WO2023229048A1 - Optical material and eyeglass lens - Google Patents

Optical material and eyeglass lens Download PDF

Info

Publication number
WO2023229048A1
WO2023229048A1 PCT/JP2023/019821 JP2023019821W WO2023229048A1 WO 2023229048 A1 WO2023229048 A1 WO 2023229048A1 JP 2023019821 W JP2023019821 W JP 2023019821W WO 2023229048 A1 WO2023229048 A1 WO 2023229048A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum absorption
absorption wavelength
metal atom
optical material
transmittance
Prior art date
Application number
PCT/JP2023/019821
Other languages
French (fr)
Japanese (ja)
Inventor
百合絵 石本
愛美 竹中
伸雄 河戸
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023229048A1 publication Critical patent/WO2023229048A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present disclosure relates to optical materials and spectacle lenses.
  • optical materials have been used for various purposes.
  • optical materials for example, optical materials containing polymers and organic dyes are widely known.
  • Specific examples of the optical material include optical filters, lenses, and the like.
  • plastic lenses are lighter and more difficult to break than inorganic lenses, so they have rapidly become popular as optical materials for eyeglass lenses, camera lenses, etc. in recent years.
  • Patent Document 1 describes an optical filter in which, in the transmission spectrum of the optical filter, the minimum value of transmittance in the wavelength range of 550 nm or more and 650 nm or less is 20% or more and 60% or less, and 570 nm or more 620 nm or less, the optical filter includes one or more types of absorption dye, and the absorption dye is a tetraazaporphyrin-based material whose central metal is nickel or cobalt and whose substituent group is fluorobenzo-based.
  • Optical filters that are dyes are described.
  • Patent Document 2 describes a transmission spectrum that includes a maximum value in a wavelength range of more than 315 nm and less than 400 nm, and a minimum value in a wavelength range of more than 380 nm and less than 500 nm, and the wavelength of the maximum value is shorter than the wavelength of the minimum value.
  • An optical member having the following characteristics is described.
  • Patent Document 3 states that the transmittance curve when measured at a thickness of 2 mm satisfies (1) to (3) below, and the hue in the CIE1976 (L * , a * , b * ) color space is a.
  • An optical material is described in which * is -4 or more and 1 or less, and b * is -1 or more and 11 or less.
  • the transmittance curve has a maximum value T1 of transmittance at a wavelength of 400 nm to 445 nm, and the maximum value T1 is 65% or more.
  • the transmittance curve has a transmittance minimum value T2 at a wavelength of 445 nm to 485 m, and the minimum value T2 is 60% or more and 90% or less.
  • the minimum value of the transmittance in the wavelength range of 650 nm to 800 nm is 75% or more, and the average value of the transmittance in the wavelength range of 650 nm to 800 nm is 80% or more.
  • Patent Document 1 Japanese Patent Application Publication No. 2021-162625
  • Patent Document 2 International Publication No. 2017-090128
  • Patent Document 3 International Publication No. 2021-024962
  • optical materials examples include spectacle lenses.
  • eyeglass lenses eyeglass lenses having blue light cutting ability are known. Eyeglass lenses that have blue light blocking ability may deteriorate in blue light blocking ability over a long period of time after being manufactured. Furthermore, eyeglass lenses that have blue light cutting ability may have an unnatural appearance.
  • the problem to be solved by an embodiment of the present disclosure is to provide an optical material and an eyeglass lens that can suppress a decline in blue light cutting ability over a long period of time and have a natural color appearance.
  • the goal is to provide the following.
  • Means for solving the above problems include the following aspects. ⁇ 1> Optical material containing an organic dye A containing a porphyrin compound a represented by the following formula (A1), an organic dye B containing a porphyrin compound b represented by the following formula (B1), and a resin. .
  • M represents cobalt or vanadium oxide
  • R 1 represents a chlorine atom or a bromine atom
  • n represents 1 or 2
  • R 2 represents a phenyl group, an aromatic group, or a carbon group. Represents a phenyl group substituted with an aliphatic group of numbers 1 to 7.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom
  • each of R 3 and R 4 is hydrogen represents an atom, a halogen atom, an aliphatic group having 3 to 10 carbon atoms, or an aromatic group that may contain a halogen atom.
  • M is cobalt or vanadium oxide.
  • the porphyrin compound a is a compound represented by the following formula (A2).
  • M represents cobalt or vanadium oxide.
  • M represents cobalt or vanadium oxide.
  • the porphyrin compound b is a compound represented by the following formula (B2), the following formula (B3), or the following formula (B4). material.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a
  • the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b
  • the maximum absorption wavelength b The optical material according to any one of ⁇ 1> to ⁇ 5>, wherein the value obtained by subtracting the maximum absorption wavelength a from the maximum absorption wavelength a is 100 nm to 160 nm.
  • the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a
  • the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b
  • the thickness at the maximum absorption wavelength a is the transmittance T1
  • the transmittance at the thickness of 2 mm at the maximum absorption wavelength b is the transmittance T2
  • ⁇ 8> In the spectroscopic spectrum, if the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, and the transmittance at a thickness of 2 mm at the maximum absorption wavelength a is the transmittance T1,
  • ⁇ Weather resistance test> A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
  • the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a
  • the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b
  • the thickness at the maximum absorption wavelength a the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a
  • the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b
  • the thickness at the maximum absorption wavelength a is the thickness at the maximum absorption wavelength a.
  • the transmittance at 2 mm is the transmittance T1
  • the transmittance at the thickness of 2 mm at the maximum absorption wavelength b is the transmittance T2
  • the sum of ⁇ T1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, and ⁇ T2, which is the absolute value of the difference in transmittance T2 before and after the following weather resistance test, is 3.0%.
  • ⁇ Weather resistance test> A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
  • ⁇ 11> The optical material according to any one of ⁇ 1> to ⁇ 10>, wherein the saturation C * is from 0.01 to 4.0.
  • ⁇ 12> The optical material according to any one of ⁇ 1> to ⁇ 11>, wherein the resin contains polythiourethane or polysulfide.
  • ⁇ 13> A spectacle lens comprising the optical material according to any one of ⁇ 1> to ⁇ 12>.
  • indicating a numerical range is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper or lower limit of another numerical range described in stages.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • the amount of each component of the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified. Note that in the present disclosure, combinations of preferred aspects are more preferred aspects. In the present disclosure, ppm (parts per million) means ppm on a mass basis.
  • the optical material of the present disclosure includes an organic dye A containing a porphyrin compound a represented by the following formula (A1), an organic dye B containing a porphyrin compound b represented by the following formula (B1), and a resin. including.
  • the optical material of the present disclosure can suppress a decrease in blue light cutting ability over a long period of time, and has a natural color appearance.
  • a natural color refers to a color with a gray tone and suppressed saturation.
  • Eyeglass lenses that have blue light blocking ability may deteriorate in blue light blocking ability over a long period of time after being manufactured. The reason why the optical material of the present disclosure can suppress the decline in blue light cutting ability over a long period of time is thought to be due to its excellent weather resistance.
  • Organic dye A contains a porphyrin compound a represented by the following formula (A1).
  • the organic dye A preferably has a maximum absorption wavelength in a wavelength range of 440 nm to 500 nm.
  • the wavelength of maximum absorption may be the minimum value of transmittance.
  • M represents cobalt or vanadium oxide
  • R 1 represents a chlorine atom or a bromine atom
  • n represents 1 or 2
  • R 2 represents a phenyl group, an aromatic group, or a carbon group. Represents a phenyl group substituted with an aliphatic group of numbers 1 to 7.
  • a plurality of R 1 's in formula (A1) may be the same or different.
  • a plurality of R 2 's in formula (A1) may be the same or different.
  • R 1 preferably represents a bromine atom.
  • R 2 preferably represents a phenyl group.
  • the aliphatic group having 1 to 7 carbon atoms includes a straight chain, branched or cyclic alkyl group having 1 to 7 carbon atoms, a straight chain, branched or cyclic alkenyl group, and a straight chain, branched or cyclic alkyl group having 1 to 7 carbon atoms.
  • Examples include alkynyl groups.
  • Examples of straight chain, branched or cyclic alkyl groups having 1 to 7 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, Isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-methyl- 2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group Examples include.
  • Examples of the straight chain, branched or cyclic alkenyl group having 1 to 7 carbon atoms include vinyl group, 1-methylvinyl group, propenyl group, 2-butenyl group, 2-pentenyl group and the like.
  • Examples of straight chain, branched or cyclic alkynyl groups having 1 to 7 carbon atoms include ethynyl group, propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group, and 2-hexynyl group. , 3,3-dimethyl-1-butynyl group, 3-heptynyl group, and the like.
  • Examples of the aromatic group in R 2 include a substituted or unsubstituted phenyl group.
  • the central metal of the porphyrin compound a is cobalt or vanadium oxide. This point particularly contributes to improving weather resistance. As a result, it also contributes to suppressing the decline in blue light cutting ability. It is not clear why the central metal of the porphyrin compound a is cobalt or vanadium oxide, which contributes to suppressing the decline in blue light cutting ability. For example, it is presumed that the use of cobalt or vanadium oxide as the central metal makes it possible to stabilize the electronic state of the complex (dye). In addition, from the viewpoint of weather resistance, porphyrin compound a is considered to make a greater contribution than porphyrin compound b because it absorbs shorter wavelengths.
  • the porphyrin compound a is preferably a compound represented by the following formula (A2).
  • M represents cobalt or vanadium oxide.
  • the content of organic dye A is preferably 0.5 ppm to 10.0 ppm.
  • the content of organic dye A is preferably 0.5 ppm or more, blue light cutting ability can be maintained better.
  • Organic dye A absorbs relatively high energy (that is, short wavelength) light more easily than organic dye B. Therefore, the lower limit of the content of organic dye A has a large contribution to maintaining good blue light cutting ability.
  • the content of organic dye A is more preferably 1.0 ppm or more, and even more preferably 1.5 ppm or more.
  • the content of organic dye A is 10.0 ppm or less, the appearance has a more natural color tone.
  • the content of organic dye A is more preferably 8.0 ppm or less, and even more preferably 5.0 ppm or less.
  • Organic dye B contains a porphyrin compound b represented by the following formula (B1).
  • Organic dye B preferably has a maximum absorption wavelength in a wavelength range of 550 nm to 600 nm.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom
  • each of R 3 and R 4 is hydrogen represents an atom, a halogen atom, an aliphatic group having 3 to 10 carbon atoms, or an aromatic group that may contain a halogen atom.
  • M is preferably copper, palladium, cobalt or vanadium oxide, more preferably cobalt or vanadium oxide.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with a fluorine atom being preferred.
  • examples of the aliphatic group having 3 to 10 carbon atoms include a straight chain, branched or cyclic alkyl group, a straight chain, branched or cyclic alkenyl group, a straight chain, branched or cyclic alkynyl group, etc. .
  • linear, branched or cyclic alkyl groups as aliphatic groups having 3 to 10 carbon atoms
  • examples of linear, branched or cyclic alkyl groups as aliphatic groups having 3 to 10 carbon atoms include n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, Isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-methyl- 2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-di
  • linear, branched or cyclic alkenyl groups as aliphatic groups having 3 to 10 carbon atoms include 1-methylvinyl group, propenyl group, 2-butenyl group, and 2-pentenyl group.
  • linear, branched or cyclic alkynyl groups as aliphatic groups having 3 to 10 carbon atoms include propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group, 2 -hexynyl group, 3,3-dimethyl-1-butynyl group, 3-heptynyl group, etc.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with fluorine being preferred.
  • examples of the aromatic group include a substituted or unsubstituted phenyl group.
  • the porphyrin compound b is preferably a compound represented by the following formula (B2), the following formula (B3), or the following formula (B4).
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  • the content of organic dye B is preferably 1.0 ppm to 20.0 ppm.
  • the content of organic dye B is more preferably 2.0 ppm or more, and even more preferably 5.0 ppm or more.
  • the content of organic dye B is 20.0 ppm or less, it has a natural color tone, maintains high luminous transmittance, and is bright and easy to see.
  • the content of organic dye B is more preferably 15.0 ppm or less, even more preferably 10.0 ppm or less, and particularly preferably 8.0 ppm or less.
  • the total content of organic dye A and organic dye B is preferably 1.0 ppm to 100.0 ppm.
  • the total content of organic dye A and organic dye B is more preferably 3.0 ppm or more, even more preferably 5.0 ppm or more, and particularly preferably 7.0 ppm or more.
  • the total content of organic dye A and organic dye B is 100.0 ppm or less, the appearance has a more natural color tone.
  • the total content of organic dye A and organic dye B is more preferably 50.0 ppm or less, even more preferably 30.0 ppm or less, and particularly preferably 15.0 ppm or less. .
  • the ratio of the content of the organic dye B to the content of the organic dye A is preferably from 0.5 to 5.0.
  • organic dye A absorbs relatively high energy (that is, short wavelength) light more easily than organic dye B. Therefore, from the viewpoint of maintaining good blue light cutting ability, it is not necessary to contain a large amount of organic dye A.
  • the ratio of organic dye B/organic dye A is more preferably from 1.0 to 4.5, even more preferably from 1.5 to 4.0, and more preferably from 2.0 to 3.0. Particularly preferred. Further, it is also preferable that the content of organic dye A is smaller than the content of organic dye B.
  • the optical material of the present disclosure includes resin.
  • the resin a commercially available resin may be used, or a resin obtained from a monomer may be used.
  • the resin can be used without particular limitation, and is preferably a transparent resin. The resin and the monomer for obtaining the resin will be explained below.
  • the resin is not particularly limited, and includes, for example, polyurethane, polythiourethane, polysulfide, polycarbonate, poly(meth)acrylate, polyolefin, cyclic polyolefin, polyallyl, polyurethaneurea, polyene-polythiol polymer, ring-opening metathesis polymer, and polyester. , epoxy resin, etc.
  • the resin contains polythiourethane or polysulfide.
  • One type of resin may be used, or two or more types may be used in combination.
  • the optical material preferably contains at least one selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly(meth)acrylate, and more preferably contains polythiourethane. These resins are highly transparent materials and can be suitably used for optical material applications.
  • Polyurethane includes structural units derived from polyisocyanate compounds and structural units derived from polyol compounds.
  • Polythiourethane includes a structural unit derived from a polyisocyanate compound and a structural unit derived from a polythiol compound.
  • polyisocyanate compounds include 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4,4-trimethyl-1,6- Hexamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, bis(isocyanatomethyl)naphthalene , mesityrylene triisocyanate, bis(isocyanatomethyl) sulfide, bis(isocyanatoethyl) sulfide, bis(isocyanatomethyl) disulfide, bis(isocyanatoethyl) disulfide, bis(isocyanatomethylthio)methane,
  • the polyol compound is one or more aliphatic or alicyclic alcohols, specifically linear or branched aliphatic alcohols, alicyclic alcohols, and combinations of these alcohols with ethylene oxide, propylene oxide, ⁇ - Examples include alcohols to which caprolactone is added, and at least one selected from these can be used.
  • Straight chain or branched chain aliphatic alcohols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3- Propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1 , 2-pentanediol, 1,3-pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol, 1 , 6-hexanediol, 2,5-hexanediol, glycerol, diglycerol
  • alicyclic alcohols examples include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1 , 4-cyclohexanediol, 4,4'-bicyclohexanol, 1,4-cyclohexanedimethanol, etc., and at least one selected from these can be used.
  • ethylene oxide adduct of glycerol ethylene oxide adduct of trimethylolpropane, ethylene oxide adduct of pentaerythritol, propylene oxide adduct of glycerol, propylene oxide adduct of trimethylolpropane, propylene oxide adduct of pentaerythritol
  • examples include caprolactone-modified glycerol, caprolactone-modified trimethylolpropane, caprolactone-modified pentaerythritol, and at least one selected from these can be used.
  • polythiol compounds include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanedithiol, 1,2-cyclohexanedithiol, bis(2-mercaptoethyl) ether, tetrakis(mercaptomethyl)methane, diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis(3-mercaptopropionate), ethylene glycol bis(2-mercaptoacetate), ethylene glycol bis(3-mercaptopropionate), trimethylolpropane tris(2-mercaptoacetate) , trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethane tris (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol Tetrakis (3-mercaptopropionate), bis(mercap
  • Polysulfide can be obtained by ring-opening polymerization of monomers such as polyepithio compounds and polythiethane compounds.
  • the composition for optical materials can contain monomers constituting these resins.
  • the polyepithio compound can be used without any particular limitation, and for example, those described in Japanese Patent No. 6216383 can be used.
  • a metal-containing thietane compound or a non-metal thietane compound can be used.
  • the one described in Japanese Patent No. 6216383 can be used.
  • Polycarbonate can be obtained by reacting alcohol and phosgene, or by reacting alcohol and chloroformate, or by transesterifying a carbonic acid diester compound, but generally available commercially available polycarbonate resins can be used. It is also possible to use As a commercially available product, Panlite series manufactured by Teijin Kasei Co., Ltd., etc. can be used.
  • the optical material composition of the present disclosure can contain polycarbonate as a resin material.
  • the poly(meth)acrylate can be used without any particular limitation, and for example, those described in Japanese Patent No. 6216383 can be used.
  • the polyolefin can be used without any particular limitation, and for example, the specific examples, cyclic polyolefin, olefin polymerization reaction, and polyolefin manufacturing method described in Japanese Patent No. 6216383 can be used.
  • Polyallyl is produced by polymerizing at least one allyl group-containing monomer selected from allyl group-containing monomers in the presence of a known radical-generating polymerization catalyst.
  • allyl group-containing monomers allyl diglycol carbonate and diallyl phthalate are generally commercially available, and these can be suitably used.
  • Polyurethane urea is a reaction product of a polyurethane prepolymer and a diamine curing agent and is manufactured by PPG Industries, Inc. under the trademark TRIVEX. A typical example is the one sold by. Polyurethane urea is a highly transparent material and can be suitably used.
  • Polyene-polythiol polymers are resins produced by addition polymerization and ethylene chain polymerization, consisting of a polyene compound having two or more ethylenic functional groups in one molecule and a polythiol compound having two or more thiol groups in one molecule. It is a product.
  • polyene compound in the polyene-polythiol polymer for example, those described in Japanese Patent No. 6216383 can be used.
  • a ring-opening metathesis polymer is a resin formed by ring-opening polymerization of cyclic olefins using a catalyst.
  • the cyclic olefins that can be subjected to ring-opening polymerization for example, those described in Japanese Patent No. 6216383 can be used.
  • Polyester is condensed and polymerized in the presence of known polyester production catalysts such as Lewis acid catalysts typified by antimony and germanium compounds, organic acids, and inorganic acids. Specifically, one or more selected from polyhydric carboxylic acids including dicarboxylic acids and their ester-forming derivatives and one or more selected from polyhydric alcohols including glycol; or hydroxycarboxylic acids and their ester-forming derivatives, or cyclic esters.
  • Lewis acid catalysts typified by antimony and germanium compounds
  • organic acids organic acids, and inorganic acids.
  • polyhydric carboxylic acids including dicarboxylic acids and their ester-forming derivatives and one or more selected from polyhydric alcohols including glycol; or hydroxycarboxylic acids and their ester-forming derivatives, or cyclic esters.
  • dicarboxylic acid and glycol for example, those described in Japanese Patent No. 6216383 can be used.
  • polyester for example, those described in Japanese Patent No. 6216383 can be used.
  • Epoxy resin is a resin formed by ring-opening polymerization of an epoxy compound, and as the epoxy compound, for example, those described in Japanese Patent No. 6216383 can be used.
  • the optical material of the present disclosure may contain additives as components other than those mentioned above.
  • the additives include polymerization catalysts, internal mold release agents, dyes, and ultraviolet absorbers.
  • a polymerization catalyst when obtaining polyurethane and polythiourethane, a polymerization catalyst may or may not be used.
  • Internal mold release agents include acidic phosphate esters. Examples of acidic phosphoric acid esters include phosphoric acid monoesters and phosphoric acid diesters, each of which can be used alone or in combination of two or more types. For example, an internal mold release agent illustrated in WO2021/132559 can be used.
  • UV absorbers 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, 2-hydroxy-4- Benzophenone UV absorbers such as acryloyloxy-2',4'-dichlorobenzophenone, 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]4,6-bis( 2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2, 4dimethylphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2 ,4-dimethylphenyl)-1,3,
  • UV absorber Commercially available products may be used as the ultraviolet absorber. Examples of the commercially available products include Tinuvin326 (manufactured by BASF Japan Co., Ltd.) and Viosorb583 (manufactured by Kyodo Yakuhin Co., Ltd.).
  • the optical material of the present disclosure may contain a color tone adjusting agent.
  • the content of the tone adjusting agent may be 3 ppm to 50 ppm, or 5 ppm to 40 ppm.
  • Examples of the color tone adjusting agent include those having an absorption band in the wavelength range from orange to yellow in the visible light region and having the function of adjusting the hue of optical materials containing resin.
  • Examples of the color tone adjusting agent include bluing agents.
  • Examples of the bluing agent include those that have an absorption band in the wavelength range from orange to yellow in the visible light region and have the function of adjusting the hue of an optical material made of a resin material.
  • the bluing agent may contain a substance that exhibits a blue to purple color.
  • the optical material of the present disclosure preferably has a luminous transmittance of 75%T or more, more preferably 78%T or more, and even more preferably 80%T or more.
  • the luminous transmittance can be measured using a spectrophotometer (for example, CM-5 manufactured by Konica Minolta) using an optical material having a thickness of 2 mm in accordance with ISO 8980-3.
  • Preferred spectral characteristics Preferred spectral properties of the optical material of the present disclosure are shown below.
  • the following preferred spectral characteristics are in the spectral spectrum:
  • the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a
  • the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b
  • the above spectroscopic spectrum is measured using a 2 mm thick test sample made of the optical material of the present disclosure and a spectrophotometer (for example, UV-visible spectrophotometer UV-1800, manufactured by Shimadzu Corporation).
  • a spectrophotometer for example, UV-visible spectrophotometer UV-1800, manufactured by Shimadzu Corporation.
  • the value obtained by subtracting the maximum absorption wavelength a from the maximum absorption wavelength b is preferably 100 nm to 160 nm, more preferably 100 nm to 140 nm.
  • the difference [maximum absorption wavelength b ⁇ maximum absorption wavelength a] is 100 nm to 160 nm, the effect of having a natural color appearance is more excellent.
  • the transmittance T1 is preferably within the range of 60%T to 95%T, more preferably within the range of 65%T to 85%T. When the transmittance T1 is within the range of 60%T to 95%T, the effect of having a natural color appearance is more excellent.
  • Transmittance T2 is preferably within the range of 60%T to 95%T, more preferably within the range of 65%T to 85%T. When the transmittance T2 is within the range of 60%T to 95%T, the effect of having a natural color appearance is more excellent.
  • ⁇ T1 which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, is preferably 2.5%T or less, more preferably 2.0%T or less, and even more preferably is 1.0%T or less.
  • ⁇ T1 is 2.5%T or less, the effect of suppressing the decline in blue light cutting ability over a long period of time is excellent.
  • the light resistance test was performed on a 2 mm thick test sample made of the optical material of the present disclosure using a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illumination intensity of 60 W/m 2 , and an irradiation time of 150 hours.
  • a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illumination intensity of 60 W/m 2 , and an irradiation time of 150 hours.
  • Irradiation with a xenon lamp is performed using, for example, a weather resistance acceleration tester (for example, Xenon Weather Meter NX75, manufactured by Suga Test Instruments Co., Ltd.).
  • the optical material of the present disclosure has ⁇ T1, which is the absolute value of the difference in the transmittance T1 before and after the weather resistance test, and ⁇ T2, which is the absolute value of the difference in the transmittance T2 before and after the weather resistance test.
  • ⁇ T1+ ⁇ T2 is preferably 6.0%T or less, more preferably 3.0%T or less.
  • ⁇ T1+ ⁇ T2 is 6.0%T or less, long-term weather resistance is better.
  • the optical material of the present disclosure preferably has a chroma C * of 4.0 or less.
  • the saturation C * is more preferably 3.5 or less, even more preferably 2.5 or less, and particularly preferably 1.5 or less.
  • the saturation C * may be greater than 0, or may be greater than or equal to 0.01.
  • the saturation C * is preferably, for example, 0.01 to 4.0.
  • the method for measuring chroma C * is as follows. Using an optical material with a thickness of 2 mm, a spectrophotometer CM-5 (manufactured by Konica Minolta Co., Ltd.) was used to measure L * a * b * a in color space (CIE 1976) under the conditions of a C light source and a viewing angle of 2°. * , b * were measured.
  • the saturation C * was calculated using the following formula.
  • the optical material can be manufactured using, for example, the composition for optical materials described below.
  • the composition for optical materials includes, for example, an organic dye A containing a porphyrin compound a represented by the above formula (A1), and an organic dye B containing a porphyrin compound b expressed by the above formula (B1). , and the monomers described above.
  • the monomer is a monomer that can be cured to produce the above-mentioned resin.
  • the composition for optical materials can be obtained by mixing the above components in a predetermined method.
  • the mixing order, mixing method, etc. of each component in the composition are not particularly limited, and any known method can be used.
  • Known methods include, for example, preparing a masterbatch containing a predetermined amount of additives, and dispersing and dissolving this masterbatch in a solvent.
  • polyurethane resin there is a method of preparing a masterbatch by dispersing and dissolving additives in a polyisocyanate compound.
  • Embodiments of the optical material of the present disclosure include an optical material consisting of a base material, an optical material consisting of a base material and a coating layer, and the like.
  • Examples of the base material include lens base materials.
  • the coating layer examples include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, an antifouling layer, and a water repellent layer. These coating layers can be used alone or in a multilayered form of a plurality of coating layers. When coating layers are applied to both sides, the same or different coating layers may be applied to each side.
  • a molded object for example, a lens base material
  • a composition for optical materials that does not contain a dye
  • the molded object is immersed in a dispersion obtained by dispersing the dye in water or a solvent.
  • the dye may be impregnated into the molded article, and the dye-impregnated molded article may be dried.
  • Optical materials can be prepared using the molded product thus obtained.
  • the optical material can be impregnated with a porphyrin compound.
  • a spectacle lens including a lens base material and a coating layer laminated as necessary can be immersed in a dispersion containing a pigment to impregnate the lens with the pigment.
  • the amount of dye impregnated may be adjusted to a desired amount depending on the concentration of the dye in the dispersion, the temperature of the dispersion, and the time for immersing the molded object, optical material, etc.
  • the amount of impregnation increases as the concentration increases, the temperature increases, and the immersion time increases. If the amount of impregnation is to be adjusted more precisely, it may be carried out by repeating immersion multiple times under conditions where the amount of impregnation is small.
  • a pigment-containing coating layer may be formed on an optical material such as a plastic lens by using a composition for an optical material containing a pigment as a coating material.
  • An optical material having such a configuration can be suitably used as a lens, preferably a spectacle lens.
  • a lens preferably a spectacle lens.
  • the present disclosure is not limited to the above-described embodiments, and can take various forms without impairing the effects of the present invention.
  • optical material of the present disclosure include, for example; Lenses such as eyeglass lenses, goggles, eyeglass lenses for vision correction, lenses for imaging devices, Fresnel lenses for LCD projectors, lenticular lenses, contact lenses, and lenses for wearable devices; Encapsulant for light emitting diodes (LEDs); Optical waveguide; optical lens; Optical adhesive used for joining optical waveguides, etc.; Anti-reflection coatings used for optical lenses, etc.; Transparent coating used for liquid crystal display device components (substrates, light guide plates, films, sheets, etc.); Windshields used for car windshields, motorcycle helmets, etc.; Transparent substrate; A film that is attached to the cover of a lighting fixture, the irradiation surface of a lighting fixture, etc.
  • Lenses such as eyeglass lenses, goggles, eyeglass lenses for vision correction, lenses for imaging devices, Fresnel lenses for LCD projectors, lenticular lenses, contact lenses, and lenses for wearable devices
  • a film as an optical material for example, an optical filter
  • Films to be applied to windows i.e. films as optical materials (e.g. optical filters)
  • Films attached to lenses i.e. films as optical materials (e.g. optical filters)
  • etc. can be mentioned.
  • the lens of the present disclosure is a lens using the optical material of the present disclosure. That is, the lens of the present disclosure includes the optical material of the present disclosure.
  • the lens of the present disclosure may include a lens base material made of an optical material, and may include a coating layer on one or both surfaces of the lens base material.
  • the lens of the present disclosure may be any of the various lenses exemplified in the above-mentioned applications of optical materials, and is preferably a spectacle lens.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, an antifouling layer, a water repellent layer, and the like. These coating layers can be used alone or in a multilayered form of a plurality of coating layers. When coating layers are applied to both sides, the same or different coating layers may be applied to each side.
  • coating layers include dyes, infrared absorbers, light stabilizers, antioxidants, etc., dyes, pigments, etc., photochromic dyes, photochromic pigments, etc., antistatic agents, and other ingredients used in the present disclosure to enhance the performance of the lens. It may also contain other known additives.
  • various leveling agents may be used for the purpose of improving coating properties.
  • a primer layer is usually formed between a hard coat layer and a lens base material, which will be described later.
  • the primer layer is a coating layer that aims to improve the adhesion between the hard coat layer formed thereon and the lens base material, and can also improve impact resistance in some cases.
  • the primer layer may be of any material as long as it has high adhesion to the obtained lens base material.
  • a primer composition containing urethane resin, epoxy resin, polyester resin, melamine resin, or polyvinyl acetal as a main component may be used. Used to form a primer layer.
  • a solvent that does not affect the lens substrate may be used or no solvent may be used for the purpose of adjusting the viscosity of the composition.
  • the primer layer can be formed by either a coating method or a dry method.
  • a primer layer is formed by applying a primer composition to a lens substrate by a known coating method such as spin coating or dip coating, and then solidifying the primer composition.
  • a dry method is used, it is formed by a known dry method such as a CVD method or a vacuum evaporation method.
  • the surface of the lens base material may be subjected to pretreatment such as alkali treatment, plasma treatment, ultraviolet treatment, etc., if necessary, for the purpose of improving adhesion.
  • the hard coat layer is a coating layer intended to impart functions such as scratch resistance, abrasion resistance, moisture resistance, hot water resistance, heat resistance, and weather resistance to the lens surface.
  • an organosilicon compound having curability and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti are used.
  • a hard coat composition containing one or more types of oxide fine particles may be used,
  • a hard coat composition containing one or more of the following fine particles may be used.
  • the hard coat composition also contains amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, salts of perchloric acids, acids, metal chlorides, and polyfunctional epoxy compounds. Preferably, it includes at least one selected from the group.
  • the hard coat composition may contain a solvent that does not affect the lens substrate, or may not contain a solvent.
  • the hard coat layer is usually formed by applying a hard coat composition using a known coating method such as spin coating or dip coating, and then curing the composition.
  • a known coating method such as spin coating or dip coating
  • the curing method include irradiation with energy rays such as ultraviolet rays and visible light, and thermosetting. From the viewpoint of suppressing the occurrence of interference fringes, it is preferable that the refractive index of the hard coat layer has a difference in refractive index from that of the lens base material within a range of ⁇ 0.1.
  • Antireflection layers include inorganic and organic types.
  • the inorganic antireflection layer is formed using an inorganic oxide such as SiO 2 or TiO 2 by a dry method such as a vacuum evaporation method, a sputtering method, an ion plating method, an ion beam assist method, or a CVD method.
  • the organic antireflection layer is formed by a wet method using a composition containing an organosilicon compound and silica-based fine particles having internal cavities. The antireflection layer may be formed on the hard coat layer as necessary.
  • the antireflection layer may be multilayer or single layer. From the viewpoint of effectively expressing the antireflection function, the antireflection layer is preferably multilayered, and in that case, it is preferable to alternately laminate low refractive index layers and high refractive index layers. Moreover, it is preferable that the refractive index difference between the low refractive index layer and the high refractive index layer is 0.1 or more.
  • the high refractive index layer include layers such as ZnO, TiO 2 , CeO 2 , Sb2O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5
  • examples of the low refractive index layer include layers such as SiO 2 .
  • the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer.
  • an antifogging coat layer, an antifouling layer, a water repellent layer, etc. may be formed as necessary.
  • Methods for forming the antifogging layer, antifouling layer, water repellent layer, etc. are not particularly limited, and conventionally known methods can be applied.
  • the column-purified product was dissolved in 400 mL of acetonitrile, stirred at room temperature for 94 hours while irradiated with an ultraviolet fluorescent lamp, concentrated, and then separated and purified by silica gel column chromatography to obtain a compound represented by the following structural formula (1-b).
  • Ta. 2 g of the compound represented by structural formula (1-b) and 20 mL of 1-pentanol were mixed, and the mixture was purged with nitrogen. After adding 0.33 g of formamide and 0.38 g of vanadium (III) chloride, 0.83 g of potassium tert-butoxide was added little by little. Thereafter, the reaction solution was heated to 105° C. and stirred for 15 hours.
  • Example 4 Organic dye A (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, organic dye B (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, and dibutyltin dichloride was used as a polymerization catalyst in an amount of 0. m - 52.0 parts by mass of a composition containing xylylene diisocyanate was stirred at 25°C to completely dissolve each component. Thereafter, 48.0 parts by mass of a composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane was added and stirred at 25° C. for 30 minutes to prepare a homogeneous solution.
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE (polytetrafluoroethylene) filter, and then poured into a 4C plano glass mold with a center thickness of 2 mm and a diameter of 77 mm.
  • This glass mold was heated from 25°C to 120°C over 16 hours. Thereafter, the plano lens was cooled to room temperature and released from the glass mold. The obtained plano lens was further annealed at 120° C. for 2 hours. Thereby, a lens with a thickness of 2 mm was obtained.
  • Example 5 Organic dye A (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, organic dye B (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, and dibutyltin dichloride was used as a polymerization catalyst in an amount of 0. m - 50.6 parts by mass of a composition containing xylylene diisocyanate was stirred at 25°C to completely dissolve each component.
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE (polytetrafluoroethylene) filter, and then poured into a 4C plano glass mold with a center thickness of 2 mm and a diameter of 77 mm.
  • This glass mold was heated from 25°C to 120°C over 16 hours. Thereafter, the plano lens was cooled to room temperature and released from the glass mold. The obtained plano lens was further annealed at 120° C. for 2 hours. Thereby, a lens with a thickness of 2 mm was obtained.
  • maximum absorption wavelength a which is the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm
  • maximum absorption wavelength b which is the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm
  • Transmittance T1 which is the transmittance at a thickness of 2 mm at the maximum absorption wavelength a
  • Transmittance T2 which is the transmittance at a thickness of 2 mm at the maximum absorption wavelength b were measured respectively.
  • Luminous transmittance was calculated from the measurement data of the above spectroscopic spectrum in accordance with ISO 8980-3.
  • the lenses with a thickness of 2 mm produced in each example and each comparative example were subjected to a weather resistance test (i.e., under the conditions of temperature 50°C, humidity 40% RH, illumination intensity 60 W/m 2 , and irradiation time 150 hours) by the method described above.
  • a test using xenon lamp irradiation was conducted.
  • the weather resistance test was conducted using an accelerated weather resistance tester, Xenon Weather Meter NX75 (manufactured by Suga Test Instruments Co., Ltd.). The above-mentioned spectra were measured before and after the weather resistance test.
  • ⁇ T1 which is the absolute value of the difference in transmittance T1 before and after the above weather resistance test
  • ⁇ T2 which is the absolute value of the difference in transmittance T2 before and after the weather resistance test
  • ⁇ T1 and ⁇ T1+ ⁇ T2 were evaluated according to the following evaluation criteria.
  • ⁇ T1 the rank A is the most effective in suppressing the decline in blue light cutting ability over a long period of time.
  • ⁇ T1+ ⁇ T2 the rank A is the best in long-term weather resistance.
  • ⁇ T1 is 1.0%T or less
  • B ⁇ T1 is more than 1.0%T and less than 2.5%T
  • C ⁇ T1 is more than 2.5%T
  • ⁇ T1 + ⁇ T2 is 3.0%T or less
  • C1 2,5-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane and 2,6-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane
  • C2 m-xyly Diisocyanate
  • D1 Pentaerythritol tetrakis (3-mercaptopropionate)
  • D2 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane
  • D3 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercapto Methyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
  • organic dye A containing porphyrin compound a represented by formula (A1), organic dye B containing porphyrin compound b represented by formula (B1), and resin had excellent weather resistance test results. Therefore, the reduction in blue light cutting ability could be suppressed over a long period of time (at least 150 hours under xenon conditions of 50° C., 40% RH, and 60 W/m 2 ). Furthermore, by limiting the central metal of the porphyrin compound b to cobalt or vanadium oxide, the weather resistance of the lens was improved. Further, the value of chroma C * was small, and the hue evaluation of the lens was also excellent. Therefore, the lens had a gray appearance and a natural color.
  • FIG. 1 shows the spectra of the lens of Comparative Example 3 in which the pigment (1-A) content was changed to 10 ppm before and after 300 hours in the weather resistance test.
  • FIG. 2 shows the spectra of the lens of Comparative Example 4 in which the content of the dye (3-A) was changed to 10 ppm before the test, after 150 hours, and after 300 hours in the weather resistance test.
  • Organic dye A used in Comparative Example 3 corresponds to porphyrin compound a represented by formula (A1) in the present application.
  • the lens of Comparative Example 3 shows almost no change in transmittance around 460 nm even after 300 hours in the weather resistance test described above.
  • organic dye A used in Comparative Example 4 has a central metal of palladium, and does not correspond to the porphyrin compound a represented by formula (A1) in the present application.
  • the lens of Comparative Example 4 showed a large increase in transmittance around 460 nm after 150 hours and 300 hours in the above-mentioned weather resistance test. In other words, the blue light cutting ability is significantly reduced. It can be understood that the use of the porphyrin compound a represented by formula (A1) in the present application contributes to suppressing the decline in blue light cutting ability.

Abstract

An optical material comprising an organic pigment A comprising a porphyrin-based compound a represented by formula (A1), an organic pigment B comprising a porphyrin-based compound b represented by formula (B1), and a resin. In formula (A1), M represents a cobalt or vanadium oxide, R1 represents a chlorine atom or bromine atom, n represents 1 or 2, and R2 represents a phenyl group or a phenyl group substituted with an aromatic group or 1-7 carbon aliphatic group. In formula (B1), M represents a divalent metal atom, trivalent substituted metal atom, tetravalent substituted metal atom, hydroxylated metal atom, or oxidized metal atom, and R3 and R4 each represent a hydrogen atom, halogen atom, 3-10 carbon aliphatic groups, or aromatic group that may comprise a halogen atom.

Description

光学材料及びメガネレンズOptical materials and eyeglass lenses
 本開示は、光学材料及びメガネレンズに関する。 The present disclosure relates to optical materials and spectacle lenses.
 近年、光学材料は様々な用途で用いられている。光学材料としては例えば、高分子と、有機色素とを含む光学材料が広く知られている。光学材料としては、具体的には、光学フィルタ、レンズ等が挙げられる。
 中でも、プラスチックレンズは、無機レンズに比べ軽量で割れ難いため、近年、眼鏡レンズ、カメラレンズ等の光学材料として急速に普及してきている。
In recent years, optical materials have been used for various purposes. As optical materials, for example, optical materials containing polymers and organic dyes are widely known. Specific examples of the optical material include optical filters, lenses, and the like.
Among them, plastic lenses are lighter and more difficult to break than inorganic lenses, so they have rapidly become popular as optical materials for eyeglass lenses, camera lenses, etc. in recent years.
 例えば、特許文献1には、光学フィルタであって、前記光学フィルタの透過スペクトルにおいて、550nm以上650nm以下の波長範囲における透過率の最小値は、20%以上60%以下であり、かつ、570nm以上620nm以下の範囲に含まれ、前記光学フィルタは、1種類以上の吸収色素を含み、前記吸収色素は、中心金属がニッケル又はコバルトであり、かつ、置換基がフルオロベンゾ系であるテトラアザポルフィリン系色素である光学フィルタが記載されている。 For example, Patent Document 1 describes an optical filter in which, in the transmission spectrum of the optical filter, the minimum value of transmittance in the wavelength range of 550 nm or more and 650 nm or less is 20% or more and 60% or less, and 570 nm or more 620 nm or less, the optical filter includes one or more types of absorption dye, and the absorption dye is a tetraazaporphyrin-based material whose central metal is nickel or cobalt and whose substituent group is fluorobenzo-based. Optical filters that are dyes are described.
 例えば、特許文献2には、315nm超400nm以下の波長領域に極大値を含み、380nm以上500nm以下の波長領域に極小値を含み、前記極大値の波長は前記極小値の波長よりも短い透過スペクトルの特性を有する光学部材が記載されている。 For example, Patent Document 2 describes a transmission spectrum that includes a maximum value in a wavelength range of more than 315 nm and less than 400 nm, and a minimum value in a wavelength range of more than 380 nm and less than 500 nm, and the wavelength of the maximum value is shorter than the wavelength of the minimum value. An optical member having the following characteristics is described.
 例えば、特許文献3には、厚み2mmで測定した場合の透過率曲線において以下(1)~(3)を満たし、かつ、CIE1976(L,a,b)色空間における色相として、aが-4以上1以下であり、bが-1以上11以下である光学材料が記載されている。(1)前記透過率曲線が、波長400nm~445nmに透過率の極大値T1を有し、かつ、前記極大値T1が65%以上である。(2)前記透過率曲線が、波長445nm~485mに透過率の極小値T2を有し、かつ、前記極小値T2が60%以上90%以下である。(3)波長650nm~800nmにおける透過率の最小値が75%以上であり、かつ、波長650nm~800nmにおける透過率の平均値が80%以上である。 For example, Patent Document 3 states that the transmittance curve when measured at a thickness of 2 mm satisfies (1) to (3) below, and the hue in the CIE1976 (L * , a * , b * ) color space is a. An optical material is described in which * is -4 or more and 1 or less, and b * is -1 or more and 11 or less. (1) The transmittance curve has a maximum value T1 of transmittance at a wavelength of 400 nm to 445 nm, and the maximum value T1 is 65% or more. (2) The transmittance curve has a transmittance minimum value T2 at a wavelength of 445 nm to 485 m, and the minimum value T2 is 60% or more and 90% or less. (3) The minimum value of the transmittance in the wavelength range of 650 nm to 800 nm is 75% or more, and the average value of the transmittance in the wavelength range of 650 nm to 800 nm is 80% or more.
 特許文献1:特開2021-162625号公報
 特許文献2:国際公開第2017-090128号
 特許文献3:国際公開第2021-024962号
Patent Document 1: Japanese Patent Application Publication No. 2021-162625 Patent Document 2: International Publication No. 2017-090128 Patent Document 3: International Publication No. 2021-024962
 光学材料としては、例えばメガネレンズが挙げられる。メガネレンズとしては、ブルーライトカット能を有するメガネレンズが知られている。
 ブルーライトカット能を有するメガネレンズは、製造した後、長時間が経過した場合にブルーライトカット能が低下していくことがある。
 また、ブルーライトカット能を有するメガネレンズは、外観が不自然な色味を有することがある。
Examples of optical materials include spectacle lenses. As eyeglass lenses, eyeglass lenses having blue light cutting ability are known.
Eyeglass lenses that have blue light blocking ability may deteriorate in blue light blocking ability over a long period of time after being manufactured.
Furthermore, eyeglass lenses that have blue light cutting ability may have an unnatural appearance.
 本開示の一実施形態が解決しようとする課題は、上記に鑑みてなされたものであり、長時間にわたってブルーライトカット能の低下を抑制でき、外観が自然な色味を有する光学材料及びメガネレンズを提供することである。 The problem to be solved by an embodiment of the present disclosure is to provide an optical material and an eyeglass lens that can suppress a decline in blue light cutting ability over a long period of time and have a natural color appearance. The goal is to provide the following.
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 下記式(A1)で表されるポルフィリン系化合物aを含む有機色素Aと、下記式(B1)で表されるポルフィリン系化合物bを含む有機色素Bと、樹脂と、を含む光学材料。
Means for solving the above problems include the following aspects.
<1> Optical material containing an organic dye A containing a porphyrin compound a represented by the following formula (A1), an organic dye B containing a porphyrin compound b represented by the following formula (B1), and a resin. .
 式(A1)中、Mは、コバルト又は酸化バナジウムを表し、Rは、塩素原子又は臭素原子を表し、nは1又は2を表し、Rは、フェニル基、又は、芳香族基もしくは炭素数1~7の脂肪族基で置換されたフェニル基を表す。 In formula (A1), M represents cobalt or vanadium oxide, R 1 represents a chlorine atom or a bromine atom, n represents 1 or 2, and R 2 represents a phenyl group, an aromatic group, or a carbon group. Represents a phenyl group substituted with an aliphatic group of numbers 1 to 7.
 式(B1)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表し、R及びRの各々は、水素原子、ハロゲン原子、炭素数3~10の脂肪族基、又はハロゲン原子を含んでいてもよい芳香族基を表す。
<2> 前記式(B1)において、Mがコバルト又は酸化バナジウムである<1>に記載の光学材料。
<3> 前記ポルフィリン系化合物aが下記式(A2)で表される化合物である<1>又は<2>に記載の光学材料。
In formula (B1), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom, and each of R 3 and R 4 is hydrogen represents an atom, a halogen atom, an aliphatic group having 3 to 10 carbon atoms, or an aromatic group that may contain a halogen atom.
<2> The optical material according to <1>, wherein in the formula (B1), M is cobalt or vanadium oxide.
<3> The optical material according to <1> or <2>, wherein the porphyrin compound a is a compound represented by the following formula (A2).
 式(A2)中、Mは、コバルト又は酸化バナジウムを表す。
<4> 前記ポルフィリン系化合物bが、下記式(B2)、下記式(B3)又は下記式(B4)で表される化合物である<1>~<3>のいずれか1つに記載の光学材料。
In formula (A2), M represents cobalt or vanadium oxide.
<4> The optical system according to any one of <1> to <3>, wherein the porphyrin compound b is a compound represented by the following formula (B2), the following formula (B3), or the following formula (B4). material.
 式(B2)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。 In formula (B2), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
 式(B3)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。 In formula (B3), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
 式(B4)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子、又は酸化金属原子を表す。
<5> 前記有機色素Aの含有量に対する前記有機色素Bの含有量の比が、0.5~5.0である<1>~<4>のいずれか1つに記載の光学材料。
<6> 分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとした場合に、最大吸収波長bから最大吸収波長aを差し引いた値が、100nm~160nmである、<1>~<5>のいずれか1つに記載の光学材料。
<7> 分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とし、最大吸収波長bにおける厚さ2mmでの透過率を透過率T2とした場合に、
 透過率T1が65%T~85%Tの範囲内であり、透過率T2が65%T~85%Tの範囲内である、<1>~<6>のいずれか1つに記載の光学材料。
<8> 分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とした場合に、
 透過率T1の下記耐候性試験の前後での差の絶対値であるΔT1が、1.0%T以下である、<1>~<7>のいずれか1つに記載の光学材料。
<耐候性試験>
 前記光学材料からなる厚さ2mmの試験サンプルに対し、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する。
<9> 分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とし、最大吸収波長bにおける厚さ2mmでの透過率を透過率T2とした場合に、
 透過率T1の下記耐候性試験の前後での差の絶対値であるΔT1と、透過率T2の下記耐候性試験の前後での差の絶対値であるΔT2と、の合計が、3.0%T以下である、<1>~<7>のいずれか1つに記載の光学材料。
<耐候性試験>
 前記光学材料からなる厚さ2mmの試験サンプルに対し、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する。
<10> 視感透過率が80%T以上である<1>~<9>のいずれか1つに記載の光学材料。
<11> 彩度Cが、0.01~4.0である<1>~<10>のいずれか1つに記載の光学材料。
<12> 前記樹脂が、ポリチオウレタン又はポリスルフィドを含む<1>~<11>のいずれか1つに記載の光学材料。
<13> <1>~<12>のいずれか1つに記載の光学材料を含むメガネレンズ。
In formula (B4), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
<5> The optical material according to any one of <1> to <4>, wherein the ratio of the content of the organic dye B to the content of the organic dye A is 0.5 to 5.0.
<6> In the spectroscopic spectrum, if the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, and the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b, then the maximum absorption wavelength b The optical material according to any one of <1> to <5>, wherein the value obtained by subtracting the maximum absorption wavelength a from the maximum absorption wavelength a is 100 nm to 160 nm.
<7> In the spectroscopic spectrum, the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b, and the thickness at the maximum absorption wavelength a. When the transmittance at 2 mm is the transmittance T1, and the transmittance at the thickness of 2 mm at the maximum absorption wavelength b is the transmittance T2,
The optical system according to any one of <1> to <6>, wherein the transmittance T1 is within the range of 65%T to 85%T, and the transmittance T2 is within the range of 65%T to 85%T. material.
<8> In the spectroscopic spectrum, if the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, and the transmittance at a thickness of 2 mm at the maximum absorption wavelength a is the transmittance T1,
The optical material according to any one of <1> to <7>, wherein ΔT1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, is 1.0%T or less.
<Weather resistance test>
A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
<9> In the spectroscopic spectrum, the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b, and the thickness at the maximum absorption wavelength a. When the transmittance at 2 mm is the transmittance T1, and the transmittance at the thickness of 2 mm at the maximum absorption wavelength b is the transmittance T2,
The sum of ΔT1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, and ΔT2, which is the absolute value of the difference in transmittance T2 before and after the following weather resistance test, is 3.0%. The optical material according to any one of <1> to <7>, which is T or less.
<Weather resistance test>
A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
<10> The optical material according to any one of <1> to <9>, which has a luminous transmittance of 80%T or more.
<11> The optical material according to any one of <1> to <10>, wherein the saturation C * is from 0.01 to 4.0.
<12> The optical material according to any one of <1> to <11>, wherein the resin contains polythiourethane or polysulfide.
<13> A spectacle lens comprising the optical material according to any one of <1> to <12>.
 本開示の一実施形態によれば、長時間にわたってブルーライトカット能の低下を抑制でき、外観が自然な色味を有する光学材料及びメガネレンズを提供することができる。 According to an embodiment of the present disclosure, it is possible to suppress a decline in blue light cutting ability over a long period of time, and to provide an optical material and a spectacle lens that have a natural color appearance.
耐候性試験における試験前及び300時間経過後の、比較例3で色素(1-A)の含有量を10ppmに変更したレンズの分光スペクトルである。These are spectra of a lens in Comparative Example 3 in which the content of dye (1-A) was changed to 10 ppm before and after 300 hours in a weather resistance test. 耐候性試験における試験前、150時間経過後及び300時間経過後の、比較例4で色素(3-A)の含有量を10ppmに変更したレンズの分光スペクトルである。These are spectra of the lens of Comparative Example 4 in which the content of the dye (3-A) was changed to 10 ppm before the test, after 150 hours, and after 300 hours in the weather resistance test.
 以下において、本開示の内容について詳細に説明する。
 以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
Below, the content of the present disclosure will be explained in detail.
Although the description of the constituent elements described below may be made based on typical embodiments of the present disclosure, the present disclosure is not limited to such embodiments.
 本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示において段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, "~" indicating a numerical range is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
In the numerical ranges described in stages in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper or lower limit of another numerical range described in stages. Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
 本開示において、置換又は無置換を明記していない化合物については、本開示における効果を損なわない範囲で、任意の置換基を有していてもよい。
 本開示において、組成物の各成分の量は、各成分に該当する物質が層中に複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 なお、本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、ppm(parts per million)は質量基準のppmを意味する。
In the present disclosure, compounds that are not specified as being substituted or unsubstituted may have any substituent as long as the effects of the present disclosure are not impaired.
In the present disclosure, when a plurality of substances corresponding to each component are present in the layer, the amount of each component of the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified.
Note that in the present disclosure, combinations of preferred aspects are more preferred aspects.
In the present disclosure, ppm (parts per million) means ppm on a mass basis.
≪光学材料≫
 本開示の光学材料は、下記式(A1)で表されるポルフィリン系化合物aを含む有機色素Aと、下記式(B1)で表されるポルフィリン系化合物bを含む有機色素Bと、樹脂と、を含む。
≪Optical materials≫
The optical material of the present disclosure includes an organic dye A containing a porphyrin compound a represented by the following formula (A1), an organic dye B containing a porphyrin compound b represented by the following formula (B1), and a resin. including.
 本開示の光学材料は、上記構成を含むことで、長時間にわたってブルーライトカット能の低下を抑制でき、外観が自然な色味を有する。
 本開示において、自然な色味とは、グレーの色調で、彩度が抑えられている色味を言う。
 ブルーライトカット能を有するメガネレンズは、製造した後、長時間が経過した場合にブルーライトカット能が低下していくことがある。
 本開示の光学材料が長時間にわたってブルーライトカット能の低下を抑制できる理由は、その優れた耐候性によると考えられる。
By including the above configuration, the optical material of the present disclosure can suppress a decrease in blue light cutting ability over a long period of time, and has a natural color appearance.
In the present disclosure, a natural color refers to a color with a gray tone and suppressed saturation.
Eyeglass lenses that have blue light blocking ability may deteriorate in blue light blocking ability over a long period of time after being manufactured.
The reason why the optical material of the present disclosure can suppress the decline in blue light cutting ability over a long period of time is thought to be due to its excellent weather resistance.
<有機色素A>
 有機色素Aは、下記式(A1)で表されるポルフィリン系化合物aを含む。
 有機色素Aは、波長440nm~500nmに最大吸収波長を有することが好ましい。
 最大吸収波長は、透過率の極小値であり得る。
<Organic dye A>
Organic dye A contains a porphyrin compound a represented by the following formula (A1).
The organic dye A preferably has a maximum absorption wavelength in a wavelength range of 440 nm to 500 nm.
The wavelength of maximum absorption may be the minimum value of transmittance.
 式(A1)中、Mは、コバルト又は酸化バナジウムを表し、Rは、塩素原子又は臭素原子を表し、nは1又は2を表し、Rは、フェニル基、又は、芳香族基もしくは炭素数1~7の脂肪族基で置換されたフェニル基を表す。
 式(A1)中の複数のRは、同一であってもよいし異なっていてもよい。
 式(A1)中の複数のRは、同一であってもよいし異なっていてもよい。
 Rは、好ましくは臭素原子を表す。
 Rは、好ましくはフェニル基を表す。
 R中、炭素数1~7の脂肪族基としては、炭素数1~7の、直鎖、分岐又は環状のアルキル基、直鎖、分岐又は環状のアルケニル基、直鎖、分岐又は環状のアルキニル基等が挙げられる。
In formula (A1), M represents cobalt or vanadium oxide, R 1 represents a chlorine atom or a bromine atom, n represents 1 or 2, and R 2 represents a phenyl group, an aromatic group, or a carbon group. Represents a phenyl group substituted with an aliphatic group of numbers 1 to 7.
A plurality of R 1 's in formula (A1) may be the same or different.
A plurality of R 2 's in formula (A1) may be the same or different.
R 1 preferably represents a bromine atom.
R 2 preferably represents a phenyl group.
In R2 , the aliphatic group having 1 to 7 carbon atoms includes a straight chain, branched or cyclic alkyl group having 1 to 7 carbon atoms, a straight chain, branched or cyclic alkenyl group, and a straight chain, branched or cyclic alkyl group having 1 to 7 carbon atoms. Examples include alkynyl groups.
 炭素数1~7の直鎖、分岐若しくは環状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、4-メチルペンチル基、4-メチル-2-ペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、3-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基などが挙げられる。 Examples of straight chain, branched or cyclic alkyl groups having 1 to 7 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, Isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-methyl- 2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group Examples include.
 炭素数1~7の直鎖、分岐若しくは環状のアルケニル基としては、ビニル基、1-メチルビニル基、プロペニル基、2-ブテニル基、2-ペンテニル基等が挙げられる。 Examples of the straight chain, branched or cyclic alkenyl group having 1 to 7 carbon atoms include vinyl group, 1-methylvinyl group, propenyl group, 2-butenyl group, 2-pentenyl group and the like.
 炭素数1~7の直鎖、分岐若しくは環状のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、1、3-ブタジイニル基、2-ペンチニル基、2,4-ペンタジイニル基、2-ヘキシニル基、3,3-ジメチル-1-ブチニル基、3-ヘプチニル基等が挙げられる。 Examples of straight chain, branched or cyclic alkynyl groups having 1 to 7 carbon atoms include ethynyl group, propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group, and 2-hexynyl group. , 3,3-dimethyl-1-butynyl group, 3-heptynyl group, and the like.
 R中、芳香族基としては、置換又は無置換のフェニル基等が挙げられる。 Examples of the aromatic group in R 2 include a substituted or unsubstituted phenyl group.
 上述の通り、ポルフィリン系化合物aは中心金属がコバルト又は酸化バナジウムである。この点は、特に耐候性の向上に寄与する。その結果、ブルーライトカット能の低下を抑制することにも寄与する。
 ポルフィリン系化合物aの中心金属がコバルト又は酸化バナジウムであることが、ブルーライトカット能の低下を抑制することに寄与する理由は定かではない。例えば、中心金属としてコバルト又は酸化バナジウムを用いることで、錯体(色素)の電子状態を安定化することができる、等が影響していると推測される。
また、耐候性の観点からは、ポルフィリン系化合物bよりもポルフィリン系化合物aの方がより短波長側の波長を吸収することから大きく寄与すると考えられる。
As mentioned above, the central metal of the porphyrin compound a is cobalt or vanadium oxide. This point particularly contributes to improving weather resistance. As a result, it also contributes to suppressing the decline in blue light cutting ability.
It is not clear why the central metal of the porphyrin compound a is cobalt or vanadium oxide, which contributes to suppressing the decline in blue light cutting ability. For example, it is presumed that the use of cobalt or vanadium oxide as the central metal makes it possible to stabilize the electronic state of the complex (dye).
In addition, from the viewpoint of weather resistance, porphyrin compound a is considered to make a greater contribution than porphyrin compound b because it absorbs shorter wavelengths.
 本開示の光学材料は、ポルフィリン系化合物aが下記式(A2)で表される化合物であることが好ましい。 In the optical material of the present disclosure, the porphyrin compound a is preferably a compound represented by the following formula (A2).
 式(A2)中、Mは、コバルト又は酸化バナジウムを表す。 In formula (A2), M represents cobalt or vanadium oxide.
 有機色素Aの含有量は、0.5ppm~10.0ppmであることが好ましい。
 有機色素Aの含有量が0.5ppm以上であることで、ブルーライトカット能をより良好に維持することができる。
 有機色素Aは、有機色素Bよりも、比較的高エネルギー(つまり短波長)の光を吸収しやすい。そのため、上記有機色素Aの含有量の下限値はブルーライトカット能を良好に維持することに対する寄与が大きい。
 上記の観点から、有機色素Aの含有量は、1.0ppm以上であることがより好ましく、1.5ppm以上であることがさらに好ましい。
 有機色素Aの含有量が10.0ppm以下であることで、外観がより自然な色味を有する。
 上記の観点から、有機色素Aの含有量は、8.0ppm以下であることがより好ましく、5.0ppm以下であることがさらに好ましい。
The content of organic dye A is preferably 0.5 ppm to 10.0 ppm.
When the content of organic dye A is 0.5 ppm or more, blue light cutting ability can be maintained better.
Organic dye A absorbs relatively high energy (that is, short wavelength) light more easily than organic dye B. Therefore, the lower limit of the content of organic dye A has a large contribution to maintaining good blue light cutting ability.
From the above viewpoint, the content of organic dye A is more preferably 1.0 ppm or more, and even more preferably 1.5 ppm or more.
When the content of organic dye A is 10.0 ppm or less, the appearance has a more natural color tone.
From the above viewpoint, the content of organic dye A is more preferably 8.0 ppm or less, and even more preferably 5.0 ppm or less.
<有機色素B>
 有機色素Bは、下記式(B1)で表されるポルフィリン系化合物bを含む。
 有機色素Bは、波長550nm~600nmに最大吸収波長を有することが好ましい。
<Organic dye B>
Organic dye B contains a porphyrin compound b represented by the following formula (B1).
Organic dye B preferably has a maximum absorption wavelength in a wavelength range of 550 nm to 600 nm.
 式(B1)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表し、R及びRの各々は、水素原子、ハロゲン原子、炭素数3~10の脂肪族基、又はハロゲン原子を含んでいてもよい芳香族基を表す。 In formula (B1), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom, and each of R 3 and R 4 is hydrogen represents an atom, a halogen atom, an aliphatic group having 3 to 10 carbon atoms, or an aromatic group that may contain a halogen atom.
 Mは、好ましくは銅、パラジウム、コバルト又は酸化バナジウムであり、より好ましくはコバルト又は酸化バナジウムである。
 R及びR中、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 炭素数3~10の脂肪族基において、脂肪族基としては、直鎖、分岐又は環状のアルキル基、直鎖、分岐又は環状のアルケニル基、直鎖、分岐又は環状のアルキニル基等が挙げられる。
M is preferably copper, palladium, cobalt or vanadium oxide, more preferably cobalt or vanadium oxide.
Among R 3 and R 4 , examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with a fluorine atom being preferred.
In the aliphatic group having 3 to 10 carbon atoms, examples of the aliphatic group include a straight chain, branched or cyclic alkyl group, a straight chain, branched or cyclic alkenyl group, a straight chain, branched or cyclic alkynyl group, etc. .
 炭素数3~10の脂肪族基としての、直鎖、分岐若しくは環状のアルキル基としては、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、4-メチルペンチル基、4-メチル-2-ペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、3-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基などが挙げられる。 Examples of linear, branched or cyclic alkyl groups as aliphatic groups having 3 to 10 carbon atoms include n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, Isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-methyl- 2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group Examples include.
 炭素数3~10の脂肪族基としての、直鎖、分岐若しくは環状のアルケニル基としては、1-メチルビニル基、プロペニル基、2-ブテニル基、2-ペンテニル基等が挙げられる。 Examples of linear, branched or cyclic alkenyl groups as aliphatic groups having 3 to 10 carbon atoms include 1-methylvinyl group, propenyl group, 2-butenyl group, and 2-pentenyl group.
 炭素数3~10の脂肪族基としての、直鎖、分岐若しくは環状のアルキニル基としては、プロピニル基、ブチニル基、1、3-ブタジイニル基、2-ペンチニル基、2,4-ペンタジイニル基、2-ヘキシニル基、3,3-ジメチル-1-ブチニル基、3-ヘプチニル基等が挙げられる。 Examples of linear, branched or cyclic alkynyl groups as aliphatic groups having 3 to 10 carbon atoms include propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group, 2 -hexynyl group, 3,3-dimethyl-1-butynyl group, 3-heptynyl group, etc.
 ハロゲン原子を含んでいてもよい芳香族基において、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素が好ましい。
 ハロゲン原子を含んでいてもよい芳香族基において、芳香族基としては、置換又は無置換のフェニル基等が挙げられる。
In the aromatic group which may contain a halogen atom, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with fluorine being preferred.
In the aromatic group which may contain a halogen atom, examples of the aromatic group include a substituted or unsubstituted phenyl group.
 本開示の光学材料は、ポルフィリン系化合物bが、下記式(B2)、下記式(B3)又は下記式(B4)で表される化合物であることが好ましい。 In the optical material of the present disclosure, the porphyrin compound b is preferably a compound represented by the following formula (B2), the following formula (B3), or the following formula (B4).
 式(B2)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。 In formula (B2), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
 式(B3)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。 In formula (B3), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
 式(B4)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子、又は酸化金属原子を表す。 In formula (B4), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
 式(B2)~式(B4)中、Mの具体例、好ましい態様等は、式(B1)中、Mの具体例、好ましい態様等と同様である。 In formulas (B2) to (B4), specific examples and preferred embodiments of M are the same as those of M in formula (B1).
 有機色素Bの含有量は、1.0ppm~20.0ppmであることが好ましい。
 有機色素Bの含有量が1.0ppm以上であることで、レンズが自然な色味を有する。
 上記の観点から、有機色素Bの含有量は、2.0ppm以上であることがより好ましく、5.0ppm以上であることがさらに好ましい。
 有機色素Bの含有量が20.0ppm以下であることで、自然な色味を有し、高い視感透過率が維持でき明るく見やすい。
 上記の観点から、有機色素Bの含有量は、15.0ppm以下であることがより好ましく、10.0ppm以下であることがさらに好ましく、8.0ppm以下であることが特に好ましい。
The content of organic dye B is preferably 1.0 ppm to 20.0 ppm.
When the content of organic dye B is 1.0 ppm or more, the lens has a natural tint.
From the above viewpoint, the content of organic dye B is more preferably 2.0 ppm or more, and even more preferably 5.0 ppm or more.
When the content of organic dye B is 20.0 ppm or less, it has a natural color tone, maintains high luminous transmittance, and is bright and easy to see.
From the above viewpoint, the content of organic dye B is more preferably 15.0 ppm or less, even more preferably 10.0 ppm or less, and particularly preferably 8.0 ppm or less.
 有機色素A及び有機色素Bの合計含有量は、1.0ppm~100.0ppmであることが好ましい。
 有機色素A及び有機色素Bの合計含有量が1.0ppm以上であることで、ブルーライトカット能をより良好に維持することができる。
 上記の観点から、有機色素A及び有機色素Bの合計含有量は、3.0ppm以上であることがより好ましく、5.0ppm以上であることがさらに好ましく、7.0ppm以上であることが特に好ましい。
 有機色素A及び有機色素Bの合計含有量が100.0ppm以下であることで、外観がより自然な色味を有する。
 上記の観点から、有機色素A及び有機色素Bの合計含有量は、50.0ppm以下であることがより好ましく、30.0ppm以下であることがさらに好ましく、15.0ppm以下であることが特に好ましい。
The total content of organic dye A and organic dye B is preferably 1.0 ppm to 100.0 ppm.
When the total content of organic dye A and organic dye B is 1.0 ppm or more, blue light cutting ability can be maintained better.
From the above viewpoint, the total content of organic dye A and organic dye B is more preferably 3.0 ppm or more, even more preferably 5.0 ppm or more, and particularly preferably 7.0 ppm or more. .
When the total content of organic dye A and organic dye B is 100.0 ppm or less, the appearance has a more natural color tone.
From the above viewpoint, the total content of organic dye A and organic dye B is more preferably 50.0 ppm or less, even more preferably 30.0 ppm or less, and particularly preferably 15.0 ppm or less. .
 前記有機色素Aの含有量に対する前記有機色素Bの含有量の比(有機色素B/有機色素A)が、0.5~5.0であることが好ましい。
 上述の通り、有機色素Aは、有機色素Bよりも、比較的高エネルギー(つまり短波長)の光を吸収しやすい。そのため、ブルーライトカット能を良好に維持する観点から、有機色素Aを多量に含む必要はない。例えば、有機色素B/有機色素Aは、1.0~4.5であることがより好ましく、1.5~4.0であることがさらに好ましく、2.0~3.0であることが特に好ましい。
 また、有機色素Aの含有量は有機色素Bの含有量よりも小さいことも好ましい。
The ratio of the content of the organic dye B to the content of the organic dye A (organic dye B/organic dye A) is preferably from 0.5 to 5.0.
As mentioned above, organic dye A absorbs relatively high energy (that is, short wavelength) light more easily than organic dye B. Therefore, from the viewpoint of maintaining good blue light cutting ability, it is not necessary to contain a large amount of organic dye A. For example, the ratio of organic dye B/organic dye A is more preferably from 1.0 to 4.5, even more preferably from 1.5 to 4.0, and more preferably from 2.0 to 3.0. Particularly preferred.
Further, it is also preferable that the content of organic dye A is smaller than the content of organic dye B.
<樹脂>
 本開示の光学材料は、樹脂を含む。
 本開示において、樹脂は、市販品の樹脂を用いてもよく、モノマーから得られる樹脂を用いてもよい。
 本開示において、樹脂は、特に限定されず使用することができ、透明性樹脂であることが好ましい。
 以下に、樹脂、及び樹脂を得るためのモノマーについて説明する。
<Resin>
The optical material of the present disclosure includes resin.
In the present disclosure, as the resin, a commercially available resin may be used, or a resin obtained from a monomer may be used.
In the present disclosure, the resin can be used without particular limitation, and is preferably a transparent resin.
The resin and the monomer for obtaining the resin will be explained below.
 樹脂としては、特に限定されず、例えば、ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、ポリ(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、ポリアリル、ポリウレタンウレア、ポリエン-ポリチオール重合体、開環メタセシス重合体、ポリエステル、エポキシ樹脂等が挙げられる。 The resin is not particularly limited, and includes, for example, polyurethane, polythiourethane, polysulfide, polycarbonate, poly(meth)acrylate, polyolefin, cyclic polyolefin, polyallyl, polyurethaneurea, polyene-polythiol polymer, ring-opening metathesis polymer, and polyester. , epoxy resin, etc.
 上記の中でも、樹脂が、ポリチオウレタン又はポリスルフィドを含むことが好ましい。
 樹脂は、1種用いてもよく、2種以上併用してもよい。
Among the above, it is preferable that the resin contains polythiourethane or polysulfide.
One type of resin may be used, or two or more types may be used in combination.
 光学材料は、ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、及びポリ(メタ)アクリレートからなる群より選択される少なくとも1種を含むことが好ましく、ポリチオウレタンを含むことがより好ましい。これらの樹脂は、透明性が高い材料であり、光学材料用途に好適に用いることができる。 The optical material preferably contains at least one selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly(meth)acrylate, and more preferably contains polythiourethane. These resins are highly transparent materials and can be suitably used for optical material applications.
 ポリウレタンは、ポリイソシアネート化合物由来の構成単位及びポリオール化合物由来の構成単位を含む。ポリチオウレタンは、ポリイソシアネート化合物由来の構成単位及びポリチオール化合物由来の構成単位を含む。 Polyurethane includes structural units derived from polyisocyanate compounds and structural units derived from polyol compounds. Polythiourethane includes a structural unit derived from a polyisocyanate compound and a structural unit derived from a polythiol compound.
 ポリイソシアネート化合物としては、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、2,4,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルメタン-2,2′-ジイソシアネート、ジフェニルメタン-2,4′-ジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、ベンゼントリイソシアネート、ジフェニルスルフィド-4,4-ジイソシアネート等の芳香族ポリイソシアネート化合物;2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物等を挙げることができ、これらから選択した少なくとも1種を用いることができる。 Examples of polyisocyanate compounds include 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4,4-trimethyl-1,6- Hexamethylene diisocyanate, lysine diisocyanatomethyl ester, lysine triisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, α,α,α′,α′-tetramethylxylylene diisocyanate, bis(isocyanatomethyl)naphthalene , mesityrylene triisocyanate, bis(isocyanatomethyl) sulfide, bis(isocyanatoethyl) sulfide, bis(isocyanatomethyl) disulfide, bis(isocyanatoethyl) disulfide, bis(isocyanatomethylthio)methane, bis(isocyanatomethyl) sulfide Aliphatic polyisocyanate compounds such as natoethylthio)methane, bis(isocyanatoethylthio)ethane, bis(isocyanatomethylthio)ethane; isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis (isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, dicyclohexyldimethylmethane diisocyanate, 2,5-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane, 2,6-bis (isocyanatomethyl)bicyclo-[2.2.1]-heptane, 3,8-bis(isocyanatomethyl)tricyclodecane, 3,9-bis(isocyanatomethyl)tricyclodecane, 4,8-bis Alicyclic polyisocyanate compounds such as (isocyanatomethyl)tricyclodecane and 4,9-bis(isocyanatomethyl)tricyclodecane; naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 2,4-tolylene diisocyanate Isocyanate, 2,6-tolylene diisocyanate, biphenyl diisocyanate, diphenylmethane-2,2'-diisocyanate, diphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, benzene triisocyanate, diphenyl sulfide-4,4 - Aromatic polyisocyanate compounds such as diisocyanate; 2,5-diisocyanatothiophene, 2,5-bis(isocyanatomethyl)thiophene, 2,5-diisocyanatotetrahydrothiophene, 2,5-bis(isocyanatomethyl) ) Tetrahydrothiophene, 3,4-bis(isocyanatomethyl)tetrahydrothiophene, 2,5-diisocyanato-1,4-dithiane, 2,5-bis(isocyanatomethyl)-1,4-dithiane, 4,5- Examples include heterocyclic polyisocyanate compounds such as diisocyanato-1,3-dithiolane and 4,5-bis(isocyanatomethyl)-1,3-dithiolane, and at least one selected from these can be used. .
 ポリオール化合物は、1種以上の脂肪族又は脂環族アルコールであり、具体的には、直鎖又は分枝鎖の脂肪族アルコール、脂環族アルコール、これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させたアルコール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 The polyol compound is one or more aliphatic or alicyclic alcohols, specifically linear or branched aliphatic alcohols, alicyclic alcohols, and combinations of these alcohols with ethylene oxide, propylene oxide, ε- Examples include alcohols to which caprolactone is added, and at least one selected from these can be used.
 直鎖又は分枝鎖の脂肪族アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,3-ブタンジオ-ル、1,2-ペンタンジオール、1,3-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)等が挙げられる。 Straight chain or branched chain aliphatic alcohols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3- Propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1 , 2-pentanediol, 1,3-pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol, 1 , 6-hexanediol, 2,5-hexanediol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, di(trimethylolpropane), and the like.
 脂環族アルコールとしては、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、3-メチル-1,2-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、4,4’-ビシクロヘキサノール、1,4-シクロヘキサンジメタノール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 Examples of alicyclic alcohols include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1 , 4-cyclohexanediol, 4,4'-bicyclohexanol, 1,4-cyclohexanedimethanol, etc., and at least one selected from these can be used.
 これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させた化合物でもよい。例えば、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、ペンタエリスリトールのプロピレンオキサイド付加体、カプロラクトン変性グリセロール、カプロラクトン変性トリメチロールプロパン、カプロラクトン変性ペンタエリスリトール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 Compounds obtained by adding ethylene oxide, propylene oxide, or ε-caprolactone to these alcohols may also be used. For example, ethylene oxide adduct of glycerol, ethylene oxide adduct of trimethylolpropane, ethylene oxide adduct of pentaerythritol, propylene oxide adduct of glycerol, propylene oxide adduct of trimethylolpropane, propylene oxide adduct of pentaerythritol, Examples include caprolactone-modified glycerol, caprolactone-modified trimethylolpropane, caprolactone-modified pentaerythritol, and at least one selected from these can be used.
 ポリチオール化合物としては、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸及びメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等を挙げることができ、これらから選択した少なくとも1種を用いることができる。 Examples of polythiol compounds include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanedithiol, 1,2-cyclohexanedithiol, bis(2-mercaptoethyl) ether, tetrakis(mercaptomethyl)methane, diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis(3-mercaptopropionate), ethylene glycol bis(2-mercaptoacetate), ethylene glycol bis(3-mercaptopropionate), trimethylolpropane tris(2-mercaptoacetate) , trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethane tris (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol Tetrakis (3-mercaptopropionate), bis(mercaptomethyl) sulfide, bis(mercaptomethyl) disulfide, bis(mercaptoethyl) sulfide, bis(mercaptoethyl) disulfide, bis(mercaptopropyl) sulfide, bis(mercaptomethylthio) Methane, bis(2-mercaptoethylthio)methane, bis(3-mercaptopropylthio)methane, 1,2-bis(mercaptomethylthio)ethane, 1,2-bis(2-mercaptoethylthio)ethane, 1,2 -bis(3-mercaptopropylthio)ethane, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2-mercaptoethylthio)propane, 1,2,3-tris(3- Mercaptopropylthio)propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7 -dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, tetrakis(mercaptomethylthiomethyl ) methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, bis(2,3-dimercaptopropyl)sulfide, 2,5-dimercaptomethyl-1,4-dithiane , 2,5-dimercapto-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, and their esters of thioglycolic acid and mercaptopropionic acid, hydroxymethyl sulfide bis (2-mercaptoacetate), hydroxymethylsulfide bis(3-mercaptopropionate), hydroxyethylsulfide bis(2-mercaptoacetate), hydroxyethylsulfide bis(3-mercaptopropionate), hydroxymethyldisulfide bis(2-mercaptopropionate), -mercaptoacetate), hydroxymethyl disulfide bis(3-mercaptopropionate), hydroxyethyl disulfide bis(2-mercaptoacetate), hydroxyethyl disulfide bis(3-mercaptopropinate), 2-mercaptoethyl ether bis(2- mercaptoacetate), 2-mercaptoethyl ether bis(3-mercaptopropionate), thiodiglycolic acid bis(2-mercaptoethyl ester), thiodipropionate bis(2-mercaptoethyl ester), dithiodiglycolic acid bis (2-mercaptoethyl ester), dithiodipropionic acid bis(2-mercaptoethyl ester), 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercaptomethylthio)ethane , 4,6-bis(mercaptomethylthio)-1,3-dithiane, tris(mercaptomethylthio)methane, tris(mercaptoethylthio)methane; 1,2-dimercaptobenzene, 1,3- Dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis(mercaptomethyl)benzene, 1,3-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)benzene, 1,2-bis (mercaptoethyl)benzene, 1,3-bis(mercaptoethyl)benzene, 1,4-bis(mercaptoethyl)benzene, 1,3,5-trimercaptobenzene, 1,3,5-tris(mercaptomethyl)benzene , 1,3,5-tris(mercaptomethyleneoxy)benzene, 1,3,5-tris(mercaptoethyleneoxy)benzene, 2,5-toluenedithiol, 3,4-toluenedithiol, 1,5-naphthalenedithiol, Aromatic polythiol compounds such as 2,6-naphthalenedithiol; 2-methylamino-4,6-dithiol-sym-triazine, 3,4-thiophenedithiol, bismuthiol, 2,5-bis(mercaptomethyl)-1,4 -dithiane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, 2-(2,2-bis(mercaptomethylthio)ethyl)-1,3-dithiethane, and other heterocyclic polythiol compounds. At least one selected from these can be used.
 ポリスルフィドは、モノマーである、ポリエピチオ化合物、ポリチエタン化合物等の開環重合による方法により得ることができる。光学材料用組成物には、これらの樹脂を構成するモノマーを含むことができる。 Polysulfide can be obtained by ring-opening polymerization of monomers such as polyepithio compounds and polythiethane compounds. The composition for optical materials can contain monomers constituting these resins.
 ポリエピチオ化合物としては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載のものを用いることができる。
 ポリチエタン化合物としては、金属含有チエタン化合物又は非金属チエタン化合物を用いることができる。具体的には、例えば、特許第6216383号公報に記載のものを用いることができる。
The polyepithio compound can be used without any particular limitation, and for example, those described in Japanese Patent No. 6216383 can be used.
As the polythietane compound, a metal-containing thietane compound or a non-metal thietane compound can be used. Specifically, for example, the one described in Japanese Patent No. 6216383 can be used.
 ポリカーボネートは、アルコールとホスゲンとの反応、又はアルコールとクロロホーメートとを反応させる方法、又は炭酸ジエステル化合物のエステル交換反応をすることにより得ることができるが、一般的に入手可能な市販品ポリカーボネート樹脂を用いることも可能である。市販品としては帝人化成株式会社製のパンライトシリーズなどを用いることができる。本開示の光学材料用組成物には、ポリカーボネートを樹脂材料として含むことができる。 Polycarbonate can be obtained by reacting alcohol and phosgene, or by reacting alcohol and chloroformate, or by transesterifying a carbonic acid diester compound, but generally available commercially available polycarbonate resins can be used. It is also possible to use As a commercially available product, Panlite series manufactured by Teijin Kasei Co., Ltd., etc. can be used. The optical material composition of the present disclosure can contain polycarbonate as a resin material.
 ポリ(メタ)アクリレートとしては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載のものを用いることができる。 The poly(meth)acrylate can be used without any particular limitation, and for example, those described in Japanese Patent No. 6216383 can be used.
 ポリオレフィンとしては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載の具体例、環状ポリオレフィン、オレフィンの重合反応及びポリオレフィンの製造方法を用いることができる。 The polyolefin can be used without any particular limitation, and for example, the specific examples, cyclic polyolefin, olefin polymerization reaction, and polyolefin manufacturing method described in Japanese Patent No. 6216383 can be used.
 ポリアリルは、公知のラジカル発生性の重合触媒の存在下に、アリル基含有モノマーから選ばれる少なくとも1種のアリル基含有モノマーを重合させることにより製造される。
 アリル基含有モノマーとしては、アリルジグリコールカーボネートやジアリルフタレートが一般的に市販されており、これらは好適に使用することができる。
Polyallyl is produced by polymerizing at least one allyl group-containing monomer selected from allyl group-containing monomers in the presence of a known radical-generating polymerization catalyst.
As allyl group-containing monomers, allyl diglycol carbonate and diallyl phthalate are generally commercially available, and these can be suitably used.
 ポリウレタンウレアは、ポリウレタンプレポリマー及びジアミン硬化剤による反応生成物であり、商標TRIVEXとしてPPGIndustries,Inc.から販売されているものが代表例である。ポリウレタンウレアは透明性の高い材料であり、好適に使用することができる。 Polyurethane urea is a reaction product of a polyurethane prepolymer and a diamine curing agent and is manufactured by PPG Industries, Inc. under the trademark TRIVEX. A typical example is the one sold by. Polyurethane urea is a highly transparent material and can be suitably used.
 ポリエン-ポリチオール重合体は、1分子中に2個以上のエチレン性官能基を有するポリエン化合物と、1分子中に2個以上のチオール基を有するポリチオール化合物からなる付加重合並びにエチレン鎖状重合による樹脂生成物である。 Polyene-polythiol polymers are resins produced by addition polymerization and ethylene chain polymerization, consisting of a polyene compound having two or more ethylenic functional groups in one molecule and a polythiol compound having two or more thiol groups in one molecule. It is a product.
 ポリエン-ポリチオール重合体における、ポリエン化合物としては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the polyene compound in the polyene-polythiol polymer, for example, those described in Japanese Patent No. 6216383 can be used.
 開環メタセシス重合体は、触媒を用いて環状オレフィン類を開環重合させてなる樹脂である。開環重合させることのできる環状オレフィン類としては、例えば、特許第6216383号公報に記載のものを用いることができる。 A ring-opening metathesis polymer is a resin formed by ring-opening polymerization of cyclic olefins using a catalyst. As the cyclic olefins that can be subjected to ring-opening polymerization, for example, those described in Japanese Patent No. 6216383 can be used.
 ポリエステルは、アンチモンやゲルマニウム化合物に代表されるルイス酸触媒、有機酸、無機酸などの公知のポリエステル製造触媒の存在下に縮合重合される。具体的には、ジカルボン酸を含む多価カルボン酸及びこれらのエステル形成性誘導体から選ばれる1種又は2種以上とグリコールを含む多価アルコールから選ばれる1種又は2種以上とからなるもの、又はヒドロキシカルボン酸及びこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。 Polyester is condensed and polymerized in the presence of known polyester production catalysts such as Lewis acid catalysts typified by antimony and germanium compounds, organic acids, and inorganic acids. Specifically, one or more selected from polyhydric carboxylic acids including dicarboxylic acids and their ester-forming derivatives and one or more selected from polyhydric alcohols including glycol; or hydroxycarboxylic acids and their ester-forming derivatives, or cyclic esters.
 ジカルボン酸及びグリコールとしては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the dicarboxylic acid and glycol, for example, those described in Japanese Patent No. 6216383 can be used.
 ポリエステルとしては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the polyester, for example, those described in Japanese Patent No. 6216383 can be used.
 エポキシ樹脂はエポキシ化合物を開環重合してなる樹脂であり、エポキシ化合物としては、例えば、特許第6216383号公報に記載のものを用いることができる。 Epoxy resin is a resin formed by ring-opening polymerization of an epoxy compound, and as the epoxy compound, for example, those described in Japanese Patent No. 6216383 can be used.
(添加剤)
 本開示の光学材料は、上記以外の他の成分として添加剤を含有してもよい。
 上記添加剤として、重合触媒、内部離型剤、染料、紫外線吸収剤などを挙げることができる。本開示において、ポリウレタン及びポリチオウレタンを得る際には、重合触媒を用いてもよく、用いなくてもよい。
 内部離型剤としては、酸性リン酸エステルが挙げられる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独又は2種類以上混合して使用することできる。例えば、WO2021/132559に例示された内部離型剤を用いることができる。
(Additive)
The optical material of the present disclosure may contain additives as components other than those mentioned above.
Examples of the additives include polymerization catalysts, internal mold release agents, dyes, and ultraviolet absorbers. In the present disclosure, when obtaining polyurethane and polythiourethane, a polymerization catalyst may or may not be used.
Internal mold release agents include acidic phosphate esters. Examples of acidic phosphoric acid esters include phosphoric acid monoesters and phosphoric acid diesters, each of which can be used alone or in combination of two or more types. For example, an internal mold release agent illustrated in WO2021/132559 can be used.
 紫外線吸収剤としては、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-5-tert-ブチルベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-2’,4’-ジクロロベンゾフェノン等のベンゾフェノン系紫外線吸収剤、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-2,4-tert-ブチルフェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等のベンゾトリアゾール系紫外線吸収剤などが挙げられるが、好ましくは2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノールや2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノールのベンゾトリアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は単独でも2種以上を併用することもできる。 As ultraviolet absorbers, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, 2-hydroxy-4- Benzophenone UV absorbers such as acryloyloxy-2',4'-dichlorobenzophenone, 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]4,6-bis( 2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2, 4dimethylphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2 ,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis(2-hydroxy-4-butyloxyphenyl)-6-(2,4-bis-butyloxyphenyl)-1,3, Triazine UV absorbers such as 5-triazine, 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis(4-phenylphenyl)-1,3,5-triazine , 2-(2H-benzotriazol-2-yl)-4-methylphenol, 2-(2H-benzotriazol-2-yl)-4-tert-octylphenol, 2-(2H-benzotriazol-2-yl) -4,6-bis(1-methyl-1-phenylethyl)phenol, 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol, 2-(5-chloro-2H -benzotriazol-2-yl)-4-methyl-6-tert-butylphenol, 2-(5-chloro-2H-benzotriazol-2-yl)-2,4-tert-butylphenol, 2,2'-methylenebis Examples include benzotriazole UV absorbers such as [6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], but preferably 2-( Benzotriazole UV absorbers such as 2H-benzotriazol-2-yl)-4-tert-octylphenol and 2-(5-chloro-2H-benzotriazol-2-yl)-4-methyl-6-tert-butylphenol are Can be mentioned. These ultraviolet absorbers can be used alone or in combination of two or more.
 紫外線吸収剤は、市販品を用いてもよい。上記市販品としては、例えば、Tinuvin326(BASFジャパン株式会社製)、Viosorb583(共同薬品株式会社製)等が挙げられる。 Commercially available products may be used as the ultraviolet absorber. Examples of the commercially available products include Tinuvin326 (manufactured by BASF Japan Co., Ltd.) and Viosorb583 (manufactured by Kyodo Yakuhin Co., Ltd.).
 本開示の光学材料は、色調調整剤を含んでいてもよい。光学材料が色調調整剤を含む場合、色調調整剤の含有量は、3ppm~50ppmであってもよく、5ppm~40ppmであってもよい。 The optical material of the present disclosure may contain a color tone adjusting agent. When the optical material contains a tone adjusting agent, the content of the tone adjusting agent may be 3 ppm to 50 ppm, or 5 ppm to 40 ppm.
 色調調整剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂を含む光学材料の色相を調整する機能を有するものが挙げられる。色調調整剤としては、ブルーイング剤が挙げられる。ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂材料からなる光学材料の色相を調整する機能を有するものが挙げられる。ブルーイング剤は、青色から紫色を示す物質を含んでいてもよい。 Examples of the color tone adjusting agent include those having an absorption band in the wavelength range from orange to yellow in the visible light region and having the function of adjusting the hue of optical materials containing resin. Examples of the color tone adjusting agent include bluing agents. Examples of the bluing agent include those that have an absorption band in the wavelength range from orange to yellow in the visible light region and have the function of adjusting the hue of an optical material made of a resin material. The bluing agent may contain a substance that exhibits a blue to purple color.
(視感透過率)
 本開示の光学材料は、視認性の観点から、視感透過率が75%T以上であることが好ましく、78%T以上であることがより好ましく、80%T以上であることがさらに好ましい。
 視感透過率は、分光測色計(例えば、コニカミノルタ製CM-5)により、厚さ2mmの光学材料を用いて、ISO 8980-3に準拠して測定することができる。
(Luminous transmittance)
From the viewpoint of visibility, the optical material of the present disclosure preferably has a luminous transmittance of 75%T or more, more preferably 78%T or more, and even more preferably 80%T or more.
The luminous transmittance can be measured using a spectrophotometer (for example, CM-5 manufactured by Konica Minolta) using an optical material having a thickness of 2 mm in accordance with ISO 8980-3.
(好ましい分光特性)
 以下、本開示の光学材料の好ましい分光特性を示す。
 以下の好ましい分光特性は、分光スペクトルにおいて、
440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、
550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとし、
最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とし、
最大吸収波長bにおける厚さ2mmでの透過率を透過率T2とした場合の分光特性である。
(Preferred spectral characteristics)
Preferred spectral properties of the optical material of the present disclosure are shown below.
The following preferred spectral characteristics are in the spectral spectrum:
The maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a,
The maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b,
Let the transmittance at a thickness of 2 mm at the maximum absorption wavelength a be the transmittance T1,
This is a spectral characteristic when the transmittance at a thickness of 2 mm at the maximum absorption wavelength b is defined as the transmittance T2.
 上記分光スペクトルは、本開示の光学材料からなる厚さ2mmの試験サンプル、及び、分光光度計(例えば、紫外可視分光光度計UV-1800、株式会社島津製作所製)を用いて測定する。 The above spectroscopic spectrum is measured using a 2 mm thick test sample made of the optical material of the present disclosure and a spectrophotometer (for example, UV-visible spectrophotometer UV-1800, manufactured by Shimadzu Corporation).
 最大吸収波長bから最大吸収波長aを差し引いた値(即ち、差〔最大吸収波長b-最大吸収波長a〕)は、好ましくは100nm~160nm、より好ましくは100nm~140nmである。
 差〔最大吸収波長b-最大吸収波長a〕が100nm~160nmである場合、外観が自然な色味を有するという効果により優れる。
The value obtained by subtracting the maximum absorption wavelength a from the maximum absorption wavelength b (ie, the difference [maximum absorption wavelength b - maximum absorption wavelength a]) is preferably 100 nm to 160 nm, more preferably 100 nm to 140 nm.
When the difference [maximum absorption wavelength b−maximum absorption wavelength a] is 100 nm to 160 nm, the effect of having a natural color appearance is more excellent.
 透過率T1は、好ましくは60%T~95%Tの範囲内、より好ましくは65%T~85%Tの範囲内である。
 透過率T1が、60%T~95%Tの範囲内である場合には、外観が自然な色味を有するという効果により優れる。
 透過率T2は、好ましくは60%T~95%Tの範囲内、より好ましくは65%T~85%Tの範囲内である。
 透過率T2が、60%T~95%Tの範囲内である場合には、外観が自然な色味を有するという効果により優れる。
The transmittance T1 is preferably within the range of 60%T to 95%T, more preferably within the range of 65%T to 85%T.
When the transmittance T1 is within the range of 60%T to 95%T, the effect of having a natural color appearance is more excellent.
Transmittance T2 is preferably within the range of 60%T to 95%T, more preferably within the range of 65%T to 85%T.
When the transmittance T2 is within the range of 60%T to 95%T, the effect of having a natural color appearance is more excellent.
(耐候性試験)
 本開示の光学材料は、上記透過率T1の下記耐候性試験の前後での差の絶対値であるΔT1が、好ましくは2.5%T以下、より好ましくは2.0%T以下、更に好ましくは1.0%T以下である。
 ΔT1が2.5%T以下である場合、長時間にわたってブルーライトカット能の低下を抑制できるという効果により優れる。
(Weather resistance test)
In the optical material of the present disclosure, ΔT1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, is preferably 2.5%T or less, more preferably 2.0%T or less, and even more preferably is 1.0%T or less.
When ΔT1 is 2.5%T or less, the effect of suppressing the decline in blue light cutting ability over a long period of time is excellent.
 ここで、耐光性試験は、本開示の光学材料からなる厚さ2mmの試験サンプルに対し、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する試験である。
 キセノンランプの照射は、例えば、耐候性促進試験機(例えば、キセノンウェザーメーターNX75、スガ試験機株式会社製)を用いて行う。
Here, the light resistance test was performed on a 2 mm thick test sample made of the optical material of the present disclosure using a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illumination intensity of 60 W/m 2 , and an irradiation time of 150 hours. This is a test in which irradiation is performed.
Irradiation with a xenon lamp is performed using, for example, a weather resistance acceleration tester (for example, Xenon Weather Meter NX75, manufactured by Suga Test Instruments Co., Ltd.).
 本開示の光学材料は、上記透過率T1の上記耐候性試験の前後での差の絶対値であるΔT1と、上記透過率T2の上記耐候性試験の前後での差の絶対値であるΔT2と、の合計(即ち、ΔT1+ΔT2)が、好ましくは6.0%T以下、より好ましくは3.0%T以下である。
 ΔT1+ΔT2が6.0%T以下である場合、長時間にわたる耐候性により優れる。
The optical material of the present disclosure has ΔT1, which is the absolute value of the difference in the transmittance T1 before and after the weather resistance test, and ΔT2, which is the absolute value of the difference in the transmittance T2 before and after the weather resistance test. , (ie, ΔT1+ΔT2) is preferably 6.0%T or less, more preferably 3.0%T or less.
When ΔT1+ΔT2 is 6.0%T or less, long-term weather resistance is better.
(彩度C
 本開示の光学材料は、彩度Cが、4.0以下であることが好ましい。
 彩度Cが、4.0以下であることで、光学材料として外観に優れる。
 彩度Cが、3.5以下であることがより好ましく、2.5以下であることがさらに好ましく、1.5以下であることが特に好ましい。
 彩度Cの下限値としては、特に制限はない。例えば、彩度Cは、0超であってもよく、0.01以上であってもよい。
 彩度Cは、例えば、0.01~4.0であることが好ましい。
(Saturation C * )
The optical material of the present disclosure preferably has a chroma C * of 4.0 or less.
When the saturation C * is 4.0 or less, the optical material has excellent appearance.
The saturation C * is more preferably 3.5 or less, even more preferably 2.5 or less, and particularly preferably 1.5 or less.
There is no particular restriction on the lower limit value of the saturation C * . For example, the saturation C * may be greater than 0, or may be greater than or equal to 0.01.
The saturation C * is preferably, for example, 0.01 to 4.0.
 彩度Cの測定方法は以下の通りである。
 厚さ2mmの光学材料を用いて、分光測色計CM-5(コニカミノルタ株式会社製)で、C光源、視野角2°の条件でL色空間(CIE 1976)におけるa、bを測定した。下記式を用いて、彩度Cを算出した。
The method for measuring chroma C * is as follows.
Using an optical material with a thickness of 2 mm, a spectrophotometer CM-5 (manufactured by Konica Minolta Co., Ltd.) was used to measure L * a * b * a in color space (CIE 1976) under the conditions of a C light source and a viewing angle of 2°. * , b * were measured. The saturation C * was calculated using the following formula.
<光学材料用組成物>
 光学材料は、例えば、以下に説明する光学材料用組成物を用いて製造することができる。
 光学材料用組成物は、例えば、上述の式(A1)で表されるポルフィリン系化合物aを含む有機色素Aと、上述の式(B1)で表されるポルフィリン系化合物bを含む有機色素Bと、上述のモノマーと、を含んでもよい。
 モノマーは、硬化することで上述の樹脂を製造できるモノマーである。
<Composition for optical materials>
The optical material can be manufactured using, for example, the composition for optical materials described below.
The composition for optical materials includes, for example, an organic dye A containing a porphyrin compound a represented by the above formula (A1), and an organic dye B containing a porphyrin compound b expressed by the above formula (B1). , and the monomers described above.
The monomer is a monomer that can be cured to produce the above-mentioned resin.
 本開示において、光学材料用組成物は、上記の成分を所定の方法で混合することにより得ることができる。
 組成物中の各成分の混合順序、混合方法等は、特に限定されず、公知の方法で行うことができる。公知の方法としては、例えば、添加物を所定量含むマスターバッチを作製して、このマスターバッチを溶媒に分散し、溶解させる方法などがある。例えばポリウレタン樹脂の場合、ポリイソシアネート化合物に添加物を分散し、溶解させてマスターバッチを作製する方法などがある。
In the present disclosure, the composition for optical materials can be obtained by mixing the above components in a predetermined method.
The mixing order, mixing method, etc. of each component in the composition are not particularly limited, and any known method can be used. Known methods include, for example, preparing a masterbatch containing a predetermined amount of additives, and dispersing and dissolving this masterbatch in a solvent. For example, in the case of polyurethane resin, there is a method of preparing a masterbatch by dispersing and dissolving additives in a polyisocyanate compound.
<光学材料の態様>
 本開示の光学材料の態様としては、基材からなる光学材料、基材とコーティング層とからなる光学材料等が挙げられる。
 上記基材としては、例えばレンズ基材が挙げられる。
<Aspects of optical material>
Embodiments of the optical material of the present disclosure include an optical material consisting of a base material, an optical material consisting of a base material and a coating layer, and the like.
Examples of the base material include lens base materials.
 コーティング層としては、例えば、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。 Examples of the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, an antifouling layer, and a water repellent layer. These coating layers can be used alone or in a multilayered form of a plurality of coating layers. When coating layers are applied to both sides, the same or different coating layers may be applied to each side.
 例えば、色素を含まない光学材料用組成物を用いて成形体(例えば、レンズ基材)を調製し、次いで、色素を水又は溶媒中に分散させて得られた分散液に成形体を浸漬して色素を成形体中に含浸させ、色素を含浸させた成形体を乾燥してもよい。このようにして得られた、成形体を用いて光学材料を調製することができる。 For example, a molded object (for example, a lens base material) is prepared using a composition for optical materials that does not contain a dye, and then the molded object is immersed in a dispersion obtained by dispersing the dye in water or a solvent. The dye may be impregnated into the molded article, and the dye-impregnated molded article may be dried. Optical materials can be prepared using the molded product thus obtained.
 また、光学材料を調製した後に、ポルフィリン系化合物を光学材料に含浸させることもできる。その他、レンズ基材と、必要に応じて積層されるコーティング層とを備える眼鏡レンズを、色素を含む分散液に浸漬し、当該レンズに色素を含浸させることもできる。 Furthermore, after preparing the optical material, the optical material can be impregnated with a porphyrin compound. In addition, a spectacle lens including a lens base material and a coating layer laminated as necessary can be immersed in a dispersion containing a pigment to impregnate the lens with the pigment.
 色素の含浸量は、分散液中の色素の濃度と、分散液の温度、成形体、光学材料等を浸漬させる時間により所望の含浸量に調整してもよい。濃度を高く、温度を高く、浸漬時間を長くするほどに含浸量が増す。含浸量をより精密に調整する場合は、含浸量が少ない条件で、複数回浸漬を繰り返すことにより実施してもよい。
 また、色素を含む光学材料用組成物をコーティング材料として用い、プラスチックレンズなどの光学材料上に色素含有コーティング層を形成してもよい。
The amount of dye impregnated may be adjusted to a desired amount depending on the concentration of the dye in the dispersion, the temperature of the dispersion, and the time for immersing the molded object, optical material, etc. The amount of impregnation increases as the concentration increases, the temperature increases, and the immersion time increases. If the amount of impregnation is to be adjusted more precisely, it may be carried out by repeating immersion multiple times under conditions where the amount of impregnation is small.
Furthermore, a pigment-containing coating layer may be formed on an optical material such as a plastic lens by using a composition for an optical material containing a pigment as a coating material.
 このような構成を有する光学材料は、レンズ、好ましくはメガネレンズとして好適に用いることができる。
 なお、本開示は前述の実施形態に限定されるものではなく、本願発明の効果を損なわない範囲で様々な態様を取り得ることができる。
An optical material having such a configuration can be suitably used as a lens, preferably a spectacle lens.
Note that the present disclosure is not limited to the above-described embodiments, and can take various forms without impairing the effects of the present invention.
<光学材料の用途>
 本開示の光学材料の用途としては、例えば;
眼鏡レンズ、ゴーグル、視力矯正用眼鏡レンズ、撮像機器用レンズ、液晶プロジェクター用フレネルレンズ、レンチキュラーレンズ、コンタクトレンズ、ウェアラブルデバイス用レンズなどのレンズ;
発光ダイオード(LED)用封止材;
光導波路;
光学レンズ;
光導波路等の接合に用いる光学用接着剤;
光学レンズなどに用いる反射防止膜;
液晶表示装置部材(基板、導光板、フィルム、シートなど)に用いる透明性コーティング;
車のフロントガラス、バイクのヘルメット等に用いる風防;
透明性基板;
照明器具のカバー、照明器具の照射面等に貼り付けるフィルム(即ち、光学材料(例えば光学フィルター)としてのフィルム);
窓に貼り付けるフィルム(即ち、光学材料(例えば光学フィルター)としてのフィルム);
レンズに貼り付けるフィルム(即ち、光学材料(例えば光学フィルター)としてのフィルム);
等を挙げることができる。
<Applications of optical materials>
Applications of the optical material of the present disclosure include, for example;
Lenses such as eyeglass lenses, goggles, eyeglass lenses for vision correction, lenses for imaging devices, Fresnel lenses for LCD projectors, lenticular lenses, contact lenses, and lenses for wearable devices;
Encapsulant for light emitting diodes (LEDs);
Optical waveguide;
optical lens;
Optical adhesive used for joining optical waveguides, etc.;
Anti-reflection coatings used for optical lenses, etc.;
Transparent coating used for liquid crystal display device components (substrates, light guide plates, films, sheets, etc.);
Windshields used for car windshields, motorcycle helmets, etc.;
Transparent substrate;
A film that is attached to the cover of a lighting fixture, the irradiation surface of a lighting fixture, etc. (i.e., a film as an optical material (for example, an optical filter));
Films to be applied to windows (i.e. films as optical materials (e.g. optical filters));
Films attached to lenses (i.e. films as optical materials (e.g. optical filters));
etc. can be mentioned.
(レンズ)
 本開示のレンズは、本開示の光学材料を用いたレンズである。
 つまり、本開示のレンズは、本開示の光学材料を含む。本開示のレンズは、光学材料からなるレンズ基材を備えるレンズであってもよく、当該レンズ基材の片面又は両面にコーティング層を備えていてもよい。
 本開示のレンズは、前述の光学材料の用途にて例示した各種レンズのいずれかであってもよく、メガネレンズであることが好ましい。
(lens)
The lens of the present disclosure is a lens using the optical material of the present disclosure.
That is, the lens of the present disclosure includes the optical material of the present disclosure. The lens of the present disclosure may include a lens base material made of an optical material, and may include a coating layer on one or both surfaces of the lens base material.
The lens of the present disclosure may be any of the various lenses exemplified in the above-mentioned applications of optical materials, and is preferably a spectacle lens.
 コーティング層としては、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。 Specific examples of the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, an antifouling layer, a water repellent layer, and the like. These coating layers can be used alone or in a multilayered form of a plurality of coating layers. When coating layers are applied to both sides, the same or different coating layers may be applied to each side.
 これらのコーティング層は、本開示において用いられる色素、赤外線吸収剤、光安定剤、酸化防止剤等、染料、顔料等、フォトクロミック染料、フォトクロミック顔料等、帯電防止剤、その他のレンズの性能を高めるための公知の添加剤等を含んでいてもよい。
 塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
These coating layers include dyes, infrared absorbers, light stabilizers, antioxidants, etc., dyes, pigments, etc., photochromic dyes, photochromic pigments, etc., antistatic agents, and other ingredients used in the present disclosure to enhance the performance of the lens. It may also contain other known additives.
For layers to be coated by coating, various leveling agents may be used for the purpose of improving coating properties.
 プライマー層は通常、後述するハードコート層とレンズ基材との間に形成される。プライマー層は、その上に形成するハードコート層とレンズ基材との密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層は、得られたレンズ基材に対する密着性の高いものであればよく、例えば、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラミン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物がプライマー層の形成に用いられる。プライマー組成物の調製では、組成物の粘度を調整する目的でレンズ基材に影響を及ぼさない溶媒を用いてもよく、溶媒を用いなくてもよい。 A primer layer is usually formed between a hard coat layer and a lens base material, which will be described later. The primer layer is a coating layer that aims to improve the adhesion between the hard coat layer formed thereon and the lens base material, and can also improve impact resistance in some cases. The primer layer may be of any material as long as it has high adhesion to the obtained lens base material. For example, a primer composition containing urethane resin, epoxy resin, polyester resin, melamine resin, or polyvinyl acetal as a main component may be used. Used to form a primer layer. In preparing the primer composition, a solvent that does not affect the lens substrate may be used or no solvent may be used for the purpose of adjusting the viscosity of the composition.
 塗布法、乾式法のいずれの方法によってもプライマー層を形成することができる。塗布法を用いる場合、プライマー組成物を、スピンコート、ディップコートなど公知の塗布方法でレンズ基材に塗布した後、固化することによりプライマー層が形成される。乾式法で行う場合は、CVD法、真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズ基材の表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理が行われていてもよい。 The primer layer can be formed by either a coating method or a dry method. When using a coating method, a primer layer is formed by applying a primer composition to a lens substrate by a known coating method such as spin coating or dip coating, and then solidifying the primer composition. When a dry method is used, it is formed by a known dry method such as a CVD method or a vacuum evaporation method. When forming the primer layer, the surface of the lens base material may be subjected to pretreatment such as alkali treatment, plasma treatment, ultraviolet treatment, etc., if necessary, for the purpose of improving adhesion.
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能等を付与することを目的としたコーティング層である。
 ハードコート層の形成には、硬化性を有する有機ケイ素化合物と、Si,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる元素を含む酸化物微粒子の1種以上と、を含むハードコート組成物が使用されてもよく、
 硬化性を有する有機ケイ素化合物と、Si,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる2種以上の元素を含む複合酸化物の微粒子の1種以上と、を含むハードコート組成物が使用されてもよい。
The hard coat layer is a coating layer intended to impart functions such as scratch resistance, abrasion resistance, moisture resistance, hot water resistance, heat resistance, and weather resistance to the lens surface.
To form the hard coat layer, an organosilicon compound having curability and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti are used. A hard coat composition containing one or more types of oxide fine particles may be used,
A composite oxide containing a curable organosilicon compound and two or more elements selected from the element group Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti. A hard coat composition containing one or more of the following fine particles may be used.
 ハードコート組成物は、上記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物及び多官能性エポキシ化合物からなる群から選択される少なくとも1つを含むことが好ましい。
 ハードコート組成物は、レンズ基材に影響を及ぼさない溶媒を含んでいてもよく、溶媒を含んでいなくてもよい。
In addition to the above components, the hard coat composition also contains amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, salts of perchloric acids, acids, metal chlorides, and polyfunctional epoxy compounds. Preferably, it includes at least one selected from the group.
The hard coat composition may contain a solvent that does not affect the lens substrate, or may not contain a solvent.
 ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、紫外線、可視光線等のエネルギー線照射、熱硬化などが挙げられる。干渉縞の発生を抑制する観点から、ハードコート層の屈折率は、レンズ基材との屈折率の差が±0.1の範囲にあるのが好ましい。 The hard coat layer is usually formed by applying a hard coat composition using a known coating method such as spin coating or dip coating, and then curing the composition. Examples of the curing method include irradiation with energy rays such as ultraviolet rays and visible light, and thermosetting. From the viewpoint of suppressing the occurrence of interference fringes, it is preferable that the refractive index of the hard coat layer has a difference in refractive index from that of the lens base material within a range of ±0.1.
 反射防止層には無機系及び有機系がある。
 無機系の反射防止層は、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。
 有機系の反射防止層は、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
 反射防止層は、必要に応じてハードコート層の上に形成されてもよい。
Antireflection layers include inorganic and organic types.
The inorganic antireflection layer is formed using an inorganic oxide such as SiO 2 or TiO 2 by a dry method such as a vacuum evaporation method, a sputtering method, an ion plating method, an ion beam assist method, or a CVD method.
The organic antireflection layer is formed by a wet method using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
The antireflection layer may be formed on the hard coat layer as necessary.
 反射防止層は多層であっても単層であってもよい。
 効果的に反射防止機能を発現する観点から、反射防止層は多層であることが好ましく、その場合、低屈折率層と高屈折率層とを交互に積層することが好ましい。また、低屈折率層と高屈折率層との屈折率差は0.1以上であることが好ましい。
 高屈折率層としては、ZnO、TiO、CeO、Sb2O、SnO、ZrO、Ta等の層があり、低屈折率層としては、SiO等の層が挙げられる。
 単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。
The antireflection layer may be multilayer or single layer.
From the viewpoint of effectively expressing the antireflection function, the antireflection layer is preferably multilayered, and in that case, it is preferable to alternately laminate low refractive index layers and high refractive index layers. Moreover, it is preferable that the refractive index difference between the low refractive index layer and the high refractive index layer is 0.1 or more.
Examples of the high refractive index layer include layers such as ZnO, TiO 2 , CeO 2 , Sb2O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5 , and examples of the low refractive index layer include layers such as SiO 2 .
When used as a single layer, the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer.
 反射防止層の上には、必要に応じて防曇コート層、防汚染層、撥水層等が形成されていてもよい。防曇層、防汚染層、撥水層等を形成する方法としては、特に限定されず、従来公知の方法を適用することができる。
 
On the antireflection layer, an antifogging coat layer, an antifouling layer, a water repellent layer, etc. may be formed as necessary. Methods for forming the antifogging layer, antifouling layer, water repellent layer, etc. are not particularly limited, and conventionally known methods can be applied.
 以下、本開示を実施例により更に具体的に説明するが、本開示はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 Hereinafter, the present disclosure will be explained in more detail with reference to Examples, but the present disclosure is not limited to the following Examples unless the gist thereof is exceeded. Note that unless otherwise specified, "parts" are based on mass.
(ポルフィリン系化合物の作製)
(合成例1:(1-A)の作製)
 下記構造式(1-a)で示される化合物17.0gをN,N-ジメチルホルムアミド170mlに溶解し、これに10℃~20℃で臭素35.8gを滴下した。室温にて4時間撹拌した後氷水800gに排出し、水酸化ナトリウム水溶液で中和した。析出物をろ取、水洗し、メタノールにて洗浄、乾燥して、下記構造式(1-A)で示される化合物(以下、(1-A)化合物ともいう。)を得た。
(Preparation of porphyrin compound)
(Synthesis Example 1: Preparation of (1-A))
17.0 g of the compound represented by the following structural formula (1-a) was dissolved in 170 ml of N,N-dimethylformamide, and 35.8 g of bromine was added dropwise thereto at 10° C. to 20° C. After stirring at room temperature for 4 hours, the mixture was poured into 800 g of ice water and neutralized with an aqueous sodium hydroxide solution. The precipitate was collected by filtration, washed with water, washed with methanol, and dried to obtain a compound represented by the following structural formula (1-A) (hereinafter also referred to as (1-A) compound).
(合成例2:(2-A)の作製)
 構造式(1-a)で示される化合物を下記構造式(2-a)で示される化合物に、溶媒をN,N-ジメチルホルムアミドから1,2-ジクロロベンゼンに変更した以外は、(合成例1)と同様にして下記構造式(2-A)で示される化合物(以下、(2-A)化合物ともいう。)を得た。
(Synthesis Example 2: Preparation of (2-A))
(Synthesis example In the same manner as in 1), a compound represented by the following structural formula (2-A) (hereinafter also referred to as (2-A) compound) was obtained.
(合成例3:(3―A)の作製)
 下記構造式(3-a)で示される化合物30.0gを1,1,2-トリクロロエタン150g及び水60gに分散し、これに50℃~55℃で臭素58.7g及び1,2,2-トリクロロエタン60gを含む溶液を滴下した。50℃~55℃にて3時間撹拌した後室温まで冷却した。反応液に亜硫酸ナトリウム水溶液(亜硫酸ナトリウム4.2g、水21g)を添加し、室温で15分撹拌した。次いで、水酸化ナトリウム水溶液(水酸化ナトリウム16.2g、水162g)を添加し、室温で30分撹拌した。析出物をろ取、水洗し、メタノールにて洗浄、乾燥して、下記構造式(3-A)で示される化合物(以下、(3-A)化合物ともいう。)45.6g得た。
(Synthesis Example 3: Preparation of (3-A))
30.0 g of the compound represented by the following structural formula (3-a) was dispersed in 150 g of 1,1,2-trichloroethane and 60 g of water, and 58.7 g of bromine and 1,2,2- A solution containing 60 g of trichloroethane was added dropwise. After stirring at 50°C to 55°C for 3 hours, the mixture was cooled to room temperature. An aqueous sodium sulfite solution (4.2 g of sodium sulfite, 21 g of water) was added to the reaction solution, and the mixture was stirred at room temperature for 15 minutes. Next, an aqueous sodium hydroxide solution (16.2 g of sodium hydroxide, 162 g of water) was added, and the mixture was stirred at room temperature for 30 minutes. The precipitate was collected by filtration, washed with water, washed with methanol, and dried to obtain 45.6 g of a compound represented by the following structural formula (3-A) (hereinafter also referred to as (3-A) compound).
(合成例4:(1-B2)の作製)
 2-フルオロベンジルシアニド18g、ピバロイルシアニド16.7g及びジクロロメタン700mLを混合し、-10℃まで冷却した。続いて、同温度にて四塩化チタン82gを70分かけて滴下したのち、N-メチルモルホリン88gを2時間かけて滴下し、室温にて15時間撹拌した。反応液を水に排出し、クロロホルムを加えて撹拌した後、不溶分を濾過した。得られたろ液を重曹水、水の順で洗浄し、濃縮した。カラム精製物をアセトニトリル400mLに溶解させ、室温下、紫外線蛍光灯を照射しながら94時間撹拌し、濃縮後シリカゲルカラムクロマトグラフィーにより分離精製し、下記構造式(1-b)で示される化合物を得た。
 構造式(1-b)で示される化合物2gと1-ペンタノール20mLとを混合し、窒素置換を行った。これにホルムアミド0.33g、塩化バナジウム(III)0.38gを加えた後、カリウムtert-ブトキシド0.83gを少しずつ加えた。その後、反応液を105℃まで昇温させ、15時間撹拌した。撹拌終了後、反応液を冷却し、メタノール80mL中に排出した。ここにイオン交換水40mLを滴下して析出した結晶を濾過により分離し、100℃で乾燥した。得られた結晶をトルエンに溶解させ、活性白土及びシリカゲルを加え撹拌して不溶分をろ別し、ろ液を濃縮した。得られた固形分をメタノールで洗浄し、乾燥することにより下記構造式(1-B2)で示される化合物(以下、(1-B2)化合物ともいう。)0.91gを得た。
(Synthesis Example 4: Preparation of (1-B2))
18 g of 2-fluorobenzyl cyanide, 16.7 g of pivaloyl cyanide and 700 mL of dichloromethane were mixed and cooled to -10°C. Subsequently, 82 g of titanium tetrachloride was added dropwise over 70 minutes at the same temperature, and then 88 g of N-methylmorpholine was added dropwise over 2 hours, followed by stirring at room temperature for 15 hours. The reaction solution was poured into water, chloroform was added thereto, the mixture was stirred, and the insoluble matter was filtered. The obtained filtrate was washed successively with aqueous sodium bicarbonate and water, and concentrated. The column-purified product was dissolved in 400 mL of acetonitrile, stirred at room temperature for 94 hours while irradiated with an ultraviolet fluorescent lamp, concentrated, and then separated and purified by silica gel column chromatography to obtain a compound represented by the following structural formula (1-b). Ta.
2 g of the compound represented by structural formula (1-b) and 20 mL of 1-pentanol were mixed, and the mixture was purged with nitrogen. After adding 0.33 g of formamide and 0.38 g of vanadium (III) chloride, 0.83 g of potassium tert-butoxide was added little by little. Thereafter, the reaction solution was heated to 105° C. and stirred for 15 hours. After the stirring was completed, the reaction solution was cooled and discharged into 80 mL of methanol. 40 mL of ion-exchanged water was added dropwise thereto, and the precipitated crystals were separated by filtration and dried at 100°C. The obtained crystals were dissolved in toluene, activated clay and silica gel were added and stirred, insoluble matter was filtered off, and the filtrate was concentrated. The obtained solid content was washed with methanol and dried to obtain 0.91 g of a compound represented by the following structural formula (1-B2) (hereinafter also referred to as (1-B2) compound).
(合成例5:(2-B2)の作製)
 塩化バナジウム(III)を塩化コバルト(II)無水物に変更した以外は、(合成例4)と同様にして下記構造式(2-B2)で示される化合物(以下、(2-B2)化合物ともいう。)を得た。
(Synthesis Example 5: Preparation of (2-B2))
A compound represented by the following structural formula (2-B2) (hereinafter also referred to as (2-B2) compound) was prepared in the same manner as in (Synthesis Example 4) except that vanadium (III) chloride was changed to cobalt (II) chloride anhydride. ) was obtained.
(合成例6:(1-B4)の作製)
 1-ペンタノール50gに塩化バナジウム(III)1.57g、下記構造式(2-b)で示される化合物5.38gを装入し、20℃でアンモニアガス1.02gを1時間かけて導入した。アンモニアガスは反応液中へ導入し、アンモニア導入中は発熱を伴った。20℃~30℃で1時間攪拌を行った後、125℃に昇温した。昇温終了後125℃で6時間攪拌を続けた。次いで、反応混合物から1-ペンタノール約40gを蒸留により除去し、質量比1:1のメタノール水を装入した。析出した化合物を濾過して回収し、乾燥させて下記構造式(1-B4)で示される化合物(以下、(1-B4)化合物ともいう。)5.00gを得た。
(Synthesis Example 6: Preparation of (1-B4))
1.57 g of vanadium (III) chloride and 5.38 g of a compound represented by the following structural formula (2-b) were charged to 50 g of 1-pentanol, and 1.02 g of ammonia gas was introduced over 1 hour at 20°C. . Ammonia gas was introduced into the reaction solution, and heat generation occurred during the introduction of ammonia. After stirring at 20°C to 30°C for 1 hour, the temperature was raised to 125°C. After the temperature was raised, stirring was continued for 6 hours at 125°C. Then, about 40 g of 1-pentanol was removed from the reaction mixture by distillation, and methanol water at a mass ratio of 1:1 was charged. The precipitated compound was collected by filtration and dried to obtain 5.00 g of a compound represented by the following structural formula (1-B4) (hereinafter also referred to as (1-B4) compound).
(合成例7:(3-B4)の作製)
 塩化バナジウム(III)を塩化パラジウム(II)に変更した以外は、(合成例6)と同様にして下記構造式(3-B4)で示される化合物(以下、(3-B4)化合物ともいう。)を得た。
(Synthesis Example 7: Preparation of (3-B4))
A compound represented by the following structural formula (3-B4) (hereinafter also referred to as (3-B4) compound) was produced in the same manner as in (Synthesis Example 6) except that vanadium (III) chloride was changed to palladium (II) chloride. ) was obtained.
(合成例8:(4-B4)の作製)
 塩化バナジウム(III)を無水塩化銅(II)に変更した以外は、(合成例6)と同様にして下記構造式(4-B4)で示される化合物(以下、(4-B4)化合物ともいう。)を得た。
(Synthesis Example 8: Preparation of (4-B4))
A compound represented by the following structural formula (4-B4) (hereinafter also referred to as (4-B4) compound) was prepared in the same manner as in (Synthesis Example 6) except that vanadium (III) chloride was changed to anhydrous copper (II) chloride. ) was obtained.
(実施例1~実施例3、実施例6~実施例10、比較例1~比較例4、比較例6)
(レンズの作製)
 表1~表3に記載の有機色素A(ポルフィリン系色素)を表1~表3に記載の量、表1~表3に記載の有機色素B(ポルフィリン系色素)を表1~表3に記載の量、重合触媒としてジブチル錫ジクロリドを0.020質量部、内部離型剤としてMR用内部離型剤(三井化学株式会社製)を0.1質量部、紫外線吸収剤としてViosorb583(共同薬品株式会社製)を1.5質量部、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンと2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンを含む組成物を50.6質量部、25℃で撹拌して各成分を完全に溶解させた。
 その後、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物を25.5質量部、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含む組成物を23.9質量部添加して、25℃にて30分撹拌し、均一溶液を作製した。
 この溶液に対して400Paにて1時間脱泡を行い、1μmPTFE(ポリテトラフルオロエチレン)フィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。
 その後、室温まで冷却させて、プラノーレンズをガラスモールドから離型した。得られたプラノーレンズに対し、さらに120℃で2時間アニールを行った。これにより、厚さ2mmのレンズを得た。
(Example 1 to Example 3, Example 6 to Example 10, Comparative Example 1 to Comparative Example 4, Comparative Example 6)
(Preparation of lens)
Organic pigments A (porphyrin pigments) listed in Tables 1 to 3 are added in the amounts listed in Tables 1 to 3, and organic pigments B (porphyrin pigments) listed in Tables 1 to 3 are added in the amounts listed in Tables 1 to 3. In the stated amounts, 0.020 parts by mass of dibutyltin dichloride as a polymerization catalyst, 0.1 parts by mass of an internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.) as an internal mold release agent, and Viosorb 583 (Kyodo Yakuhin) as an ultraviolet absorber. Co., Ltd.), 1.5 parts by mass of 2,5-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane and 2,6-bis(isocyanatomethyl)bicyclo-[2.2. 1] - 50.6 parts by mass of a composition containing heptane was stirred at 25°C to completely dissolve each component.
Thereafter, 25.5 parts by mass of a composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and 23.9 parts by mass of a composition containing pentaerythritol tetrakis (3-mercaptopropionate) were added. The mixture was added and stirred at 25° C. for 30 minutes to prepare a homogeneous solution.
This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE (polytetrafluoroethylene) filter, and then poured into a 4C plano glass mold with a center thickness of 2 mm and a diameter of 77 mm. This glass mold was heated from 25°C to 120°C over 16 hours.
Thereafter, the plano lens was cooled to room temperature and released from the glass mold. The obtained plano lens was further annealed at 120° C. for 2 hours. Thereby, a lens with a thickness of 2 mm was obtained.
 なお、表3の比較例3、4、及び6中、「-」は、対応する有機色素を含有させなかったことを意味する。 Note that in Comparative Examples 3, 4, and 6 in Table 3, "-" means that the corresponding organic dye was not contained.
(実施例4)
 表1に記載の有機色素A(ポルフィリン系色素)を表1に記載の量、表1に記載の有機色素B(ポルフィリン系色素)を表1に記載の量、重合触媒としてジブチル錫ジクロリドを0.010質量部、内部離型剤としてMR用内部離型剤(三井化学株式会社製)を0.1質量部、紫外線吸収剤としてViosorb583(共同薬品株式会社製)を1.5質量部、m-キシリレンジイソシアネートを含む組成物を52.0質量部、25℃で撹拌して各成分を完全に溶解させた。
 その後、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物を48.0質量部添加して、25℃にて30分撹拌し、均一溶液を作製した。
 この溶液に対して400Paにて1時間脱泡を行い、1μmPTFE(ポリテトラフルオロエチレン)フィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。
 その後、室温まで冷却させて、プラノーレンズをガラスモールドから離型した。得られたプラノーレンズに対し、さらに120℃で2時間アニールを行った。これにより、厚さ2mmのレンズを得た。
(Example 4)
Organic dye A (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, organic dye B (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, and dibutyltin dichloride was used as a polymerization catalyst in an amount of 0. m - 52.0 parts by mass of a composition containing xylylene diisocyanate was stirred at 25°C to completely dissolve each component.
Thereafter, 48.0 parts by mass of a composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane was added and stirred at 25° C. for 30 minutes to prepare a homogeneous solution.
This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE (polytetrafluoroethylene) filter, and then poured into a 4C plano glass mold with a center thickness of 2 mm and a diameter of 77 mm. This glass mold was heated from 25°C to 120°C over 16 hours.
Thereafter, the plano lens was cooled to room temperature and released from the glass mold. The obtained plano lens was further annealed at 120° C. for 2 hours. Thereby, a lens with a thickness of 2 mm was obtained.
(実施例5)
 表1に記載の有機色素A(ポルフィリン系色素)を表1に記載の量、表1に記載の有機色素B(ポルフィリン系色素)を表1に記載の量、重合触媒としてジブチル錫ジクロリドを0.008質量部、内部離型剤としてMR用内部離型剤(三井化学株式会社製)を0.1質量部、紫外線吸収剤としてViosorb583(共同薬品株式会社製)を1.5質量部、m-キシリレンジイソシアネートを含む組成物を50.6質量部、25℃で撹拌して各成分を完全に溶解させた。
 その後、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物を49.4質量部添加して、25℃にて30分撹拌し、均一溶液を作製した。
 この溶液に対して400Paにて1時間脱泡を行い、1μmPTFE(ポリテトラフルオロエチレン)フィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。このガラスモールドを25℃から120℃まで、16時間かけて昇温した。
 その後、室温まで冷却させて、プラノーレンズをガラスモールドから離型した。得られたプラノーレンズに対し、さらに120℃で2時間アニールを行った。これにより、厚さ2mmのレンズを得た。
(Example 5)
Organic dye A (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, organic dye B (porphyrin dye) listed in Table 1 was used in the amount listed in Table 1, and dibutyltin dichloride was used as a polymerization catalyst in an amount of 0. m - 50.6 parts by mass of a composition containing xylylene diisocyanate was stirred at 25°C to completely dissolve each component.
Thereafter, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, and 49.4 parts by mass of a composition containing 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and stirred at 25°C for 30 minutes to form a homogeneous solution. Created.
This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE (polytetrafluoroethylene) filter, and then poured into a 4C plano glass mold with a center thickness of 2 mm and a diameter of 77 mm. This glass mold was heated from 25°C to 120°C over 16 hours.
Thereafter, the plano lens was cooled to room temperature and released from the glass mold. The obtained plano lens was further annealed at 120° C. for 2 hours. Thereby, a lens with a thickness of 2 mm was obtained.
(比較例5)
 有機色素Bである(2-B2)を添加せず、ブルーイング剤であるPlast Blue8514(有本化学工業株式会社製)を0.00084質量部、Plast Red8320(有本化学工業株式会社製)を0.00034質量部添加し、紫外線吸収剤としてTinuvin326(BASFジャパン株式会社製)を0.95質量部添加した。
 上記変更以外は実施例1と同様にして、厚さ2mmのレンズを得た。
(Comparative example 5)
Without adding organic dye B (2-B2), 0.00084 parts by mass of blueing agent Plast Blue 8514 (manufactured by Arimoto Chemical Industry Co., Ltd.) and Plast Red 8320 (manufactured by Arimoto Chemical Industry Co., Ltd.) were added. 0.00034 parts by mass was added, and 0.95 parts by mass of Tinuvin 326 (manufactured by BASF Japan Co., Ltd.) was added as an ultraviolet absorber.
A lens with a thickness of 2 mm was obtained in the same manner as in Example 1 except for the above changes.
<評価>
 各実施例及び各比較例で作製した厚さ2mmのレンズについて、以下の評価を実施した。
 結果を表1~表3に示す。
<Evaluation>
The following evaluations were performed on lenses with a thickness of 2 mm produced in each Example and each Comparative Example.
The results are shown in Tables 1 to 3.
(最大吸収波長a、透過率T1、最大吸収波長b、及び透過率T2の測定)
 各実施例及び各比較例で作製した厚さ2mmのレンズについて、それぞれ、分光光度計(紫外可視分光光度計UV-1800、株式会社島津製作所製)を用いて分光スペクトルを測定した。
 得られた分光スペクトルに基づき、
440nm~500nmの波長範囲内における最大吸収波長である最大吸収波長a、
550nm~600nmの波長範囲内における最大吸収波長である最大吸収波長b、
最大吸収波長aにおける厚さ2mmでの透過率である透過率T1、及び、
最大吸収波長bにおける厚さ2mmでの透過率である透過率T2
をそれぞれ測定した。
(Measurement of maximum absorption wavelength a, transmittance T1, maximum absorption wavelength b, and transmittance T2)
Spectral spectra were measured for each lens with a thickness of 2 mm produced in each Example and each Comparative Example using a spectrophotometer (UV-Visible Spectrophotometer UV-1800, manufactured by Shimadzu Corporation).
Based on the obtained spectroscopic spectrum,
maximum absorption wavelength a, which is the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm;
maximum absorption wavelength b, which is the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm;
Transmittance T1, which is the transmittance at a thickness of 2 mm at the maximum absorption wavelength a, and
Transmittance T2, which is the transmittance at a thickness of 2 mm at the maximum absorption wavelength b
were measured respectively.
(視感透過率)
 上記分光スペクトルの測定データから、ISO 8980-3に準拠して視感透過率を算出した。
(Luminous transmittance)
Luminous transmittance was calculated from the measurement data of the above spectroscopic spectrum in accordance with ISO 8980-3.
(初期ブルーライトカット率)
 上記分光スペクトルの測定データから、EN ISO12312-1:2013に準拠して380nm~500nmの青色光吸収率を求めた。
(Initial blue light cut rate)
From the measurement data of the above spectroscopic spectrum, the blue light absorption rate of 380 nm to 500 nm was determined in accordance with EN ISO12312-1:2013.
(彩度C
 各実施例及び各比較例で作製した厚さ2mmのレンズについて、上述した方法により、彩度Cを測定した。
(Saturation C * )
The chroma C * of the 2 mm thick lenses produced in each Example and each Comparative Example was measured by the method described above.
(レンズの色相)
 各実施例及び各比較例で作製した厚さ2mmのレンズの色相に関して、以下の評価基準に基づいて、5人のパネラーにより色相の評価を行った。
〔基準〕
A:レンズの色は、グレー調であり自然な色相であった。
B:黄み又は青みの若干の色味を感じた。
C:明確に黄色又は青色を呈しており、強い色味を感じ、不自然な色相であった。
(Lens hue)
The hue of the 2 mm thick lenses produced in each Example and each Comparative Example was evaluated by five panelists based on the following evaluation criteria.
〔standard〕
A: The color of the lens was gray and had a natural hue.
B: A slight yellowish or bluish tint was felt.
C: It had a clear yellow or blue color, had a strong color tinge, and had an unnatural hue.
(耐候性試験)
 各実施例及び各比較例で作製した厚さ2mmのレンズについて、上述した方法により、耐候性試験(即ち、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する試験)を実施した。
 耐候性試験は、耐候性促進試験機キセノンウェザーメーターNX75(スガ試験機株式会社製)を用いて行った。
 上記耐候性試験の前後において、上述した分光スペクトルを測定した。
 得られた分光スペクトルに基づき、
 透過率T1の上記耐候性試験の前後での差の絶対値であるΔT1、
 透過率T2の上記耐候性試験の前後での差の絶対値であるΔT2、及び、
 ΔT1とΔT2との合計(即ち、ΔT1+ΔT2)
をそれぞれ求めた。
 ΔT1、及び、ΔT1+ΔT2について、下記評価基準により、評価を行った。
 ΔT1について、長時間にわたるブルーライトカット能の低下を抑制する効果に最も優れるランクはAである。
 ΔT1+ΔT2について、長時間にわたる耐候性に最も優れるランクはAである。
(Weather resistance test)
The lenses with a thickness of 2 mm produced in each example and each comparative example were subjected to a weather resistance test (i.e., under the conditions of temperature 50°C, humidity 40% RH, illumination intensity 60 W/m 2 , and irradiation time 150 hours) by the method described above. A test using xenon lamp irradiation was conducted.
The weather resistance test was conducted using an accelerated weather resistance tester, Xenon Weather Meter NX75 (manufactured by Suga Test Instruments Co., Ltd.).
The above-mentioned spectra were measured before and after the weather resistance test.
Based on the obtained spectroscopic spectrum,
ΔT1, which is the absolute value of the difference in transmittance T1 before and after the above weather resistance test;
ΔT2, which is the absolute value of the difference in transmittance T2 before and after the weather resistance test, and
The sum of ΔT1 and ΔT2 (i.e. ΔT1+ΔT2)
were calculated respectively.
ΔT1 and ΔT1+ΔT2 were evaluated according to the following evaluation criteria.
Regarding ΔT1, the rank A is the most effective in suppressing the decline in blue light cutting ability over a long period of time.
Regarding ΔT1+ΔT2, the rank A is the best in long-term weather resistance.
-ΔT1の基準-
A:ΔT1が1.0%T以下
B:ΔT1が1.0%T超2.5%T以下
C:ΔT1が2.5%T超
- ΔT1 standard -
A: ΔT1 is 1.0%T or less B: ΔT1 is more than 1.0%T and less than 2.5%T C: ΔT1 is more than 2.5%T
-ΔT1+ΔT2の基準-
A:ΔT1+ΔT2が3.0%T以下
B:ΔT1+ΔT2が3.0%T超6.0%T以下
C:ΔT1+ΔT2が6.0%T超
- Criteria for ΔT1 + ΔT2 -
A: ΔT1 + ΔT2 is 3.0%T or less B: ΔT1 + ΔT2 is over 3.0%T and 6.0%T or less C: ΔT1 + ΔT2 is over 6.0%T
 各実施例及び各比較例のレンズについて、評価結果を以下の表1~表3に示す。
 なお、表1~表3中において、「-」は該当成分が含まれていないこと、又は評価対象が存在しないことを意味する。表1~表3中、各成分の説明は以下の通りである。
C1:2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン及び2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン
C2:m-キシリレンジイソシアネート
D1:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
D2:4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
D3:5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、及び4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン
 
The evaluation results for the lenses of each Example and each Comparative Example are shown in Tables 1 to 3 below.
In Tables 1 to 3, "-" means that the corresponding component is not included or that there is no evaluation target. In Tables 1 to 3, explanations of each component are as follows.
C1: 2,5-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane and 2,6-bis(isocyanatomethyl)bicyclo-[2.2.1]-heptane C2: m-xyly Diisocyanate D1: Pentaerythritol tetrakis (3-mercaptopropionate)
D2: 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane D3: 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercapto Methyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane

 

 

 

 

 

 
 表1~表3に示すように、式(A1)で表されるポルフィリン系化合物aを含む有機色素Aと、式(B1)で表されるポルフィリン系化合物bを含む有機色素Bと、樹脂と、を含む光学材料を用いた実施例は、耐候性試験の結果に優れていた。そのため、長時間(少なくともキセノン50℃, 40%RH, 60W/mの条件下で150時間)にわたってブルーライトカット能の低下を抑制できていた。また、ポルフィリン系化合物bの中心金属をコバルト又は酸化バナジウムに限定することにより、レンズの耐候性が高まった。
 また、彩度Cの値が小さく、レンズの色相評価にも優れていた。そのため、レンズの外観がグレー調であり、自然な色味を有していた。
 一方、有機色素Aの中心金属がコバルト又は酸化バナジウムではない比較例1、比較例2及び比較例4は、耐候性試験の結果に劣っていた。そのため、長時間(少なくとも150時間)にわたってブルーライトカット能の低下を抑制する、という効果に劣っていた。
 また、有機色素Bを含まない比較例3~比較例5は、レンズの色相に劣っていた。そのため、レンズの外観が黄みまたは青みの色味を感じ、自然な色味を有していなかった。
 また、有機色素Aを含まない比較例6は、レンズの色相に劣っていた。そのため、レンズの外観が黄みまたは青みの色味を感じ、自然な色味を有していなかった。
As shown in Tables 1 to 3, organic dye A containing porphyrin compound a represented by formula (A1), organic dye B containing porphyrin compound b represented by formula (B1), and resin. Examples using optical materials containing , had excellent weather resistance test results. Therefore, the reduction in blue light cutting ability could be suppressed over a long period of time (at least 150 hours under xenon conditions of 50° C., 40% RH, and 60 W/m 2 ). Furthermore, by limiting the central metal of the porphyrin compound b to cobalt or vanadium oxide, the weather resistance of the lens was improved.
Further, the value of chroma C * was small, and the hue evaluation of the lens was also excellent. Therefore, the lens had a gray appearance and a natural color.
On the other hand, Comparative Examples 1, 2, and 4 in which the central metal of organic dye A was not cobalt or vanadium oxide had poor weather resistance test results. Therefore, the effect of suppressing the decline in blue light cutting ability over a long period of time (at least 150 hours) was inferior.
Furthermore, Comparative Examples 3 to 5, which did not contain organic dye B, had inferior lens hues. Therefore, the lens had a yellowish or bluish appearance and did not have a natural color.
Furthermore, Comparative Example 6, which did not contain organic dye A, had poor lens hue. Therefore, the lens had a yellowish or bluish appearance and did not have a natural color.
 また、比較例3で色素(1-A)含有量を10ppmに変更したレンズ及び比較例4で色素(3-A)の含有量を10ppmに変更したレンズの分光スペクトルをそれぞれ図1及び図2に示す。本開示において、ppmは質量基準である。
 図1は、耐候性試験における試験前及び300時間経過後の、比較例3で色素(1-A)含有量を10ppmに変更したレンズの分光スペクトルである。
 図2は、耐候性試験における試験前、150時間経過後及び300時間経過後の、比較例4で色素(3-A)の含有量を10ppmに変更したレンズの分光スペクトルである。
 比較例3で用いた有機色素Aは、本願における式(A1)で表されるポルフィリン系化合物aに該当する。図1に示す通り、比較例3のレンズは、上述の耐候性試験において300時間経過した後であっても、460nm付近の透過率にほとんど変化がない。
 一方、比較例4で用いた有機色素Aは、中心金属がパラジウムであり、本願における式(A1)で表されるポルフィリン系化合物aに該当しない。
 図2に示す通り、比較例4のレンズは、上述の耐候性試験において150時間及び300時間経過した後、460nm付近の透過率が大きく上昇している。つまり、ブルーライトカット能が大きく低下している。
 本願における式(A1)で表されるポルフィリン系化合物aを用いることは、ブルーライトカット能の低下抑制に寄与することが理解できる。
In addition, the spectra of the lens in which the dye (1-A) content was changed to 10 ppm in Comparative Example 3 and the lens in which the dye (3-A) content was changed to 10 ppm in Comparative Example 4 are shown in Figures 1 and 2, respectively. Shown below. In this disclosure, ppm is on a mass basis.
FIG. 1 shows the spectra of the lens of Comparative Example 3 in which the pigment (1-A) content was changed to 10 ppm before and after 300 hours in the weather resistance test.
FIG. 2 shows the spectra of the lens of Comparative Example 4 in which the content of the dye (3-A) was changed to 10 ppm before the test, after 150 hours, and after 300 hours in the weather resistance test.
Organic dye A used in Comparative Example 3 corresponds to porphyrin compound a represented by formula (A1) in the present application. As shown in FIG. 1, the lens of Comparative Example 3 shows almost no change in transmittance around 460 nm even after 300 hours in the weather resistance test described above.
On the other hand, organic dye A used in Comparative Example 4 has a central metal of palladium, and does not correspond to the porphyrin compound a represented by formula (A1) in the present application.
As shown in FIG. 2, the lens of Comparative Example 4 showed a large increase in transmittance around 460 nm after 150 hours and 300 hours in the above-mentioned weather resistance test. In other words, the blue light cutting ability is significantly reduced.
It can be understood that the use of the porphyrin compound a represented by formula (A1) in the present application contributes to suppressing the decline in blue light cutting ability.
 2022年5月27日に出願された日本国特許出願2022-086829の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-086829 filed on May 27, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (13)

  1.  下記式(A1)で表されるポルフィリン系化合物aを含む有機色素Aと、
     下記式(B1)で表されるポルフィリン系化合物bを含む有機色素Bと、
     樹脂と、
    を含む光学材料。

     式(A1)中、Mは、コバルト又は酸化バナジウムを表し、Rは、塩素原子又は臭素原子を表し、nは1又は2を表し、Rは、フェニル基、又は、芳香族基もしくは炭素数1~7の脂肪族基で置換されたフェニル基を表す。

     式(B1)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表し、R及びRの各々は、水素原子、ハロゲン原子、炭素数3~10の脂肪族基、又はハロゲン原子を含んでいてもよい芳香族基を表す。
    An organic dye A containing a porphyrin compound a represented by the following formula (A1),
    An organic dye B containing a porphyrin compound b represented by the following formula (B1),
    resin and
    Optical materials including.

    In formula (A1), M represents cobalt or vanadium oxide, R 1 represents a chlorine atom or a bromine atom, n represents 1 or 2, and R 2 represents a phenyl group, an aromatic group, or a carbon group. Represents a phenyl group substituted with an aliphatic group of numbers 1 to 7.

    In formula (B1), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom, and each of R 3 and R 4 is hydrogen represents an atom, a halogen atom, an aliphatic group having 3 to 10 carbon atoms, or an aromatic group that may contain a halogen atom.
  2.  前記式(B1)において、Mがコバルト又は酸化バナジウムである請求項1に記載の光学材料。 The optical material according to claim 1, wherein in the formula (B1), M is cobalt or vanadium oxide.
  3.  前記ポルフィリン系化合物aが下記式(A2)で表される化合物である請求項1に記載の光学材料。

     式(A2)中、Mは、コバルト又は酸化バナジウムを表す。
    The optical material according to claim 1, wherein the porphyrin compound a is a compound represented by the following formula (A2).

    In formula (A2), M represents cobalt or vanadium oxide.
  4.  前記ポルフィリン系化合物bが、下記式(B2)、下記式(B3)又は下記式(B4)で表される化合物である請求項1に記載の光学材料。

     式(B2)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。

     式(B3)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子又は酸化金属原子を表す。

     式(B4)中、Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子、又は酸化金属原子を表す。
    The optical material according to claim 1, wherein the porphyrin compound b is a compound represented by the following formula (B2), the following formula (B3), or the following formula (B4).

    In formula (B2), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.

    In formula (B3), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.

    In formula (B4), M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a hydroxide metal atom, or an oxidized metal atom.
  5.  前記有機色素Aの含有量に対する前記有機色素Bの含有量の比が、0.5~5.0である請求項1に記載の光学材料。 The optical material according to claim 1, wherein the ratio of the content of the organic dye B to the content of the organic dye A is 0.5 to 5.0.
  6.  分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとした場合に、
     最大吸収波長bから最大吸収波長aを差し引いた値が、100nm~160nmである、請求項1に記載の光学材料。
    In the spectroscopic spectrum, when the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, and the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b,
    The optical material according to claim 1, wherein the value obtained by subtracting the maximum absorption wavelength a from the maximum absorption wavelength b is 100 nm to 160 nm.
  7.  分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とし、最大吸収波長bにおける厚さ2mmでの透過率を透過率T2とした場合に、
     透過率T1が65%T~85%Tの範囲内であり、透過率T2が65%T~85%Tの範囲内である、請求項1に記載の光学材料。
    In the spectroscopic spectrum, the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b, and the maximum absorption wavelength at the maximum absorption wavelength a of 2 mm. When the transmittance is T1, and the transmittance at a thickness of 2 mm at the maximum absorption wavelength b is T2,
    The optical material according to claim 1, wherein the transmittance T1 is within the range of 65%T to 85%T, and the transmittance T2 is within the range of 65%T to 85%T.
  8.  分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とした場合に、
     透過率T1の下記耐候性試験の前後での差の絶対値であるΔT1が、1.0%T以下である、請求項1に記載の光学材料。
    <耐候性試験>
     前記光学材料からなる厚さ2mmの試験サンプルに対し、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する。
    In the spectroscopic spectrum, if the maximum absorption wavelength in the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, and the transmittance at a thickness of 2 mm at the maximum absorption wavelength a is the transmittance T1,
    The optical material according to claim 1, wherein ΔT1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, is 1.0%T or less.
    <Weather resistance test>
    A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
  9.  分光スペクトルにおいて、440nm~500nmの波長範囲内における最大吸収波長を最大吸収波長aとし、550nm~600nmの波長範囲内における最大吸収波長を最大吸収波長bとし、最大吸収波長aにおける厚さ2mmでの透過率を透過率T1とし、最大吸収波長bにおける厚さ2mmでの透過率を透過率T2とした場合に、
     透過率T1の下記耐候性試験の前後での差の絶対値であるΔT1と、透過率T2の下記耐候性試験の前後での差の絶対値であるΔT2と、の合計が、3.0%T以下である、請求項1に記載の光学材料。
    <耐候性試験>
     前記光学材料からなる厚さ2mmの試験サンプルに対し、温度50℃、湿度40%RH、照度60W/m、及び照射時間150時間の条件で、キセノンランプを照射する。
    In the spectroscopic spectrum, the maximum absorption wavelength within the wavelength range of 440 nm to 500 nm is the maximum absorption wavelength a, the maximum absorption wavelength within the wavelength range of 550 nm to 600 nm is the maximum absorption wavelength b, and the maximum absorption wavelength at the maximum absorption wavelength a of 2 mm. When the transmittance is T1, and the transmittance at a thickness of 2 mm at the maximum absorption wavelength b is T2,
    The sum of ΔT1, which is the absolute value of the difference in transmittance T1 before and after the following weather resistance test, and ΔT2, which is the absolute value of the difference in transmittance T2 before and after the following weather resistance test, is 3.0%. The optical material according to claim 1, which is T or less.
    <Weather resistance test>
    A test sample having a thickness of 2 mm made of the above optical material is irradiated with a xenon lamp under the conditions of a temperature of 50° C., a humidity of 40% RH, an illuminance of 60 W/m 2 and an irradiation time of 150 hours.
  10.  視感透過率が80%T以上である請求項1に記載の光学材料。 The optical material according to claim 1, which has a luminous transmittance of 80%T or more.
  11.  彩度Cが、0.01~4.0である請求項1に記載の光学材料。 The optical material according to claim 1, having a chroma C * of 0.01 to 4.0.
  12.  前記樹脂が、ポリチオウレタン又はポリスルフィドを含む請求項1に記載の光学材料。 The optical material according to claim 1, wherein the resin contains polythiourethane or polysulfide.
  13.  請求項1~請求項12のいずれか1項に記載の光学材料を含むメガネレンズ。 A spectacle lens comprising the optical material according to any one of claims 1 to 12.
PCT/JP2023/019821 2022-05-27 2023-05-26 Optical material and eyeglass lens WO2023229048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086829 2022-05-27
JP2022086829 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023229048A1 true WO2023229048A1 (en) 2023-11-30

Family

ID=88919355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019821 WO2023229048A1 (en) 2022-05-27 2023-05-26 Optical material and eyeglass lens

Country Status (1)

Country Link
WO (1) WO2023229048A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321925A (en) * 2005-05-19 2006-11-30 Mitsui Chemicals Inc Method for producing tetraazaporphyrin compound
JP2008239592A (en) * 2007-03-29 2008-10-09 Mitsui Chemicals Inc Porphyrin compound and filter for display
JP2011237730A (en) * 2010-05-13 2011-11-24 Yamamoto Chem Inc Spectacle lens
JP2019056865A (en) * 2017-09-22 2019-04-11 株式会社巴川製紙所 Display optical filter and display having the same
CN109912607A (en) * 2018-12-11 2019-06-21 南华大学 Porphyrin-Chrysin compound and its anti-tumor activity
WO2021024962A1 (en) * 2019-08-06 2021-02-11 三井化学株式会社 Optical material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321925A (en) * 2005-05-19 2006-11-30 Mitsui Chemicals Inc Method for producing tetraazaporphyrin compound
JP2008239592A (en) * 2007-03-29 2008-10-09 Mitsui Chemicals Inc Porphyrin compound and filter for display
JP2011237730A (en) * 2010-05-13 2011-11-24 Yamamoto Chem Inc Spectacle lens
JP2019056865A (en) * 2017-09-22 2019-04-11 株式会社巴川製紙所 Display optical filter and display having the same
CN109912607A (en) * 2018-12-11 2019-06-21 南华大学 Porphyrin-Chrysin compound and its anti-tumor activity
WO2021024962A1 (en) * 2019-08-06 2021-02-11 三井化学株式会社 Optical material

Similar Documents

Publication Publication Date Title
EP3260891B1 (en) Polymerizable composition for optical material, optical material, and application for same
EP2963457B1 (en) Optical material, composition for use therein, and use thereof
EP3045941B1 (en) Optical material and use therefor
EP2921511B1 (en) Polymerizable composition, optical material and manufacturing method for same
US10752726B2 (en) Resin composition
KR101849862B1 (en) Optical material and use therefor
JP5961262B2 (en) Polymerizable composition, optical member obtained using the same, and method for producing the optical member
EP3178859B1 (en) Polymerizable composition, molded object, and use thereof
JP6475848B2 (en) Method for producing polymerizable composition for optical material and method for producing optical material
KR20180041180A (en) Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
EP3533817A1 (en) Polymerizable composition for optical material, optical material obtained from said composition, and method for producing said composition
WO2021024962A1 (en) Optical material
EP3650480A1 (en) Polymerizable composition for optical materials and molded body
EP3922656A1 (en) Polymerizable composition for optical materials, optical material and use of same
WO2015088011A1 (en) Polymerizable composition for optical materials, optical material and use of same
EP3951443A1 (en) Method for producing optical material, and polymerizable composition for optical material
WO2023229048A1 (en) Optical material and eyeglass lens
WO2022114064A1 (en) Optical material, lens, and eyewear
WO2022209915A1 (en) Optical element, glasses lens, autonomic nerve regulation method, and evaluation method for optical element
WO2022138962A1 (en) Iso(thio)cyanate compound, optical material polymerizable composition, molded article, optical material, plastic lens, plastic polarizing lens, method for manufacturing iso(thio)cyanate compound, method for manufacturing optical material polymerizable composition, method for manufacturing optical material, and method for manufacturing plastic polarizing lens
WO2024058014A1 (en) Polythiol composition, polymerizable composition, resin, molded body, optical material, and lens
WO2020189570A1 (en) Molded article and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811920

Country of ref document: EP

Kind code of ref document: A1