WO2022114064A1 - Optical material, lens, and eyewear - Google Patents

Optical material, lens, and eyewear Download PDF

Info

Publication number
WO2022114064A1
WO2022114064A1 PCT/JP2021/043217 JP2021043217W WO2022114064A1 WO 2022114064 A1 WO2022114064 A1 WO 2022114064A1 JP 2021043217 W JP2021043217 W JP 2021043217W WO 2022114064 A1 WO2022114064 A1 WO 2022114064A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum absorption
absorption wavelength
optical material
composition
group
Prior art date
Application number
PCT/JP2021/043217
Other languages
French (fr)
Japanese (ja)
Inventor
愛美 竹中
伸雄 河戸
泰三 西本
大貴 伊藤
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2022565409A priority Critical patent/JPWO2022114064A1/ja
Publication of WO2022114064A1 publication Critical patent/WO2022114064A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • This disclosure relates to optical materials, lenses and eyewear.
  • optical material for example, an optical material containing a polymer and an organic dye is widely known.
  • Patent Document 1 discloses an organic glass material containing a specific wavelength absorbing dye such as a tetraazaporphyrin-based metal complex compound having an absorption peak wavelength of 595 nm or 760 nm, and an ultraviolet absorber.
  • a specific wavelength absorbing dye such as a tetraazaporphyrin-based metal complex compound having an absorption peak wavelength of 595 nm or 760 nm, and an ultraviolet absorber.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-238634
  • Patent Document 1 does not specify the color difference between red and green of the optical material, and it may be difficult to clearly recognize the red and green of the object when visually recognizing the object through the optical material.
  • One embodiment of the present disclosure has been made in view of the above, and provides an optical material capable of clearly recognizing the red color and green color of an object, and a lens and eyewear containing the optical material. The purpose.
  • ⁇ E * RG represents the color difference between red and green of the optical material obtained by using the formula (2)
  • ⁇ E * RG (w0) is 2- (2).
  • thiol composition 1 containing mercaptopropionate
  • thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, wherein the 2- (2'-hydroxy-5'- The content of t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition.
  • the above formula (2) can be obtained by using a D65 light source. Represents the color difference between red and green obtained by using.
  • ⁇ 2> The optical material according to ⁇ 1>, wherein in the spectrum measured according to CIE1976, (B) the maximum absorption wavelength b exists in the range of 400 nm to 520 nm.
  • ⁇ 3> The optical material according to ⁇ 2>, wherein the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • ⁇ 4> The optical material according to ⁇ 2> or ⁇ 3>, wherein the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is 130 nm to 200 nm.
  • ⁇ 5> The optical material according to any one of ⁇ 1> to ⁇ 4>, wherein the half width of the absorption peak of the maximum absorption wavelength a is 10 nm to 70 nm.
  • ⁇ 6> Contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm.
  • the blue light absorption rate of 380 nm to 500 nm in the spectrum measured according to EN ISO12312-1: 2013 is 15% to 50% ⁇ 1> to ⁇ 6>.
  • the optical material according to any one of. ⁇ 8> Described in any one of ⁇ 1> to ⁇ 7> in which (a * 2 + b * 2 ) 1/2 is 10 or less in the CIE1976 (L *, a *, b *) color system.
  • Optical material Optical material.
  • ⁇ C * RB The color difference parameter ⁇ C * RB of the CIE1976 (L *, a *, b *) color system obtained from the above equation (2) and the following equation (3) by using the D65 light source is 0 or more and 7
  • ⁇ C * RB ⁇ E * RB - ⁇ E * RB (w0) ⁇ ⁇ ⁇ (3)
  • ⁇ E * RB represents the color difference between red and blue of the optical material obtained by using the formula (2)
  • ⁇ E * RB (w0) is 2- (2 (w0).
  • the content of -t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition.
  • a comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in the product 1 and the thiol composition 2 of 0.86 is described in the above formula (2) by using a D65 light source.
  • the optics according to any one of ⁇ 1> to ⁇ 9> which comprises at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate. material.
  • the lens according to ⁇ 11> for use in a spectacle lens.
  • An eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
  • an optical material capable of clearly recognizing red and green of an object, and a lens and eyewear containing the optical material.
  • the amount of each component of the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the layer, unless otherwise specified.
  • the combination of preferred embodiments is a more preferred embodiment.
  • ppm parts per million means ppm on a mass basis.
  • the present disclosure includes a first embodiment and a second embodiment.
  • first embodiment and the second embodiment will be described in detail.
  • the optical material of the first embodiment contains one or more dyes, has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and uses a D65 light source. Therefore, the color difference parameter ⁇ C * RG of the CIE1976 (L *, a *, b *) color system obtained from the following equations (1) and (2) is 0 or more and 10 or less.
  • ⁇ C * RG ⁇ E * RG ⁇ E * RG (w0) ⁇ ⁇ ⁇ (1)
  • ⁇ E * ( ⁇ L * 2 + ⁇ a * 2 + ⁇ b * 2 ) 1/2 ...
  • ⁇ E * RG represents the color difference between red and green of the optical material obtained by using the formula (2)
  • ⁇ E * RG (w0) is 2- (2).
  • thiol composition 1 containing mercaptopropionate
  • thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, wherein the 2- (2'-hydroxy-5'- The content of t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition.
  • the above formula (2) can be obtained by using a D65 light source. Represents the color difference between red and green obtained by using.
  • the red color and the green color of the object can be clearly recognized.
  • the reason for this is presumed as follows.
  • the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, the light whose wavelength range is located between the red light and the green light is easily absorbed by the optical material.
  • the transmittance of light whose wavelength range is located between the red light and the green light in the optical material is lowered, and it becomes easy to clearly recognize the red and green of the object.
  • ⁇ C * RG when ⁇ C * RG is 0 or more, the color difference between red and green is larger than a certain level with respect to the comparative optical material. Since it can be clearly recognized and ⁇ C * RG is 10 or less, the color difference between red and green does not become too large, and as a result, the brightness is impaired when the object is visually recognized through the optical material. Red and green can be clearly recognized without any problem.
  • the color difference parameter ⁇ C * RG of the CIE1976 (L *, a *, b *) color system is preferably 2 or more and 10 or less from the viewpoint of making it easier to recognize the red color and green color of the object more clearly. It is more preferably 3 or more and 9 or less, further preferably 3.5 or more and 9 or less, particularly preferably 3.7 or more and 8.5 or less, and further preferably 4 or more and 8 or less. preferable.
  • the optical material of the first embodiment is a CIE1976 (L *, a *, b *) color difference parameter ⁇ C * R obtained from the above formula (2) and the following formula (3) by using a D65 light source.
  • -B is preferably 0 or more and 7 or less.
  • ⁇ C * RB ⁇ E * RB - ⁇ E * RB (w0) ⁇ ⁇ ⁇ (3)
  • ⁇ E * RB represents the color difference between red and blue of the optical material obtained by using the formula (2)
  • ⁇ E * RB (w0) is 2- (2 (w0).
  • the content of -t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition.
  • a comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in the product 1 and the thiol composition 2 of 0.86 is described in the above formula (2) by using a D65 light source. Represents the color difference between red and blue obtained using.
  • the color difference parameter ⁇ C * RB of the CIE1976 (L *, a *, b *) color system is 0 or more and 7 or less, the object is subjected to the optical material.
  • the red and blue colors of the object can be clearly recognized when visually recognized.
  • the color difference parameter ⁇ C * RB of the CIE1976 (L *, a *, b *) color system shall be 0.5 or more and 7 or less from the viewpoint of making it easier to recognize the red and blue of the object more clearly. It is preferable, and it is more preferable that it is 1 or more and 6 or less.
  • ⁇ C * RG and ⁇ C * RB can be measured by the methods described in Examples described later.
  • the optical material of the first embodiment for example, the type, amount, combination, etc. of the dye contained in the optical material, the type, amount, combination, etc. of the additive such as the ultraviolet absorber contained in the optical material as needed, the optical
  • the above -mentioned ⁇ C * RG and ⁇ C * RB can be adjusted by appropriately adjusting the type, amount, combination, etc. of the polymer contained in the material as needed.
  • the thickness of the optical material of the first embodiment is not particularly limited, and may be, for example, 0.5 mm to 10 mm, 1 mm to 5 mm, or 1.5 mm to 3 mm. As an example, the thickness of the optical material of the first embodiment may be 2 mm. In the first embodiment, the thickness of the optical material means the maximum thickness.
  • the maximum absorption wavelength a is present in the range of 560 nm to 610 nm, preferably the maximum absorption wavelength a is present in the range of 570 nm to 600 nm, and more preferably within the range of 570 nm to 590 nm.
  • the maximum absorption wavelength a is present in the range of 570 nm to 600 nm, absorption of light between red light or green light necessary for visually recognizing an object tends to be suppressed.
  • only one maximum absorption wavelength a may be present in the range of 560 nm to 610 nm, or two or more of them may be present.
  • the half width of the absorption peak of the maximum absorption wavelength a is preferably 10 nm to 70 nm, more preferably 15 nm to 50 nm, and further preferably 20 nm to 40 nm.
  • the above-mentioned half-price width is 10 nm or more, light located between red light and green light tends to be absorbed in a wide wavelength range, and when the above-mentioned half-price width is 100 nm or less, it is a target. There is a tendency to suppress the absorption of light between the red light and the green light necessary for visually recognizing an object.
  • the full width at half maximum is the full width at half maximum, and is formed by a straight line parallel to the horizontal axis and an absorption peak drawn by 1/2 of the absorption coefficient value ( ⁇ g) at the maximum absorption wavelength in the absorption spectrum. It is expressed as the distance (nm) between two intersections.
  • the optical material of the first embodiment preferably has a maximum absorption wavelength b in the range of (B) 400 nm to 520 nm in the spectrum measured according to CIE1976.
  • the optical material of the first embodiment has a natural color tone in which blue color is suppressed.
  • only one maximum absorption wavelength b may be present in the range of 400 nm to 520 nm, or two or more maximum absorption wavelengths b may be present.
  • the maximum absorption wavelength b is preferably in the range of 430 nm to 490 nm, and more preferably in the range of 440 nm to 480 nm.
  • the transmittance at the maximum absorption wavelength b is preferably 3% to 60%, more preferably 10% to 55%, and even more preferably 15% to 50%.
  • the half width of the peak of the maximum absorption wavelength b is preferably 20 nm to 100 nm, more preferably 30 nm to 90 nm, and even more preferably 40 nm to 80 nm.
  • the half width of the peak of the maximum absorption wavelength b is 20 nm or more, light in the complementary color region of 560 nm to 610 nm can be effectively absorbed.
  • the half width of the peak of the maximum absorption wavelength b is 100 nm or less, it is possible to suppress the absorption of light other than the light in the complementary color region and the deterioration of the visibility of the object.
  • the transmittance at the maximum absorption wavelength b is 3% to 60%, and the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm.
  • the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 100 nm or more from the viewpoint that the maximum absorption wavelength b is the wavelength of the complementary color region of the maximum absorption wavelength a. It is more preferably 130 nm or more.
  • the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 200 nm or less from the viewpoint that the maximum absorption wavelength b is the wavelength in the complementary color region of the maximum absorption wavelength a. It is more preferably 180 nm or less, and further preferably 160 nm or less.
  • the difference between the maximum absorption wavelength a and the maximum absorption wavelength b may be 130 nm to 200 nm.
  • the optical material of the first embodiment preferably has (a * 2 + b * 2 ) 1/2 of 10 or less, and preferably 9 or less. Is more preferable, and 8 or less is further preferable.
  • the optical material of the first embodiment preferably has b * of -10 to +10, more preferably -9 to +9, and-. It is more preferably 8 to +8.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is preferably 1.00 to 2.50.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is more preferably 1.10 to 2.20, and 1.20 to 2.00. It is more preferably 1.30 to 1.80, and particularly preferably 1.30 to 1.80.
  • the integrated value of the absorptivity at 560 nm to 610 nm may be 1800% to 2800%, preferably 2000% to 2500%.
  • the integrated value of the absorptivity at 400 nm to 520 nm may be 2800% to 4800%, preferably 3000% to 4500%.
  • the optical material of the first embodiment preferably contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm.
  • the first dye may be one kind alone or two or more kinds.
  • the first dye preferably contains a tetraazaporphyrin-based metal complex compound.
  • the tetraazaporphyrin-based metal complex compound is not particularly limited as long as it is a metal complex compound having a tetraazaporphyrin skeleton and a metal atom, and for example, a compound represented by the following general formula (1) is preferable.
  • a 1 to A 8 are independently hydrogen atom, halogen atom, nitro group, cyano group, hydroxy group, amino group, carboxyl group, sulfonic acid group, and linear chain having 1 to 20 carbon atoms.
  • Branched or cyclic alkyl group straight chain with 2 to 20 carbon atoms, branched or cyclic alkenyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkynyl group, alkoxy group with 1 to 20 carbon atoms, carbon Aryloxy group with 6 to 20 carbon atoms, monoalkylamino group with 1 to 20 carbon atoms, dialkylamino group with 2 to 20 carbon atoms, dialkylamino group with 7 to 20 carbon atoms, aralkyl group with 7 to 20 carbon atoms, carbon It represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 6 to 20 carbon atoms, or an arylthio group having 6 to 20 carbon atoms.
  • a 1 and A 2 , A 3 and A 4 , A 5 and A 6 , and A 7 and A 8 may independently form a ring excluding an aromatic ring.
  • M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a metal hydroxide atom, or a metal oxide atom.
  • Examples of the halogen atom in A 1 to A 8 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom or a bromine atom.
  • Examples of the linear, branched or cyclic alkenyl group in A 1 to A 8 include a vinyl group, a 1-methylvinyl group, a propenyl group, a 2-butenyl group, a 2-pentenyl group and the like.
  • the linear, branched or cyclic alkynyl groups in A1 to A8 include ethynyl group, propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group and 2-hexynyl group. , 3,3-Dimethyl-1-butynyl group, 3-heptynyl group, 4-octynyl group and the like.
  • M is preferably a divalent metal atom, and more preferably divalent copper.
  • the tetraazaporphyrin-based metal complex compound include a tetra-t-butyl-tetraazaporphyrin-copper complex represented by the following formula (1a).
  • Examples of commercially available products of the tetra-t-butyl-tetraazaporphyrin-copper complex include PD-311S (manufactured by Yamamoto Chemicals, Inc.).
  • Cu represents divalent copper
  • t—C 4 H 9 represents a tertiary butyl group
  • one of A 1 and A 2 one of A 3 and A 4 , A 5 and A 6
  • one of A 7 and A 8 is t-C 4 H 9 .
  • the content of the first dye is preferably 5 ppm to 18 ppm, more preferably 8 ppm to 15 ppm.
  • the first dye may be read as a tetraazaporphyrin-based metal complex compound.
  • the optical material of the first embodiment preferably satisfies at least one of the following (a) and (b), and more preferably satisfies both of the following (a) and (b).
  • (A) It has one or more maximum absorption wavelengths in the range of 400 nm or more and less than 500 nm.
  • (B) When the thickness of the optical material is 2 mm, the light transmittance at a wavelength of 380 nm or less is 20% or less.
  • the optical material When the optical material satisfies the above (a), the amount of stimulation of photoreceptor cells having photoresponsiveness to green light can be reduced, and red can be recognized more clearly. Further, it has an excellent blue light absorption rate, and can suppress adverse effects such as eye strain even when the screen of a personal computer or the like is viewed for a long time through the optical material of the first embodiment.
  • the optical material When the optical material satisfies the above (b), the transmission of ultraviolet light can be suppressed.
  • the light transmittance at a wavelength of 380 nm or less is preferably 10% or less, and more preferably 5% or less. Further, the above-mentioned "380 nm or less” is preferably read as "400 nm or less", and more preferably read as "420 nm or less”.
  • the light transmittance may be measured using an optical material having a thickness other than 2 mm, and the measured value may be converted into the light transmittance of the optical material when the thickness is 2 mm.
  • the light transmittance at a wavelength of 280 nm or more may be 20% or less, 10% or less, or 5% or less. good.
  • the blue light absorption rate of 380 nm to 500 nm in the spectrum measured according to EN ISO12312-1: 2013 is 15% to 50%. It is more preferably 20% to 50%, and even more preferably 30% to 50%.
  • the blue light absorption rate is 15% or more, the blue light is suitably cut and there is a tendency that adverse effects such as eye strain can be suppressed.
  • the blue light absorption rate is 50% or less, the visibility of blue color can be maintained, the visual transmittance does not decrease too much, and the darkening of the visual field can be suppressed.
  • the optical material of the first embodiment preferably contains at least one of a porphyrin-based compound and a merocyanine-based compound, and more preferably contains a porphyrin-based compound.
  • a porphyrin-based compound, a merocyanine-based compound, or the like When the optical material contains a porphyrin-based compound, a merocyanine-based compound, or the like, light having a wavelength in the range of 400 nm or more and less than 500 nm is suitably absorbed.
  • the porphyrin-based compound, the merocyanine-based compound, and the like may be independently used alone or in combination of two or more.
  • the porphyrin-based compound can be a second dye contained in the optical material of the first embodiment.
  • the spectacle lens of the present disclosure preferably contains a second dye having a maximum absorption wavelength in the range of 400 nm to 520 nm.
  • the second dye may be one kind alone or two or more kinds.
  • the second dye preferably contains at least one of a porphyrin-based compound and a merocyanine-based compound, and more preferably contains a porphyrin-based compound. Since the second dye contains a porphyrin-based compound, a merocyanine-based compound, or the like, it preferably absorbs light having a wavelength in the range of 400 nm or more and less than 500 nm.
  • the porphyrin-based compound preferably contains a compound represented by the following general formula (2).
  • X 1 to X 8 are independently hydrogen atom, halogen atom, nitro group, cyano group, hydroxy group, amino group, carboxyl group, sulfonic acid group, and linear chain having 1 to 20 carbon atoms.
  • Branched or cyclic alkyl group straight chain with 2 to 20 carbon atoms, branched or cyclic alkenyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkynyl group, alkoxy group with 1 to 20 carbon atoms, carbon Aryloxy group with 6 to 20 carbon atoms, monoalkylamino group with 1 to 20 carbon atoms, dialkylamino group with 2 to 20 carbon atoms, dialkylamino group with 7 to 20 carbon atoms, aralkyl group with 7 to 20 carbon atoms, carbon It represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 6 to 20 carbon atoms, or an arylthio group having 6 to 20 carbon atoms.
  • R 1 to R 4 independently represent a hydrogen atom or a linear or branched alkyl group
  • M is a two hydrogen atom, a divalent metal atom, a trivalent substituted metal atom, or a tetravalent substitution.
  • At least one of X 1 to X 8 is preferably a halogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear chain having 2 to 20 carbon atoms, a branched or branched. It is preferably a cyclic alkenyl group or a linear, branched or cyclic alkynyl group having 2 to 20 carbon atoms.
  • halogen atom in X1 to X8 examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom or a bromine atom.
  • R 1 to R 4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 8 carbon atoms.
  • M is preferably Cu, Zn, Fe, Co, Ni, Pt, Pd, Mn, Mg, Mn (OH), Mn (OH) 2 , VO, or TiO, and more preferably Ni, Pd or VO.
  • the preferred configuration of the cyclic alkynyl group is the same as A 1 to A 8 in the above-mentioned general formula (1).
  • the linear or branched alkyl group having 1 to 8 carbon atoms in R 1 to R 4 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and n.
  • -Pentyl group isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-Methyl-2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4 -Includes dimethylpentyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, 2-propylpentyl group, 2,5-dimethylhexyl group and the like.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, 1,2-dimethylpropyl group, 1-Methylbutyl group, n-hexyl group, 1,2-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, n-octyl group or 2-ethylhexyl group are preferable, and methyl group, ethyl group and n-propyl group are preferable.
  • n-octyl group is more preferred.
  • the porphyrin-based compound that can be used as the optical material of the first embodiment can be produced with reference to a method known per se. For example, it can be produced by the method described in Inorganic Chem. 991, 30, 239-245 (Inorgan. Chem. 991, 30, 239-245). Further, as the compound represented by the general formula (2), for example, a pyrrole compound and an aldehyde compound were used to obtain a compound synthesized by a dehydration condensation reaction with an acid catalyst and a Rosemund reaction through an oxidation reaction with an oxidizing agent. Later, the compound can be produced by reacting the compound with a metal or a metal salt (for example, an acetylacetone complex or a metal acetate) in a solvent.
  • a metal or a metal salt for example, an acetylacetone complex or a metal acetate
  • Examples of the pyrrole compound include compounds represented by the general formulas (B-1) to (B-4), and examples of the aldehyde compound include general formulas (C-1) to (C-4). Examples include the represented compounds.
  • Examples of the acid catalyst include propionic acid, borontrifluoride-ethyl ether complex, trifluoroacetic acid and the like, and examples of the oxidizing agent include 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and the like. ..
  • X1 to X8 and R1 to R4 in the general formula (B- 1 ) to the general formula (B-4) and the general formula (C-1) to the general formula (C- 4 ) are the general formula (2). It is the same as X 1 to X 8 and R 1 to R 4 in.
  • the compound represented by the general formula (2) may be one kind or a mixture consisting of two or more kinds of isomers.
  • the content of the porphyrin-based compound is preferably 1.5 ppm to 16 ppm, more preferably 2 ppm to 12 ppm.
  • the content of the merocyanine-based compound is preferably 1.5 ppm to 14 ppm, more preferably 2 ppm to 12 ppm.
  • UVY-0026 manufactured by Yamamoto Kasei Co., Ltd.
  • UVY-1023 manufactured by Yamamoto Kasei Co., Ltd.
  • FDB-001 manufactured by Yamada Chemical Co., Ltd.
  • ABS 430 Longottica
  • the optical material of the first embodiment preferably contains a polymer.
  • a polymer such as a commercially available product may be used, or a monomer, a polymer obtained from the monomer or the like may be used.
  • the polymer can be used without particular limitation, and is preferably a transparent polymer.
  • the polymer and the monomer for obtaining the polymer will be described.
  • the polymer is not particularly limited, and for example, polyurethane, polythiourethane, polysulfide, polycarbonate, poly (meth) acrylate, polyolefin, cyclic polyolefin, polyallyl, polyurethane urea, polyene-polythiol polymer, ring-opened metasessis polymer, and the like.
  • examples thereof include polyester and epoxy resin.
  • One type of polymer may be used, or two or more types may be used in combination.
  • the optical material preferably contains at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate, and more preferably contains polythiourethane. These polymers are highly transparent materials and can be suitably used for optical material applications.
  • Polyurethane contains a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound.
  • Polythiourethane contains a structural unit derived from a polyisocyanate compound and a structural unit derived from a polythiol compound.
  • polyisocyanate compound examples include 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 2,2,4-trimethylhexanediisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and lysine diisocyanatomethyl ester.
  • Lysine triisocyanate m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalin, mesitylylene triisocyanate, bis (isocyanatomethyl) sulfide, bis ( Isocyanatoethyl) sulfide, bis (isocyanatomethyl) disulfide, bis (isocyanatoethyl) disulfide, bis (isocyanatomethylthio) methane, bis (isocyanatoethylthio) methane, bis (isocyanatoethylthio) methane, bis (isocyanatoethylthio) ethane, bis (isocyanatoethylthio) An aliphatic polyisocyanate compound such as isocyanatomethylthio) ethane; isophor
  • Dicyclohexyldimethylmethaneisocyanate 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4,8-bis (isocyanatomethyl) tricyclodecane, 4,9-bis (isocyanato) Alicyclic polyisocyanate compounds such as methyl) tricyclodecane; naphthalene diisocyanate, m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, biphenyldiisocyanate, diphenylmethane-2, Aromatic polyisocyanate compounds such as
  • the polyol compound is one or more aliphatic or alicyclic alcohols, specifically, linear or branched aliphatic alcohols, alicyclic alcohols, these alcohols and ethylene oxide, propylene oxide, ⁇ -. Examples thereof include alcohols to which caprolactone is added, and at least one selected from these can be used.
  • ethylene glycol diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3- Propylene diol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanjiol, 1 , 2-Pentinediol, 1,3-Pentanediol, 1,5-Pentanediol, 2,4-Pentanediol, 2-Methyl-2,4-Pentanediol, 3-Methyl-1,5-Pentanediol, 1 , 6-Hexanediol, 2,5-hexanediol, glycerol, diglycerol
  • Examples of the alicyclic alcohol include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, and 1, , 4-Cyclohexanediol, 4,4'-bicyclohexanol, 1,4-Cyclohexanedimethanol and the like, and at least one selected from these can be used.
  • a compound to which these alcohols, ethylene oxide, propylene oxide, and ⁇ -caprolactone are added may be used.
  • an ethylene oxide adduct of glycerol, an ethylene oxide adduct of trimethylolpropane, an ethylene oxide adduct of pentaerythritol, a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, a propylene oxide adduct of pentaerythritol examples thereof include caprolactone-modified glycerol, caprolactone-modified trimethylolpropane, caprolactone-modified pentaerythritol and the like, and at least one selected from these can be used.
  • polythiol compound examples include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, and diethylene glycol bis.
  • Aromatic polythiol compounds 2-methylamino-4,6-dithio Ru-sym-triazine, 3,4-thiophenethiol, bismuthiol, 2,5-bis (mercaptomethyl) -1,4-dithiane, 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- ( Heterocyclic polythiol compounds such as 2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane can be mentioned, and at least one selected from these can be used.
  • Polysulfide can be obtained by a method of ring-opening polymerization of a monomer such as a polyepithio compound or a polythietan compound.
  • the composition for optical materials can contain monomers constituting these polymers.
  • the polyepithio compound can be used without particular limitation, and for example, the compound described in Japanese Patent No. 6216383 can be used.
  • the polythietan compound a metal-containing thietan compound or a non-metal thietan compound can be used. Specifically, for example, those described in Japanese Patent No. 6216383 can be used.
  • Polycarbonate can be obtained by a reaction of alcohol with phosgene, a method of reacting alcohol with chlorohomet, or a transesterification reaction of a carbonic acid diester compound, but a generally available commercially available polycarbonate resin is used. It is also possible. As a commercially available product, a panlight series manufactured by Teijin Chemicals Ltd. or the like can be used.
  • the composition for an optical material of the first embodiment can contain polycarbonate as a resin material.
  • the poly (meth) acrylate can be used without particular limitation, and for example, the one described in Japanese Patent No. 6216383 can be used.
  • the polyolefin can be used without particular limitation, and for example, the specific examples described in Japanese Patent No. 6216383, the polymerization reaction of cyclic polyolefins and olefins, and the method for producing polyolefins can be used.
  • Polyallyl is produced by polymerizing at least one allyl group-containing monomer selected from allyl group-containing monomers in the presence of a known radical-generating polymerization catalyst.
  • allyl group-containing monomer allyl diglycol carbonate and diallyl phthalate are generally commercially available, and these can be preferably used.
  • Polyurethane urea is a reaction product of a polyurethane prepolymer and a diamine curing agent, and is a trademark TRIVEX of PPG Industries, Inc. A typical example is the one sold by. Polyurethane urea is a highly transparent material and can be suitably used.
  • the polyene-polythiol polymer is an addition polymerization composed of a polyene compound having two or more ethylenic functional groups in one molecule and a polythiol compound having two or more thiol groups in one molecule, and high by ethylene chain polymerization. It is a molecular product.
  • polyene compound in the polyene-polythiol polymer for example, the one described in Japanese Patent No. 6216383 can be used.
  • the ring-opening metathesis polymer is a polymer obtained by ring-opening polymerization of cyclic olefins using a catalyst.
  • cyclic olefins that can be subjected to ring-opening polymerization, for example, those described in Japanese Patent No. 6216383 can be used.
  • Polyester is condensation polymerized in the presence of known polyester production catalysts such as Lewis acid catalysts typified by antimony and germanium compounds, organic acids and inorganic acids. Specifically, one or more selected from polyvalent carboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycols. Alternatively, it refers to a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
  • Lewis acid catalysts typified by antimony and germanium compounds
  • organic acids and inorganic acids Specifically, one or more selected from polyvalent carboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycols. Alternatively, it refers to a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
  • dicarboxylic acid and glycol for example, those described in Japanese Patent No. 6216383 can be used.
  • polyester for example, the polyester described in Japanese Patent No. 6216383 can be used.
  • the epoxy resin is a polymer obtained by ring-opening polymerization of an epoxy compound, and as the epoxy compound, for example, the one described in Japanese Patent No. 6216383 can be used.
  • the optical material of the first embodiment may contain an additive as a component other than the above.
  • the additive include a polymerization catalyst, an internal mold release agent, a dye, and an ultraviolet absorber.
  • a polymerization catalyst may or may not be used.
  • the internal mold release agent include acidic phosphoric acid esters.
  • the acidic phosphoric acid ester include a phosphoric acid monoester and a phosphoric acid diester, which can be used alone or in combination of two or more.
  • ultraviolet absorber examples include 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, and 2-hydroxy-4-.
  • Abenzophenone-based ultraviolet absorbers such as acryloyloxy-2', 4'-dichlorobenzophenone, 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, 2- [4- (2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2, 4 Dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2'-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2) , 4-Dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3, Triazine-based
  • a commercially available product may be used as the ultraviolet absorber.
  • Examples of the commercially available product include Tinuvin 326 (manufactured by BASF Japan Ltd.) and Viosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd.).
  • the optical material of the first embodiment may contain a color tone adjusting agent.
  • the content of the color tone adjusting agent may be 3 ppm to 50 ppm or 5 ppm to 40 ppm.
  • Examples of the color tone adjusting agent include those having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of an optical material containing a polymer.
  • Examples of the color tone adjusting agent include a bluing agent.
  • Examples of the bluing agent include those having an absorption band in the orange to yellow wavelength range in the visible light region and having a function of adjusting the hue of an optical material made of a resin material.
  • the bluing agent may contain a substance exhibiting blue to purple.
  • the optical material of the first embodiment preferably has a visual transmittance of 65% or more, more preferably 68% or more, and further preferably 70% or more.
  • the visual transmittance can be measured using a spectrocolorimeter (for example, CM-5 manufactured by Konica Minolta) and an optical material having a thickness of 2 mm.
  • the optical material can be produced, for example, by using the composition for an optical material described below.
  • the composition for an optical material contains (A) a first dye having a maximum absorption wavelength a in the range of 560 nm to 610 nm in a spectrum measured according to CIE1976, and the composition for an optical material is cured.
  • the obtained optical material has the CIE1976 (L *, a *, b *) color difference parameter ⁇ C * RG obtained from the above equations (1) and (2) by using the D65 light source. Satisfy 0 or more and 10 or less.
  • composition for an optical material may contain the above-mentioned polymer or the above-mentioned monomer, may contain the above-mentioned porphyrin compound which can be the second dye, and may contain an additive such as an ultraviolet absorber. May be good.
  • the content of the dye is preferably 0.0001 part by mass to 0.008 part by mass, and more preferably 0.0001 part by mass to 0.006 part by mass with respect to 100 parts by mass of the total of the above-mentioned polymer and the above-mentioned monomer. , 0.0002 part by mass to 0.004 part by mass is more preferable.
  • the content of the dye means the total content of all the dyes contained in the composition for optical materials.
  • the composition for an optical material can be obtained by mixing the above components by a predetermined method.
  • the mixing order, mixing method, etc. of each component in the composition are not particularly limited, and a known method can be used.
  • a known method for example, there is a method of preparing a masterbatch containing a predetermined amount of additives, dispersing the masterbatch in a solvent, and dissolving the masterbatch.
  • a polyurethane resin there is a method of dispersing an additive in a polyisocyanate compound and dissolving it to prepare a masterbatch.
  • optical material of the first embodiment examples include an optical material made of a base material, an optical material made of a base material and a coating layer, and the like.
  • base material examples include a lens base material.
  • the coating layer examples include a primer layer, a hard coat layer, an antireflection layer, an anti-fog coating layer, an anti-contamination layer, and a water-repellent layer.
  • a primer layer a hard coat layer
  • an antireflection layer an anti-fog coating layer
  • an anti-contamination layer an anti-contamination layer
  • a water-repellent layer a coating layer that covers the coating layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in layers. When the coating layers are applied to both surfaces, the same coating layer may be applied to each surface, or different coating layers may be applied to each surface.
  • a molded product for example, a lens substrate
  • a composition for an optical material containing no dye is prepared using a composition for an optical material containing no dye, and then the molded product is immersed in a dispersion obtained by dispersing the dye in water or a solvent.
  • the dye may be impregnated into the molded body, and the molded body impregnated with the dye may be dried.
  • An optical material can be prepared using the molded body thus obtained.
  • the porphyrin-based compound can be impregnated into the optical material.
  • a spectacle lens including a lens base material and a coating layer laminated as needed can be immersed in a dispersion liquid containing a dye to impregnate the lens with the dye.
  • the impregnation amount of the dye may be adjusted to a desired impregnation amount depending on the concentration of the dye in the dispersion liquid, the temperature of the dispersion liquid, the time for immersing the molded product, the optical material, and the like. The higher the concentration, the higher the temperature, and the longer the immersion time, the higher the impregnation amount.
  • the immersion may be repeated a plurality of times under the condition that the impregnation amount is small.
  • a composition for an optical material containing a dye may be used as a coating material to form a dye-containing coating layer on an optical material such as a plastic lens.
  • An optical material having such a structure can be suitably used as a lens, preferably a spectacle lens.
  • the first embodiment is not limited to the above-described embodiment, and various embodiments can be taken as long as the effects of the present invention are not impaired.
  • Lenses such as spectacle lenses, goggles, spectacle lenses for vision correction, lenses for imaging devices, frennel lenses for liquid crystal projectors, wrenchular lenses, contact lenses, lenses for wearable devices; Encapsulant for light emitting diode (LED); Optical waveguide; Optical lens; Optical adhesive used for joining optical waveguides, etc .; Antireflection film used for optical lenses, etc .; Liquid crystal display device member (substrate, light guide plate, film, sheet) Transparent coating used for (etc.); Windshield used for car front glass, motorcycle helmet, etc .; Transparent substrate; Cover for lighting equipment, film to be attached to the irradiation surface of lighting equipment, etc.; And so on. Since the optical material of the first embodiment can contain an ultraviolet absorber, a lens is preferable among the above.
  • the lens of the first embodiment includes the optical material of the first embodiment described above.
  • the lens of the first embodiment may be a lens having a lens base material made of an optical material, or may have a coating layer on one side or both sides of the lens base material.
  • the lens of the first embodiment may be any of the various lenses exemplified in the above-mentioned use of the optical material.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an anti-fog coat layer, an anti-staining layer, and a water-repellent layer.
  • a primer layer a hard coat layer
  • an antireflection layer an anti-fog coat layer
  • an anti-staining layer an anti-staining layer
  • a water-repellent layer a coating layer that covers the coating layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in layers. When the coating layers are applied to both surfaces, the same coating layer may be applied to each surface, or different coating layers may be applied to each surface.
  • These coating layers provide the performance of dyes, infrared absorbers, light stabilizers, antioxidants, dyes, pigments, photochromic dyes, photochromic pigments, antistatic agents, and other lenses used in the first embodiment. It may contain a known additive or the like for enhancing.
  • various leveling agents for the purpose of improving the coatability may be used.
  • the primer layer is usually formed between the hard coat layer described later and the lens substrate.
  • the primer layer is a coating layer for the purpose of improving the adhesion between the hard coat layer formed on the primer layer and the lens base material, and it is also possible to improve the impact resistance in some cases.
  • the primer layer may be a primer layer having high adhesion to the obtained lens substrate.
  • a primer composition containing a urethane resin, an epoxy resin, a polyester resin, a melamine resin, or a polyvinyl acetal as a main component may be used. It is used to form a primer layer.
  • a solvent that does not affect the lens substrate may be used or may not be used for the purpose of adjusting the viscosity of the composition.
  • the primer layer can be formed by either the coating method or the dry method.
  • the coating method is used, the primer layer is formed by applying the primer composition to the lens substrate by a known coating method such as spin coating or dip coating and then solidifying the primer composition.
  • a dry method it is formed by a known dry method such as a CVD method or a vacuum vapor deposition method.
  • the surface of the lens substrate may be subjected to pretreatment such as alkali treatment, plasma treatment, or ultraviolet treatment, if necessary, for the purpose of improving adhesion.
  • the hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, temperature water resistance, heat resistance, and weather resistance to the lens surface.
  • an organic silicon compound having curability and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti are used for the formation of the hard coat layer.
  • a hard coat composition containing one or more of the oxide fine particles contained therein may be used.
  • a composite oxide containing a curable organic silicon compound and two or more elements selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti A hard coat composition containing one or more of the fine particles of the above may be used.
  • the hard coat composition comprises amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds. It is preferred to include at least one selected from the group.
  • the hard coat composition may or may not contain a solvent that does not affect the lens substrate.
  • the hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing it.
  • a hard coat composition by a known coating method such as spin coating or dip coating and then curing it.
  • the curing method include irradiation with energy rays such as ultraviolet rays and visible light, and heat curing.
  • the refractive index of the hard coat layer is preferably in the range of ⁇ 0.1 in the difference in refractive index from the lens substrate.
  • the antireflection layer includes an inorganic type and an organic type.
  • the inorganic antireflection layer is formed by a dry method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, an ion beam assist method, and a CVD method using an inorganic oxide such as SiO 2 or TiO 2 .
  • the organic antireflection layer is formed by a wet process using a composition containing an organosilicon compound and silica-based fine particles having internal cavities. The antireflection layer may be formed on the hard coat layer, if necessary.
  • the antireflection layer may be a multilayer or a single layer. From the viewpoint of effectively exhibiting the antireflection function, the antireflection layer is preferably multi-layered, and in that case, the low refractive index layer and the high refractive index layer are preferably laminated alternately. Further, the difference in refractive index between the low refractive index layer and the high refractive index layer is preferably 0.1 or more.
  • the high refractive index layer include layers such as ZnO, TiO 2 , CeO 2 , Sb2O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5
  • examples of the low refractive index layer include layers such as SiO 2 . When used in a single layer, it is preferable that the refractive index is at least 0.1 or more lower than the refractive index of the hard coat layer.
  • An anti-fog coat layer, an anti-contamination layer, a water-repellent layer, etc. may be formed on the anti-reflection layer, if necessary.
  • the method for forming the anti-fog layer, the anti-contamination layer, the water-repellent layer and the like is not particularly limited, and conventionally known methods can be applied.
  • the wearable device of the first embodiment includes a lens for use in the wearable device.
  • the wearable device of the first embodiment may be, for example, a wearable device used for a computer game or the like, a wearable device that realizes virtual reality (VR: Virtual Reality), augmented reality (AR), or the like.
  • VR Virtual Reality
  • AR augmented reality
  • the wearable device provided with the lens of the first embodiment can clearly recognize the red and green of an object even when used in a computer game or the like in which an image is processed at high speed, for example. It is also suitable for electronic competitions by computer games such as e-sports.
  • the eyewear of the first embodiment is eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
  • the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
  • the maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • the eyewear of the first embodiment has a natural color tone in which blue is suppressed, and the red and green of the object can be clearly recognized.
  • the optical material of the first embodiment can be used as an optical member in the eyewear of the first embodiment.
  • the preferred embodiment of the optical material of the first embodiment can be used as a preferred embodiment of the optical member in the eyewear of the first embodiment.
  • the range of the color difference parameter of the CIE1976 (L *, a *, b *) color system obtained from the above equations (1), (2), (3) and the like is also the eye of the first embodiment. It can be applied to optical members in clothing.
  • the eyewear of the first embodiment may include at least two optical members, an optical member on the objective side and an optical member on the eye-to-eye side facing the optical member on the objective side.
  • the eyewear of the first embodiment is the above-mentioned in the spectrum measured according to CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the eyepiece side of the optical member on the opposite eye side.
  • the limitation is particularly limited. do not have.
  • Eyewear that includes at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side, includes, for example, clip-on type eyeglasses, eyeglasses provided with overglasses, and the like. Can be mentioned.
  • the eyewear of the first embodiment may include one optical member.
  • Examples of eyewear including one optical member include eyeglasses having a dyed lens.
  • optical member examples include a lens, a filter, goggles, a mirror, a visor for a helmet, an LED (light emitting dimension) screen, a computer screen, a windshield, and the like.
  • the spectacle lens of the second embodiment includes a functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and (B).
  • the maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • the red color and the green color of the object can be clearly recognized.
  • the reason for this is presumed as follows. First, since the maximum absorption wavelength exists in the range of 560 nm to 610 nm, the light whose wavelength range is located between the red light and the green light is easily absorbed by the spectacle lens. As a result, the transmittance of light whose wavelength range is located between the red light and the green light is reduced by the spectacle lens, and it becomes easy to clearly recognize the red and green of the object.
  • the transmittance of light in the blue region that is, wavelength 400 nm to 520 nm
  • the transmittance of light in the blue region can be reduced by the presence of the maximum absorption wavelength b in the range of 400 nm to 520 nm.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • the spectacle lens of the second embodiment including each of the above configurations has a natural color tone in which blue is suppressed, and the red and green of the object can be clearly recognized.
  • the spectacle lens of the second embodiment includes a functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and (B) 400 nm.
  • the maximum absorption wavelength b exists in the range of about 520 nm, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • only one maximum absorption wavelength a may be present in the range of 560 nm to 610 nm, or two or more of them may be present.
  • only one maximum absorption wavelength b may be present in the range of 400 nm to 520 nm, or two or more of them may be present.
  • the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm. This makes it possible to clearly recognize the red color and green color of the object. From the above viewpoint, the maximum absorption wavelength a is preferably in the range of 570 nm to 600 nm, and more preferably in the range of 580 nm to 595 nm.
  • the transmittance at the maximum absorption wavelength a is preferably 5% to 50%, more preferably 10% to 40%, and even more preferably 20% to 40%.
  • the half width of the peak of the maximum absorption wavelength a is preferably 10 nm to 70 nm, more preferably 10 nm to 50 nm, and even more preferably 20 nm to 40 nm. Since the half width of the peak of the maximum absorption wavelength a is 10 nm or more, the light located between the red light and the green light tends to be absorbed in a wide wavelength range. When the half width of the peak of the maximum absorption wavelength a is 70 nm or less, the absorption of light between the red light or the green light necessary for visually recognizing the object tends to be suppressed.
  • the full width at half maximum is the full width at half maximum, and the straight line parallel to the horizontal axis and the absorption peak drawn by 1/2 of the absorption coefficient value ( ⁇ g) at the maximum absorption wavelength in the absorption spectrum. It is expressed as the distance (nm) between the two intersections formed by.
  • the functional layer has a maximum absorption wavelength b in the range of (B) 400 nm to 520 nm.
  • the spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed.
  • the maximum absorption wavelength b is preferably in the range of 430 nm to 490 nm, and more preferably in the range of 440 nm to 480 nm.
  • the transmittance at the maximum absorption wavelength b is preferably 3% to 60%, more preferably 10% to 55%, and even more preferably 15% to 50%.
  • the half width of the peak of the maximum absorption wavelength b is preferably 20 nm to 100 nm, more preferably 30 nm to 90 nm, and even more preferably 40 nm to 80 nm.
  • the half width of the peak of the maximum absorption wavelength b is 20 nm or more, light in the complementary color region of 560 nm to 610 nm can be effectively absorbed.
  • the half width of the peak of the maximum absorption wavelength b is 100 nm or less, it is possible to suppress the absorption of light other than the light in the complementary color region and the deterioration of the visibility of the object.
  • the transmittance at the maximum absorption wavelength b is 3% to 60%, and the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm.
  • the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 100 nm to 200 nm, preferably 100 nm to 180 nm, from the viewpoint that the maximum absorption wavelength b is the wavelength of the complementary color region of the maximum absorption wavelength a. It is more preferably present, and even more preferably 100 nm to 160 nm.
  • (a * 2 + b * 2 ) 1/2 is preferably 10 or less, and 9 or less. Is more preferable, and 8 or less is further preferable.
  • b * is preferably -10 to +10, more preferably -9 to +9, and-. It is more preferably 8 to +8.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is preferably 1.10 to 2.20, preferably 1.20 to 2.00. It is more preferably 1.30 to 1.80, and even more preferably 1.30 to 1.80.
  • the integrated value of the absorptivity at 560 nm to 610 nm may be 1800% to 2800%, preferably 2000% to 2500%.
  • the integrated value of the absorptivity at 400 nm to 520 nm may be 2800% to 4800%, preferably 3000% to 4500%.
  • the color difference parameter ⁇ C * RG of the CIE1976 (L *, a *, b *) color system obtained by the following formula (1) is 0 or more and 10 or less.
  • ⁇ C * RG ⁇ E * RG ⁇ E * RG (w0) ⁇ ⁇ ⁇ (1)
  • ⁇ E * ( ⁇ L * 2 + ⁇ a * 2 + ⁇ b * 2 ) 1/2 ... (2)
  • ⁇ E * RG represents the color difference between red and green obtained by the formula (2) for the spectacle lens using the D65 light source.
  • ⁇ E * RG (w0) is 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] From an isocyanate composition containing heptane, a thiol composition containing pentaerythritol tetrakis (3-mercaptopropionate), and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane.
  • the content of the 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole is 1.5% by mass, and the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07.
  • the color difference between red and green obtained by the formula (2) using a D65 light source is represented.
  • ⁇ L * represents the difference in brightness
  • ⁇ a represents the difference in chromaticity in the red-green direction
  • ⁇ b represents the difference in chromaticity in the blue-yellow direction.
  • the color difference between red and green with respect to the comparative optical material becomes larger than a certain level. Can be clearly recognized.
  • ⁇ C * RG is 10 or less, the color difference between red and green does not become too large, and as a result, the brightness is not impaired when the object is visually recognized through the spectacle lens. You can clearly recognize the green color.
  • the color difference parameter ⁇ C * RG of the CIE1976 (L *, a *, b *) color system is preferably 3 or more and 9 or less from the viewpoint of making it easier to recognize the red color and green color of the object more clearly. , 3.5 or more and 9 or less, more preferably 3.7 or more and 8.5 or less, and particularly preferably 4 or more and 8 or less.
  • ⁇ C * RG can be measured by the method described in Examples described later.
  • the type, amount, combination, etc. of the dye contained in the spectacle lens for example, the type, amount, combination, etc. of the additive such as the ultraviolet absorber contained in the spectacle lens as needed, the spectacles.
  • the above -mentioned ⁇ C * RG can be adjusted by appropriately adjusting the type, amount, combination, etc. of the polymer contained in the lens as needed.
  • the thickness of the spectacle lens of the second embodiment is not particularly limited, and may be, for example, 0.5 mm to 10 mm, 1 mm to 5 mm, or 1.5 mm to 3 mm. As an example, the thickness of the spectacle lens of the second embodiment may be 2 mm. In the second embodiment, the thickness of the spectacle lens means the maximum thickness.
  • the spectacle lens of the second embodiment preferably contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm.
  • the first dye may be one kind alone or two or more kinds.
  • the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the first dye in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the first dye in the first embodiment. Is.
  • the spectacle lens of the second embodiment preferably contains a second dye having a maximum absorption wavelength in the range of 400 nm to 520 nm.
  • the second dye may be one kind alone or two or more kinds.
  • the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the second dye in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the second dye in the first embodiment. Is.
  • the functional layer in the second embodiment preferably contains a polymer.
  • the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the polymer in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the polymer in the first embodiment.
  • the spectacle lens of the second embodiment may contain an additive as an ingredient other than the above.
  • the additive include a polymerization catalyst, an internal mold release agent, a dye, and an ultraviolet absorber.
  • a polymerization catalyst may or may not be used. Details of specific embodiments, preferred embodiments, preferred contents and the like of the additives such as the polymerization catalyst, the internal release agent, the dye and the ultraviolet absorber in the second embodiment are described in detail in the polymerization catalyst and the internal release form in the first embodiment. It is the same as the details of the specific embodiment, the preferable embodiment, the preferable content and the like of each additive such as an agent, a dye and an ultraviolet absorber.
  • the spectacle lens of the second embodiment may contain a color tone adjusting agent, but does not necessarily have to contain the color tone adjusting agent. As described above, the spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed even if the color tone adjusting agent is not contained. Therefore, it is not necessary to include a color tone adjusting agent.
  • the color tone adjusting agent one having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of a spectacle lens containing a polymer may be used.
  • a bluing agent may be used.
  • the brewing agent an agent having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of a spectacle lens made of a resin material may be used.
  • the bluing agent may contain a substance exhibiting blue to purple.
  • the spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed even if it does not contain a color tone adjusting agent, but may contain a color tone adjusting agent.
  • the content of the color tone adjusting agent may be relatively small.
  • the content of the color tone adjusting agent may be 5 ppm or less, or may be 3 ppm or less.
  • the lower limit of the content of the color tone adjusting agent in the spectacle lens of the second embodiment is not particularly limited.
  • the content of the color tone adjusting agent may be 0 ppm or more, or may be more than 0 ppm.
  • the spectacle lens of the second embodiment preferably has a visual transmittance of 65% or more, more preferably 68% or more, and further preferably 70% or more.
  • the visual transmittance can be measured using a spectrocolorimeter (for example, CM-5 manufactured by Konica Minolta) and a spectacle lens having a thickness of 2 mm.
  • the spectacle lens can be manufactured, for example, by using the composition for spectacle lens described below.
  • the composition for a spectacle lens has a first dye having a maximum absorption wavelength a in the range of 560 nm to 610 nm in the spectrum measured according to CIE1976, and a composition in the range of 400 nm to 520 nm in the spectrum measured according to CIE1976.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50, including the second dye having the maximum absorption wavelength b inside. ..
  • composition for a spectacle lens may contain the above-mentioned polymer or the above-mentioned monomer, or may contain an additive such as an ultraviolet absorber.
  • the preferred content of the dye in the second embodiment is the same as the preferred content of the dye in the first embodiment.
  • the details of the method for producing the composition for spectacle lenses such as the mixing method in the second embodiment are the same as the details of the method for producing the composition for spectacle lenses such as the mixing method in the first embodiment.
  • Examples of the spectacle lens of the second embodiment include a spectacle lens composed of a functional layer, a spectacle lens composed of a functional layer and a coating layer, and the like.
  • the spectacle lens of the second embodiment further includes an antireflection layer on the surface.
  • the details of the specific embodiment, the preferred embodiment, the manufacturing method and the like of the antireflection layer in the second embodiment are the same as the details of the specific aspect, the preferable mode, the manufacturing method and the like of the antireflection layer in the first embodiment.
  • the primer layer is usually formed between the hard coat layer and the lens substrate.
  • the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the primer layer in the second embodiment are the same as the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the primer layer in the first embodiment.
  • the hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, temperature water resistance, heat resistance, and weather resistance to the lens surface.
  • the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the hard coat layer in the second embodiment are the same as the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the hard coat layer in the first embodiment.
  • the eyewear of the second embodiment is eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
  • the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
  • the maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
  • the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • the details of the specific aspects, preferred embodiments, etc. of the eyewear in the second embodiment are the same as the details of the specific embodiments, preferred embodiments, etc. of the eyewear in the first embodiment.
  • the second embodiment includes the following aspects.
  • the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm and (B) 400 nm to 520 nm in the spectrum measured according to CIE1976.
  • a spectacle lens in which the maximum absorption wavelength b exists within the range, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • ⁇ 2-3> Described in ⁇ 2-1> or ⁇ 2-2> in which (a * 2 + b * 2 ) 1/2 is 10 or less in the CIE1976 (L *, a *, b *) color system. Glasses lens.
  • the color difference parameter ⁇ C * RG of the CIE1976 (L *, a *, b *) color system obtained by the following equation (1) is 0 or more and 10 or less ⁇ 2-1> to ⁇ 2.
  • ⁇ C * RG ⁇ E * RG ⁇ E * RG (w0) ⁇ ⁇ ⁇ (1)
  • ⁇ E * ( ⁇ L * 2 + ⁇ a * 2 + ⁇ b * 2 ) 1/2 ...
  • ⁇ E * RG represents the color difference between red and green obtained by the formula (2) for the spectacle lens using the D65 light source.
  • ⁇ E * RG (w0) is 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] From an isocyanate composition containing heptane, a thiol composition containing pentaerythritol tetrakis (3-mercaptopropionate), and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane.
  • the content of the 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole is 1.5% by mass, and the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07.
  • the color difference between red and green obtained by the formula (2) using a D65 light source is represented.
  • ⁇ L * represents the difference in brightness
  • ⁇ a * represents the difference in chromaticity in the red-green direction
  • ⁇ b * represents the difference in chromaticity in the blue-yellow direction.
  • ⁇ 2-5> The spectacle lens according to any one of ⁇ 2-1> to ⁇ 2-4>, wherein the maximum absorption wavelength b is 430 nm to 490 nm.
  • the transmittance at the maximum absorption wavelength b is 3% to 60%
  • the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm.
  • the transmittance at the maximum absorption wavelength a is 5% to 50%, and the half width of the peak of the maximum absorption wavelength a is 10 nm to 70 nm.
  • the functional layer contains at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate ⁇ 2-1> to ⁇ 2-.
  • ⁇ 2-9> The spectacle lens according to any one of ⁇ 2-1> to ⁇ 2-8>, further comprising an antireflection layer on the surface.
  • An eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
  • the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
  • the maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists. Eyewear in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  • Example 1 (Making a lens) 0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 46.8 g Was charged to prepare a mixed solution (1).
  • UVY-0026 manufactured by Yamamoto Chemicals, Inc., a porphyrin compound in which X1 to X8 are bromine atoms, R1 to R4 are hydrogen atoms, and M is Pd in the general formula (2)
  • PD -311S manufactured by Yamamoto Chemicals, Inc., tetra-t-butyl-tetraazaporphyrin-copper complex, compound represented by the above formula (1a)
  • PD -311S manufactured by Yamamoto Chemicals, Inc., tetra-t-butyl-tetraazaporphyrin-copper complex, compound represented by the above formula (1a)
  • PD -311S manufactured by Yamamoto Chemicals, Inc., tetra-t-butyl-tetraazaporphyrin-copper complex, compound represented by the above formula (1a)
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE (polytetrafluoroethylene) filter, and then injected into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
  • PTFE polytetrafluoroethylene
  • this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, the lens of Example 1 was produced.
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and then poured into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
  • this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, a standard lens was produced.
  • Examples 2 and 3 Same as Example 1 except that the content of UVY-0026 was changed as shown in Table 1 with respect to Example 1 or the content of each dye was changed as shown in Table 4 with respect to Example 1. I made a lens.
  • Example 4 In Example 1, instead of Viosorb 583 1.50 g, Tinuvin 326 (manufactured by BASF Japan Co., Ltd., UV absorber, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chloro Performed in the same manner as in Example 1 except that 1.0 g of benzotriazole) was used, the masterbatch (1) in which UVY-0026 was dissolved was not used, and the content of PD-311S was changed as shown in Table 1. The lens of Example 4 was prepared.
  • Example 5 A lens was produced in the same manner as in Example 4 except that the content of PD-311S was changed as shown in Table 1 with respect to Example 4.
  • Example 7 In place of the master batch (1) in which UVY-0026 was dissolved in Example 1, UVY-1023 (manufactured by Yamamoto Chemicals, Inc., in general formula ( 2 ), X1 to X8 are 3,3-dimethyl- 1- . Composition 100 containing a butynyl group, a porphyrin compound in which R1 to R4 are hydrogen atoms and M is Pd), and 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the master batch (3) dissolved in 0.0 g, the lens of Example 7 was prepared in the same manner as in Example 1 except that the content of PD-311S was changed as shown in Table 1.
  • Example 8 The lens of Example 8 was produced in the same manner as in Example 7 except that the content of each dye was changed as shown in Table 1.
  • Example 9 In Example 9, the masterbatch (1) in which UVY-0026 was dissolved was not used for Example 1, and the content of PD-311S was changed as shown in Table 2 in the same manner as in Example 1. I made a lens.
  • Example 10 was similarly added to Example 1 except that a masterbatch (3) in which UVY-1023 was dissolved was additionally added and the content of each dye was changed as shown in Table 2. I made a lens.
  • Example 11 Instead of the masterbatch (1) in which UVY-0026 was dissolved with respect to Example 1, FDB-001 (copper porphyrin complex manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -Same as Example 1 except that a masterbatch (4) dissolved in 100.0 g of a composition containing bicyclo [2.2.1] heptane was used and the content of each dye was changed as shown in Table 2. The lens of Example 11 was produced.
  • FDB-001 copper porphyrin complex manufactured by Yamada Chemical Co., Ltd.
  • Example 12 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-002 (vanadium porphyrin complex manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -The lens of Example 12 was prepared in the same manner as in Example 11 except that the masterbatch (5) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
  • Example 13 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-003 (merocyanine dye manufactured by Yamada Chemical Co., Ltd.) was used in 2,5 (6) -bis (isocyanatomethyl)-. Using a masterbatch (6) dissolved in 100.0 g of a composition containing bicyclo [2.2.1] heptane, the same as in Example 11 except that the content of each dye was changed as shown in Table 2. The lens of Example 13 was produced.
  • Example 14 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-004 (oil-soluble dye manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -The lens of Example 14 was prepared in the same manner as in Example 11 except that the masterbatch (7) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
  • Example 15 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-006 (merocyanine dye manufactured by Yamada Chemical Co., Ltd.) was used in 2,5 (6) -bis (isocyanatomethyl)-.
  • the lens of Example 15 was prepared in the same manner as in Example 11 except that the masterbatch (8) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
  • Example 16 instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 425 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 16 was prepared in the same manner as in Example 11 except that the masterbatch (9) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 17 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 430 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 17 was prepared in the same manner as in Example 11 except that the masterbatch (10) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 18 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 439 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 18 was prepared in the same manner as in Example 11 except that the masterbatch (11) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 19 instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 462 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 19 was prepared in the same manner as in Example 11 except that the masterbatch (12) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 20 Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 473 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] Using a masterbatch (13) dissolved in 100.0 g of a composition containing heptane, the lens of Example 20 was used in the same manner as in Example 11 except that the content of each dye was changed as shown in Table 3. Made.
  • Example 21 instead of the masterbatch (2) in which PD-311S was dissolved with respect to Example 1, ABS 574 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] Using a masterbatch (14) dissolved in 100.0 g of a composition containing heptane, the lens of Example 21 was used in the same manner as in Example 1 except that the content of each dye was changed as shown in Table 3. Made.
  • Example 22 ABS 584 (manufactured by Luxottica) was used in place of the masterbatch (14) in which ABS 574 was dissolved in Example 21.
  • the lens of Example 22 was prepared in the same manner as in Example 21 except that the masterbatch (15) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 23 ABS 594 (manufactured by Luxottica) was used in place of the masterbatch (14) in which ABS 574 was dissolved in Example 21.
  • the lens of Example 23 was prepared in the same manner as in Example 21 except that the masterbatch (16) dissolved in 100.0 g of the composition containing heptane was used.
  • Example 1 The standard lens produced in Example 1 was used as the lens of Comparative Example 1.
  • Comparative Example 2 A lens of Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that 1.0 g of Tinuvin 326 was used instead of Viosorb 583 1.50 g in Comparative Example 1.
  • Example 4 In Example 1, a masterbatch (3) in which UVY-1023 was dissolved was used instead of the masterbatch (1) in which UVY-0026 was dissolved, and a masterbatch (2) in which PD-311S was dissolved was used.
  • the lens of Comparative Example 4 was produced in the same manner as in Example 1 except that the dye content was not used and the dye content was changed as shown in Table 4.
  • Comparative Example 5 The lens of Comparative Example 5 was prepared in the same manner as in Example 1 except that the masterbatch (2) in which PD-311S was dissolved was not used in Example 1 and the dye content was changed as shown in Table 4. did.
  • CM-5 manufactured by Konica Minolta Co., Ltd.
  • Konica Minolta Co., Ltd. A spectrocolorimeter CM-5 (manufactured by Konica Minolta Co., Ltd.) was used as a measuring device.
  • One of the following Munsell color markers 1 to 3 is used under a D65 light source, and the lenses of the Examples and Comparative Examples having a thickness of 2 mm and the standard lens having a thickness of 2 mm are used as any of the above Munsell color markers. It was placed between the measuring unit.
  • Blue light cut rate 380 nm in a spectrum measured in accordance with EN ISO12312-1: 2013 using an ultraviolet-visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and lenses of each example and each comparative example having a thickness of 2 mm.
  • the blue light absorption rate of about 500 nm was determined.
  • the blue light cut rate was evaluated based on the following evaluation criteria. -Evaluation criteria- A: The blue light cut rate was 30% or more. B: The blue light cut rate was 20% or more and less than 30%. C: The blue light cut rate was 15% or more and less than 20%. D: The blue light cut rate was less than 15%.
  • the transmittance curve was measured using an ultraviolet-visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and the lenses of each example and each comparative example having a thickness of 2 mm, and at the maximum absorption wavelength and the maximum absorption wavelength.
  • the transmittance, the visual transmittance according to ISO 8980-3: 2013, and the half-value range of the absorption peak at the maximum absorption wavelength a were determined.
  • the transmittance curves of the lenses of Examples 1 to 8 are shown in FIG. 1, the transmittance curves of the lenses of Examples 9 to 15 are shown in FIG. 2, and the transmittance curves of the lenses of Examples 16 to 23 are shown in FIG.
  • the transmittance curves of the lenses of Comparative Examples 1 to 6 are shown in FIG.
  • Tables 1 to 4 The evaluation results when the lenses of each example and each comparative example are used are shown in Tables 1 to 4 below.
  • "-" means that the corresponding component is not contained or the evaluation target does not exist, and the blank means that the evaluation has not been performed.
  • Tables 1 to 4 when two transmittances at the maximum absorption wavelength are described as in Example 1, the numerical value in the upper row is the maximum absorption wavelength on the short wavelength side (455 nm in Example 1). It is a numerical value of the transmittance, and the numerical value in the lower row is a numerical value of the transmittance at the maximum absorption wavelength (588 nm in Example 1) on the high wavelength side.
  • the lenses of Examples 1 to 23 had better evaluation of sharpness than the lenses of Comparative Examples 1 to 6.
  • Example 201 (Making a lens) 0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 46.8 g Was charged to prepare a mixed solution (1).
  • UVY-0026 manufactured by Yamamoto Kasei Co., Ltd.
  • PD-311S manufactured by Yamamoto Kasei Co., Ltd.
  • a master batch (1) in which UVY-0026 was dissolved and a master batch (2) in which PD-311S were dissolved were prepared by dissolving them in 100.0 g of a composition containing heptane, respectively.
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE (polytetrafluoroethylene) filter, and then injected into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
  • PTFE polytetrafluoroethylene
  • this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, the lens of Example 201 was produced.
  • This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and then poured into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
  • this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, a standard lens was produced.
  • Example 202 Instead of the masterbatch (1) in which UVY-0026 was dissolved, UVY-1023 (manufactured by Yamamoto Chemicals, Inc.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1].
  • Example was carried out in the same manner as in Example 201 except that the masterbatch (3) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 202 lenses were made.
  • Example 203 Instead of the masterbatch (1) in which UVY-0026 was dissolved, FDB-001 (manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1].
  • Example was carried out in the same manner as in Example 201 except that the masterbatch (4) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 203 lenses were made.
  • Example 204 Instead of the masterbatch (4) in which FDB-001 was dissolved, ABS 430 (manufactured by Luxottica) contained 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the masterbatch (5) dissolved in 100.0 g of the product, the lens of Example 204 was used in the same manner as in Example 203, except that the content of each dye in the uniform solution was changed as shown in Table 5. Made.
  • Example 205 Instead of the masterbatch (2) in which PD-311S was dissolved, ABS 574 (manufactured by Luxottica) was added to a composition containing 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the masterbatch (6) dissolved in 100.0 g of the product, the lens of Example 205 was used in the same manner as in Example 201 except that the content of each dye in the uniform solution was changed as shown in Table 5. Made.
  • Example 206 A composition containing 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane containing ABS 594 (manufactured by Luxottica) in place of the masterbatch (6) in which ABS 574 was dissolved. Using the masterbatch (7) dissolved in 100.0 g, the lens of Example 206 was prepared in the same manner as in Example 205 except that the content of each dye in the uniform solution was changed as shown in Table 5. did.
  • Comparative Example 201 instead of the masterbatch (2) in which PD-311S was dissolved, FDG-003 (Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. Comparative Example in the same manner as in Example 201 except that the masterbatch (8) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 201 lenses were made.
  • Comparative Example 202 instead of using the masterbatch (2) in which PD-311S was dissolved, the above-mentioned masterbatch (3) in which UVY-1023 was dissolved was used instead of the masterbatch (1) in which UVY-0026 was dissolved.
  • the lens of Comparative Example 202 was produced in the same manner as in Example 201 except that the content of each dye in the uniform solution was changed as shown in Table 5.
  • ⁇ Evaluation ⁇ (Yellowness (YI value) Obtained by measuring at room temperature, viewing angle 2 °, and C light source three times by the transmission method according to ASM E313-73 using a spectrocolorimeter CM-5 manufactured by Konica Minolta, which has a pulse xenon lamp. It was calculated as the average value of the values obtained.
  • the measurement wavelength range is 360 nm to 740 nm.
  • CM-5 manufactured by Konica Minolta Co., Ltd.
  • Konica Minolta Co., Ltd. A spectrocolorimeter CM-5 (manufactured by Konica Minolta Co., Ltd.) was used as a measuring device.
  • One of the following Munsell color markers 1 to 3 is used under a D65 light source, and the lenses of the Examples and Comparative Examples having a thickness of 2 mm and the standard lens having a thickness of 2 mm are used as any of the above Munsell color markers. It was placed between the measuring unit.
  • the transmittance curve was measured using an ultraviolet visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and the lenses of each example and each comparative example having a thickness of 2 mm, and at the maximum absorption wavelength and the maximum absorption wavelength.
  • the transmittance, the visual transmittance according to ISO 8980-3: 2013, and the half-value range of the absorption peak having the maximum absorption wavelength in the range of 400 nm to 520 nm were determined.
  • the transmittance curves of the lenses of Examples 201 to 206 are shown in FIG. 5, and the transmittance curves of the lenses of Comparative Examples 201 to 202 are shown in FIG.
  • Table 5 shows the evaluation results when the lenses of each example and each comparative example were used.
  • "-" means that the corresponding component is not contained or the evaluation target does not exist.
  • Table 5 when two transmittances at the maximum absorption wavelength are described as in Example 201, the numerical value in the upper row is the transmittance at the maximum absorption wavelength on the short wavelength side (455 nm in Example 201). It is a numerical value, and the numerical value in the lower row is a numerical value of the transmittance at the maximum absorption wavelength (588 nm in Example 201) on the high wavelength side.
  • the functional layer includes the functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm and (B) 400 nm to 520 nm in the spectrum measured according to CIE1976.
  • the example was excellent in the effect of having a natural color tone in which blue color was suppressed because the evaluation of the appearance was excellent.
  • Examples 201 and 203 using a spectacle lens in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.4 to 2.5 is 1.4 to 2.5.
  • -Example 206 was superior in the effect of clearly recognizing the red color and green color of the object because it was superior in the evaluation of the degree of sharpness.
  • it since it is excellent in the evaluation of appearance, it is excellent in the effect of having a natural color tone in which blue color is suppressed.

Abstract

An optical material according to the present invention includes at least one type of pigment, and has, in a spectrum measured according to the CIE 1976 standard, (A) a maximum absorption wavelength a in the range of 560 to 610 nm, and a color difference parameter ΔC*R-G of 0-10, inclusive, in the CIE 1976 (L*a*b*) color system, determined from formulas (1) and (2) below and by using a D65 light source. (1) ΔC*R-G=ΔE*R-G-ΔE*R-G(w0), (2) ΔE*=(ΔL*2+Δa*2+Δb*2)1/2

Description

光学材料、レンズ及びアイウェアOptical materials, lenses and eyewear
 本開示は、光学材料、レンズ及びアイウェアに関する。 This disclosure relates to optical materials, lenses and eyewear.
 プラスチックレンズは、無機レンズに比べ軽量で割れ難いため、近年、眼鏡レンズ、カメラレンズ等の光学材料として急速に普及してきている。光学材料としては例えば、高分子と、有機色素とを含む光学材料が広く知られている。 Since plastic lenses are lighter and harder to break than inorganic lenses, they have rapidly become widespread as optical materials for spectacle lenses, camera lenses, etc. in recent years. As the optical material, for example, an optical material containing a polymer and an organic dye is widely known.
 例えば、特許文献1には、吸収ピーク波長が595nmや760nmであるテトラアザポルフィリン系金属錯体化合物等の特定波長吸収色素と、紫外線吸収剤と、を含む有機ガラス材料が開示されている。 For example, Patent Document 1 discloses an organic glass material containing a specific wavelength absorbing dye such as a tetraazaporphyrin-based metal complex compound having an absorption peak wavelength of 595 nm or 760 nm, and an ultraviolet absorber.
特許文献1:特開2013-238634号公報 Patent Document 1: Japanese Unexamined Patent Publication No. 2013-238634
 特許文献1では、光学材料の赤色と緑色との色差について規定されておらず、光学材料を介して対象物を視認する際に対象物の赤色及び緑色を鮮明に認識しにくい場合がある。 Patent Document 1 does not specify the color difference between red and green of the optical material, and it may be difficult to clearly recognize the red and green of the object when visually recognizing the object through the optical material.
 本開示の一実施形態は、上記に鑑みてなされたものであり、対象物の赤色及び緑色を鮮明に認識することが可能な光学材料、当該光学材料を含むレンズ及びアイウェアを提供することを目的とする。 One embodiment of the present disclosure has been made in view of the above, and provides an optical material capable of clearly recognizing the red color and green color of an object, and a lens and eyewear containing the optical material. The purpose.
 上記課題を解決する手段には、以下の態様が含まれる。
<1> 1種以上の色素を含み、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、D65光源を使用することで下記式(1)及び(2)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下である光学材料。
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*=(ΔL*+Δa*+Δb*1/2・・・(2)
(式(1)中、ΔE*R-Gは、式(2)を用いて求められる前記光学材料の赤色と緑色との色差を表し、ΔE*R-G(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と緑色との色差を表す。)
<2> CIE1976に準拠して測定したスペクトルにおいて、さらに、(B)400nm~520nmの範囲内に極大吸収波長bが存在する<1>に記載の光学材料。
<3> 前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50である<2>に記載の光学材料。
<4> 前記極大吸収波長aと前記極大吸収波長bとの差が、130nm~200nmである<2>又は<3>に記載の光学材料。
<5> 前記極大吸収波長aの吸収ピークの半値幅が10nm~70nmである<1>~<4>のいずれか1つに記載の光学材料。
<6> 極大吸収波長が560nm~610nmの範囲内に位置する第1の色素を含み、
 前記第1の色素は、テトラアザポルフィリン系金属錯体化合物を含む<1>~<5>のいずれか1つに記載の光学材料。
<7> 光学材料の厚さが2mmの場合、EN ISO12312-1:2013に準じて測定されるスペクトルにおける380nm~500nmの青色光吸収率が15%~50%である<1>~<6>のいずれか1つに記載の光学材料。
<8> CIE1976(L*,a*,b*)表色系において、(a*+b*1/2が10以下である<1>~<7>のいずれか1つに記載の光学材料。
<9> D65光源を使用することで前記式(2)及び下記式(3)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Bが0以上7以下である<1>~<8>のいずれか1つに記載の光学材料。
ΔC*R-B=ΔE*R-B-ΔE*R-B(w0)・・・(3)
(式(3)中、ΔE*R-Bは、前記式(2)を用いて求められる前記光学材料の赤色と青色との色差を表し、ΔE*R-B(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と青色との色差を表す。)
<10> ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、及びポリ(メタ)アクリレートからなる群より選択される少なくとも1種の高分子を含む<1>~<9>のいずれか1つに記載の光学材料。
<11> <1>~<10>のいずれか1つに記載の光学材料を含むレンズ。
<12> 眼鏡レンズに用いるための<11>に記載のレンズ。
<13> 対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよいアイウェアであって、
 前記対物側の光学部材における対物側の最表面と前記対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、
 (A)560nm~610nmの範囲内に極大吸収波長aが存在し、
 (B)400nm~520nmの範囲内に極大吸収波長bが存在し、
 前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50であるアイウェア。
The means for solving the above problems include the following aspects.
<1> In the spectrum containing one or more dyes and measured in accordance with CIE1976, (A) the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the following formula (1) is used by using a D65 light source. ) And (2) CIE1976 (L *, a *, b *) An optical material in which the color difference parameter ΔC * RG of the color system is 0 or more and 10 or less.
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2 ... (2)
(In the formula (1), ΔE * RG represents the color difference between red and green of the optical material obtained by using the formula (2), and ΔE * RG (w0) is 2- (2). An isocyanate composition containing'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3-2-1). It comprises a thiol composition 1 containing mercaptopropionate) and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, wherein the 2- (2'-hydroxy-5'- The content of t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. For a comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in 1 and the thiol composition 2 of 0.86, the above formula (2) can be obtained by using a D65 light source. Represents the color difference between red and green obtained by using.)
<2> The optical material according to <1>, wherein in the spectrum measured according to CIE1976, (B) the maximum absorption wavelength b exists in the range of 400 nm to 520 nm.
<3> The optical material according to <2>, wherein the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
<4> The optical material according to <2> or <3>, wherein the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is 130 nm to 200 nm.
<5> The optical material according to any one of <1> to <4>, wherein the half width of the absorption peak of the maximum absorption wavelength a is 10 nm to 70 nm.
<6> Contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm.
The optical material according to any one of <1> to <5>, wherein the first dye contains a tetraazaporphyrin-based metal complex compound.
<7> When the thickness of the optical material is 2 mm, the blue light absorption rate of 380 nm to 500 nm in the spectrum measured according to EN ISO12312-1: 2013 is 15% to 50% <1> to <6>. The optical material according to any one of.
<8> Described in any one of <1> to <7> in which (a * 2 + b * 2 ) 1/2 is 10 or less in the CIE1976 (L *, a *, b *) color system. Optical material.
<9> The color difference parameter ΔC * RB of the CIE1976 (L *, a *, b *) color system obtained from the above equation (2) and the following equation (3) by using the D65 light source is 0 or more and 7 The optical material according to any one of <1> to <8> below.
ΔC * RB = ΔE * RB -ΔE * RB (w0) ・ ・ ・ (3)
(In the formula (3), ΔE * RB represents the color difference between red and blue of the optical material obtained by using the formula (2), and ΔE * RB (w0) is 2- (2 (w0). An isocyanate composition containing 2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3). The thiol composition 1 containing (mercaptopropionate) and the thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane (2'-hydroxy-5'). The content of -t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. A comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in the product 1 and the thiol composition 2 of 0.86 is described in the above formula (2) by using a D65 light source. Represents the color difference between red and blue obtained using.)
<10> The optics according to any one of <1> to <9>, which comprises at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate. material.
<11> A lens containing the optical material according to any one of <1> to <10>.
<12> The lens according to <11> for use in a spectacle lens.
<13> An eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
In the spectrum measured in accordance with CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the optical member on the opposite eye side on the opposite eye side.
(A) The maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
(B) The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
Eyewear in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
 本開示の一実施形態によれば、対象物の赤色及び緑色を鮮明に認識することが可能な光学材料、当該光学材料を含むレンズ及びアイウェアを提供することができる。 According to one embodiment of the present disclosure, it is possible to provide an optical material capable of clearly recognizing red and green of an object, and a lens and eyewear containing the optical material.
実施例1~8のレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the lens of Examples 1-8. 実施例9~15のレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the lens of Examples 9-15. 実施例16~23のレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the lens of Examples 16-23. 比較例1~6のレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the lens of the comparative example 1-6. 実施例201~実施例206のメガネレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the spectacle lens of Example 201 to Example 206. 比較例201~比較例202のメガネレンズにおける透過率曲線を示すグラフである。It is a graph which shows the transmittance curve in the spectacle lens of the comparative example 201 to the comparative example 202.
 以下において、本開示の内容について詳細に説明する。
 以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
The contents of the present disclosure will be described in detail below.
The description of the constituents described below may be based on the representative embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
 本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示において段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本開示において、置換又は無置換を明記していない化合物については、本開示における効果を損なわない範囲で、任意の置換基を有していてもよい。
 本開示において、組成物の各成分の量は、各成分に該当する物質が層中に複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 なお、本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、ppm(parts per million)は質量基準のppmを意味する。
Compounds not specified as substituted or unsubstituted in the present disclosure may have any substituent as long as the effects in the present disclosure are not impaired.
In the present disclosure, the amount of each component of the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the layer, unless otherwise specified.
In the present disclosure, the combination of preferred embodiments is a more preferred embodiment.
In the present disclosure, ppm (parts per million) means ppm on a mass basis.
 本開示は、第1実施形態及び第2実施形態を含む。
 以下、第1実施形態及び第2実施形態について詳細に説明する。
The present disclosure includes a first embodiment and a second embodiment.
Hereinafter, the first embodiment and the second embodiment will be described in detail.
〔第1実施形態〕
≪光学材料≫
 第1実施形態の光学材料は、1種以上の色素を含み、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、D65光源を使用することで下記式(1)及び(2)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下である。
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*=(ΔL*+Δa*+Δb*1/2・・・(2)
(式(1)中、ΔE*R-Gは、式(2)を用いて求められる前記光学材料の赤色と緑色との色差を表し、ΔE*R-G(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と緑色との色差を表す。)
[First Embodiment]
≪Optical material≫
The optical material of the first embodiment contains one or more dyes, has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and uses a D65 light source. Therefore, the color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system obtained from the following equations (1) and (2) is 0 or more and 10 or less.
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2 ... (2)
(In the formula (1), ΔE * RG represents the color difference between red and green of the optical material obtained by using the formula (2), and ΔE * RG (w0) is 2- (2). An isocyanate composition containing'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3-2-1). It comprises a thiol composition 1 containing mercaptopropionate) and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, wherein the 2- (2'-hydroxy-5'- The content of t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. For a comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in 1 and the thiol composition 2 of 0.86, the above formula (2) can be obtained by using a D65 light source. Represents the color difference between red and green obtained by using.)
 第1実施形態の光学材料を介して対象物を視認する際に対象物の赤色及び緑色を鮮明に認識することができる。この理由としては、以下のように推測される。まず、560nm~610nmの範囲内に極大吸収波長aが存在することにより、波長域が赤色光と緑色光との間に位置する光が光学材料に吸収されやすくなる。これにより、光学材料にて波長域が赤色光と緑色光との間に位置する光の透過率が低下し、対象物の赤色及び緑色を鮮明に認識しやすくなる。第1実施形態の光学材料にて、ΔC*R-Gが0以上であることにより、比較光学材料に対して赤色と緑色との色差が一定以上大きくなるため、対象物の赤色及び緑色をより鮮明に認識でき、ΔC*R-Gが10以下であることにより、赤色と緑色との色差が大きくなりすぎず、その結果、光学材料を介して対象物を視認する際に明るさが損なわれることなく、赤色及び緑色を鮮明に認識することができる。 When the object is visually recognized through the optical material of the first embodiment, the red color and the green color of the object can be clearly recognized. The reason for this is presumed as follows. First, since the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, the light whose wavelength range is located between the red light and the green light is easily absorbed by the optical material. As a result, the transmittance of light whose wavelength range is located between the red light and the green light in the optical material is lowered, and it becomes easy to clearly recognize the red and green of the object. In the optical material of the first embodiment, when ΔC * RG is 0 or more, the color difference between red and green is larger than a certain level with respect to the comparative optical material. Since it can be clearly recognized and ΔC * RG is 10 or less, the color difference between red and green does not become too large, and as a result, the brightness is impaired when the object is visually recognized through the optical material. Red and green can be clearly recognized without any problem.
 CIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gは、対象物の赤色及び緑色をより鮮明に認識しやすくなる観点から、2以上10以下であることが好ましく、3以上9以下であることがより好ましく、3.5以上9以下であることがさらに好ましく、3.7以上8.5以下であることが特に好ましく、4以上8以下であることがより一層好ましい。 The color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system is preferably 2 or more and 10 or less from the viewpoint of making it easier to recognize the red color and green color of the object more clearly. It is more preferably 3 or more and 9 or less, further preferably 3.5 or more and 9 or less, particularly preferably 3.7 or more and 8.5 or less, and further preferably 4 or more and 8 or less. preferable.
 第1実施形態の光学材料は、D65光源を使用することで前記式(2)及び下記式(3)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Bが0以上7以下であることが好ましい。
ΔC*R-B=ΔE*R-B-ΔE*R-B(w0)・・・(3)
(式(3)中、ΔE*R-Bは、前記式(2)を用いて求められる前記光学材料の赤色と青色との色差を表し、ΔE*R-B(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と青色との色差を表す。)
The optical material of the first embodiment is a CIE1976 (L *, a *, b *) color difference parameter ΔC * R obtained from the above formula (2) and the following formula (3) by using a D65 light source. -B is preferably 0 or more and 7 or less.
ΔC * RB = ΔE * RB -ΔE * RB (w0) ・ ・ ・ (3)
(In the formula (3), ΔE * RB represents the color difference between red and blue of the optical material obtained by using the formula (2), and ΔE * RB (w0) is 2- (2 (w0). An isocyanate composition containing 2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3). The thiol composition 1 containing (mercaptopropionate) and the thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane (2'-hydroxy-5'). The content of -t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. A comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in the product 1 and the thiol composition 2 of 0.86 is described in the above formula (2) by using a D65 light source. Represents the color difference between red and blue obtained using.)
 第1実施形態の光学材料にて、CIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Bが0以上7以下であることにより、光学材料を介して対象物を視認する際に対象物の赤色及び青色を鮮明に認識することができる。 In the optical material of the first embodiment, when the color difference parameter ΔC * RB of the CIE1976 (L *, a *, b *) color system is 0 or more and 7 or less, the object is subjected to the optical material. The red and blue colors of the object can be clearly recognized when visually recognized.
 CIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Bは、対象物の赤色及び青色をより鮮明に認識しやすくなる観点から、0.5以上7以下であることが好ましく、1以上6以下であることがより好ましい。 The color difference parameter ΔC * RB of the CIE1976 (L *, a *, b *) color system shall be 0.5 or more and 7 or less from the viewpoint of making it easier to recognize the red and blue of the object more clearly. It is preferable, and it is more preferable that it is 1 or more and 6 or less.
 ΔC*R-G及びΔC*R-Bは、後述の実施例に記載の方法によって測定することができる。 ΔC * RG and ΔC * RB can be measured by the methods described in Examples described later.
 第1実施形態の光学材料では、例えば、光学材料に含まれる色素の種類、量、組み合わせ等、光学材料に必要に応じて含まれる紫外線吸収剤等の添加剤の種類、量、組み合わせ等、光学材料に必要に応じて含まれる高分子の種類、量、組み合わせ等を適宜調整することで前述のΔC*R-G及びΔC*R-Bを調整し得る。 In the optical material of the first embodiment, for example, the type, amount, combination, etc. of the dye contained in the optical material, the type, amount, combination, etc. of the additive such as the ultraviolet absorber contained in the optical material as needed, the optical The above -mentioned ΔC * RG and ΔC * RB can be adjusted by appropriately adjusting the type, amount, combination, etc. of the polymer contained in the material as needed.
 第1実施形態の光学材料の厚さは、特に限定されず、例えば0.5mm~10mmであってもよく、1mm~5mmであってもよく、1.5mm~3mmであってもよい。一例として、第1実施形態の光学材料の厚さは、2mmであってもよい。
 第1実施形態において、光学材料の厚さは、最大厚さを意味する。
The thickness of the optical material of the first embodiment is not particularly limited, and may be, for example, 0.5 mm to 10 mm, 1 mm to 5 mm, or 1.5 mm to 3 mm. As an example, the thickness of the optical material of the first embodiment may be 2 mm.
In the first embodiment, the thickness of the optical material means the maximum thickness.
 第1実施形態の光学材料では、560nm~610nmの範囲内に極大吸収波長aが存在し、好ましくは570nm~600nmの範囲内に極大吸収波長aが存在し、より好ましくは570nm~590nmの範囲内に極大吸収波長aが存在する。特に、570nm~600nmの範囲内に極大吸収波長aが存在する場合、対象物の視認に必要な赤色光又は緑色光の間の光が吸収されることが抑制される傾向にある。
 第1実施形態の光学材料では、560nm~610nmの範囲内に極大吸収波長aが1つのみ存在していてもよく、2つ以上存在していてもよい。
In the optical material of the first embodiment, the maximum absorption wavelength a is present in the range of 560 nm to 610 nm, preferably the maximum absorption wavelength a is present in the range of 570 nm to 600 nm, and more preferably within the range of 570 nm to 590 nm. There is a maximum absorption wavelength a in. In particular, when the maximum absorption wavelength a is present in the range of 570 nm to 600 nm, absorption of light between red light or green light necessary for visually recognizing an object tends to be suppressed.
In the optical material of the first embodiment, only one maximum absorption wavelength a may be present in the range of 560 nm to 610 nm, or two or more of them may be present.
 第1実施形態の光学材料では、極大吸収波長aの吸収ピークの半値幅が10nm~70nmであることが好ましく、15nm~50nmであることがより好ましく、20nm~40nmであることがさらに好ましい。
 前述の半値幅が10nm以上であることにより、赤色光と緑色光との間に位置する光が広波長域にて吸収される傾向にあり、前述の半値幅が100nm以下であることにより、対象物の視認に必要な赤色光又は緑色光の間の光が吸収されることが抑制される傾向にある。
In the optical material of the first embodiment, the half width of the absorption peak of the maximum absorption wavelength a is preferably 10 nm to 70 nm, more preferably 15 nm to 50 nm, and further preferably 20 nm to 40 nm.
When the above-mentioned half-price width is 10 nm or more, light located between red light and green light tends to be absorbed in a wide wavelength range, and when the above-mentioned half-price width is 100 nm or less, it is a target. There is a tendency to suppress the absorption of light between the red light and the green light necessary for visually recognizing an object.
 本開示において半値幅とは半値全幅のことであり、吸収スペクトルにおいて極大吸収波長における吸光係数値(εg)の1/2の値にて引いた横軸に並行な直線と吸収ピークとにより形成される2つの交点の間の距離(nm)で表される。 In the present disclosure, the full width at half maximum is the full width at half maximum, and is formed by a straight line parallel to the horizontal axis and an absorption peak drawn by 1/2 of the absorption coefficient value (εg) at the maximum absorption wavelength in the absorption spectrum. It is expressed as the distance (nm) between two intersections.
 第1実施形態の光学材料は、CIE1976に準拠して測定したスペクトルにおいて、さらに、(B)400nm~520nmの範囲内に極大吸収波長bが存在することが好ましい。
 これによって、第1実施形態の光学材料は、青色が抑制された自然な色調を有する。
 本開示のメガネレンズでは、400nm~520nmの範囲内に極大吸収波長bが1つのみ存在していてもよく、2つ以上存在していてもよい。
 上記の観点から、極大吸収波長bが、430nm~490nmの範囲内に存在することが好ましく、440nm~480nmの範囲内に存在することがより好ましい。
The optical material of the first embodiment preferably has a maximum absorption wavelength b in the range of (B) 400 nm to 520 nm in the spectrum measured according to CIE1976.
As a result, the optical material of the first embodiment has a natural color tone in which blue color is suppressed.
In the spectacle lens of the present disclosure, only one maximum absorption wavelength b may be present in the range of 400 nm to 520 nm, or two or more maximum absorption wavelengths b may be present.
From the above viewpoint, the maximum absorption wavelength b is preferably in the range of 430 nm to 490 nm, and more preferably in the range of 440 nm to 480 nm.
 前記極大吸収波長bにおける透過率は、3%~60%であることが好ましく、10%~55%であることがより好ましく、15%~50%であることがさらに好ましい。 The transmittance at the maximum absorption wavelength b is preferably 3% to 60%, more preferably 10% to 55%, and even more preferably 15% to 50%.
 極大吸収波長bのピークの半値幅は、20nm~100nmであることが好ましく、30nm~90nmであることがより好ましく、40nm~80nmであることがさらに好ましい。
 極大吸収波長bのピークの半値幅が20nm以上であることにより、560nm~610nmの補色領域の光を効果的に吸収できる。
 極大吸収波長bのピークの半値幅が100nm以下であることにより、補色領域の光以外の光が吸収され、対象物の視認性が低下することを抑制できる。
The half width of the peak of the maximum absorption wavelength b is preferably 20 nm to 100 nm, more preferably 30 nm to 90 nm, and even more preferably 40 nm to 80 nm.
When the half width of the peak of the maximum absorption wavelength b is 20 nm or more, light in the complementary color region of 560 nm to 610 nm can be effectively absorbed.
When the half width of the peak of the maximum absorption wavelength b is 100 nm or less, it is possible to suppress the absorption of light other than the light in the complementary color region and the deterioration of the visibility of the object.
 前記極大吸収波長bにおける透過率が3%~60%であり、前記極大吸収波長bのピークの半値幅が20nm~100nmであることも好ましい。 It is also preferable that the transmittance at the maximum absorption wavelength b is 3% to 60%, and the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm.
 第1実施形態の光学材料は、極大吸収波長bを極大吸収波長aの補色領域の波長とする観点から、極大吸収波長aと極大吸収波長bとの差が、100nm以上であることが好ましく、130nm以上であることがより好ましい。
 第1実施形態の光学材料は、極大吸収波長bを極大吸収波長aの補色領域の波長とする観点から、極大吸収波長aと極大吸収波長bとの差が、200nm以下であることが好ましく、180nm以下であることがより好ましく、160nm以下であることがさらに好ましい。
In the optical material of the first embodiment, the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 100 nm or more from the viewpoint that the maximum absorption wavelength b is the wavelength of the complementary color region of the maximum absorption wavelength a. It is more preferably 130 nm or more.
In the optical material of the first embodiment, the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 200 nm or less from the viewpoint that the maximum absorption wavelength b is the wavelength in the complementary color region of the maximum absorption wavelength a. It is more preferably 180 nm or less, and further preferably 160 nm or less.
 第1実施形態の光学材料は、例えば、前記極大吸収波長aと前記極大吸収波長bとの差が、130nm~200nmであってもよい。 In the optical material of the first embodiment, for example, the difference between the maximum absorption wavelength a and the maximum absorption wavelength b may be 130 nm to 200 nm.
 第1実施形態の光学材料は、CIE1976(L*,a*,b*)表色系において、(a*+b*1/2が10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。
 第1実施形態の光学材料は、CIE1976(L*,a*,b*)表色系において、b*が-10~+10であることが好ましく、-9~+9であることがより好ましく、-8~+8であることがさらに好ましい。
In the CIE1976 (L *, a *, b *) color system, the optical material of the first embodiment preferably has (a * 2 + b * 2 ) 1/2 of 10 or less, and preferably 9 or less. Is more preferable, and 8 or less is further preferable.
In the CIE1976 (L *, a *, b *) color system, the optical material of the first embodiment preferably has b * of -10 to +10, more preferably -9 to +9, and-. It is more preferably 8 to +8.
 第1実施形態の光学材料は、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50であることが好ましい。
 これによって、得られる光学材料において、青色が抑制された自然な色調を有することと、対象物の赤色及び緑色を鮮明に認識することができることと、をバランスよく両立することができる。
 上記の観点から、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.10~2.20であることがより好ましく、1.20~2.00であることがさらに好ましく、1.30~1.80であることが特に好ましい。
In the optical material of the first embodiment, the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is preferably 1.00 to 2.50.
As a result, in the obtained optical material, it is possible to achieve both having a natural color tone in which blue is suppressed and being able to clearly recognize red and green of an object in a well-balanced manner.
From the above viewpoint, the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is more preferably 1.10 to 2.20, and 1.20 to 2.00. It is more preferably 1.30 to 1.80, and particularly preferably 1.30 to 1.80.
 560nm~610nmにおける吸収率の積分値は、1800%~2800%であってもよく、好ましくは2000%~2500%である。
 400nm~520nmにおける吸収率の積分値は、2800%~4800%であってもよく、好ましくは3000%~4500%である。
The integrated value of the absorptivity at 560 nm to 610 nm may be 1800% to 2800%, preferably 2000% to 2500%.
The integrated value of the absorptivity at 400 nm to 520 nm may be 2800% to 4800%, preferably 3000% to 4500%.
(第1の色素)
 第1実施形態の光学材料は、極大吸収波長が560nm~610nmの範囲内に位置する第1の色素を含むことが好ましい。第1の色素は、1種単独であってもよく、2種以上であってもよい。
(First pigment)
The optical material of the first embodiment preferably contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm. The first dye may be one kind alone or two or more kinds.
 第1の色素は、テトラアザポルフィリン系金属錯体化合物を含むことが好ましい。テトラアザポルフィリン系金属錯体化合物としては、テトラアザポルフィリン骨格及び金属原子を有する金属錯体化合物であれば特に限定されず、例えば、以下の一般式(1)で表される化合物であることが好ましい。 The first dye preferably contains a tetraazaporphyrin-based metal complex compound. The tetraazaporphyrin-based metal complex compound is not particularly limited as long as it is a metal complex compound having a tetraazaporphyrin skeleton and a metal atom, and for example, a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 一般式(1)中、A~Aはそれぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、カルボキシル基、スルホン酸基、炭素数1~20の直鎖、分岐若しくは環状のアルキル基、炭素数2~20の直鎖、分岐若しくは環状のアルケニル基、炭素数2~20の直鎖、分岐若しくは環状のアルキニル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のモノアルキルアミノ基、炭素数2~20のジアルキルアミノ基、炭素数7~20のジアルキルアミノ基、炭素数7~20のアラルキル基、炭素数6~20のアリール基、ヘテロアリール基、炭素数6~20のアルキルチオ基又は炭素数6~20のアリールチオ基を表す。A及びA、A及びA、A及びA、並びにA及びAはそれぞれ独立に、芳香族環を除く環を形成してもよい。Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子、又は酸化金属原子を表す。 In the general formula (1), A 1 to A 8 are independently hydrogen atom, halogen atom, nitro group, cyano group, hydroxy group, amino group, carboxyl group, sulfonic acid group, and linear chain having 1 to 20 carbon atoms. , Branched or cyclic alkyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkenyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkynyl group, alkoxy group with 1 to 20 carbon atoms, carbon Aryloxy group with 6 to 20 carbon atoms, monoalkylamino group with 1 to 20 carbon atoms, dialkylamino group with 2 to 20 carbon atoms, dialkylamino group with 7 to 20 carbon atoms, aralkyl group with 7 to 20 carbon atoms, carbon It represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 6 to 20 carbon atoms, or an arylthio group having 6 to 20 carbon atoms. A 1 and A 2 , A 3 and A 4 , A 5 and A 6 , and A 7 and A 8 may independently form a ring excluding an aromatic ring. M represents a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, a metal hydroxide atom, or a metal oxide atom.
 A~Aにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、フッ素原子、塩素原子又は臭素原子が好ましく、フッ素原子又は臭素原子がより好ましい。 Examples of the halogen atom in A 1 to A 8 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom or a bromine atom.
 A~Aにおける炭素数1~20の直鎖、分岐若しくは環状のアルキル基としては、
メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、4-メチルペンチル基、4-メチル-2-ペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、3-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、2-プロピルペンチル基、2,5-ジメチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、イソボルニル基などが挙げられる。
As a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms in A1 to A8,
Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group , 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-methyl-2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethyl Butyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4-dimethylpentyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, 2- Examples thereof include a propylpentyl group, a 2,5-dimethylhexyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
 A~Aにおける直鎖、分岐若しくは環状のアルケニル基としては、ビニル基、1-メチルビニル基、プロペニル基、2-ブテニル基、2-ペンテニル基等が挙げられる。 Examples of the linear, branched or cyclic alkenyl group in A 1 to A 8 include a vinyl group, a 1-methylvinyl group, a propenyl group, a 2-butenyl group, a 2-pentenyl group and the like.
 A~Aにおける直鎖、分岐若しくは環状のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、1、3-ブタジイニル基、2-ペンチニル基、2,4-ペンタジイニル基、2-ヘキシニル基、3,3-ジメチル-1-ブチニル基、3-ヘプチニル基、4-オクチニル基等が挙げられる。 The linear, branched or cyclic alkynyl groups in A1 to A8 include ethynyl group, propynyl group, butynyl group, 1,3-butadiynyl group, 2-pentynyl group, 2,4-pentadiynyl group and 2-hexynyl group. , 3,3-Dimethyl-1-butynyl group, 3-heptynyl group, 4-octynyl group and the like.
 一般式(1)中、Mは2価の金属原子であることが好ましく、2価の銅であることがより好ましい。テトラアザポルフィリン系金属錯体化合物の具体例としては、以下の式(1a)で表されるテトラ-t-ブチル-テトラアザポルフィリン・銅錯体が挙げられる。テトラ-t-ブチル-テトラアザポルフィリン・銅錯体の市販品としては、PD-311S(山本化成株式会社製)が挙げられる。 In the general formula (1), M is preferably a divalent metal atom, and more preferably divalent copper. Specific examples of the tetraazaporphyrin-based metal complex compound include a tetra-t-butyl-tetraazaporphyrin-copper complex represented by the following formula (1a). Examples of commercially available products of the tetra-t-butyl-tetraazaporphyrin-copper complex include PD-311S (manufactured by Yamamoto Chemicals, Inc.).
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 式(1a)中、Cuは2価の銅を表し、t-Cはターシャリーブチル基を表し、A及びAの一方、A及びAの一方、A及びAの一方、並びにA及びAの一方がt-Cである。 In formula (1a), Cu represents divalent copper, t—C 4 H 9 represents a tertiary butyl group, one of A 1 and A 2 , one of A 3 and A 4 , A 5 and A 6 One, and one of A 7 and A 8 , is t-C 4 H 9 .
 第1実施形態の光学材料が第1の色素を含む場合、第1の色素の含有量は、5ppm~18ppmであることが好ましく、8ppm~15ppmであることがより好ましい。ここで、第1の色素は、テトラアザポルフィリン系金属錯体化合物と読み替えてもよい。 When the optical material of the first embodiment contains the first dye, the content of the first dye is preferably 5 ppm to 18 ppm, more preferably 8 ppm to 15 ppm. Here, the first dye may be read as a tetraazaporphyrin-based metal complex compound.
 第1実施形態の光学材料は、以下の(a)及び(b)の少なくとも一方を満たすことが好ましく、以下の(a)及び(b)の両方を満たすことがより好ましい。
(a)400nm以上500nm未満の範囲内に極大吸収波長を1つ以上有する。
(b)光学材料の厚さが2mmの場合、380nm以下の波長における光透過率が20%以下である。
The optical material of the first embodiment preferably satisfies at least one of the following (a) and (b), and more preferably satisfies both of the following (a) and (b).
(A) It has one or more maximum absorption wavelengths in the range of 400 nm or more and less than 500 nm.
(B) When the thickness of the optical material is 2 mm, the light transmittance at a wavelength of 380 nm or less is 20% or less.
 光学材料が上記(a)を満たすことにより、緑色光に光応答性を持つ視細胞の刺激量を減らすことができ、赤色をより鮮明に認識することが可能となる。さらに青色光吸収率に優れ、第1実施形態の光学材料を介してパーソナルコンピューター等の画面を長時間見た場合であっても眼精疲労等の悪影響を抑制できる。光学材料が上記(b)を満たすことにより、紫外光の透過を抑制できる。 When the optical material satisfies the above (a), the amount of stimulation of photoreceptor cells having photoresponsiveness to green light can be reduced, and red can be recognized more clearly. Further, it has an excellent blue light absorption rate, and can suppress adverse effects such as eye strain even when the screen of a personal computer or the like is viewed for a long time through the optical material of the first embodiment. When the optical material satisfies the above (b), the transmission of ultraviolet light can be suppressed.
 上記(a)について、420nm~495nmの範囲内に極大吸収波長を1つ以上有することが好ましく、440nm~490nmの範囲内に極大吸収波長を1つ以上有することがより好ましい。 Regarding (a) above, it is preferable to have one or more maximum absorption wavelengths in the range of 420 nm to 495 nm, and it is more preferable to have one or more maximum absorption wavelengths in the range of 440 nm to 490 nm.
 上記(b)について、光学材料の厚さが2mmの場合、380nm以下の波長における光透過率が10%以下であることが好ましく、5%以下であることがより好ましい。また、前述の「380nm以下」は、「400nm以下」と読み替えることが好ましく、「420nm以下」と読み替えることがより好ましい。
 第1実施形態において、厚さが2mm以外の光学材料を用いて光透過率を測定し、測定した値を厚さ2mmの場合の光学材料の光透過率に換算してもよい。
Regarding (b) above, when the thickness of the optical material is 2 mm, the light transmittance at a wavelength of 380 nm or less is preferably 10% or less, and more preferably 5% or less. Further, the above-mentioned "380 nm or less" is preferably read as "400 nm or less", and more preferably read as "420 nm or less".
In the first embodiment, the light transmittance may be measured using an optical material having a thickness other than 2 mm, and the measured value may be converted into the light transmittance of the optical material when the thickness is 2 mm.
 上記(b)について、光学材料の厚さが2mmの場合、280nm以上の波長における光透過率が20%以下であってもよく、10%以下であってもよく、5%以下であってもよい。 Regarding (b) above, when the thickness of the optical material is 2 mm, the light transmittance at a wavelength of 280 nm or more may be 20% or less, 10% or less, or 5% or less. good.
 第1実施形態の光学材料は、厚さが2mmの場合、EN ISO12312-1:2013に準じて測定されるスペクトルにおける380nm~500nmの青色光吸収率が15%~50%であることが好ましく、20%~50%であることがより好ましく、30%~50%であることがさらに好ましい。青色光吸収率が15%以上であることにより、ブルーライトが好適にカットされて眼精疲労等の悪影響を抑制できる傾向にある。青色光吸収率が50%以下であることにより、青色の視認性を保持し、視感透過率が下がりすぎず、視界が暗くなることを抑制できる。 When the optical material of the first embodiment has a thickness of 2 mm, it is preferable that the blue light absorption rate of 380 nm to 500 nm in the spectrum measured according to EN ISO12312-1: 2013 is 15% to 50%. It is more preferably 20% to 50%, and even more preferably 30% to 50%. When the blue light absorption rate is 15% or more, the blue light is suitably cut and there is a tendency that adverse effects such as eye strain can be suppressed. When the blue light absorption rate is 50% or less, the visibility of blue color can be maintained, the visual transmittance does not decrease too much, and the darkening of the visual field can be suppressed.
 第1実施形態の光学材料は、ポルフィリン系化合物及びメロシアニン系化合物の少なくとも一方を含むことが好ましく、ポルフィリン系化合物を含むことがより好ましい。光学材料がポルフィリン系化合物、メロシアニン系化合物等を含むことで、400nm以上500nm未満の範囲内の波長の光を好適に吸収する。ポルフィリン系化合物、メロシアニン系化合物等を、それぞれ独立に1種単独で用いてもよく、2種以上併用してもよい。
 ポルフィリン系化合物は、第1実施形態の光学材料に含まれる第2の色素となり得る。
The optical material of the first embodiment preferably contains at least one of a porphyrin-based compound and a merocyanine-based compound, and more preferably contains a porphyrin-based compound. When the optical material contains a porphyrin-based compound, a merocyanine-based compound, or the like, light having a wavelength in the range of 400 nm or more and less than 500 nm is suitably absorbed. The porphyrin-based compound, the merocyanine-based compound, and the like may be independently used alone or in combination of two or more.
The porphyrin-based compound can be a second dye contained in the optical material of the first embodiment.
(第2の色素)
 本開示のメガネレンズは、極大吸収波長が400nm~520nmの範囲内に位置する第2の色素を含むことが好ましい。第2の色素は、1種単独であってもよく、2種以上であってもよい。
(Second dye)
The spectacle lens of the present disclosure preferably contains a second dye having a maximum absorption wavelength in the range of 400 nm to 520 nm. The second dye may be one kind alone or two or more kinds.
 第2の色素は、ポルフィリン系化合物及びメロシアニン系化合物の少なくとも一方を含むことが好ましく、ポルフィリン系化合物を含むことがより好ましい。
 第2の色素が、ポルフィリン系化合物、メロシアニン系化合物等を含むことで、400nm以上500nm未満の範囲内の波長の光を好適に吸収する。
The second dye preferably contains at least one of a porphyrin-based compound and a merocyanine-based compound, and more preferably contains a porphyrin-based compound.
Since the second dye contains a porphyrin-based compound, a merocyanine-based compound, or the like, it preferably absorbs light having a wavelength in the range of 400 nm or more and less than 500 nm.
 ポルフィリン系化合物は、下記一般式(2)で表される化合物を含むことが好ましい。 The porphyrin-based compound preferably contains a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(2)中、X~Xはそれぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、カルボキシル基、スルホン酸基、炭素数1~20の直鎖、分岐若しくは環状のアルキル基、炭素数2~20の直鎖、分岐若しくは環状のアルケニル基、炭素数2~20の直鎖、分岐若しくは環状のアルキニル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のモノアルキルアミノ基、炭素数2~20のジアルキルアミノ基、炭素数7~20のジアルキルアミノ基、炭素数7~20のアラルキル基、炭素数6~20のアリール基、ヘテロアリール基、炭素数6~20のアルキルチオ基又は炭素数6~20のアリールチオ基を表す。R~Rはそれぞれ独立に、水素原子、又は、直鎖若しくは分岐のアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子、水酸化金属原子、又は酸化金属原子を表す。
 X~Xの少なくとも1つは、水素原子以外であることが好ましく、ハロゲン原子、炭素数1~20の直鎖、分岐若しくは環状のアルキル基、炭素数2~20の直鎖、分岐若しくは環状のアルケニル基、又は、炭素数2~20の直鎖、分岐若しくは環状のアルキニル基であることが好ましい。
In the general formula (2), X 1 to X 8 are independently hydrogen atom, halogen atom, nitro group, cyano group, hydroxy group, amino group, carboxyl group, sulfonic acid group, and linear chain having 1 to 20 carbon atoms. , Branched or cyclic alkyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkenyl group, straight chain with 2 to 20 carbon atoms, branched or cyclic alkynyl group, alkoxy group with 1 to 20 carbon atoms, carbon Aryloxy group with 6 to 20 carbon atoms, monoalkylamino group with 1 to 20 carbon atoms, dialkylamino group with 2 to 20 carbon atoms, dialkylamino group with 7 to 20 carbon atoms, aralkyl group with 7 to 20 carbon atoms, carbon It represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group, an alkylthio group having 6 to 20 carbon atoms, or an arylthio group having 6 to 20 carbon atoms. R 1 to R 4 independently represent a hydrogen atom or a linear or branched alkyl group, and M is a two hydrogen atom, a divalent metal atom, a trivalent substituted metal atom, or a tetravalent substitution. Represents a metal atom, a metal hydroxide atom, or a metal oxide atom.
At least one of X 1 to X 8 is preferably a halogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a linear chain having 2 to 20 carbon atoms, a branched or branched. It is preferably a cyclic alkenyl group or a linear, branched or cyclic alkynyl group having 2 to 20 carbon atoms.
 X~Xにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、フッ素原子、塩素原子又は臭素原子が好ましく、フッ素原子又は臭素原子がより好ましい。 Examples of the halogen atom in X1 to X8 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom or a bromine atom.
 R~Rは、それぞれ独立に、水素原子、又は、炭素数1~8の直鎖若しくは分岐のアルキル基であることが好ましい。 It is preferable that R 1 to R 4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 8 carbon atoms.
 Mは、Cu、Zn、Fe、Co、Ni、Pt、Pd、Mn、Mg、Mn(OH)、Mn(OH)、VO、又はTiOが好ましく、Ni,Pd又はVOがより好ましい。 M is preferably Cu, Zn, Fe, Co, Ni, Pt, Pd, Mn, Mg, Mn (OH), Mn (OH) 2 , VO, or TiO, and more preferably Ni, Pd or VO.
 X~Xにおける炭素数1~20の直鎖、分岐若しくは環状のアルキル基、炭素数2~20の直鎖、分岐若しくは環状のアルケニル基、及び炭素数2~20の直鎖、分岐若しくは環状のアルキニル基の好ましい構成は、前述の一般式(1)におけるA~Aと同様である。 Linear, branched or cyclic alkyl groups with 1 to 20 carbon atoms in X 1 to X 8 , linear, branched or cyclic alkenyl groups with 2 to 20 carbon atoms, and linear, branched or cyclic groups with 2 to 20 carbon atoms. The preferred configuration of the cyclic alkynyl group is the same as A 1 to A 8 in the above-mentioned general formula (1).
 R~Rにおける炭素数1~8の直鎖若しくは分岐のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、4-メチルペンチル基、4-メチル-2-ペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、3-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、2-プロピルペンチル基、2,5-ジメチルヘキシル基などが挙げられる。 The linear or branched alkyl group having 1 to 8 carbon atoms in R 1 to R 4 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and n. -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 4-methylpentyl group, 4-Methyl-2-pentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, 3-methylhexyl group, 5-methylhexyl group, 2,4 -Includes dimethylpentyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, 2-propylpentyl group, 2,5-dimethylhexyl group and the like.
 これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、1-メチルブチル基、n-ヘキシル基、1,2-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、n-オクチル基、又は2-エチルヘキシル基が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、1,2-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、又はn-オクチル基がより好ましい。 Among these, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, 1,2-dimethylpropyl group, 1-Methylbutyl group, n-hexyl group, 1,2-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, n-octyl group or 2-ethylhexyl group are preferable, and methyl group, ethyl group and n-propyl group are preferable. Group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, 1,2-dimethylbutyl group, 2-ethylbutyl group, n-heptyl group, or The n-octyl group is more preferred.
 第1実施形態の光学材料に用いられ得るポルフィリン系化合物は、それ自体公知の方法を参考にして製造することができる。例えば、OctabromotetraphenylporphyrinandItsMetalDerivatives(Inorg.Chem.1991,30,239-245)記載の方法で製造することができる。
 また、一般式(2)で表される化合物は、例えば、ピロール化合物及びアルデヒド化合物を用い、酸触媒による脱水縮合反応及び酸化剤による酸化反応を経るローゼムント(Rothemund)反応により合成した化合物を得た後、当該化合物を金属又は金属塩(例えば、アセチルアセトン錯体、金属の酢酸塩)と溶媒中で反応させることにより製造することができる。ピロール化合物としては、一般式(B-1)~一般式(B-4)で表される化合物が挙げられ、アルデヒド化合物としては、一般式(C-1)~一般式(C-4)で表される化合物が挙げられる。酸触媒としては、プロピオン酸、ボロントリフルオリド・エチルエーテル錯体、トリフルオロ酢酸等が挙げられ、酸化剤としては、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン等が挙げられる。
The porphyrin-based compound that can be used as the optical material of the first embodiment can be produced with reference to a method known per se. For example, it can be produced by the method described in Inorganic Chem. 991, 30, 239-245 (Inorgan. Chem. 991, 30, 239-245).
Further, as the compound represented by the general formula (2), for example, a pyrrole compound and an aldehyde compound were used to obtain a compound synthesized by a dehydration condensation reaction with an acid catalyst and a Rosemund reaction through an oxidation reaction with an oxidizing agent. Later, the compound can be produced by reacting the compound with a metal or a metal salt (for example, an acetylacetone complex or a metal acetate) in a solvent. Examples of the pyrrole compound include compounds represented by the general formulas (B-1) to (B-4), and examples of the aldehyde compound include general formulas (C-1) to (C-4). Examples include the represented compounds. Examples of the acid catalyst include propionic acid, borontrifluoride-ethyl ether complex, trifluoroacetic acid and the like, and examples of the oxidizing agent include 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and the like. ..
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 一般式(B-1)~一般式(B-4)及び一般式(C-1)~一般式(C-4)におけるX~X及びR~Rは、一般式(2)におけるX~X及びR~Rと同様である。 X1 to X8 and R1 to R4 in the general formula (B- 1 ) to the general formula (B-4) and the general formula (C-1) to the general formula (C- 4 ) are the general formula (2). It is the same as X 1 to X 8 and R 1 to R 4 in.
 一般式(2)で表される化合物は、1種であってもよく、2種以上の異性体からなる混合物であってもよい。 The compound represented by the general formula (2) may be one kind or a mixture consisting of two or more kinds of isomers.
 第1実施形態の光学材料がポルフィリン系化合物を含む場合、ポルフィリン系化合物の含有量は、1.5ppm~16ppmであることが好ましく、2ppm~12ppmであることがより好ましい。
 第1実施形態の光学材料がメロシアニン系化合物を含む場合、メロシアニン系化合物の含有量は、1.5ppm~14ppmであることが好ましく、2ppm~12ppmであることがより好ましい。
When the optical material of the first embodiment contains a porphyrin-based compound, the content of the porphyrin-based compound is preferably 1.5 ppm to 16 ppm, more preferably 2 ppm to 12 ppm.
When the optical material of the first embodiment contains a merocyanine-based compound, the content of the merocyanine-based compound is preferably 1.5 ppm to 14 ppm, more preferably 2 ppm to 12 ppm.
 第2の色素として、市販品としては、例えばUVY-0026(山本化成株式会社製)、UVY-1023(山本化成株式会社製)、FDB-001(山田化学工業株式会社製)、ABS 430(Luxottica社製)等を用いることができる。 As the second dye, commercially available products include, for example, UVY-0026 (manufactured by Yamamoto Kasei Co., Ltd.), UVY-1023 (manufactured by Yamamoto Kasei Co., Ltd.), FDB-001 (manufactured by Yamada Chemical Co., Ltd.), ABS 430 (Luxottica). (Manufactured by the company) etc. can be used.
(高分子)
 第1実施形態の光学材料は、高分子を含んでいることが好ましい。
 第1実施形態において、高分子は、市販品等の高分子を用いてもよく、モノマー、当該モノマー等から得られる高分子を用いてもよい。
 第1実施形態において、高分子は、特に限定されず使用することができ、透明性高分子であることが好ましい。
 以下に、高分子、及び高分子を得るためのモノマーについて説明する。
(High molecular)
The optical material of the first embodiment preferably contains a polymer.
In the first embodiment, as the polymer, a polymer such as a commercially available product may be used, or a monomer, a polymer obtained from the monomer or the like may be used.
In the first embodiment, the polymer can be used without particular limitation, and is preferably a transparent polymer.
Hereinafter, the polymer and the monomer for obtaining the polymer will be described.
 高分子としては、特に限定されず、例えば、ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、ポリ(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、ポリアリル、ポリウレタンウレア、ポリエン-ポリチオール重合体、開環メタセシス重合体、ポリエステル、エポキシ樹脂等が挙げられる。
 高分子を1種用いてもよく、2種以上併用してもよい。
The polymer is not particularly limited, and for example, polyurethane, polythiourethane, polysulfide, polycarbonate, poly (meth) acrylate, polyolefin, cyclic polyolefin, polyallyl, polyurethane urea, polyene-polythiol polymer, ring-opened metasessis polymer, and the like. Examples thereof include polyester and epoxy resin.
One type of polymer may be used, or two or more types may be used in combination.
 光学材料は、ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、及びポリ(メタ)アクリレートからなる群より選択される少なくとも1種の高分子を含むことが好ましく、ポリチオウレタンを含むことがより好ましい。これらの高分子は、透明性が高い材料であり、光学材料用途に好適に用いることができる。 The optical material preferably contains at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate, and more preferably contains polythiourethane. These polymers are highly transparent materials and can be suitably used for optical material applications.
 ポリウレタンは、ポリイソシアネート化合物由来の構成単位及びポリオール化合物由来の構成単位を含む。ポリチオウレタンは、ポリイソシアネート化合物由来の構成単位及びポリチオール化合物由来の構成単位を含む。 Polyurethane contains a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound. Polythiourethane contains a structural unit derived from a polyisocyanate compound and a structural unit derived from a polythiol compound.
 ポリイソシアネート化合物としては、1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、m-キシリレンジイソシアネート、α,α,α′,α′-テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ナフタリン、メシチリレントリイソシアネート、ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトエチルチオ)エタン、ビス(イソシアナトメチルチオ)エタン等の脂肪族ポリイソシアネート化合物;イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルメタン-2,2′-ジイソシアネート、ジフェニルメタン-2,4′-ジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、ベンゼントリイソシアネート、ジフェニルスルフィド-4,4-ジイソシアネート等の芳香族ポリイソシアネート化合物;2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物等を挙げることができ、これらから選択した少なくとも1種を用いることができる。 Examples of the polyisocyanate compound include 1,6-hexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, 2,2,4-trimethylhexanediisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and lysine diisocyanatomethyl ester. Lysine triisocyanate, m-xylylene diisocyanate, α, α, α', α'-tetramethylxylylene diisocyanate, bis (isocyanatomethyl) naphthalin, mesitylylene triisocyanate, bis (isocyanatomethyl) sulfide, bis ( Isocyanatoethyl) sulfide, bis (isocyanatomethyl) disulfide, bis (isocyanatoethyl) disulfide, bis (isocyanatomethylthio) methane, bis (isocyanatoethylthio) methane, bis (isocyanatoethylthio) ethane, bis (isocyanatoethylthio) An aliphatic polyisocyanate compound such as isocyanatomethylthio) ethane; isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, cyclohexanediisocyanate, methylcyclohexanediisocyanate. , Dicyclohexyldimethylmethaneisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4,8-bis (isocyanatomethyl) tricyclodecane, 4,9-bis (isocyanato) Alicyclic polyisocyanate compounds such as methyl) tricyclodecane; naphthalene diisocyanate, m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, biphenyldiisocyanate, diphenylmethane-2, Aromatic polyisocyanate compounds such as 2'-diisocyanate, diphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, benzenetriisocyanate, diphenylsulfide-4,4-diisocyanate; 2,5-diisocyanato Thiophen, 2,5-bis (isocyanatomethyl) thiophene, 2,5-diisocyanatotetrahydro Thiophene, 2,5-bis (isosianatomethyl) tetrahydrothiophene, 3,4-bis (isosianatomethyl) tetrahydrothiophene, 2,5-diisosyanato-1,4-dithiane, 2,5-bis (isosyanatomethyl) Heterocyclic polyisocyanate compounds such as -1,4-dithiane, 4,5-diisosyanato-1,3-dithiolane, and 4,5-bis (isosianatomethyl) -1,3-dithiolane can be mentioned. At least one selected from can be used.
 ポリオール化合物は、1種以上の脂肪族又は脂環族アルコールであり、具体的には、直鎖又は分枝鎖の脂肪族アルコール、脂環族アルコール、これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させたアルコール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 The polyol compound is one or more aliphatic or alicyclic alcohols, specifically, linear or branched aliphatic alcohols, alicyclic alcohols, these alcohols and ethylene oxide, propylene oxide, ε-. Examples thereof include alcohols to which caprolactone is added, and at least one selected from these can be used.
 直鎖又は分枝鎖の脂肪族アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,3-ブタンジオ-ル、1,2-ペンタンジオール、1,3-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、グリセロール、ジグリセロール、ポリグリセロール、トリメチロールプロパン、ペンタエリスリトール、ジ(トリメチロールプロパン)等が挙げられる。 As linear or branched aliphatic alcohols, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3- Propylene diol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanjiol, 1 , 2-Pentinediol, 1,3-Pentanediol, 1,5-Pentanediol, 2,4-Pentanediol, 2-Methyl-2,4-Pentanediol, 3-Methyl-1,5-Pentanediol, 1 , 6-Hexanediol, 2,5-hexanediol, glycerol, diglycerol, polyglycerol, trimethylolpropane, pentaerythritol, di (trimethylolpropane) and the like.
 脂環族アルコールとしては、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、3-メチル-1,2-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、4,4’-ビシクロヘキサノール、1,4-シクロヘキサンジメタノール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 Examples of the alicyclic alcohol include 1,2-cyclopentanediol, 1,3-cyclopentanediol, 3-methyl-1,2-cyclopentanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, and 1, , 4-Cyclohexanediol, 4,4'-bicyclohexanol, 1,4-Cyclohexanedimethanol and the like, and at least one selected from these can be used.
 これらアルコールとエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトンを付加させた化合物でもよい。例えば、グリセロールのエチレンオキサイド付加体、トリメチロールプロパンのエチレンオキサイド付加体、ペンタエリスリトールのエチレンオキサイド付加体、グリセロールのプロピレンオキサイド付加体、トリメチロールプロパンのプロピレンオキサイド付加体、ペンタエリスリトールのプロピレンオキサイド付加体、カプロラクトン変性グリセロール、カプロラクトン変性トリメチロールプロパン、カプロラクトン変性ペンタエリスリトール等が挙げられ、これらから選択した少なくとも1種を用いることができる。 A compound to which these alcohols, ethylene oxide, propylene oxide, and ε-caprolactone are added may be used. For example, an ethylene oxide adduct of glycerol, an ethylene oxide adduct of trimethylolpropane, an ethylene oxide adduct of pentaerythritol, a propylene oxide adduct of glycerol, a propylene oxide adduct of trimethylolpropane, a propylene oxide adduct of pentaerythritol, Examples thereof include caprolactone-modified glycerol, caprolactone-modified trimethylolpropane, caprolactone-modified pentaerythritol and the like, and at least one selected from these can be used.
 ポリチオール化合物としては、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸及びメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等を挙げることができ、これらから選択した少なくとも1種を用いることができる。 Examples of the polythiol compound include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, and diethylene glycol bis. (2-Mercaptoacetate), Diethylene glycol bis (3-mercaptopropionate), Ethylene glycol bis (2-mercaptoacetate), Ethylene glycolbis (3-mercaptopropionate), Trimethylol propanthris (2-mercaptoacetate) , Trimethylol Propanthris (3-mercaptopropionate), Trimethylol ethanetris (2-mercaptoacetate), Trimethylol ethanetris (3-mercaptopropionate), Pentaerythritol tetrakis (2-mercaptoacetate), Pentaerythritol Tetrakiss (3-mercaptopropionate), bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) Methane, bis (2-mercaptoethylthio) methane, bis (3-mercaptopropylthio) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2-bis (2-mercaptoethylthio) ethane, 1,2 -Bis (3-mercaptopropylthio) ethane, 1,2,3-tris (mercaptomethylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3- Mercaptopropylthio) Propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7 -Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecane, 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecane, Tetraquis (Mercaptomethylthiomethyl) ) Methane, tetrakis (2-mercaptoethylthiomethyl) methane, tetrakis (3-mercaptopropylthiomethyl) methane, bis (2,3-dimercaptopropyl) sulfide, 2,5-dimercaptomethyl-1,4-ditian , 2,5-Dimercapto- 1,4-Ditian, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithian, and esters of these thioglycolic acid and mercaptopropionic acid, hydroxymethyl sulfidebis (2-mercaptoacetate), Hydroxymethyl sulfide bis (3-mercaptopropionate), hydroxyethyl sulfide bis (2-mercaptoacetate), hydroxyethyl sulfide bis (3-mercaptopropionate), hydroxymethyl disulfide bis (2-mercaptoacetate), hydroxymethyl Disulfide bis (3-mercaptopropionate), hydroxyethyl disulfide bis (2-mercaptoacetate), hydroxyethyl disulfide bis (3-mercaptopropinate), 2-mercaptoethyl ether bis (2-mercaptoacetate), 2-mercapto Ethyl ether bis (3-mercaptopropionate), thiodiglycolic acid bis (2-mercaptoethyl ester), thiodipropionic acid bis (2-mercaptoethyl ester), dithiodiglycolic acid bis (2-mercaptoethyl ester) , Dithiodipropionic acid bis (2-mercaptoethyl ester), 1,1,3,3-tetrakis (mercaptomethylthio) propane, 1,1,2,2-tetrakis (mercaptomethylthio) ethane, 4,6-bis ( Aliphatic polythiol compounds such as mercaptomethylthio) -1,3-dithian, tris (mercaptomethylthio) methane, tris (mercaptoethylthio) methane; 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4 -Dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 1,2-bis (mercaptoethyl) benzene, 1 , 3-bis (mercaptoethyl) benzene, 1,4-bis (mercaptoethyl) benzene, 1,3,5-trimercaptobenzene, 1,3,5-tris (mercaptomethyl) benzene, 1,3,5- Tris (mercaptomethyleneoxy) benzene, 1,3,5-tris (mercaptoethyleneoxy) benzene, 2,5-toluenedithiol, 3,4-toluenedithiol, 1,5-naphthalenedithiol, 2,6-naphthalenedithiol, etc. Aromatic polythiol compounds; 2-methylamino-4,6-dithio Ru-sym-triazine, 3,4-thiophenethiol, bismuthiol, 2,5-bis (mercaptomethyl) -1,4-dithiane, 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- ( Heterocyclic polythiol compounds such as 2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane can be mentioned, and at least one selected from these can be used.
 ポリスルフィドは、モノマーである、ポリエピチオ化合物、ポリチエタン化合物等の開環重合による方法により得ることができる。光学材料用組成物には、これらの高分子を構成するモノマーを含むことができる。 Polysulfide can be obtained by a method of ring-opening polymerization of a monomer such as a polyepithio compound or a polythietan compound. The composition for optical materials can contain monomers constituting these polymers.
 ポリエピチオ化合物としては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載のものを用いることができる。
 ポリチエタン化合物としては、金属含有チエタン化合物又は非金属チエタン化合物を用いることができる。具体的には、例えば、特許第6216383号公報に記載のものを用いることができる。
The polyepithio compound can be used without particular limitation, and for example, the compound described in Japanese Patent No. 6216383 can be used.
As the polythietan compound, a metal-containing thietan compound or a non-metal thietan compound can be used. Specifically, for example, those described in Japanese Patent No. 6216383 can be used.
 ポリカーボネートは、アルコールとホスゲンの反応、又はアルコールとクロロホーメートを反応させる方法、又は炭酸ジエステル化合物のエステル交換反応をすることにより得ることができるが、一般的に入手可能な市販品ポリカーボネート樹脂を用いることも可能である。市販品としては帝人化成株式会社製のパンライトシリーズなどを用いることができる。第1実施形態の光学材料用組成物には、ポリカーボネートを樹脂材料として含むことができる。 Polycarbonate can be obtained by a reaction of alcohol with phosgene, a method of reacting alcohol with chlorohomet, or a transesterification reaction of a carbonic acid diester compound, but a generally available commercially available polycarbonate resin is used. It is also possible. As a commercially available product, a panlight series manufactured by Teijin Chemicals Ltd. or the like can be used. The composition for an optical material of the first embodiment can contain polycarbonate as a resin material.
 ポリ(メタ)アクリレートとしては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載のものを用いることができる。 The poly (meth) acrylate can be used without particular limitation, and for example, the one described in Japanese Patent No. 6216383 can be used.
 ポリオレフィンとしては、特に制限はなく用いることができ、例えば、特許第6216383号公報に記載の具体例、環状ポリオレフィン、オレフィンの重合反応及びポリオレフィンの製造方法を用いることができる。 The polyolefin can be used without particular limitation, and for example, the specific examples described in Japanese Patent No. 6216383, the polymerization reaction of cyclic polyolefins and olefins, and the method for producing polyolefins can be used.
 ポリアリルは、公知のラジカル発生性の重合触媒の存在下に、アリル基含有モノマーから選ばれる少なくとも1種のアリル基含有モノマーを重合させることにより製造される。
 アリル基含有モノマーとしては、アリルジグリコールカーボネートやジアリルフタレートが一般的に市販されており、これらは好適に使用することができる。
Polyallyl is produced by polymerizing at least one allyl group-containing monomer selected from allyl group-containing monomers in the presence of a known radical-generating polymerization catalyst.
As the allyl group-containing monomer, allyl diglycol carbonate and diallyl phthalate are generally commercially available, and these can be preferably used.
 ポリウレタンウレアは、ポリウレタンプレポリマー及びジアミン硬化剤による反応生成物であり、商標TRIVEXとしてPPGIndustries,Inc.から販売されているものが代表例である。ポリウレタンウレアは透明性の高い材料であり、好適に使用することができる。 Polyurethane urea is a reaction product of a polyurethane prepolymer and a diamine curing agent, and is a trademark TRIVEX of PPG Industries, Inc. A typical example is the one sold by. Polyurethane urea is a highly transparent material and can be suitably used.
 ポリエン-ポリチオール重合体は、1分子中に2個以上のエチレン性官能基を有するポリエン化合物と、1分子中に2個以上のチオール基を有するポリチオール化合物からなる付加重合並びにエチレン鎖状重合による高分子生成物である。 The polyene-polythiol polymer is an addition polymerization composed of a polyene compound having two or more ethylenic functional groups in one molecule and a polythiol compound having two or more thiol groups in one molecule, and high by ethylene chain polymerization. It is a molecular product.
 ポリエン-ポリチオール重合体における、ポリエン化合物としては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the polyene compound in the polyene-polythiol polymer, for example, the one described in Japanese Patent No. 6216383 can be used.
 開環メタセシス重合体は、触媒を用いて環状オレフィン類を開環重合させてなる高分子である。開環重合させることのできる環状オレフィン類としては、例えば、特許第6216383号公報に記載のものを用いることができる。 The ring-opening metathesis polymer is a polymer obtained by ring-opening polymerization of cyclic olefins using a catalyst. As the cyclic olefins that can be subjected to ring-opening polymerization, for example, those described in Japanese Patent No. 6216383 can be used.
 ポリエステルは、アンチモンやゲルマニウム化合物に代表されるルイス酸触媒、有機酸、無機酸などの公知のポリエステル製造触媒の存在下に縮合重合される。具体的には、ジカルボン酸を含む多価カルボン酸及びこれらのエステル形成性誘導体から選ばれる1種又は2種以上とグリコールを含む多価アルコールから選ばれる1種又は2種以上とからなるもの、又はヒドロキシカルボン酸及びこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。 Polyester is condensation polymerized in the presence of known polyester production catalysts such as Lewis acid catalysts typified by antimony and germanium compounds, organic acids and inorganic acids. Specifically, one or more selected from polyvalent carboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycols. Alternatively, it refers to a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
 ジカルボン酸及びグリコールとしては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the dicarboxylic acid and glycol, for example, those described in Japanese Patent No. 6216383 can be used.
 ポリエステルとしては、例えば、特許第6216383号公報に記載のものを用いることができる。 As the polyester, for example, the polyester described in Japanese Patent No. 6216383 can be used.
 エポキシ樹脂はエポキシ化合物を開環重合してなる高分子であり、エポキシ化合物としては、例えば、特許第6216383号公報に記載のものを用いることができる。 The epoxy resin is a polymer obtained by ring-opening polymerization of an epoxy compound, and as the epoxy compound, for example, the one described in Japanese Patent No. 6216383 can be used.
(添加剤)
 第1実施形態の光学材料は、上記以外の他の成分として添加剤を含有してもよい。
 上記添加剤として、重合触媒、内部離型剤、染料、紫外線吸収剤などを挙げることができる。第1実施形態において、ポリウレタン及びポリチオウレタンを得る際には、重合触媒を用いてもよく、用いなくてもよい。
 内部離型剤としては、酸性リン酸エステルが挙げられる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独又は2種類以上混合して使用することできる。
(Additive)
The optical material of the first embodiment may contain an additive as a component other than the above.
Examples of the additive include a polymerization catalyst, an internal mold release agent, a dye, and an ultraviolet absorber. In the first embodiment, when polyurethane and polythiourethane are obtained, a polymerization catalyst may or may not be used.
Examples of the internal mold release agent include acidic phosphoric acid esters. Examples of the acidic phosphoric acid ester include a phosphoric acid monoester and a phosphoric acid diester, which can be used alone or in combination of two or more.
 紫外線吸収剤としては、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-5-tert-ブチルベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-2’,4’-ジクロロベンゾフェノン等のベンゾフェノン系紫外線吸収剤、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-2,4-tert-ブチルフェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等のベンゾトリアゾール系紫外線吸収剤などが挙げられるが、好ましくは2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノールや2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノールのベンゾトリアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は単独でも2種以上を併用することもできる。 Examples of the ultraviolet absorber include 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, and 2-hydroxy-4-. Abenzophenone-based ultraviolet absorbers such as acryloyloxy-2', 4'-dichlorobenzophenone, 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis ( 2,4-dimethylphenyl) -1,3,5-triazine, 2- [4- (2-hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2, 4 Dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2'-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2) , 4-Dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3, Triazine-based ultraviolet absorbers such as 5-triazine and 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine , 2- (2H-benzotriazole-2-yl) -4-methylphenol, 2- (2H-benzotriazole-2-yl) -4-tert-octylphenol, 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2- (2H-benzotriazole-2-yl) -4,6-di-tert-pentylphenol, 2- (5-chloro-2H) -Benzotriazole-2-yl) -4-methyl-6-tert-butylphenol, 2- (5-chloro-2H-benzotriazole-2-yl) -2,4-tert-butylphenol, 2,2'-methylenebis Examples thereof include benzotriazole-based ultraviolet absorbers such as [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol], but 2-( Bentriazole-based ultraviolet rays of 2H-benzotriazole-2-yl) -4-tert-octylphenol and 2- (5-chloro-2H-benzotriazole-2-yl) -4-methyl-6-tert-butylphenol Examples include ray absorbers. These UV absorbers can be used alone or in combination of two or more.
 紫外線吸収剤は、市販品を用いてもよい。上記市販品としては、例えば、Tinuvin326(BASFジャパン株式会社製)、Viosorb583(共同薬品株式会社製)等が挙げられる。 A commercially available product may be used as the ultraviolet absorber. Examples of the commercially available product include Tinuvin 326 (manufactured by BASF Japan Ltd.) and Viosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd.).
 第1実施形態の光学材料は、色調調整剤を含んでいてもよい。光学材料が色調調整剤を含む場合、色調調整剤の含有量は、3ppm~50ppmであってもよく、5ppm~40ppmであってもよい。 The optical material of the first embodiment may contain a color tone adjusting agent. When the optical material contains a color tone adjusting agent, the content of the color tone adjusting agent may be 3 ppm to 50 ppm or 5 ppm to 40 ppm.
 色調調整剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、高分子を含む光学材料の色相を調整する機能を有するものが挙げられる。色調調整剤としては、ブルーイング剤が挙げられる。ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂材料からなる光学材料の色相を調整する機能を有するものが挙げられる。ブルーイング剤は、青色から紫色を示す物質を含んでいてもよい。 Examples of the color tone adjusting agent include those having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of an optical material containing a polymer. Examples of the color tone adjusting agent include a bluing agent. Examples of the bluing agent include those having an absorption band in the orange to yellow wavelength range in the visible light region and having a function of adjusting the hue of an optical material made of a resin material. The bluing agent may contain a substance exhibiting blue to purple.
(視感透過率)
 第1実施形態の光学材料は、視認性の観点から、視感透過率が65%以上であることが好ましく、68%以上であることがより好ましく、70%以上であることがさらに好ましい。
 視感透過率は、分光測色計(例えば、コニカミノルタ製CM-5)を用いて、厚さ2mmの光学材料を用いて測定することができる。
(Visible transmittance)
From the viewpoint of visibility, the optical material of the first embodiment preferably has a visual transmittance of 65% or more, more preferably 68% or more, and further preferably 70% or more.
The visual transmittance can be measured using a spectrocolorimeter (for example, CM-5 manufactured by Konica Minolta) and an optical material having a thickness of 2 mm.
<光学材料用組成物>
 光学材料は、例えば、以下に説明する光学材料用組成物を用いて製造することができる。
 光学材料用組成物は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在する第1の色素を含み、前記光学材料用組成物を硬化して得られる光学材料が、D65光源を使用することで前述の式(1)及び(2)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下を満たす。
 光学材料用組成物は、前述の高分子又は前述のモノマーを含んでいてもよく、前述の第2の色素となり得るポルフィリン化合物を含んでいてもよく、紫外線吸収剤等の添加剤を含んでいてもよい。
<Composition for optical materials>
The optical material can be produced, for example, by using the composition for an optical material described below.
The composition for an optical material contains (A) a first dye having a maximum absorption wavelength a in the range of 560 nm to 610 nm in a spectrum measured according to CIE1976, and the composition for an optical material is cured. The obtained optical material has the CIE1976 (L *, a *, b *) color difference parameter ΔC * RG obtained from the above equations (1) and (2) by using the D65 light source. Satisfy 0 or more and 10 or less.
The composition for an optical material may contain the above-mentioned polymer or the above-mentioned monomer, may contain the above-mentioned porphyrin compound which can be the second dye, and may contain an additive such as an ultraviolet absorber. May be good.
 色素の含有量は、前述の高分子及び前述のモノマーの合計100質量部に対して0.0001質量部~0.008質量部が好ましく、0.0001質量部~0.006質量部がより好ましく、0.0002質量部~0.004質量部がさらに好ましい。
 色素の含有量は、光学材料用組成物に含まれるすべての色素の合計含有量を意味する。
The content of the dye is preferably 0.0001 part by mass to 0.008 part by mass, and more preferably 0.0001 part by mass to 0.006 part by mass with respect to 100 parts by mass of the total of the above-mentioned polymer and the above-mentioned monomer. , 0.0002 part by mass to 0.004 part by mass is more preferable.
The content of the dye means the total content of all the dyes contained in the composition for optical materials.
 第1実施形態において、光学材料用組成物は、上記の成分を所定の方法で混合することにより得ることができる。
 組成物中の各成分の混合順序、混合方法等は、特に限定されず、公知の方法で行うことができる。公知の方法としては、例えば、添加物を所定量含むマスターバッチを作製して、このマスターバッチを溶媒に分散し、溶解させる方法などがある。例えばポリウレタン樹脂の場合、ポリイソシアネート化合物に添加物を分散し、溶解させてマスターバッチを作製する方法などがある。
In the first embodiment, the composition for an optical material can be obtained by mixing the above components by a predetermined method.
The mixing order, mixing method, etc. of each component in the composition are not particularly limited, and a known method can be used. As a known method, for example, there is a method of preparing a masterbatch containing a predetermined amount of additives, dispersing the masterbatch in a solvent, and dissolving the masterbatch. For example, in the case of a polyurethane resin, there is a method of dispersing an additive in a polyisocyanate compound and dissolving it to prepare a masterbatch.
<光学材料の態様>
 第1実施形態の光学材料の態様としては、基材からなる光学材料、基材とコーティング層とからなる光学材料等が挙げられる。
 上記基材としては、例えばレンズ基材が挙げられる。
<Aspects of optical materials>
Examples of the optical material of the first embodiment include an optical material made of a base material, an optical material made of a base material and a coating layer, and the like.
Examples of the base material include a lens base material.
 コーティング層としては、例えば、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。 Examples of the coating layer include a primer layer, a hard coat layer, an antireflection layer, an anti-fog coating layer, an anti-contamination layer, and a water-repellent layer. Each of these coating layers can be used alone, or a plurality of coating layers can be used in layers. When the coating layers are applied to both surfaces, the same coating layer may be applied to each surface, or different coating layers may be applied to each surface.
 例えば、色素を含まない光学材料用組成物を用いて成形体(例えば、レンズ基材)を調製し、次いで、色素を水又は溶媒中に分散させて得られた分散液に成形体を浸漬して色素を成形体中に含浸させ、色素を含浸させた成形体を乾燥してもよい。このようにして得られた、成形体を用いて光学材料を調製することができる。 For example, a molded product (for example, a lens substrate) is prepared using a composition for an optical material containing no dye, and then the molded product is immersed in a dispersion obtained by dispersing the dye in water or a solvent. The dye may be impregnated into the molded body, and the molded body impregnated with the dye may be dried. An optical material can be prepared using the molded body thus obtained.
 また、光学材料を調製した後に、ポルフィリン系化合物を光学材料に含浸させることもできる。その他、レンズ基材と、必要に応じて積層されるコーティング層とを備える眼鏡レンズを、色素を含む分散液に浸漬し、当該レンズに色素を含浸させることもできる。 Further, after preparing the optical material, the porphyrin-based compound can be impregnated into the optical material. In addition, a spectacle lens including a lens base material and a coating layer laminated as needed can be immersed in a dispersion liquid containing a dye to impregnate the lens with the dye.
 色素の含浸量は、分散液中の色素の濃度と、分散液の温度、成形体、光学材料等を浸漬させる時間により所望の含浸量に調整してもよい。濃度を高く、温度を高く、浸漬時間を長くするほどに含浸量が増す。含浸量をより精密に調整する場合は、含浸量が少ない条件で、複数回浸漬を繰り返すことにより実施してもよい。
 また、色素を含む光学材料用組成物をコーティング材料として用い、プラスチックレンズなどの光学材料上に色素含有コーティング層を形成してもよい。
The impregnation amount of the dye may be adjusted to a desired impregnation amount depending on the concentration of the dye in the dispersion liquid, the temperature of the dispersion liquid, the time for immersing the molded product, the optical material, and the like. The higher the concentration, the higher the temperature, and the longer the immersion time, the higher the impregnation amount. When the impregnation amount is adjusted more precisely, the immersion may be repeated a plurality of times under the condition that the impregnation amount is small.
Further, a composition for an optical material containing a dye may be used as a coating material to form a dye-containing coating layer on an optical material such as a plastic lens.
 このような構成を有する光学材料は、レンズ、好ましくは眼鏡レンズとして好適に用いることができる。
 なお、第1実施形態は前述の実施形態に限定されるものではなく、本願発明の効果を損なわない範囲で様々な態様を取り得ることができる。
An optical material having such a structure can be suitably used as a lens, preferably a spectacle lens.
The first embodiment is not limited to the above-described embodiment, and various embodiments can be taken as long as the effects of the present invention are not impaired.
<光学材料の用途>
 第1実施形態の光学材料の用途としては、
 眼鏡レンズ、ゴーグル、視力矯正用眼鏡レンズ、撮像機器用レンズ、液晶プロジェクター用フレネルレンズ、レンチキュラーレンズ、コンタクトレンズ、ウェアラブルデバイス用レンズなどのレンズ;
 発光ダイオード(LED)用封止材;光導波路;光学レンズ;光導波路等の接合に用いる光学用接着剤;光学レンズなどに用いる反射防止膜;液晶表示装置部材(基板、導光板、フィルム、シートなど)に用いる透明性コーティング;車のフロントガラス、バイクのヘルメット等に用いる風防;透明性基板;照明器具のカバー、照明器具の照射面等に貼り付けるフィルム;
 等を挙げることができる。
 第1実施形態の光学材料は、紫外線吸収剤を含むことができるため、上記の中でもレンズが好ましい。
<Use of optical materials>
As an application of the optical material of the first embodiment,
Lenses such as spectacle lenses, goggles, spectacle lenses for vision correction, lenses for imaging devices, frennel lenses for liquid crystal projectors, wrenchular lenses, contact lenses, lenses for wearable devices;
Encapsulant for light emitting diode (LED); Optical waveguide; Optical lens; Optical adhesive used for joining optical waveguides, etc .; Antireflection film used for optical lenses, etc .; Liquid crystal display device member (substrate, light guide plate, film, sheet) Transparent coating used for (etc.); Windshield used for car front glass, motorcycle helmet, etc .; Transparent substrate; Cover for lighting equipment, film to be attached to the irradiation surface of lighting equipment, etc.;
And so on.
Since the optical material of the first embodiment can contain an ultraviolet absorber, a lens is preferable among the above.
(レンズ)
 第1実施形態のレンズは、前述の第1実施形態の光学材料を含む。第1実施形態のレンズは、光学材料からなるレンズ基材を備えるレンズであってもよく、当該レンズ基材の片面又は両面にコーティング層を備えていてもよい。第1実施形態のレンズは、前述の光学材料の用途にて例示した各種レンズのいずれかであってもよい。
(lens)
The lens of the first embodiment includes the optical material of the first embodiment described above. The lens of the first embodiment may be a lens having a lens base material made of an optical material, or may have a coating layer on one side or both sides of the lens base material. The lens of the first embodiment may be any of the various lenses exemplified in the above-mentioned use of the optical material.
 コーティング層としては、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。 Specific examples of the coating layer include a primer layer, a hard coat layer, an antireflection layer, an anti-fog coat layer, an anti-staining layer, and a water-repellent layer. Each of these coating layers can be used alone, or a plurality of coating layers can be used in layers. When the coating layers are applied to both surfaces, the same coating layer may be applied to each surface, or different coating layers may be applied to each surface.
 これらのコーティング層は、第1実施形態において用いられる色素、赤外線吸収剤、光安定剤、酸化防止剤等、染料、顔料等、フォトクロミック染料、フォトクロミック顔料等、帯電防止剤、その他のレンズの性能を高めるための公知の添加剤等を含んでいてもよい。
 塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
These coating layers provide the performance of dyes, infrared absorbers, light stabilizers, antioxidants, dyes, pigments, photochromic dyes, photochromic pigments, antistatic agents, and other lenses used in the first embodiment. It may contain a known additive or the like for enhancing.
For the layer to be coated by coating, various leveling agents for the purpose of improving the coatability may be used.
 プライマー層は通常、後述するハードコート層とレンズ基材との間に形成される。プライマー層は、その上に形成するハードコート層とレンズ基材との密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層は、得られたレンズ基材に対する密着性の高いものであればよく、例えば、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラミン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物がプライマー層の形成に用いられる。プライマー組成物の調製では、組成物の粘度を調整する目的でレンズ基材に影響を及ぼさない溶媒を用いてもよく、溶媒を用いなくてもよい。 The primer layer is usually formed between the hard coat layer described later and the lens substrate. The primer layer is a coating layer for the purpose of improving the adhesion between the hard coat layer formed on the primer layer and the lens base material, and it is also possible to improve the impact resistance in some cases. The primer layer may be a primer layer having high adhesion to the obtained lens substrate. For example, a primer composition containing a urethane resin, an epoxy resin, a polyester resin, a melamine resin, or a polyvinyl acetal as a main component may be used. It is used to form a primer layer. In the preparation of the primer composition, a solvent that does not affect the lens substrate may be used or may not be used for the purpose of adjusting the viscosity of the composition.
 塗布法、乾式法のいずれの方法によってもプライマー層を形成することができる。塗布法を用いる場合、プライマー組成物を、スピンコート、ディップコートなど公知の塗布方法でレンズ基材に塗布した後、固化することによりプライマー層が形成される。乾式法で行う場合は、CVD法、真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズ基材の表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理が行われていてもよい。 The primer layer can be formed by either the coating method or the dry method. When the coating method is used, the primer layer is formed by applying the primer composition to the lens substrate by a known coating method such as spin coating or dip coating and then solidifying the primer composition. When it is carried out by a dry method, it is formed by a known dry method such as a CVD method or a vacuum vapor deposition method. When forming the primer layer, the surface of the lens substrate may be subjected to pretreatment such as alkali treatment, plasma treatment, or ultraviolet treatment, if necessary, for the purpose of improving adhesion.
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能等を付与することを目的としたコーティング層である。
 ハードコート層の形成には、硬化性を有する有機ケイ素化合物と、Si,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる元素を含む酸化物微粒子の1種以上と、を含むハードコート組成物が使用されてもよく、
 硬化性を有する有機ケイ素化合物と、Si,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる2種以上の元素を含む複合酸化物の微粒子の1種以上と、を含むハードコート組成物が使用されてもよい。
The hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, temperature water resistance, heat resistance, and weather resistance to the lens surface.
For the formation of the hard coat layer, an organic silicon compound having curability and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti are used. A hard coat composition containing one or more of the oxide fine particles contained therein may be used.
A composite oxide containing a curable organic silicon compound and two or more elements selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In and Ti. A hard coat composition containing one or more of the fine particles of the above may be used.
 ハードコート組成物は、上記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物及び多官能性エポキシ化合物からなる群から選択される少なくとも1つを含むことが好ましい。
 ハードコート組成物は、レンズ基材に影響を及ぼさない溶媒を含んでいてもよく、溶媒を含んでいなくてもよい。
In addition to the above components, the hard coat composition comprises amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds. It is preferred to include at least one selected from the group.
The hard coat composition may or may not contain a solvent that does not affect the lens substrate.
 ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、紫外線、可視光線等のエネルギー線照射、熱硬化などが挙げられる。干渉縞の発生を抑制する観点から、ハードコート層の屈折率は、レンズ基材との屈折率の差が±0.1の範囲にあるのが好ましい。 The hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing it. Examples of the curing method include irradiation with energy rays such as ultraviolet rays and visible light, and heat curing. From the viewpoint of suppressing the generation of interference fringes, the refractive index of the hard coat layer is preferably in the range of ± 0.1 in the difference in refractive index from the lens substrate.
 反射防止層には無機系及び有機系がある。
 無機系の反射防止層は、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。
 有機系の反射防止層は、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
 反射防止層は、必要に応じてハードコート層の上に形成されてもよい。
The antireflection layer includes an inorganic type and an organic type.
The inorganic antireflection layer is formed by a dry method such as a vacuum vapor deposition method, a sputtering method, an ion plating method, an ion beam assist method, and a CVD method using an inorganic oxide such as SiO 2 or TiO 2 .
The organic antireflection layer is formed by a wet process using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
The antireflection layer may be formed on the hard coat layer, if necessary.
 反射防止層は多層であっても単層であってもよい。
 効果的に反射防止機能を発現する観点から、反射防止層は多層であることが好ましく、その場合、低屈折率層と高屈折率層とを交互に積層することが好ましい。また、低屈折率層と高屈折率層との屈折率差は0.1以上であることが好ましい。
 高屈折率層としては、ZnO、TiO、CeO、Sb2O、SnO、ZrO、Ta等の層があり、低屈折率層としては、SiO等の層が挙げられる。
 単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。
The antireflection layer may be a multilayer or a single layer.
From the viewpoint of effectively exhibiting the antireflection function, the antireflection layer is preferably multi-layered, and in that case, the low refractive index layer and the high refractive index layer are preferably laminated alternately. Further, the difference in refractive index between the low refractive index layer and the high refractive index layer is preferably 0.1 or more.
Examples of the high refractive index layer include layers such as ZnO, TiO 2 , CeO 2 , Sb2O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5 , and examples of the low refractive index layer include layers such as SiO 2 .
When used in a single layer, it is preferable that the refractive index is at least 0.1 or more lower than the refractive index of the hard coat layer.
 反射防止層の上には、必要に応じて防曇コート層、防汚染層、撥水層等が形成されていてもよい。防曇層、防汚染層、撥水層等を形成する方法としては、特に限定されず、従来公知の方法を適用することができる。 An anti-fog coat layer, an anti-contamination layer, a water-repellent layer, etc. may be formed on the anti-reflection layer, if necessary. The method for forming the anti-fog layer, the anti-contamination layer, the water-repellent layer and the like is not particularly limited, and conventionally known methods can be applied.
(ウェアラブルデバイス)
 第1実施形態のウェアラブルデバイスは、ウェアラブルデバイスに用いるためのレンズを備える。第1実施形態のウェアラブルデバイスは、例えば、コンピュータゲーム等に用いられるウェアラブルデバイス、仮想現実(VR:Virtual Reality)、拡張現実(AR:Augmented Reality)等を実現したウェアラブルデバイスなどであってもよい。第1実施形態のレンズを備えるウェアラブルデバイスは、画像が高速で処理されるコンピュータゲーム等に用いられた場合であっても、対象物の赤色及び緑色を鮮明に認識することが可能となり、例えば、e-スポーツのようなコンピュータゲームによる電子競技にも適している。
(Wearable device)
The wearable device of the first embodiment includes a lens for use in the wearable device. The wearable device of the first embodiment may be, for example, a wearable device used for a computer game or the like, a wearable device that realizes virtual reality (VR: Virtual Reality), augmented reality (AR), or the like. The wearable device provided with the lens of the first embodiment can clearly recognize the red and green of an object even when used in a computer game or the like in which an image is processed at high speed, for example. It is also suitable for electronic competitions by computer games such as e-sports.
≪アイウェア≫
 第1実施形態のアイウェアは、対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよいアイウェアであって、
 前記対物側の光学部材における対物側の最表面と前記対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、
 (A)560nm~610nmの範囲内に極大吸収波長aが存在し、
 (B)400nm~520nmの範囲内に極大吸収波長bが存在し、
 前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
≪Eyewear≫
The eyewear of the first embodiment is eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
In the spectrum measured in accordance with CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the optical member on the opposite eye side on the opposite eye side.
(A) The maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
(B) The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
The ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
 第1実施形態のアイウェアは、上記の構成を含むことで、青色が抑制された自然な色調を有し、対象物の赤色及び緑色を鮮明に認識することができる。 By including the above configuration, the eyewear of the first embodiment has a natural color tone in which blue is suppressed, and the red and green of the object can be clearly recognized.
 第1実施形態の光学材料は、第1実施形態のアイウェアにおける光学部材として用いることができる。また、第1実施形態の光学材料の好ましい態様は、第1実施形態のアイウェアにおける光学部材の好ましい態様として用いることができる。
 例えば、上述の式(1)、式(2)、式(3)等から求められるCIE1976(L*,a*,b*)表色系の色差パラメータの範囲についても、第1実施形態のアイウェアにおける光学部材に適用することができる。
The optical material of the first embodiment can be used as an optical member in the eyewear of the first embodiment. Further, the preferred embodiment of the optical material of the first embodiment can be used as a preferred embodiment of the optical member in the eyewear of the first embodiment.
For example, the range of the color difference parameter of the CIE1976 (L *, a *, b *) color system obtained from the above equations (1), (2), (3) and the like is also the eye of the first embodiment. It can be applied to optical members in clothing.
 第1実施形態のアイウェアは、対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよい。
 第1実施形態のアイウェアは、対物側の光学部材における対物側の最表面と対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、上記(A)及び上記(B)を満たし、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が1.00~2.50であるものであれば、特に制限はない。
The eyewear of the first embodiment may include at least two optical members, an optical member on the objective side and an optical member on the eye-to-eye side facing the optical member on the objective side.
The eyewear of the first embodiment is the above-mentioned in the spectrum measured according to CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the eyepiece side of the optical member on the opposite eye side. As long as (A) and the above (B) are satisfied and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50, the limitation is particularly limited. do not have.
 対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含むアイウェアとしては、例えば、クリップオンタイプのメガネ、オーバーグラスを備えるメガネ等が挙げられる。 Eyewear that includes at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side, includes, for example, clip-on type eyeglasses, eyeglasses provided with overglasses, and the like. Can be mentioned.
 第1実施形態のアイウェアは、1つの光学部材を含んでもよい。
 1つの光学部材を含むアイウェアとしては、例えば、レンズが染色されたメガネ等があげられる。
The eyewear of the first embodiment may include one optical member.
Examples of eyewear including one optical member include eyeglasses having a dyed lens.
 光学部材としては、例えば、レンズ、フィルタ、ゴーグル、鏡、ヘルメット用バイザー、LED(light emitting diode)スクリーン、コンピュータスクリーン、フロントガラス等が挙げられる。 Examples of the optical member include a lens, a filter, goggles, a mirror, a visor for a helmet, an LED (light emitting dimension) screen, a computer screen, a windshield, and the like.
〔第2実施形態〕
≪メガネレンズ≫
 第2実施形態のメガネレンズは、機能層を含み、前記機能層は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、(B)400nm~520nmの範囲内に極大吸収波長bが存在し、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
[Second Embodiment]
≪Glasses lens≫
The spectacle lens of the second embodiment includes a functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and (B). The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
 第2実施形態のメガネレンズを介して対象物を視認する際に対象物の赤色及び緑色を鮮明に認識することができる。この理由としては、以下のように推測される。まず、560nm~610nmの範囲内に極大吸収波長が存在することにより、波長域が赤色光と緑色光との間に位置する光がメガネレンズに吸収されやすくなる。これにより、メガネレンズにて波長域が赤色光と緑色光との間に位置する光の透過率が低下し、対象物の赤色及び緑色を鮮明に認識しやすくなる。
 ここで、波長域が赤色光と緑色光との間に位置する光がメガネレンズに吸収されやすくなる場合、つまり、560nm~610nmの範囲内に極大吸収波長が存在する場合には、レンズの色が青色となることで外観が不自然になる場合がある。
 そこで、本発明者らは、赤色光と緑色光との間の色(例えば黄色領域)に対する補色である青色領域(つまり波長400nm~520nm)の光について、透過率を低下させることを検討した。
 第2実施形態のメガネレンズは、400nm~520nmの範囲内に極大吸収波長bが存在することで青色領域の光の透過率を低下させることができる。
 また、第2実施形態のメガネレンズは、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
 以上により、上記各構成を含む第2実施形態のメガネレンズは、青色が抑制された自然な色調を有し、対象物の赤色及び緑色を鮮明に認識することができる。
When the object is visually recognized through the spectacle lens of the second embodiment, the red color and the green color of the object can be clearly recognized. The reason for this is presumed as follows. First, since the maximum absorption wavelength exists in the range of 560 nm to 610 nm, the light whose wavelength range is located between the red light and the green light is easily absorbed by the spectacle lens. As a result, the transmittance of light whose wavelength range is located between the red light and the green light is reduced by the spectacle lens, and it becomes easy to clearly recognize the red and green of the object.
Here, when the light whose wavelength range is located between the red light and the green light is easily absorbed by the spectacle lens, that is, when the maximum absorption wavelength exists in the range of 560 nm to 610 nm, the color of the lens. The appearance may be unnatural due to the blue color of.
Therefore, the present inventors have studied to reduce the transmittance of light in the blue region (that is, wavelength 400 nm to 520 nm), which is a complementary color to the color between red light and green light (for example, the yellow region).
In the spectacle lens of the second embodiment, the transmittance of light in the blue region can be reduced by the presence of the maximum absorption wavelength b in the range of 400 nm to 520 nm.
Further, in the spectacle lens of the second embodiment, the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
As described above, the spectacle lens of the second embodiment including each of the above configurations has a natural color tone in which blue is suppressed, and the red and green of the object can be clearly recognized.
<機能層>
 第2実施形態のメガネレンズは、機能層を含み、機能層は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、(B)400nm~520nmの範囲内に極大吸収波長bが存在し、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
 第2実施形態のメガネレンズでは、560nm~610nmの範囲内に極大吸収波長aが1つのみ存在していてもよく、2つ以上存在していてもよい。
 第2実施形態のメガネレンズでは、400nm~520nmの範囲内に極大吸収波長bが1つのみ存在していてもよく、2つ以上存在していてもよい。
<Functional layer>
The spectacle lens of the second embodiment includes a functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm in a spectrum measured according to CIE1976, and (B) 400 nm. The maximum absorption wavelength b exists in the range of about 520 nm, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
In the spectacle lens of the second embodiment, only one maximum absorption wavelength a may be present in the range of 560 nm to 610 nm, or two or more of them may be present.
In the spectacle lens of the second embodiment, only one maximum absorption wavelength b may be present in the range of 400 nm to 520 nm, or two or more of them may be present.
 機能層は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在する。
 これによって、対象物の赤色及び緑色を鮮明に認識することができる。
 上記の観点から、極大吸収波長aが、570nm~600nmの範囲内に存在することが好ましく、580nm~595nmの範囲内に存在することがより好ましい。
In the spectrum measured according to CIE1976, the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm.
This makes it possible to clearly recognize the red color and green color of the object.
From the above viewpoint, the maximum absorption wavelength a is preferably in the range of 570 nm to 600 nm, and more preferably in the range of 580 nm to 595 nm.
 前記極大吸収波長aにおける透過率は、5%~50%であることが好ましく、10%~40%であることがより好ましく、20%~40%であることがさらに好ましい。 The transmittance at the maximum absorption wavelength a is preferably 5% to 50%, more preferably 10% to 40%, and even more preferably 20% to 40%.
 極大吸収波長aのピークの半値幅は、10nm~70nmであることが好ましく、10nm~50nmであることがより好ましく、20nm~40nmであることがさらに好ましい。
 極大吸収波長aのピークの半値幅が10nm以上であることにより、赤色光と緑色光との間に位置する光が広波長域にて吸収される傾向にある。
 極大吸収波長aのピークの半値幅が70nm以下であることにより、対象物の視認に必要な赤色光又は緑色光の間の光が吸収されることが抑制される傾向にある。
The half width of the peak of the maximum absorption wavelength a is preferably 10 nm to 70 nm, more preferably 10 nm to 50 nm, and even more preferably 20 nm to 40 nm.
Since the half width of the peak of the maximum absorption wavelength a is 10 nm or more, the light located between the red light and the green light tends to be absorbed in a wide wavelength range.
When the half width of the peak of the maximum absorption wavelength a is 70 nm or less, the absorption of light between the red light or the green light necessary for visually recognizing the object tends to be suppressed.
 第2実施形態において、半値幅とは半値全幅のことであり、吸収スペクトルにおいて極大吸収波長における吸光係数値(εg)の1/2の値にて引いた横軸に並行な直線と吸収ピークとにより形成される2つの交点の間の距離(nm)で表される。 In the second embodiment, the full width at half maximum is the full width at half maximum, and the straight line parallel to the horizontal axis and the absorption peak drawn by 1/2 of the absorption coefficient value (εg) at the maximum absorption wavelength in the absorption spectrum. It is expressed as the distance (nm) between the two intersections formed by.
 機能層は、CIE1976に準拠して測定したスペクトルにおいて、(B)400nm~520nmの範囲内に極大吸収波長bが存在する。
 これによって、第2実施形態のメガネレンズは、青色が抑制された自然な色調を有する。
 上記の観点から、極大吸収波長bが、430nm~490nmの範囲内に存在することが好ましく、440nm~480nmの範囲内に存在することがより好ましい。
In the spectrum measured according to CIE1976, the functional layer has a maximum absorption wavelength b in the range of (B) 400 nm to 520 nm.
As a result, the spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed.
From the above viewpoint, the maximum absorption wavelength b is preferably in the range of 430 nm to 490 nm, and more preferably in the range of 440 nm to 480 nm.
 前記極大吸収波長bにおける透過率は、3%~60%であることが好ましく、10%~55%であることがより好ましく、15%~50%であることがさらに好ましい。 The transmittance at the maximum absorption wavelength b is preferably 3% to 60%, more preferably 10% to 55%, and even more preferably 15% to 50%.
 極大吸収波長bのピークの半値幅は、20nm~100nmであることが好ましく、30nm~90nmであることがより好ましく、40nm~80nmであることがさらに好ましい。
 極大吸収波長bのピークの半値幅が20nm以上であることにより、560nm~610nmの補色領域の光を効果的に吸収できる。
 極大吸収波長bのピークの半値幅が100nm以下であることにより、補色領域の光以外の光が吸収され、対象物の視認性が低下することを抑制できる。
The half width of the peak of the maximum absorption wavelength b is preferably 20 nm to 100 nm, more preferably 30 nm to 90 nm, and even more preferably 40 nm to 80 nm.
When the half width of the peak of the maximum absorption wavelength b is 20 nm or more, light in the complementary color region of 560 nm to 610 nm can be effectively absorbed.
When the half width of the peak of the maximum absorption wavelength b is 100 nm or less, it is possible to suppress the absorption of light other than the light in the complementary color region and the deterioration of the visibility of the object.
 前記極大吸収波長bにおける透過率が3%~60%であり、前記極大吸収波長bのピークの半値幅が20nm~100nmであることも好ましい。 It is also preferable that the transmittance at the maximum absorption wavelength b is 3% to 60%, and the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm.
 機能層は、極大吸収波長bを極大吸収波長aの補色領域の波長とする観点から、極大吸収波長aと極大吸収波長bとの差が、100nm~200nmであることが好ましく、100nm~180nmであることがより好ましく、100nm~160nmであることがさらに好ましい。 In the functional layer, the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is preferably 100 nm to 200 nm, preferably 100 nm to 180 nm, from the viewpoint that the maximum absorption wavelength b is the wavelength of the complementary color region of the maximum absorption wavelength a. It is more preferably present, and even more preferably 100 nm to 160 nm.
 第2実施形態のメガネレンズは、CIE1976(L*,a*,b*)表色系において、(a*+b*1/2が10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。
 第2実施形態のメガネレンズは、CIE1976(L*,a*,b*)表色系において、b*が-10~+10であることが好ましく、-9~+9であることがより好ましく、-8~+8であることがさらに好ましい。
In the spectacle lens of the second embodiment, in the CIE1976 (L *, a *, b *) color system, (a * 2 + b * 2 ) 1/2 is preferably 10 or less, and 9 or less. Is more preferable, and 8 or less is further preferable.
In the spectacle lens of the second embodiment, in the CIE1976 (L *, a *, b *) color system, b * is preferably -10 to +10, more preferably -9 to +9, and-. It is more preferably 8 to +8.
 第2実施形態のメガネレンズは、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
 これによって、得られるメガネレンズにおいて、青色が抑制された自然な色調を有することと、対象物の赤色及び緑色を鮮明に認識することができることと、をバランスよく両立することができる。
 上記の観点から、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.10~2.20であることが好ましく、1.20~2.00であることがより好ましく、1.30~1.80であることがさらに好ましい。
In the spectacle lens of the second embodiment, the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
As a result, in the obtained spectacle lens, it is possible to achieve both having a natural color tone in which blue is suppressed and being able to clearly recognize red and green of an object in a well-balanced manner.
From the above viewpoint, the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is preferably 1.10 to 2.20, preferably 1.20 to 2.00. It is more preferably 1.30 to 1.80, and even more preferably 1.30 to 1.80.
 560nm~610nmにおける吸収率の積分値は、1800%~2800%であってもよく、好ましくは2000%~2500%である。
 400nm~520nmにおける吸収率の積分値は、2800%~4800%であってもよく、好ましくは3000%~4500%である。
The integrated value of the absorptivity at 560 nm to 610 nm may be 1800% to 2800%, preferably 2000% to 2500%.
The integrated value of the absorptivity at 400 nm to 520 nm may be 2800% to 4800%, preferably 3000% to 4500%.
 下記式(1)によって求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下である請求項1~請求項3のいずれか1項に記載のメガネレンズ。
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*=(ΔL*+Δa*+Δb*1/2・・・(2)
(式(1)中、ΔE*R-Gは、メガネレンズについて、D65光源を使用して式(2)によって求められる赤色と緑色との色差を表し、
 ΔE*R-G(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用して式(2)によって求められる赤色と緑色との色差を表す。
 式(2)中、ΔL*は明度差を表し、Δaは赤緑方向の色度差を表し、Δbは青黄方向の色度差を表す。)
In any one of claims 1 to 3, the color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system obtained by the following formula (1) is 0 or more and 10 or less. The described spectacle lens.
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2 ... (2)
(In the formula (1), ΔE * RG represents the color difference between red and green obtained by the formula (2) for the spectacle lens using the D65 light source.
ΔE * RG (w0) is 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] From an isocyanate composition containing heptane, a thiol composition containing pentaerythritol tetrakis (3-mercaptopropionate), and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane. The content of the 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole is 1.5% by mass, and the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07. A comparative optical material obtained by heating and curing a curable composition in which the total molar ratio of the thiol groups contained in the thiol composition 1 and the thiol composition 2 to the isocyanate groups contained in the isocyanate composition is 0.86. , The color difference between red and green obtained by the formula (2) using a D65 light source is represented.
In the formula (2), ΔL * represents the difference in brightness, Δa represents the difference in chromaticity in the red-green direction, and Δb represents the difference in chromaticity in the blue-yellow direction. )
 第2実施形態のメガネレンズにて、ΔC*R-Gが0以上であることにより、比較光学材料に対して赤色と緑色との色差が一定以上大きくなるため、対象物の赤色及び緑色をより鮮明に認識できる。
 ΔC*R-Gが10以下であることにより、赤色と緑色との色差が大きくなりすぎず、その結果、メガネレンズを介して対象物を視認する際に明るさが損なわれることなく、赤色及び緑色を鮮明に認識することができる。
In the spectacle lens of the second embodiment, when ΔC * RG is 0 or more, the color difference between red and green with respect to the comparative optical material becomes larger than a certain level. Can be clearly recognized.
When ΔC * RG is 10 or less, the color difference between red and green does not become too large, and as a result, the brightness is not impaired when the object is visually recognized through the spectacle lens. You can clearly recognize the green color.
 CIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gは、対象物の赤色及び緑色をより鮮明に認識しやすくなる観点から、3以上9以下であることが好ましく、3.5以上9以下であることがより好ましく、3.7以上8.5以下であることがさらに好ましく、4以上8以下であることが特に好ましい。 The color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system is preferably 3 or more and 9 or less from the viewpoint of making it easier to recognize the red color and green color of the object more clearly. , 3.5 or more and 9 or less, more preferably 3.7 or more and 8.5 or less, and particularly preferably 4 or more and 8 or less.
 ΔC*R-Gは、後述の実施例に記載の方法によって測定することができる。 ΔC * RG can be measured by the method described in Examples described later.
 第2実施形態のメガネレンズでは、例えば、メガネレンズに含まれる色素の種類、量、組み合わせ等、メガネレンズに必要に応じて含まれる紫外線吸収剤等の添加剤の種類、量、組み合わせ等、メガネレンズに必要に応じて含まれる高分子の種類、量、組み合わせ等を適宜調整することで上述のΔC*R-Gを調整し得る。 In the spectacle lens of the second embodiment, for example, the type, amount, combination, etc. of the dye contained in the spectacle lens, the type, amount, combination, etc. of the additive such as the ultraviolet absorber contained in the spectacle lens as needed, the spectacles. The above -mentioned ΔC * RG can be adjusted by appropriately adjusting the type, amount, combination, etc. of the polymer contained in the lens as needed.
 第2実施形態のメガネレンズの厚さは、特に限定されず、例えば0.5mm~10mmであってもよく、1mm~5mmであってもよく、1.5mm~3mmであってもよい。一例として、第2実施形態のメガネレンズの厚さは、2mmであってもよい。
 第2実施形態において、メガネレンズの厚さは、最大厚さを意味する。
The thickness of the spectacle lens of the second embodiment is not particularly limited, and may be, for example, 0.5 mm to 10 mm, 1 mm to 5 mm, or 1.5 mm to 3 mm. As an example, the thickness of the spectacle lens of the second embodiment may be 2 mm.
In the second embodiment, the thickness of the spectacle lens means the maximum thickness.
(第1の色素)
 第2実施形態のメガネレンズは、極大吸収波長が560nm~610nmの範囲内に位置する第1の色素を含むことが好ましい。第1の色素は、1種単独であってもよく、2種以上であってもよい。
 第2実施形態における第1の色素の具体的態様、好ましい態様、好ましい含有量等の詳細は、第1実施形態における第1の色素の具体的態様、好ましい態様、好ましい含有量等の詳細と同様である。
(First pigment)
The spectacle lens of the second embodiment preferably contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm. The first dye may be one kind alone or two or more kinds.
The details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the first dye in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the first dye in the first embodiment. Is.
(第2の色素)
 第2実施形態のメガネレンズは、極大吸収波長が400nm~520nmの範囲内に位置する第2の色素を含むことが好ましい。第2の色素は、1種単独であってもよく、2種以上であってもよい。
 第2実施形態における第2の色素の具体的態様、好ましい態様、好ましい含有量等の詳細は、第1実施形態における第2の色素の具体的態様、好ましい態様、好ましい含有量等の詳細と同様である。
(Second dye)
The spectacle lens of the second embodiment preferably contains a second dye having a maximum absorption wavelength in the range of 400 nm to 520 nm. The second dye may be one kind alone or two or more kinds.
The details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the second dye in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the second dye in the first embodiment. Is.
(高分子)
 第2実施形態における機能層は、高分子を含んでいることが好ましい。
 第2実施形態における高分子の具体的態様、好ましい態様、好ましい含有量等の詳細は、第1実施形態における高分子の具体的態様、好ましい態様、好ましい含有量等の詳細と同様である。
(High molecular)
The functional layer in the second embodiment preferably contains a polymer.
The details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the polymer in the second embodiment are the same as the details of the specific embodiment, the preferred embodiment, the preferred content, etc. of the polymer in the first embodiment.
(添加剤)
 第2実施形態のメガネレンズは、上記以外の他の成分として添加剤を含有してもよい。
 上記添加剤として、重合触媒、内部離型剤、染料、紫外線吸収剤などを挙げることができる。第2実施形態において、ポリウレタン及びポリチオウレタンを得る際には、重合触媒を用いてもよく、用いなくてもよい。
 第2実施形態における重合触媒、内部離型剤、染料、紫外線吸収剤などの各添加剤の具体的態様、好ましい態様、好ましい含有量等の詳細は、第1実施形態における重合触媒、内部離型剤、染料、紫外線吸収剤などの各添加剤の具体的態様、好ましい態様、好ましい含有量等の詳細と同様である。
(Additive)
The spectacle lens of the second embodiment may contain an additive as an ingredient other than the above.
Examples of the additive include a polymerization catalyst, an internal mold release agent, a dye, and an ultraviolet absorber. In the second embodiment, when polyurethane and polythiourethane are obtained, a polymerization catalyst may or may not be used.
Details of specific embodiments, preferred embodiments, preferred contents and the like of the additives such as the polymerization catalyst, the internal release agent, the dye and the ultraviolet absorber in the second embodiment are described in detail in the polymerization catalyst and the internal release form in the first embodiment. It is the same as the details of the specific embodiment, the preferable embodiment, the preferable content and the like of each additive such as an agent, a dye and an ultraviolet absorber.
 第2実施形態のメガネレンズは、色調調整剤を含んでいてもよいが、必ずしも含むことを要しない。
 上述の通り、第2実施形態のメガネレンズは、色調調整剤を含まなくても青色が抑制された自然な色調を有する。そのため、色調調整剤を含むことを要しない。
The spectacle lens of the second embodiment may contain a color tone adjusting agent, but does not necessarily have to contain the color tone adjusting agent.
As described above, the spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed even if the color tone adjusting agent is not contained. Therefore, it is not necessary to include a color tone adjusting agent.
 色調調整剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、高分子を含むメガネレンズの色相を調整する機能を有するものを用いてもよい。
 色調調整剤としては、ブルーイング剤を用いてもよい。ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂材料からなるメガネレンズの色相を調整する機能を有するものを用いてもよい。ブルーイング剤は、青色から紫色を示す物質を含んでいてもよい。
As the color tone adjusting agent, one having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of a spectacle lens containing a polymer may be used.
As the color tone adjusting agent, a bluing agent may be used. As the brewing agent, an agent having an absorption band in the wavelength range from orange to yellow in the visible light region and having a function of adjusting the hue of a spectacle lens made of a resin material may be used. The bluing agent may contain a substance exhibiting blue to purple.
 第2実施形態のメガネレンズは、色調調整剤を含まなくても青色が抑制された自然な色調を有するが、色調調整剤を含んでいてもよい。メガネレンズが色調調整剤を含む場合、色調調整剤の含有量が比較的少量であってもよい。
 第2実施形態のメガネレンズが色調調整剤を含む場合に、例えば、色調調整剤の含有量は、5ppm以下であってもよく、3ppm以下であってもよい。
 また、第2実施形態のメガネレンズが色調調整剤の含有量の下限としては特に制限はない。例えば、色調調整剤の含有量は、0ppm以上であってもよく、0ppm超であってもよい。
The spectacle lens of the second embodiment has a natural color tone in which blue color is suppressed even if it does not contain a color tone adjusting agent, but may contain a color tone adjusting agent. When the spectacle lens contains a color tone adjusting agent, the content of the color tone adjusting agent may be relatively small.
When the spectacle lens of the second embodiment contains a color tone adjusting agent, for example, the content of the color tone adjusting agent may be 5 ppm or less, or may be 3 ppm or less.
Further, the lower limit of the content of the color tone adjusting agent in the spectacle lens of the second embodiment is not particularly limited. For example, the content of the color tone adjusting agent may be 0 ppm or more, or may be more than 0 ppm.
(視感透過率)
 第2実施形態のメガネレンズは、視認性の観点から、視感透過率が65%以上であることが好ましく、68%以上であることがより好ましく、70%以上であることがさらに好ましい。
 視感透過率は、分光測色計(例えば、コニカミノルタ製CM-5)を用いて、厚さ2mmのメガネレンズを用いて測定することができる。
(Visible transmittance)
From the viewpoint of visibility, the spectacle lens of the second embodiment preferably has a visual transmittance of 65% or more, more preferably 68% or more, and further preferably 70% or more.
The visual transmittance can be measured using a spectrocolorimeter (for example, CM-5 manufactured by Konica Minolta) and a spectacle lens having a thickness of 2 mm.
<メガネレンズ用組成物>
 メガネレンズは、例えば、以下に説明するメガネレンズ用組成物を用いて製造することができる。
 メガネレンズ用組成物は、CIE1976に準拠して測定したスペクトルにおいて560nm~610nmの範囲内に極大吸収波長aが存在する第1の色素と、CIE1976に準拠して測定したスペクトルにおいて400nm~520nmの範囲内に極大吸収波長bが存在する第2の色素と、を含み、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
<Composition for spectacle lenses>
The spectacle lens can be manufactured, for example, by using the composition for spectacle lens described below.
The composition for a spectacle lens has a first dye having a maximum absorption wavelength a in the range of 560 nm to 610 nm in the spectrum measured according to CIE1976, and a composition in the range of 400 nm to 520 nm in the spectrum measured according to CIE1976. The ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50, including the second dye having the maximum absorption wavelength b inside. ..
 メガネレンズ用組成物は、上述の高分子又は上述のモノマーを含んでいてもよく、紫外線吸収剤等の添加剤を含んでいてもよい。 The composition for a spectacle lens may contain the above-mentioned polymer or the above-mentioned monomer, or may contain an additive such as an ultraviolet absorber.
 第2実施形態における色素の好ましい含有量は、第1実施形態における色素の好ましい含有量と同様である。 The preferred content of the dye in the second embodiment is the same as the preferred content of the dye in the first embodiment.
 第2実施形態における混合方法等のメガネレンズ用組成物の製造方法の詳細は、第1実施形態における混合方法等のメガネレンズ用組成物の製造方法の詳細と同様である。 The details of the method for producing the composition for spectacle lenses such as the mixing method in the second embodiment are the same as the details of the method for producing the composition for spectacle lenses such as the mixing method in the first embodiment.
<メガネレンズの態様>
 第2実施形態のメガネレンズの態様としては、機能層からなるメガネレンズ、機能層とコーティング層とからなるメガネレンズ等が挙げられる。
<Aspects of spectacle lenses>
Examples of the spectacle lens of the second embodiment include a spectacle lens composed of a functional layer, a spectacle lens composed of a functional layer and a coating layer, and the like.
 第2実施形態におけるコーティング層の具体的態様、製造方法、コーティング層に含まれてもよい添加剤の種類、色素の好ましい含有量等の詳細は、第1実施形態におけるコーティング層の具体的態様、製造方法、コーティング層に含まれてもよい添加剤の種類、色素の好ましい含有量等の詳細と同様である。 Details of the specific embodiment of the coating layer in the second embodiment, the production method, the types of additives that may be contained in the coating layer, the preferable content of the dye, and the like are described in the specific embodiment of the coating layer in the first embodiment. The details are the same as for the production method, the types of additives that may be contained in the coating layer, the preferable content of the dye, and the like.
 第2実施形態のメガネレンズは、さらに、表面に反射防止層を含むことが好ましい。
 第2実施形態における反射防止層の具体的態様、好ましい態様、製造方法等の詳細は、第1実施形態における反射防止層の具体的態様、好ましい態様、製造方法等の詳細と同様である。
It is preferable that the spectacle lens of the second embodiment further includes an antireflection layer on the surface.
The details of the specific embodiment, the preferred embodiment, the manufacturing method and the like of the antireflection layer in the second embodiment are the same as the details of the specific aspect, the preferable mode, the manufacturing method and the like of the antireflection layer in the first embodiment.
 プライマー層は通常、ハードコート層とレンズ基材との間に形成される。
 第2実施形態におけるプライマー層の具体的態様、好ましい態様、製造方法等の詳細は、第1実施形態におけるプライマー層の具体的態様、好ましい態様、製造方法等の詳細と同様である。
The primer layer is usually formed between the hard coat layer and the lens substrate.
The details of the specific aspect, the preferable aspect, the manufacturing method and the like of the primer layer in the second embodiment are the same as the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the primer layer in the first embodiment.
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能等を付与することを目的としたコーティング層である。
 第2実施形態におけるハードコート層の具体的態様、好ましい態様、製造方法等の詳細は、第1実施形態におけるハードコート層の具体的態様、好ましい態様、製造方法等の詳細と同様である。
The hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, temperature water resistance, heat resistance, and weather resistance to the lens surface.
The details of the specific aspect, the preferable aspect, the manufacturing method and the like of the hard coat layer in the second embodiment are the same as the details of the specific aspect, the preferable aspect, the manufacturing method and the like of the hard coat layer in the first embodiment.
≪アイウェア≫
 第2実施形態のアイウェアは、対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよいアイウェアであって、
 前記対物側の光学部材における対物側の最表面と前記対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、
 (A)560nm~610nmの範囲内に極大吸収波長aが存在し、
 (B)400nm~520nmの範囲内に極大吸収波長bが存在し、
 前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50である。
 第2実施形態におけるアイウェアの具体的態様、好ましい態様等の詳細は、第1実施形態におけるアイウェアの具体的態様、好ましい態様等の詳細と同様である。
≪Eyewear≫
The eyewear of the second embodiment is eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
In the spectrum measured in accordance with CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the optical member on the opposite eye side on the opposite eye side.
(A) The maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
(B) The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
The ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
The details of the specific aspects, preferred embodiments, etc. of the eyewear in the second embodiment are the same as the details of the specific embodiments, preferred embodiments, etc. of the eyewear in the first embodiment.
 第2実施形態には、以下の態様が含まれる。
<2-1> 機能層を含み、前記機能層は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、(B)400nm~520nmの範囲内に極大吸収波長bが存在し、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50であるメガネレンズ。
<2-2> 極大吸収波長aと極大吸収波長bとの差が、100nm~200nmである<2-1>に記載のメガネレンズ。
<2-3> CIE1976(L*,a*,b*)表色系において、(a*+b*1/2が10以下である<2-1>又は<2-2>に記載のメガネレンズ。
<2-4> 下記式(1)によって求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下である<2-1>~<2-3>のいずれか1つに記載のメガネレンズ。
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*=(ΔL*+Δa*+Δb*1/2・・・(2)
(式(1)中、ΔE*R-Gは、メガネレンズについて、D65光源を使用して式(2)によって求められる赤色と緑色との色差を表し、
 ΔE*R-G(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用して式(2)によって求められる赤色と緑色との色差を表す。
 式(2)中、ΔL*は明度差を表し、Δa*は赤緑方向の色度差を表し、Δb*は青黄方向の色度差を表す。)
<2-5> 前記極大吸収波長bが430nm~490nmである<2-1>~<2-4>のいずれか1つに記載のメガネレンズ。
<2-6> 前記極大吸収波長bにおける透過率が3%~60%であり、前記極大吸収波長bのピークの半値幅が20nm~100nmである<2-1>~<2-5>のいずれか1つに記載のメガネレンズ。
<2-7> 前記極大吸収波長aにおける透過率が5%~50%であり、前記極大吸収波長aのピークの半値幅が10nm~70nmである<2-1>~<2-6>のいずれか1つに記載のメガネレンズ。
<2-8> 前記機能層が、ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、及びポリ(メタ)アクリレートからなる群から選択される少なくとも1種の高分子を含む<2-1>~<2-7>のいずれか1つに記載のメガネレンズ。
<2-9> さらに、表面に反射防止層を含む<2-1>~<2-8>のいずれか1つに記載のメガネレンズ。
<2-10> 対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよいアイウェアであって、
 前記対物側の光学部材における対物側の最表面と前記対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、
 (A)560nm~610nmの範囲内に極大吸収波長aが存在し、
 (B)400nm~520nmの範囲内に極大吸収波長bが存在し、
 前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50であるアイウェア。
The second embodiment includes the following aspects.
<2-1> Including the functional layer, the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm and (B) 400 nm to 520 nm in the spectrum measured according to CIE1976. A spectacle lens in which the maximum absorption wavelength b exists within the range, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
<2-2> The spectacle lens according to <2-1>, wherein the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is 100 nm to 200 nm.
<2-3> Described in <2-1> or <2-2> in which (a * 2 + b * 2 ) 1/2 is 10 or less in the CIE1976 (L *, a *, b *) color system. Glasses lens.
<2-4> The color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system obtained by the following equation (1) is 0 or more and 10 or less <2-1> to <2. The spectacle lens according to any one of -3>.
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2 ... (2)
(In the formula (1), ΔE * RG represents the color difference between red and green obtained by the formula (2) for the spectacle lens using the D65 light source.
ΔE * RG (w0) is 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] From an isocyanate composition containing heptane, a thiol composition containing pentaerythritol tetrakis (3-mercaptopropionate), and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane. The content of the 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole is 1.5% by mass, and the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07. A comparative optical material obtained by heating and curing a curable composition in which the total molar ratio of the thiol groups contained in the thiol composition 1 and the thiol composition 2 to the isocyanate groups contained in the isocyanate composition is 0.86. , The color difference between red and green obtained by the formula (2) using a D65 light source is represented.
In the formula (2), ΔL * represents the difference in brightness, Δa * represents the difference in chromaticity in the red-green direction, and Δb * represents the difference in chromaticity in the blue-yellow direction. )
<2-5> The spectacle lens according to any one of <2-1> to <2-4>, wherein the maximum absorption wavelength b is 430 nm to 490 nm.
<2-6> Of <2-1> to <2-5>, the transmittance at the maximum absorption wavelength b is 3% to 60%, and the half width of the peak of the maximum absorption wavelength b is 20 nm to 100 nm. The spectacle lens described in any one.
<2-7> Of <2-1> to <2-6>, the transmittance at the maximum absorption wavelength a is 5% to 50%, and the half width of the peak of the maximum absorption wavelength a is 10 nm to 70 nm. The spectacle lens described in any one.
<2-8> The functional layer contains at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate <2-1> to <2-. The spectacle lens according to any one of 7>.
<2-9> The spectacle lens according to any one of <2-1> to <2-8>, further comprising an antireflection layer on the surface.
<2-10> An eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the opposite eye side facing the optical member on the objective side.
In the spectrum measured in accordance with CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the optical member on the opposite eye side on the opposite eye side.
(A) The maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
(B) The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
Eyewear in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
 以下、第1実施形態を実施例により更に具体的に説明するが、第1実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 Hereinafter, the first embodiment will be described in more detail by way of examples, but the first embodiment is not limited to the following examples as long as the gist is not exceeded. Unless otherwise specified, "part" is based on mass.
[実施例1]
(レンズの作製)
 十分に乾燥させたフラスコにジメチル錫(II)ジクロリド0.020g、MR用内部離型剤(三井化学株式会社製)0.10g、Viosorb 583(共同薬品株式会社製、紫外線吸収剤、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール)1.50g、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物46.8gを仕込んで混合液(1)を作製した。
[Example 1]
(Making a lens)
0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 46.8 g Was charged to prepare a mixed solution (1).
 次いで、UVY-0026(山本化成株式会社製、一般式(2)においてX~Xは臭素原子、R~Rは水素原子、MはPdであるポルフィリン化合物)0.050gと、PD-311S(山本化成株式会社製、テトラ-t-ブチル-テトラアザポルフィリン・銅錯体、上記式(1a)で表される化合物)0.050gとを、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gにそれぞれ溶解させ、UVY-0026を溶解させたマスターバッチ(1)、及びPD-311Sを溶解させたマスターバッチ(2)を作製した。 Next, 0.050 g of UVY-0026 (manufactured by Yamamoto Chemicals, Inc., a porphyrin compound in which X1 to X8 are bromine atoms, R1 to R4 are hydrogen atoms, and M is Pd in the general formula (2)) and PD -311S (manufactured by Yamamoto Chemicals, Inc., tetra-t-butyl-tetraazaporphyrin-copper complex, compound represented by the above formula (1a)) 0.050 g and 2,5 (6) -bis (isocianato) Master batch (1) in which UVY-0026 was dissolved in 100.0 g of a composition containing methyl) -bicyclo [2.2.1] heptane, and master batch (2) in which PD-311S was dissolved. Was produced.
 マスターバッチ(1)1.54g及びマスターバッチ(2)2.26gを上記混合液(1)に添加して混合液(2)とした。混合液(2)を25℃で1時間攪拌して各成分を完全に溶解させ調合液とした。その後、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含む組成物23.9g、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物25.5gをこの調合液に仕込み、得られた液体を25℃で30分攪拌し、均一溶液を作製した。 1.54 g of the masterbatch (1) and 2.26 g of the masterbatch (2) were added to the above mixed solution (1) to prepare the mixed solution (2). The mixed solution (2) was stirred at 25 ° C. for 1 hour to completely dissolve each component to prepare a mixed solution. Then, 23.9 g of the composition containing pentaerythritol tetrakis (3-mercaptopropionate) and 25.5 g of the composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added to this formulation. The obtained liquid was stirred at 25 ° C. for 30 minutes to prepare a uniform solution.
 この溶液に対し400Paにて1時間脱泡を行い、1μmPTFE(ポリテトラフルオロエチレン)フィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。 This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE (polytetrafluoroethylene) filter, and then injected into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
 このガラスモールドを25℃から120℃まで、21時間かけて昇温した。その後、室温まで冷却させて、プラノーレンズをガラスモールドから外した。得られたプラノーレンズに対し、さらに120℃で2時間アニールを行った。これにより、実施例1のレンズを作製した。 The temperature of this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, the lens of Example 1 was produced.
(標準レンズの作製)
 十分に乾燥させたフラスコにジメチル錫(II)ジクロリド0.020g、MR用内部離型剤(三井化学株式会社製)0.10g、Viosorb 583(共同薬品株式会社製、紫外線吸収剤、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール)1.50g、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物50.6gを仕込んで混合液を作製した。ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含む組成物23.9g、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物25.5gをこの混合液に仕込み、得られた液体を25℃で30分攪拌し、均一溶液とした。
(Making a standard lens)
0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 50.6 g Was charged to prepare a mixed solution. 23.9 g of the composition containing pentaerythritol tetrakis (3-mercaptopropionate) and 25.5 g of the composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added to this mixture to obtain a obtained mixture. The resulting liquid was stirred at 25 ° C. for 30 minutes to give a uniform solution.
 この溶液に対し400Paにて1時間脱泡を行い、1μmPTFEフィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。 This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE filter, and then poured into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
 このガラスモールドを25℃から120℃まで、21時間かけて昇温した。その後、室温まで冷却させて、プラノーレンズをガラスモールドから外した。得られたプラノーレンズをさらに120℃で2時間アニールを行った。これにより、標準レンズを作製した。 The temperature of this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, a standard lens was produced.
[実施例2、3、比較例6]
 実施例1に対してUVY-0026の含有量を表1の通り変更した以外、あるいは、実施例1に対して各色素の含有量を表4の通り変更した以外は、実施例1と同様にしてレンズを作製した。
[Examples 2 and 3, Comparative Example 6]
Same as Example 1 except that the content of UVY-0026 was changed as shown in Table 1 with respect to Example 1 or the content of each dye was changed as shown in Table 4 with respect to Example 1. I made a lens.
[実施例4]
 実施例1にてViosorb 583 1.50gの替わりにTinuvin326(BASFジャパン株式会社製、紫外線吸収剤、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール)1.0g使用し、UVY-0026を溶解させたマスターバッチ(1)を使用せず、PD-311Sの含有量を表1の通りに変更した以外は実施例1と同様にして実施例4のレンズを作製した。
[Example 4]
In Example 1, instead of Viosorb 583 1.50 g, Tinuvin 326 (manufactured by BASF Japan Co., Ltd., UV absorber, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chloro Performed in the same manner as in Example 1 except that 1.0 g of benzotriazole) was used, the masterbatch (1) in which UVY-0026 was dissolved was not used, and the content of PD-311S was changed as shown in Table 1. The lens of Example 4 was prepared.
[実施例5、6]
 実施例4に対してPD-311Sの含有量を表1の通り変更した以外は実施例4と同様にしてレンズを作製した。
[Examples 5 and 6]
A lens was produced in the same manner as in Example 4 except that the content of PD-311S was changed as shown in Table 1 with respect to Example 4.
[実施例7]
 実施例1にてUVY-0026を溶解させたマスターバッチ(1)の替わりにUVY-1023(山本化成株式会社製、一般式(2)においてX~Xは3,3-ジメチル-1-ブチニル基、R~Rは水素原子、MはPdであるポルフィリン化合物)を、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(3)を使用し、PD-311Sの含有量を表1の通りに変更した以外は実施例1と同様にして実施例7のレンズを作製した。
[Example 7]
In place of the master batch (1) in which UVY-0026 was dissolved in Example 1, UVY-1023 (manufactured by Yamamoto Chemicals, Inc., in general formula ( 2 ), X1 to X8 are 3,3-dimethyl- 1- . Composition 100 containing a butynyl group, a porphyrin compound in which R1 to R4 are hydrogen atoms and M is Pd), and 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the master batch (3) dissolved in 0.0 g, the lens of Example 7 was prepared in the same manner as in Example 1 except that the content of PD-311S was changed as shown in Table 1.
[実施例8]
 実施例7に対して各色素の含有量を表1の通りに変更した以外は実施例7と同様にして実施例8のレンズを作製した。
[Example 8]
The lens of Example 8 was produced in the same manner as in Example 7 except that the content of each dye was changed as shown in Table 1.
[実施例9]
 実施例1に対してUVY-0026を溶解させたマスターバッチ(1)を使用せず、PD-311Sの含有量を表2の通りに変更した以外は実施例1と同様にして実施例9のレンズを作製した。
[Example 9]
In Example 9, the masterbatch (1) in which UVY-0026 was dissolved was not used for Example 1, and the content of PD-311S was changed as shown in Table 2 in the same manner as in Example 1. I made a lens.
[実施例10]
 実施例1に対してUVY-1023を溶解させたマスターバッチ(3)を追加で添加し、各色素の含有量を表2の通りに変更した以外は実施例1と同様にして実施例10のレンズを作製した。
[Example 10]
Example 10 was similarly added to Example 1 except that a masterbatch (3) in which UVY-1023 was dissolved was additionally added and the content of each dye was changed as shown in Table 2. I made a lens.
[実施例11]
 実施例1に対してUVY-0026を溶解させたマスターバッチ(1)の替わりにFDB-001(山田化学工業株式会社製、銅ポルフィリン錯体)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(4)を使用し、各色素の含有量を表2の通りに変更した以外は実施例1と同様にして実施例11のレンズを作製した。
[Example 11]
Instead of the masterbatch (1) in which UVY-0026 was dissolved with respect to Example 1, FDB-001 (copper porphyrin complex manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -Same as Example 1 except that a masterbatch (4) dissolved in 100.0 g of a composition containing bicyclo [2.2.1] heptane was used and the content of each dye was changed as shown in Table 2. The lens of Example 11 was produced.
[実施例12]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにFDB-002(山田化学工業株式会社製、バナジウムポルフィリン錯体)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(5)を使用した以外は実施例11と同様にして実施例12のレンズを作製した。
[Example 12]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-002 (vanadium porphyrin complex manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -The lens of Example 12 was prepared in the same manner as in Example 11 except that the masterbatch (5) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
[実施例13]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにFDB-003(山田化学工業株式会社製、メロシアニン色素)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(6)を使用し、各色素の含有量を表2の通りに変更した以外は実施例11と同様にして実施例13のレンズを作製した。
[Example 13]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-003 (merocyanine dye manufactured by Yamada Chemical Co., Ltd.) was used in 2,5 (6) -bis (isocyanatomethyl)-. Using a masterbatch (6) dissolved in 100.0 g of a composition containing bicyclo [2.2.1] heptane, the same as in Example 11 except that the content of each dye was changed as shown in Table 2. The lens of Example 13 was produced.
[実施例14]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにFDB-004(山田化学工業株式会社製、油溶性染料)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(7)を使用した以外は実施例11と同様にして実施例14のレンズを作製した。
[Example 14]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-004 (oil-soluble dye manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl). -The lens of Example 14 was prepared in the same manner as in Example 11 except that the masterbatch (7) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
[実施例15]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにFDB-006(山田化学工業株式会社製、メロシアニン色素)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(8)を使用した以外は実施例11と同様にして実施例15のレンズを作製した。
[Example 15]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, FDB-006 (merocyanine dye manufactured by Yamada Chemical Co., Ltd.) was used in 2,5 (6) -bis (isocyanatomethyl)-. The lens of Example 15 was prepared in the same manner as in Example 11 except that the masterbatch (8) dissolved in 100.0 g of the composition containing bicyclo [2.2.1] heptane was used.
[実施例16]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにABS 425(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(9)を使用した以外は実施例11と同様にして実施例16のレンズを作製した。
[Example 16]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 425 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 16 was prepared in the same manner as in Example 11 except that the masterbatch (9) dissolved in 100.0 g of the composition containing heptane was used.
[実施例17]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにABS 430(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(10)を使用した以外は実施例11と同様にして実施例17のレンズを作製した。
[Example 17]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 430 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 17 was prepared in the same manner as in Example 11 except that the masterbatch (10) dissolved in 100.0 g of the composition containing heptane was used.
[実施例18]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにABS 439(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(11)を使用した以外は実施例11と同様にして実施例18のレンズを作製した。
[Example 18]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 439 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 18 was prepared in the same manner as in Example 11 except that the masterbatch (11) dissolved in 100.0 g of the composition containing heptane was used.
[実施例19]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにABS 462(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(12)を使用した以外は実施例11と同様にして実施例19のレンズを作製した。
[Example 19]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 462 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] The lens of Example 19 was prepared in the same manner as in Example 11 except that the masterbatch (12) dissolved in 100.0 g of the composition containing heptane was used.
[実施例20]
 実施例11に対してFDB-001を溶解させたマスターバッチ(4)の替わりにABS 473(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(13)を使用し、各色素の含有量を表3の通りに変更した以外は実施例11と同様にして実施例20のレンズを作製した。
[Example 20]
Instead of the masterbatch (4) in which FDB-001 was dissolved in Example 11, ABS 473 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1. ] Using a masterbatch (13) dissolved in 100.0 g of a composition containing heptane, the lens of Example 20 was used in the same manner as in Example 11 except that the content of each dye was changed as shown in Table 3. Made.
[実施例21]
 実施例1に対してPD-311Sを溶解させたマスターバッチ(2)の替わりにABS 574(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(14)を使用し、各色素の含有量を表3の通りに変更した以外は実施例1と同様にして実施例21のレンズを作製した。
[Example 21]
Instead of the masterbatch (2) in which PD-311S was dissolved with respect to Example 1, ABS 574 (manufactured by Luxottica) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. ] Using a masterbatch (14) dissolved in 100.0 g of a composition containing heptane, the lens of Example 21 was used in the same manner as in Example 1 except that the content of each dye was changed as shown in Table 3. Made.
[実施例22]
 実施例21に対してABS 574を溶解させたマスターバッチ(14)の替わりにABS 584(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(15)を使用した以外は実施例21と同様にして実施例22のレンズを作製した。
[Example 22]
ABS 584 (manufactured by Luxottica) was used in place of the masterbatch (14) in which ABS 574 was dissolved in Example 21. The lens of Example 22 was prepared in the same manner as in Example 21 except that the masterbatch (15) dissolved in 100.0 g of the composition containing heptane was used.
[実施例23]
 実施例21に対してABS 574を溶解させたマスターバッチ(14)の替わりにABS 594(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(16)を使用した以外は実施例21と同様にして実施例23のレンズを作製した。
[Example 23]
ABS 594 (manufactured by Luxottica) was used in place of the masterbatch (14) in which ABS 574 was dissolved in Example 21. The lens of Example 23 was prepared in the same manner as in Example 21 except that the masterbatch (16) dissolved in 100.0 g of the composition containing heptane was used.
[比較例1]
 実施例1にて作製した標準レンズを比較例1のレンズとした。
[Comparative Example 1]
The standard lens produced in Example 1 was used as the lens of Comparative Example 1.
[比較例2]
 比較例1にてViosorb 583 1.50gの替わりにTinuvin326 1.0g使用した以外は比較例1と同様にして比較例2のレンズを作製した。
[Comparative Example 2]
A lens of Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that 1.0 g of Tinuvin 326 was used instead of Viosorb 583 1.50 g in Comparative Example 1.
[比較例3]
 実施例1に対してPD-311Sを溶解させたマスターバッチ(2)の替わりにFDG-003(山田化学工業株式会社、メロシアニン色素)を、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(17)を使用し、各色素の含有量を表4の通りに変更した以外は実施例1と同様にして比較例3のレンズを作製した。
[Comparative Example 3]
Instead of the masterbatch (2) in which PD-311S was dissolved with respect to Example 1, FDG-003 (Yamada Chemical Co., Ltd., merocyanine dye) was used in 2,5 (6) -bis (isocyanatomethyl)-. Using a masterbatch (17) dissolved in 100.0 g of a composition containing bicyclo [2.2.1] heptane, the same as in Example 1 except that the content of each dye was changed as shown in Table 4. The lens of Comparative Example 3 was produced.
[比較例4]
 実施例1にて、UVY-0026を溶解させたマスターバッチ(1)の替わりにUVY-1023を溶解させたマスターバッチ(3)を使用し、PD-311Sを溶解させたマスターバッチ(2)を使用せず、色素の含有量を表4の通りに変更した以外は実施例1と同様にして比較例4のレンズを作製した。
[Comparative Example 4]
In Example 1, a masterbatch (3) in which UVY-1023 was dissolved was used instead of the masterbatch (1) in which UVY-0026 was dissolved, and a masterbatch (2) in which PD-311S was dissolved was used. The lens of Comparative Example 4 was produced in the same manner as in Example 1 except that the dye content was not used and the dye content was changed as shown in Table 4.
[比較例5]
 実施例1にてPD-311Sを溶解させたマスターバッチ(2)を使用せず、色素の含有量を表4の通りに変更した以外は実施例1と同様にして比較例5のレンズを作製した。
[Comparative Example 5]
The lens of Comparative Example 5 was prepared in the same manner as in Example 1 except that the masterbatch (2) in which PD-311S was dissolved was not used in Example 1 and the dye content was changed as shown in Table 4. did.
(色差評価;CIE1976(L*,a*,b*)表色系におけるL*,a*及びb*の測定)
 測定機器として分光測色計CM-5(コニカミノルタ株式会社製)を使用した。下記マンセル色標1~3のいずれか1つをD65光源下で、厚さ2mmである各実施例及び各比較例のレンズ、並びに厚さ2mmである標準レンズを上記いずれかのマンセル色標と測定部との間に配置した。そして、各色標についてCIE1976(L*,a*,b*)表色系におけるL*(L*赤、L*緑、L*青),a*(a*赤、a*緑、a*青)及びb*(b*赤、b*緑、b*青)をそれぞれ測定した。前述のようにして求めたL*、a*及びb*を用い、以下の式(2A)及び式(2B)に基づいてΔE*R-G、ΔE*R-G(w0)、ΔE*R-B及びΔE*R-B(w0)をそれぞれ求め、式(1)及び式(3)に基づいてΔC*R-G及びΔC*R-Bを求めた。
マンセル色標1;マンセル表色系の赤(4.5R4/13)
マンセル色標2;マンセル表色系の緑(4.5G5/8)
マンセル色標3;マンセル表色系の青(3PB3/11)
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*R-G=[(L*赤-L*緑)+(a*赤-a*緑)+(b*赤-b*緑)1/2・・・(2A)
ΔE*R-B=[(L*赤-L*青)+(a*赤-a*青)+(b*赤-b*青)1/2・・・(2B)
ΔC*R-B=ΔE*R-B-ΔE*R-B(w0)・・・(3)
(Color difference evaluation; measurement of L *, a * and b * in CIE1976 (L *, a *, b *) color system)
A spectrocolorimeter CM-5 (manufactured by Konica Minolta Co., Ltd.) was used as a measuring device. One of the following Munsell color markers 1 to 3 is used under a D65 light source, and the lenses of the Examples and Comparative Examples having a thickness of 2 mm and the standard lens having a thickness of 2 mm are used as any of the above Munsell color markers. It was placed between the measuring unit. Then, for each color marker, L * (L * red, L * green, L * blue), a * (a * red, a * green, a * blue) in the CIE1976 (L *, a *, b *) color system. ) And b * (b * red, b * green, b * blue) were measured, respectively. Using L *, a * and b * obtained as described above, ΔE * RG , ΔE * RG (w0), ΔE * R based on the following equations (2A) and (2B). -B and ΔE * RB (w0) were obtained, respectively, and ΔC * RG and ΔC * RB were obtained based on the equations (1) and (3), respectively.
Munsell color mark 1; Munsell color system red (4.5R4 / 13)
Munsell color mark 2; Munsell color system green (4.5G5 / 8)
Munsell color mark 3; Munsell color system blue (3PB3 / 11)
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * RG = [(L * red-L * green) 2 + (a * red-a * green) 2 + (b * red-b * green) 2 ] 1/2 ... (2A)
ΔE * R-B = [(L * red-L * blue) 2 + (a * red-a * blue) 2 + (b * red-b * blue) 2 ] 1/2 ... (2B)
ΔC * RB = ΔE * RB -ΔE * RB (w0) ・ ・ ・ (3)
(ブルーライトカット率)
 紫外可視分光光度計 UV―1800(株式会社島津製作所製)及び厚さ2mmである各実施例及び各比較例のレンズを用いて、EN ISO12312-1:2013に準拠して測定されるスペクトルにおける380nm~500nmの青色光吸収率(以下の式で示されるブルーライトカット率)を求めた。
 以下の評価基準に基づいてブルーライトカット率の評価を行った。
-評価基準-
A:ブルーライトカット率が30%以上であった。
B:ブルーライトカット率が20%以上30%未満であった。
C:ブルーライトカット率が15%以上20%未満であった。
D:ブルーライトカット率が15%未満であった。
(Blue light cut rate)
380 nm in a spectrum measured in accordance with EN ISO12312-1: 2013 using an ultraviolet-visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and lenses of each example and each comparative example having a thickness of 2 mm. The blue light absorption rate of about 500 nm (blue light cut rate represented by the following formula) was determined.
The blue light cut rate was evaluated based on the following evaluation criteria.
-Evaluation criteria-
A: The blue light cut rate was 30% or more.
B: The blue light cut rate was 20% or more and less than 30%.
C: The blue light cut rate was 15% or more and less than 20%.
D: The blue light cut rate was less than 15%.
Figure JPOXMLDOC01-appb-M000005

 
Figure JPOXMLDOC01-appb-M000005

 
(半値幅)
 紫外可視分光光度計 UV―1800(株式会社島津製作所製)及び厚さ2mmである各実施例及び各比較例のレンズを用いて、透過率曲線を測定し、極大吸収波長、極大吸収波長での透過率、ISO 8980-3:2013に準拠した視感透過率、及び極大吸収波長aの吸収ピークの半値幅をそれぞれ求めた。
 実施例1~8のレンズにおける透過率曲線を図1に示し、実施例9~15のレンズにおける透過率曲線を図2に示し、実施例16~23のレンズにおける透過率曲線を図3に示し、比較例1~6のレンズにおける透過率曲線を図4に示す。
(Half width)
The transmittance curve was measured using an ultraviolet-visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and the lenses of each example and each comparative example having a thickness of 2 mm, and at the maximum absorption wavelength and the maximum absorption wavelength. The transmittance, the visual transmittance according to ISO 8980-3: 2013, and the half-value range of the absorption peak at the maximum absorption wavelength a were determined.
The transmittance curves of the lenses of Examples 1 to 8 are shown in FIG. 1, the transmittance curves of the lenses of Examples 9 to 15 are shown in FIG. 2, and the transmittance curves of the lenses of Examples 16 to 23 are shown in FIG. The transmittance curves of the lenses of Comparative Examples 1 to 6 are shown in FIG.
(くっきり度の評価)
 各実施例及び各比較例のレンズをパーソナルコンピューター(PC)画面の前に配置し、PC画面に表示された画像を各実施例及び各比較例のレンズを通してそれぞれ視認した際の見え方の変化について、以下の評価基準に基づいてくっきり度の評価を行った。
-評価基準-
A PC画面に表示された画像をレンズを通さずに視認した場合と比較して、より鮮やか又はよりくっきり見えた。
B PC画面に表示された画像をレンズを通さずに視認した場合と見え方が変わらなかった。
C PC画面に表示された画像をレンズを通さずに視認した場合と比較して、色調が不自然であった、見え方が暗くなった、あるいは、見えにくくなった。
(Evaluation of sharpness)
Changes in appearance when the lenses of each example and each comparative example are arranged in front of a personal computer (PC) screen and the image displayed on the PC screen is visually recognized through the lenses of each example and each comparative example. , The degree of sharpness was evaluated based on the following evaluation criteria.
-Evaluation criteria-
A Compared with the case where the image displayed on the PC screen was visually recognized without passing through the lens, it looked more vivid or clearer.
B The appearance of the image displayed on the PC screen was the same as when it was viewed without passing through the lens.
Compared to the case where the image displayed on the C PC screen was visually recognized without passing through the lens, the color tone was unnatural, the appearance became dark, or it became difficult to see.
 各実施例及び各比較例のレンズを用いたときの評価結果について以下の表1~表4に示す。なお、表1及び表2中にて、「-」は該当成分が含まれていないこと、又は評価対象が存在しないことを意味し、空欄は未評価を意味する。
 また、表1~表4中、実施例1のように極大吸収波長での透過率が2つ記載されている場合、上段の数値は短波長側の極大吸収波長(実施例1では455nm)における透過率の数値であり、下段の数値は高波長側の極大吸収波長(実施例1では588nm)における透過率の数値である。
The evaluation results when the lenses of each example and each comparative example are used are shown in Tables 1 to 4 below. In Tables 1 and 2, "-" means that the corresponding component is not contained or the evaluation target does not exist, and the blank means that the evaluation has not been performed.
Further, in Tables 1 to 4, when two transmittances at the maximum absorption wavelength are described as in Example 1, the numerical value in the upper row is the maximum absorption wavelength on the short wavelength side (455 nm in Example 1). It is a numerical value of the transmittance, and the numerical value in the lower row is a numerical value of the transmittance at the maximum absorption wavelength (588 nm in Example 1) on the high wavelength side.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000009

 
 
Figure JPOXMLDOC01-appb-T000009

 
 
 表1~表4に示すように、実施例1~23のレンズは、比較例1~6のレンズよりもくっきり度の評価が良好であった。 As shown in Tables 1 to 4, the lenses of Examples 1 to 23 had better evaluation of sharpness than the lenses of Comparative Examples 1 to 6.
 以下、第2実施形態を実施例により更に具体的に説明するが、第2実施形態はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 Hereinafter, the second embodiment will be described in more detail by way of examples, but the second embodiment is not limited to the following examples as long as the gist is not exceeded. Unless otherwise specified, "part" is based on mass.
[実施例201]
(レンズの作製)
 十分に乾燥させたフラスコにジメチル錫(II)ジクロリド0.020g、MR用内部離型剤(三井化学株式会社製)0.10g、Viosorb 583(共同薬品株式会社製、紫外線吸収剤、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール)1.50g、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物46.8gを仕込んで混合液(1)を作製した。
[Example 201]
(Making a lens)
0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 46.8 g Was charged to prepare a mixed solution (1).
 次いで、UVY-0026(山本化成株式会社製)0.050gと、PD-311S(山本化成株式会社製)0.050gとを、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gにそれぞれ溶解させ、UVY-0026を溶解させたマスターバッチ(1)、及びPD-311Sを溶解させたマスターバッチ(2)を作製した。 Next, 0.050 g of UVY-0026 (manufactured by Yamamoto Kasei Co., Ltd.) and 0.050 g of PD-311S (manufactured by Yamamoto Kasei Co., Ltd.) were added to 2.5 (6) -bis (isocyanatomethyl) -bicyclo [2. .2.1] A master batch (1) in which UVY-0026 was dissolved and a master batch (2) in which PD-311S were dissolved were prepared by dissolving them in 100.0 g of a composition containing heptane, respectively.
 マスターバッチ(1)1.54g及びマスターバッチ(2)2.26gを上記混合液(1)に添加して混合液(2)とした。混合液(2)を25℃で1時間攪拌して各成分を完全に溶解させ調合液とした。その後、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含む組成物23.9g、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物25.5gをこの調合液に仕込み、得られた液体を25℃で30分攪拌し、均一溶液を作製した。
 表5に、均一溶液における各色素の含有量を示す。
1.54 g of the masterbatch (1) and 2.26 g of the masterbatch (2) were added to the mixed solution (1) to prepare the mixed solution (2). The mixed solution (2) was stirred at 25 ° C. for 1 hour to completely dissolve each component to prepare a mixed solution. Then, 23.9 g of the composition containing pentaerythritol tetrakis (3-mercaptopropionate) and 25.5 g of the composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added to this formulation. The obtained liquid was stirred at 25 ° C. for 30 minutes to prepare a uniform solution.
Table 5 shows the content of each dye in the uniform solution.
 この溶液に対し400Paにて1時間脱泡を行い、1μmPTFE(ポリテトラフルオロエチレン)フィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。 This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE (polytetrafluoroethylene) filter, and then injected into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
 このガラスモールドを25℃から120℃まで、21時間かけて昇温した。その後、室温まで冷却させて、プラノーレンズをガラスモールドから外した。得られたプラノーレンズに対し、さらに120℃で2時間アニールを行った。これにより、実施例201のレンズを作製した。 The temperature of this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, the lens of Example 201 was produced.
(標準レンズの作製)
 十分に乾燥させたフラスコにジメチル錫(II)ジクロリド0.020g、MR用内部離型剤(三井化学株式会社製)0.10g、Viosorb 583(共同薬品株式会社製、紫外線吸収剤、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール)1.50g、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物50.6gを仕込んで混合液を作製した。ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含む組成物23.9g、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含む組成物25.5gをこの混合液に仕込み、得られた液体を25℃で30分攪拌し、均一溶液とした。
(Making a standard lens)
0.020 g of dimethyltin (II) dichloride, 0.10 g of internal mold release agent for MR (manufactured by Mitsui Chemicals, Inc.), Biosorb 583 (manufactured by Kyodo Yakuhin Co., Ltd., UV absorber, 2- () in a sufficiently dried flask. 2'-Hydroxy-5'-t-octylphenyl) benzotriazole) 1.50 g, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane-containing composition 50.6 g Was charged to prepare a mixed solution. 23.9 g of the composition containing pentaerythritol tetrakis (3-mercaptopropionate) and 25.5 g of the composition containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane were added to this mixture to obtain a obtained mixture. The resulting liquid was stirred at 25 ° C. for 30 minutes to give a uniform solution.
 この溶液に対し400Paにて1時間脱泡を行い、1μmPTFEフィルタにて濾過を行った後、中心厚さ2mm、直径77mmである4Cのプラノー用ガラスモールドに注入した。 This solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE filter, and then poured into a 4C glass mold for planau having a center thickness of 2 mm and a diameter of 77 mm.
 このガラスモールドを25℃から120℃まで、21時間かけて昇温した。その後、室温まで冷却させて、プラノーレンズをガラスモールドから外した。得られたプラノーレンズをさらに120℃で2時間アニールを行った。これにより、標準レンズを作製した。 The temperature of this glass mold was raised from 25 ° C to 120 ° C over 21 hours. Then, it was cooled to room temperature and the plano lens was removed from the glass mold. The obtained planau lens was further annealed at 120 ° C. for 2 hours. As a result, a standard lens was produced.
[実施例202]
 UVY-0026を溶解させたマスターバッチ(1)の替わりに、UVY-1023(山本化成株式会社製)を、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(3)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例201と同様にして実施例202のレンズを作製した。
[Example 202]
Instead of the masterbatch (1) in which UVY-0026 was dissolved, UVY-1023 (manufactured by Yamamoto Chemicals, Inc.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. Example was carried out in the same manner as in Example 201 except that the masterbatch (3) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 202 lenses were made.
[実施例203]
 UVY-0026を溶解させたマスターバッチ(1)の替わりに、FDB-001(山田化学工業株式会社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(4)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例201と同様にして実施例203のレンズを作製した。
[Example 203]
Instead of the masterbatch (1) in which UVY-0026 was dissolved, FDB-001 (manufactured by Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. Example was carried out in the same manner as in Example 201 except that the masterbatch (4) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 203 lenses were made.
[実施例204]
 FDB-001を溶解させたマスターバッチ(4)の替わりに、ABS 430(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(5)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例203と同様にして実施例204のレンズを作製した。
[Example 204]
Instead of the masterbatch (4) in which FDB-001 was dissolved, ABS 430 (manufactured by Luxottica) contained 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the masterbatch (5) dissolved in 100.0 g of the product, the lens of Example 204 was used in the same manner as in Example 203, except that the content of each dye in the uniform solution was changed as shown in Table 5. Made.
[実施例205]
 PD-311Sを溶解させたマスターバッチ(2)の替わりに、ABS 574(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(6)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例201と同様にして実施例205のレンズを作製した。
[Example 205]
Instead of the masterbatch (2) in which PD-311S was dissolved, ABS 574 (manufactured by Luxottica) was added to a composition containing 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane. Using the masterbatch (6) dissolved in 100.0 g of the product, the lens of Example 205 was used in the same manner as in Example 201 except that the content of each dye in the uniform solution was changed as shown in Table 5. Made.
[実施例206]
 ABS 574を溶解させたマスターバッチ(6)の替わりに、ABS 594(Luxottica社製)を2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(7)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例205と同様にして実施例206のレンズを作製した。
[Example 206]
A composition containing 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane containing ABS 594 (manufactured by Luxottica) in place of the masterbatch (6) in which ABS 574 was dissolved. Using the masterbatch (7) dissolved in 100.0 g, the lens of Example 206 was prepared in the same manner as in Example 205 except that the content of each dye in the uniform solution was changed as shown in Table 5. did.
[比較例201]
 PD-311Sを溶解させたマスターバッチ(2)の替わりに、FDG-003(山田化学工業株式会社)を、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含む組成物100.0gに溶解させたマスターバッチ(8)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例201と同様にして比較例201のレンズを作製した。
[Comparative Example 201]
Instead of the masterbatch (2) in which PD-311S was dissolved, FDG-003 (Yamada Chemical Co., Ltd.) was used as 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1]. Comparative Example in the same manner as in Example 201 except that the masterbatch (8) dissolved in 100.0 g of the composition containing heptane was used and the content of each dye in the uniform solution was changed as shown in Table 5. 201 lenses were made.
[比較例202]
 PD-311Sを溶解させたマスターバッチ(2)を使用せず、UVY-0026を溶解させたマスターバッチ(1)の替わりに、UVY-1023を溶解させた上述のマスターバッチ(3)を使用し、均一溶液における各色素の含有量を表5に示す通りに変更した以外は、実施例201と同様にして比較例202のレンズを作製した。
[Comparative Example 202]
Instead of using the masterbatch (2) in which PD-311S was dissolved, the above-mentioned masterbatch (3) in which UVY-1023 was dissolved was used instead of the masterbatch (1) in which UVY-0026 was dissolved. The lens of Comparative Example 202 was produced in the same manner as in Example 201 except that the content of each dye in the uniform solution was changed as shown in Table 5.
~評価~
(黄色度(YI値))
 パルスキセノンランプを有するコニカミノルタ社製の分光測色計CM-5を用いて、ASTM E313-73に準拠し透過法にて、室温、視野角2°、C光源として3回測定を行って得られた値の平均値として算出した。測定波長範囲は360nm~740nmである。
~ Evaluation ~
(Yellowness (YI value))
Obtained by measuring at room temperature, viewing angle 2 °, and C light source three times by the transmission method according to ASM E313-73 using a spectrocolorimeter CM-5 manufactured by Konica Minolta, which has a pulse xenon lamp. It was calculated as the average value of the values obtained. The measurement wavelength range is 360 nm to 740 nm.
(色差評価;CIE1976(L*,a*,b*)表色系におけるL*,a*及びb*の測定)
 測定機器として分光測色計CM-5(コニカミノルタ株式会社製)を使用した。下記マンセル色標1~3のいずれか1つをD65光源下で、厚さ2mmである各実施例及び各比較例のレンズ、並びに厚さ2mmである標準レンズを上記いずれかのマンセル色標と測定部との間に配置した。そして、各色標についてCIE1976(L*,a*,b*)表色系におけるL*(L*赤、L*緑),a*(a*赤、a*緑)及びb*(b*赤、b*緑)をそれぞれ測定した。上述のようにして求めたL*、a*及びb*を用い、以下の式(2A)に基づいてΔE*R-G、及びΔE*R-G(w0)をそれぞれ求め、式(1)に基づいてΔC*R-Gを求めた。
マンセル色標1;マンセル表色系の赤(4.5R4/13)
マンセル色標2;マンセル表色系の緑(4.5G5/8)
ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
ΔE*R-G=[(L*赤-L*緑)+(a*赤-a*緑)+(b*赤-b*緑)1/2・・・(2A)
(Color difference evaluation; measurement of L *, a * and b * in CIE1976 (L *, a *, b *) color system)
A spectrocolorimeter CM-5 (manufactured by Konica Minolta Co., Ltd.) was used as a measuring device. One of the following Munsell color markers 1 to 3 is used under a D65 light source, and the lenses of the Examples and Comparative Examples having a thickness of 2 mm and the standard lens having a thickness of 2 mm are used as any of the above Munsell color markers. It was placed between the measuring unit. Then, for each color marker, L * (L * red, L * green), a * (a * red, a * green) and b * (b * red) in the CIE1976 (L *, a *, b *) color system. , B * green) were measured respectively. Using L *, a * and b * obtained as described above, ΔE * RG and ΔE * RG (w0) are obtained based on the following equation (2A), respectively, and the equation (1) is obtained. ΔC * RG was obtained based on the above.
Munsell color mark 1; Munsell color system red (4.5R4 / 13)
Munsell color mark 2; Munsell color system green (4.5G5 / 8)
ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
ΔE * RG = [(L * red-L * green) 2 + (a * red-a * green) 2 + (b * red-b * green) 2 ] 1/2 ... (2A)
(半値幅)
 紫外可視分光光度計 UV―1800(株式会社島津製作所製)及び厚さ2mmである各実施例及び各比較例のレンズを用いて、透過率曲線を測定し、極大吸収波長、極大吸収波長での透過率、ISO 8980-3:2013に準拠した視感透過率、及び極大吸収波長が400nm~520nmの範囲内に位置する吸収ピークの半値幅をそれぞれ求めた。
 実施例201~実施例206のレンズにおける透過率曲線を図5に示し、比較例201~比較例202のレンズにおける透過率曲線を図6に示す。
(Half width)
The transmittance curve was measured using an ultraviolet visible spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) and the lenses of each example and each comparative example having a thickness of 2 mm, and at the maximum absorption wavelength and the maximum absorption wavelength. The transmittance, the visual transmittance according to ISO 8980-3: 2013, and the half-value range of the absorption peak having the maximum absorption wavelength in the range of 400 nm to 520 nm were determined.
The transmittance curves of the lenses of Examples 201 to 206 are shown in FIG. 5, and the transmittance curves of the lenses of Comparative Examples 201 to 202 are shown in FIG.
(くっきり度の評価)
 各実施例及び各比較例のレンズをパーソナルコンピューター(PC)画面の前に配置し、PC画面に表示された画像を各実施例及び各比較例のレンズを通してそれぞれ視認した際の見え方の変化について、以下の評価基準に基づいてくっきり度の評価を行った。
 なお、くっきり度がAであることは、対象物の赤色及び緑色を鮮明に認識することができる効果に優れることを意味する。
-評価基準-
A PC画面に表示された画像をレンズを通さずに視認した場合と比較して、より鮮やか又はよりくっきり見えた。
B PC画面に表示された画像をレンズを通さずに視認した場合と見え方が変わらなかった。
C PC画面に表示された画像をレンズを通さずに視認した場合と比較して、色調が不自然であった、又は、赤色及び緑色を鮮明に認識しにくかった。
(Evaluation of sharpness)
Changes in appearance when the lenses of each example and each comparative example are arranged in front of a personal computer (PC) screen and the image displayed on the PC screen is visually recognized through the lenses of each example and each comparative example. , The degree of sharpness was evaluated based on the following evaluation criteria.
In addition, the fact that the degree of sharpness is A means that the effect of being able to clearly recognize the red color and the green color of the object is excellent.
-Evaluation criteria-
A Compared with the case where the image displayed on the PC screen was visually recognized without passing through the lens, it looked more vivid or clearer.
B The appearance of the image displayed on the PC screen was the same as when it was viewed without passing through the lens.
Compared with the case where the image displayed on the C PC screen was visually recognized without passing through the lens, the color tone was unnatural, or it was difficult to clearly recognize red and green.
(外観)
 各実施例及び各比較例のレンズを、下記評価基準に従って評価した。
 なお、外観がAであることは、青色が抑制された自然な色調を有することを意味する。
-評価基準-
A:レンズの色調として、青色が視認できなかった。
B:レンズの色調として少し青色が視認できたが、自然な色調の範囲内であった。
C:レンズの色調として青色が明確に視認でき、不自然な色調であった。
(exterior)
The lenses of each Example and each Comparative Example were evaluated according to the following evaluation criteria.
It should be noted that the appearance of A means having a natural color tone in which blue color is suppressed.
-Evaluation criteria-
A: Blue could not be visually recognized as the color tone of the lens.
B: A little blue was visible as the color tone of the lens, but it was within the range of the natural color tone.
C: Blue was clearly visible as the color tone of the lens, which was an unnatural color tone.
 各実施例及び各比較例のレンズを用いたときの評価結果について以下の表5に示す。なお、表5中、「-」は該当成分が含まれていないこと、又は評価対象が存在しないことを意味する。
 また、表5中、実施例201のように極大吸収波長での透過率が2つ記載されている場合、上段の数値は短波長側の極大吸収波長(実施例201では455nm)における透過率の数値であり、下段の数値は高波長側の極大吸収波長(実施例201では588nm)における透過率の数値である。
Table 5 below shows the evaluation results when the lenses of each example and each comparative example were used. In addition, in Table 5, "-" means that the corresponding component is not contained or the evaluation target does not exist.
Further, in Table 5, when two transmittances at the maximum absorption wavelength are described as in Example 201, the numerical value in the upper row is the transmittance at the maximum absorption wavelength on the short wavelength side (455 nm in Example 201). It is a numerical value, and the numerical value in the lower row is a numerical value of the transmittance at the maximum absorption wavelength (588 nm in Example 201) on the high wavelength side.
Figure JPOXMLDOC01-appb-T000010

 
 
Figure JPOXMLDOC01-appb-T000010

 
 
 表5に示すように、機能層を含み、機能層は、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、(B)400nm~520nmの範囲内に極大吸収波長bが存在し、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.00~2.50であるメガネレンズを用いた実施例は、外観の評価に優れるため青色が抑制された自然な色調を有する効果に優れていた。また、くっきり度の評価に優れるため対象物の赤色及び緑色を鮮明に認識する効果に優れていた。
 一方、(A)560nm~610nmの範囲内に極大吸収波長aが存在せず、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、2.5超である比較例201及び比較例202は、外観の評価に劣るため青色が抑制された自然な色調を有する効果に劣っていた。また、くっきり度の評価に劣るため対象物の赤色及び緑色を鮮明に認識する効果に劣っていた。
 実施例の中でも、極大吸収波長aのピークの積分値に対する極大吸収波長bのピークの積分値の比率が、1.4~2.5であるメガネレンズを用いた実施例201、及び実施例203~実施例206は、くっきり度の評価により優れるため対象物の赤色及び緑色を鮮明に認識する効果により優れていた。また、外観の評価に優れるため青色が抑制された自然な色調を有する効果に優れていた。
As shown in Table 5, the functional layer includes the functional layer, and the functional layer has a maximum absorption wavelength a in the range of (A) 560 nm to 610 nm and (B) 400 nm to 520 nm in the spectrum measured according to CIE1976. The measurement using a spectacle lens in which the maximum absorption wavelength b exists within the range of 1.00 to 2.50, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50. The example was excellent in the effect of having a natural color tone in which blue color was suppressed because the evaluation of the appearance was excellent. In addition, since it is excellent in the evaluation of the degree of sharpness, it is excellent in the effect of clearly recognizing the red color and the green color of the object.
On the other hand, (A) the maximum absorption wavelength a does not exist in the range of 560 nm to 610 nm, and the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is more than 2.5. Comparative Example 201 and Comparative Example 202 were inferior in the effect of having a natural color tone in which blue color was suppressed because the evaluation of the appearance was inferior. In addition, the effect of clearly recognizing the red color and green color of the object was inferior because the evaluation of the degree of sharpness was inferior.
Among the examples, Examples 201 and 203 using a spectacle lens in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.4 to 2.5 is 1.4 to 2.5. -Example 206 was superior in the effect of clearly recognizing the red color and green color of the object because it was superior in the evaluation of the degree of sharpness. In addition, since it is excellent in the evaluation of appearance, it is excellent in the effect of having a natural color tone in which blue color is suppressed.
 2020年11月30日に出願された日本国特許出願2020-199122号、及び、2021年3月12日に出願された日本国特許出願2021-040099号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosures of Japanese Patent Application No. 2020-199122 filed on November 30, 2020 and Japanese Patent Application No. 2021-04091, filed on March 12, 2021, are described herein in their entirety. Incorporated into the book.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (13)

  1.  1種以上の色素を含み、CIE1976に準拠して測定したスペクトルにおいて、(A)560nm~610nmの範囲内に極大吸収波長aが存在し、D65光源を使用することで下記式(1)及び(2)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Gが0以上10以下である光学材料。
    ΔC*R-G=ΔE*R-G-ΔE*R-G(w0)・・・(1)
    ΔE*=(ΔL*+Δa*+Δb*1/2・・・(2)
    (式(1)中、ΔE*R-Gは、式(2)を用いて求められる前記光学材料の赤色と緑色との色差を表し、ΔE*R-G(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と緑色との色差を表す。)
    In the spectrum containing one or more dyes and measured according to CIE1976, (A) the maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and by using the D65 light source, the following formulas (1) and (1) and ( An optical material in which the color difference parameter ΔC * RG of the CIE1976 (L *, a *, b *) color system obtained from 2) is 0 or more and 10 or less.
    ΔC * RG = ΔE * RG −ΔE * RG (w0) ・ ・ ・ (1)
    ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2 ... (2)
    (In the formula (1), ΔE * RG represents the color difference between red and green of the optical material obtained by using the formula (2), and ΔE * RG (w0) is 2- (2). An isocyanate composition containing'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3-2-1). It comprises a thiol composition 1 containing mercaptopropionate) and a thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, wherein the 2- (2'-hydroxy-5'- The content of t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. For a comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in 1 and the thiol composition 2 of 0.86, the above formula (2) can be obtained by using a D65 light source. Represents the color difference between red and green obtained by using.)
  2.  CIE1976に準拠して測定したスペクトルにおいて、さらに、(B)400nm~520nmの範囲内に極大吸収波長bが存在する請求項1に記載の光学材料。 The optical material according to claim 1, wherein in the spectrum measured according to CIE1976, (B) the maximum absorption wavelength b exists in the range of 400 nm to 520 nm.
  3.  前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50である請求項2に記載の光学材料。 The optical material according to claim 2, wherein the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
  4.  前記極大吸収波長aと前記極大吸収波長bとの差が、130nm~200nmである請求項2又は請求項3に記載の光学材料。 The optical material according to claim 2 or 3, wherein the difference between the maximum absorption wavelength a and the maximum absorption wavelength b is 130 nm to 200 nm.
  5.  前記極大吸収波長aの吸収ピークの半値幅が10nm~70nmである請求項1~請求項4のいずれか1項に記載の光学材料。 The optical material according to any one of claims 1 to 4, wherein the half width of the absorption peak of the maximum absorption wavelength a is 10 nm to 70 nm.
  6.  極大吸収波長が560nm~610nmの範囲内に位置する第1の色素を含み、
     前記第1の色素は、テトラアザポルフィリン系金属錯体化合物を含む請求項1~請求項5のいずれか1項に記載の光学材料。
    It contains a first dye having a maximum absorption wavelength in the range of 560 nm to 610 nm.
    The optical material according to any one of claims 1 to 5, wherein the first dye contains a tetraazaporphyrin-based metal complex compound.
  7.  光学材料の厚さが2mmの場合、EN ISO12312-1:2013に準じて測定されるスペクトルにおける380nm~500nmの青色光吸収率が15%~50%である請求項1~請求項6のいずれか1項に記載の光学材料。 Any of claims 1 to 6, wherein when the thickness of the optical material is 2 mm, the blue light absorption rate of 380 nm to 500 nm in the spectrum measured according to EN ISO12312-1: 2013 is 15% to 50%. The optical material according to item 1.
  8.  CIE1976(L*,a*,b*)表色系において、(a*+b*1/2が10以下である請求項1~請求項7のいずれか1項に記載の光学材料。 The optical material according to any one of claims 1 to 7, wherein (a * 2 + b * 2 ) 1/2 is 10 or less in the CIE1976 (L *, a *, b *) color system.
  9.  D65光源を使用することで前記式(2)及び下記式(3)から求められるCIE1976(L*,a*,b*)表色系の色差パラメータΔC*R-Bが0以上7以下である請求項1~請求項8のいずれか1項に記載の光学材料。
    ΔC*R-B=ΔE*R-B-ΔE*R-B(w0)・・・(3)
    (式(3)中、ΔE*R-Bは、前記式(2)を用いて求められる前記光学材料の赤色と青色との色差を表し、ΔE*R-B(w0)は、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,5(6)-ビス(イソシアナトメチル)-ビシクロ[2.2.1]ヘプタンを含むイソシアネート組成物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を含むチオール組成物1、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含むチオール組成物2からなり、前記2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールの含有量が1.5質量%であり、チオール組成物1に対するチオール組成物2の質量比が1.07であり、イソシアネート組成物に含まれるイソシアネート基に対するチオール組成物1及びチオール組成物2に含まれるチオール基の合計のモル比が0.86である硬化性組成物を加熱硬化してなる比較光学材料について、D65光源を使用することで前記式(2)を用いて求められる赤色と青色との色差を表す。)
    The color difference parameter ΔC * RB of the CIE1976 (L *, a *, b *) color system obtained from the above equation (2) and the following equation (3) by using the D65 light source is 0 or more and 7 or less. The optical material according to any one of claims 1 to 8.
    ΔC * RB = ΔE * RB -ΔE * RB (w0) ・ ・ ・ (3)
    (In the formula (3), ΔE * RB represents the color difference between red and blue of the optical material obtained by using the formula (2), and ΔE * RB (w0) is 2- (2 (w0). An isocyanate composition containing 2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,5 (6) -bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3). The thiol composition 1 containing (mercaptopropionate) and the thiol composition 2 containing 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane (2'-hydroxy-5'). The content of -t-octylphenyl) benzotriazole is 1.5% by mass, the mass ratio of the thiol composition 2 to the thiol composition 1 is 1.07, and the thiol composition with respect to the isocyanate group contained in the isocyanate composition. A comparative optical material obtained by heat-curing a curable composition having a total molar ratio of thiol groups contained in the product 1 and the thiol composition 2 of 0.86 is described in the above formula (2) by using a D65 light source. Represents the color difference between red and blue obtained using.)
  10.  ポリウレタン、ポリチオウレタン、ポリスルフィド、ポリカーボネート、及びポリ(メタ)アクリレートからなる群より選択される少なくとも1種の高分子を含む請求項1~請求項9のいずれか1項に記載の光学材料。 The optical material according to any one of claims 1 to 9, which comprises at least one polymer selected from the group consisting of polyurethane, polythiourethane, polysulfide, polycarbonate, and poly (meth) acrylate.
  11.  請求項1~請求項10のいずれか1項に記載の光学材料を含むレンズ。 A lens containing the optical material according to any one of claims 1 to 10.
  12.  眼鏡レンズに用いるための請求項11に記載のレンズ。 The lens according to claim 11 for use in a spectacle lens.
  13.  対物側の光学部材、及び、対物側の光学部材と対向する対眼側の光学部材の少なくとも2つの光学部材を含んでもよいアイウェアであって、
     前記対物側の光学部材における対物側の最表面と前記対眼側の光学部材における対眼側の最表面との間で、CIE1976に準拠して測定したスペクトルにおいて、
     (A)560nm~610nmの範囲内に極大吸収波長aが存在し、
     (B)400nm~520nmの範囲内に極大吸収波長bが存在し、
     前記極大吸収波長aのピークの積分値に対する前記極大吸収波長bのピークの積分値の比率が、1.00~2.50であるアイウェア。
    Eyewear that may include at least two optical members, an optical member on the objective side and an optical member on the eye-to-eye side facing the optical member on the objective side.
    In the spectrum measured in accordance with CIE1976 between the outermost surface of the objective side of the optical member on the objective side and the outermost surface of the optical member on the opposite eye side on the opposite eye side.
    (A) The maximum absorption wavelength a exists in the range of 560 nm to 610 nm, and the maximum absorption wavelength a exists.
    (B) The maximum absorption wavelength b exists in the range of 400 nm to 520 nm, and the maximum absorption wavelength b exists.
    Eyewear in which the ratio of the integrated value of the peak of the maximum absorption wavelength b to the integrated value of the peak of the maximum absorption wavelength a is 1.00 to 2.50.
PCT/JP2021/043217 2020-11-30 2021-11-25 Optical material, lens, and eyewear WO2022114064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565409A JPWO2022114064A1 (en) 2020-11-30 2021-11-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-199122 2020-11-30
JP2020199122 2020-11-30
JP2021040099 2021-03-12
JP2021-040099 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022114064A1 true WO2022114064A1 (en) 2022-06-02

Family

ID=81754388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043217 WO2022114064A1 (en) 2020-11-30 2021-11-25 Optical material, lens, and eyewear

Country Status (2)

Country Link
JP (1) JPWO2022114064A1 (en)
WO (1) WO2022114064A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134618A (en) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk Plastic eyeglass lens
JP2013109257A (en) * 2011-11-24 2013-06-06 Talex Optical Co Ltd Antiglare high-contrast resin lens
JP2017149820A (en) * 2016-02-23 2017-08-31 三井化学株式会社 Resin composition and use therefor
JP2019066501A (en) * 2016-02-23 2019-04-25 三井化学株式会社 Thermoplastic resin composition for optical material and application thereof
WO2019138953A1 (en) * 2018-01-09 2019-07-18 株式会社Adeka Composition, cured substance, optical filter, and method for manufacturing cured substance
WO2020129930A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Curable composition for optical materials, and optical material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134618A (en) * 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk Plastic eyeglass lens
JP2013109257A (en) * 2011-11-24 2013-06-06 Talex Optical Co Ltd Antiglare high-contrast resin lens
JP2017149820A (en) * 2016-02-23 2017-08-31 三井化学株式会社 Resin composition and use therefor
JP2019066501A (en) * 2016-02-23 2019-04-25 三井化学株式会社 Thermoplastic resin composition for optical material and application thereof
WO2019138953A1 (en) * 2018-01-09 2019-07-18 株式会社Adeka Composition, cured substance, optical filter, and method for manufacturing cured substance
WO2020129930A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Curable composition for optical materials, and optical material

Also Published As

Publication number Publication date
JPWO2022114064A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP5727606B2 (en) Polymerizable composition for optical material
EP3045941B1 (en) Optical material and use therefor
JP5646790B2 (en) Polymerizable composition, optical material and method for producing the same
EP2866064B1 (en) Polymerizable composition for optical material, optical material and plastic lens obtained from said composition
US10752726B2 (en) Resin composition
EP3045942B1 (en) Optical material and use therefor
KR20180041180A (en) Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
JP6475848B2 (en) Method for producing polymerizable composition for optical material and method for producing optical material
WO2021024962A1 (en) Optical material
KR102323294B1 (en) Photochromic lenses and polymerizable compositions
KR20180041710A (en) Polymerizable composition for molded article and optical material
WO2022114064A1 (en) Optical material, lens, and eyewear
WO2023229048A1 (en) Optical material and eyeglass lens
WO2022209915A1 (en) Optical element, glasses lens, autonomic nerve regulation method, and evaluation method for optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898036

Country of ref document: EP

Kind code of ref document: A1