFD−MS測定結果は次のとおりであった。
Synthesis of Compound (7) 50 g of 1-pentanol was charged with 1.57 g of vanadium trichloride and 5.38 g of the compound represented by the formula (6), and 1.02 g of ammonia gas was added at 20 ° C. over 1 hour. Introduced. Ammonia gas was introduced into the reaction solution. There was an exotherm during the introduction of ammonia. After stirring for 1 hour at 20 to 30 ° C, the temperature was raised to 125 ° C. After completion of the temperature increase, stirring was continued at 125 ° C. for 6 hours. Next, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water having a weight ratio of 1: 1 was charged to precipitate an amorphous compound represented by the formula (7). The precipitated compound represented by the formula (7) was collected by filtration and dried to obtain 5.00 g of a compound represented by the formula (7). As a result of HPLC analysis of the compound represented by the formula (7) after drying, the purity was 94% and the yield was 78%. The elemental analysis results and FD-MS measurement results of the compound represented by formula (7) were as follows.

元素分析結果 C H N FD−MS
(m/z)
化合物(7) 63.71 6.70 18.55 603
理論値(%) 63.67 6.68 18.56 603
Elemental analysis results C H N FD-MS
(M / z)
Compound (7) 63.71 6.70 18.55 603
Theoretical value (%) 63.67 6.68 18.56 603

化合物(8)の合成
1−ペンタノール50gに無水塩化銅(II)1.34gを装入し、20℃でアンモニアガス0.68gを1時間かけて導入した。アンモニアガスは反応液中へ導入した。アンモニア導入中は発熱を伴った。20乃至30℃で1時間攪拌を行った後、前記式(6)で表される化合物5.38gを装入し、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、重量比1:1のメタノール水を装入して無定形の式(8)で表される化合物を析出させた。式(8)で表される化合物を濾過して回収し、乾燥させて式(8)で表される化合物5.56gを得た。乾燥後の式(8)で表される化合物をHPLC分析した結果、その純度は95%、収率は88%であった。式(8)で表される化合物の元素分析結果およびFD−MS測定結果は次のとおりであった。
Synthesis of Compound (8) 1.34 g of anhydrous copper (II) chloride was charged into 50 g of 1-pentanol, and 0.68 g of ammonia gas was introduced at 20 ° C. over 1 hour. Ammonia gas was introduced into the reaction solution. There was an exotherm during the introduction of ammonia. After stirring at 20 to 30 ° C. for 1 hour, 5.38 g of the compound represented by the formula (6) was charged, and the temperature was raised to 125 ° C. After completion of the temperature increase, stirring was continued at 125 ° C. for 6 hours. Next, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water having a weight ratio of 1: 1 was charged to precipitate an amorphous compound represented by the formula (8). The compound represented by formula (8) was collected by filtration and dried to obtain 5.56 g of compound represented by formula (8). As a result of HPLC analysis of the compound represented by the formula (8) after drying, the purity was 95% and the yield was 88%. The elemental analysis results and FD-MS measurement results of the compound represented by formula (8) were as follows.

元素分析結果 C H N FD−MS
(m/z)
化合物(8) 64.05 6.71 18.66 600
理論値(%) 64.03 6.72 18.67 600
Elemental analysis results C H N FD-MS
(M / z)
Compound (8) 64.05 6.71 18.66 600
Theoretical value (%) 64.03 6.72 18.67 600

化合物(10)の合成
1−ペンタノール50gに塩化パラジウム(II)1.77gを装入し、20℃でアンモニアガス0.68gを1時間かけて導入した。アンモニアガスは反応液中へ導入した。アンモニア導入中は発熱を伴った。20乃至30℃で1時間攪拌を行った後、下記式(9)で表されるル化合物(市販品)9.21gを装入し、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、重量比1:1のメタノール水を装入して無定形の下記式(10)で表される化合物を析出させた。析出した式(10)で表される化合物を濾過して回収し、乾燥させて式(10)で表される化合物9.41gを得た。乾燥後の式(10)で表される化合物をHPLC分析した結果、その純度は95%、収率は87%であった。式(10)で表される化合物の元素分析結果及びFD−MS測定結果は次にとおりであった。
Synthesis of Compound (10) 1.77 g of palladium chloride (II) was charged into 50 g of 1-pentanol, and 0.68 g of ammonia gas was introduced at 20 ° C. over 1 hour. Ammonia gas was introduced into the reaction solution. There was an exotherm during the introduction of ammonia. After stirring at 20 to 30 ° C. for 1 hour, 9.21 g of a ru compound (commercial product) represented by the following formula (9) was charged, and the temperature was raised to 125 ° C. After completion of the temperature increase, stirring was continued at 125 ° C. for 6 hours. Subsequently, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water having a weight ratio of 1: 1 was charged to precipitate an amorphous compound represented by the following formula (10). The precipitated compound represented by the formula (10) was collected by filtration and dried to obtain 9.41 g of a compound represented by the formula (10). As a result of HPLC analysis of the compound represented by the formula (10) after drying, the purity was 95% and the yield was 87%. The results of elemental analysis and FD-MS measurement of the compound represented by formula (10) were as follows.

元素分析結果 C H N FD−MS
(m/z)
化合物(10) 74.78 3.93 10.89 1026
理論値(%) 74.81 3.92 10.91 1026
Elemental analysis results C H N FD-MS
(M / z)
Compound (10) 74.78 3.93 10.89 1026
Theoretical value (%) 74.81 3.92 10.91 1026

化合物(11)の合成
1−ペンタノール50gに塩化ニッケル(II)1.30gを装入し、20℃でアンモニアガス0.68gを1時間かけて導入した。アンモニアガスは反応液中へ導入した。アンモニア導入中は発熱を伴った。20乃至30℃で1時間攪拌を行った後、前記式(9)で表される化合物9.21gを装入し、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、重量比1:1のメタノール水を装入して無定形の下記式(11)で表される化合物を析出させた。式(11)で表される化合物を濾過して回収し、乾燥させて式(11)で表される化合物9.08gを得た。乾燥後の式(11)で表される化合物をHPLC分析した結果、その純度は96%、収率は89%であった。式(11)で表される化合物の元素分析結果及びFD−MS測定結果は次のとおりであった。
Synthesis of Compound (11) 1.30 g of nickel chloride (II) was charged into 50 g of 1-pentanol, and 0.68 g of ammonia gas was introduced at 20 ° C. over 1 hour. Ammonia gas was introduced into the reaction solution. There was an exotherm during the introduction of ammonia. After stirring for 1 hour at 20 to 30 ° C., 9.21 g of the compound represented by the formula (9) was charged, and the temperature was raised to 125 ° C. After completion of the temperature increase, stirring was continued at 125 ° C. for 6 hours. Next, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water having a weight ratio of 1: 1 was charged to precipitate an amorphous compound represented by the following formula (11). The compound represented by the formula (11) was collected by filtration and dried to obtain 9.08 g of the compound represented by the formula (11). As a result of HPLC analysis of the compound represented by the formula (11) after drying, the purity was 96% and the yield was 89%. The elemental analysis results and FD-MS measurement results of the compound represented by formula (11) were as follows.

元素分析結果 C H N FD−MS
(m/z)
化合物(11) 78.44 4.11 11.47 978
理論値(%) 78.46 4.12 11.44 978
Elemental analysis results C H N FD-MS
(M / z)
Compound (11) 78.44 4.11 11.47 978
Theoretical value (%) 78.46 4.12 11.44 978

[比較例1]
化合物(7)の合成
1−ペンタノール50gに前記式(6)で表される化合物5.38gを装入して約70℃に昇温した。約70℃昇温後、ジアザビシクロウンデセン1.22gを加え、さらに温度を上昇させた。90℃になった時点で三塩化バナジウム1.57gを装入し、温度120乃至125℃で20時間攪拌を続けた。次いで、反応混合物から1−ペンタノール約40gを蒸留により除去し、重量比1:1のメタノール水を装入して無定形の前記式(7)で表される化合物を析出させた。式(7)で表される化合物を濾過して回収し、乾燥させて式(7)で表される化合物4.41gを得た。乾燥後の式(7)で表される化合物をHPLC分析した結果、その純度は89%、収率は65%であった。
[Comparative Example 1]
Synthesis of Compound (7) 5.38 g of the compound represented by the formula (6) was charged into 50 g of 1-pentanol, and the temperature was raised to about 70 ° C. After raising the temperature at about 70 ° C., 1.22 g of diazabicycloundecene was added, and the temperature was further raised. When the temperature reached 90 ° C., 1.57 g of vanadium trichloride was charged, and stirring was continued at a temperature of 120 to 125 ° C. for 20 hours. Next, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water having a weight ratio of 1: 1 was charged to precipitate an amorphous compound represented by the formula (7). The compound represented by the formula (7) was collected by filtration and dried to obtain 4.41 g of the compound represented by the formula (7). As a result of HPLC analysis of the compound represented by the formula (7) after drying, the purity was 89% and the yield was 65%.

本発明の製造方法は、高純度のテトラアザポルフィリン化合物を収率良く製造するのに有用である。   The production method of the present invention is useful for producing a high-purity tetraazaporphyrin compound with high yield.

Claims (4)

下記一般式(4)で表される化合物と、アンモニアとを、0度から40度の温度で反応させて、下記一般式(1)で表される化合物を得る工程と、該工程で得られた下記一般式(1)で表される化合物と下記一般式(2)で表される化合物とを反応させて、下記一般式(3)で表される化合物を得る工程とを含む製造方法。

一般式(4)中、Mは1価〜5価の金属原子を表し、Rはヒドロキシ基、アルキル基、フェニル基、−OSi(CH 又は酸素原子を表し、Xはハロゲン原子を表し、aは0〜4の整数、cは1〜6の整数、dは0〜6の整数を表す。

一般式(1)中、Mは1価〜5価の金属原子を表し、Rはヒドロキシ基、アルキル基、フェニル基、−OSi(CH又は酸素原子を表し、Xはハロゲン原子を表し、aは0〜4の整数、b及びcは各々1〜6の整数、dは0〜6の整数を表す。

一般式(2)中、RおよびRはそれぞれ独立に水素原子、アルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基又はアリールチオ基を表す。

一般式(3)中、R 10は、それぞれ独立に水素原子、アルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオ基を表し、Mは2価の金属原子あるいはオキシ金属を表す。
A step of obtaining a compound represented by the following general formula (1) by reacting a compound represented by the following general formula (4) with ammonia at a temperature of 0 to 40 degrees; was following by the general formula (1) and a compound represented by the following general formula and a compound represented by (2) reacting, a manufacturing method including a step of obtaining a compound represented by the following general formula (3).

In general formula (4), M represents a monovalent to pentavalent metal atom, R represents a hydroxy group, an alkyl group, a phenyl group, —OSi (CH 3 ) 3 or an oxygen atom, and X represents a halogen atom. A represents an integer of 0 to 4, c represents an integer of 1 to 6, and d represents an integer of 0 to 6.

In general formula (1), M represents a monovalent to pentavalent metal atom, R represents a hydroxy group, an alkyl group, a phenyl group, —OSi (CH 3 ) 3 or an oxygen atom, and X represents a halogen atom. , A represents an integer of 0 to 4, b and c each represents an integer of 1 to 6, and d represents an integer of 0 to 6.

In general formula (2), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group, or an arylthio group.

In general formula (3), R 3 to R 10 each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an aryl group, a heteroaryl group, an aryloxy group, or an arylthio group, and M is divalent metal original core Rui represents an oxy metal.
前記一般式(4)で表される化合物中のハロゲン原子に対して、1乃至3当量のアンモニアを用いる、請求項に記載の製造方法。 Against a halogen atom in the compound represented by the general formula (4), using 1 to 3 equivalents of ammonia The process of claim 1. 前記一般式(4)で表される化合物中のMがCuであり、前記一般式(3)で表される化合物中のMがCuである請求項1又は請求項2のいずれか1項に記載製造方法。 A M is Cu in the compound represented by the general formula (4), in any one of claims 1 or claim of 2 M in the compound represented is Cu by formula (3) The manufacturing method as described . 前記一般式(4)で表される化合物中のMがVであり、前記一般式(3)で表される化合物中のMがVOである請求項1又は請求項2のいずれか1項に記載製造方法。 A M is V in the compound represented by the general formula (4), in any one of claims 1 or claim of 2 M in a compound represented are VO by the general formula (3) The manufacturing method as described .
JP2005147072A 2005-05-19 2005-05-19 Method for producing tetraazaporphyrin compound Active JP4751644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147072A JP4751644B2 (en) 2005-05-19 2005-05-19 Method for producing tetraazaporphyrin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147072A JP4751644B2 (en) 2005-05-19 2005-05-19 Method for producing tetraazaporphyrin compound

Publications (2)

Publication Number Publication Date
JP2006321925A JP2006321925A (en) 2006-11-30
JP4751644B2 true JP4751644B2 (en) 2011-08-17

Family

ID=37541831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147072A Active JP4751644B2 (en) 2005-05-19 2005-05-19 Method for producing tetraazaporphyrin compound

Country Status (1)

Country Link
JP (1) JP4751644B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132721A (en) 2006-11-29 2008-06-12 Nitto Denko Corp Cushioning sheet for printing apparatus, printing apparatus and printing method
JP5619472B2 (en) * 2010-05-13 2014-11-05 山本化成株式会社 Eyeglass lenses
JPWO2012020570A1 (en) 2010-08-12 2013-10-28 三井化学株式会社 Plastic polarizing lens, manufacturing method thereof, and polarizing film
JP7291619B2 (en) * 2019-12-27 2023-06-15 大日本印刷株式会社 Tetraazaporphyrin compound, ink composition, film, optical material, optical film, display surface film, and display device
JP7291620B2 (en) * 2019-12-27 2023-06-15 大日本印刷株式会社 Tetraazaporphyrin compound, ink composition, film, optical material, optical film, display surface film, and display device
IT202100009824A1 (en) 2021-04-19 2022-10-19 Mitsui Chemicals Inc METHOD OF MANUFACTURING AN OPTICAL MATERIAL AND COMPOSITION USED IN SUCH METHOD.
WO2023229048A1 (en) * 2022-05-27 2023-11-30 三井化学株式会社 Optical material and eyeglass lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998821B2 (en) * 1997-07-25 2007-10-31 株式会社リコー A material containing a halogenated tetraazaporphyrin compound and a method for producing the material.
JP2001270885A (en) * 2000-03-27 2001-10-02 Toyo Ink Mfg Co Ltd Method for manufacturing aluminum phthalocyanine
JP2002114925A (en) * 2000-10-04 2002-04-16 Dainippon Ink & Chem Inc Process for producing halogenated metal phthalocyanine composition

Also Published As

Publication number Publication date
JP2006321925A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4751644B2 (en) Method for producing tetraazaporphyrin compound
JP5522447B2 (en) Azo-boron complex compound and method for producing the same
EP2305638B1 (en) Asymmetric azine compound and method for producing the same
KR20220083740A (en) Process for the preparation of centanafadine
KR101528827B1 (en) Process for producing triphenylene compound and crystal obtained by the process
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP4257434B2 (en) New carbazole derivatives with silyl substituents
JP4796776B2 (en) Method for producing 4,4'-dicarboxy-2,2'-bipyridine
JP4259849B2 (en) Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same
JP4694138B2 (en) Method for producing subphthalocyanine compound
JP5019086B2 (en) Manufacturing method of near infrared absorber
JP2012007084A (en) New photosensitizer
JP5651037B2 (en) tetrakis-allyl-substituted phthalocyanine and process for producing the same
CA2276320C (en) L-tartrate of trans-(-)-4-(4-fluorophenyl)-3-hydroxymethylpiperidine compound and process for preparing the same
CN113816974B (en) Porphyrin covalent connection sym-triazacyclonium compound and preparation and application thereof
WO2003014067A1 (en) PROCESS FOR PRODUCING ß-OXONITRILE COMPOUND OR ALKALI METAL SALT THEREOF
JP2004196710A (en) Ligand and asymmetric catalyst
JP5709020B2 (en) Silicon complex, production method and fluorescent material
CN114875433B (en) Preparation method of polyfluoroaryl selenoether derivative
JP4437637B2 (en) Method for producing phthalocyanines
JP5178098B2 (en) Alicyclic vinyl ether compounds
JP5039271B2 (en) 4- (Trialkylsilylethynyl) phenanthrene derivatives
JP2523640B2 (en) Phthalocyanine compound
JP4968602B2 (en) Method for producing benzamide derivative
JP4004082B2 (en) Method for producing cyclic nitroguanidine derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250