JP4750896B1 - Diamond-like carbon film coated article - Google Patents

Diamond-like carbon film coated article Download PDF

Info

Publication number
JP4750896B1
JP4750896B1 JP2010137352A JP2010137352A JP4750896B1 JP 4750896 B1 JP4750896 B1 JP 4750896B1 JP 2010137352 A JP2010137352 A JP 2010137352A JP 2010137352 A JP2010137352 A JP 2010137352A JP 4750896 B1 JP4750896 B1 JP 4750896B1
Authority
JP
Japan
Prior art keywords
film
diamond
article
silicon carbide
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010137352A
Other languages
Japanese (ja)
Other versions
JP2012001759A (en
Inventor
聡 吉田
和美 小川
浩二 三宅
良平 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon ITF Inc
Original Assignee
Honda Motor Co Ltd
Nippon ITF Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon ITF Inc filed Critical Honda Motor Co Ltd
Priority to JP2010137352A priority Critical patent/JP4750896B1/en
Priority to PCT/JP2011/063760 priority patent/WO2011158890A1/en
Application granted granted Critical
Publication of JP4750896B1 publication Critical patent/JP4750896B1/en
Publication of JP2012001759A publication Critical patent/JP2012001759A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】ダイアモンド状炭素膜被覆物品であって、ダイアモンド状炭素膜の物品本体への密着性に優れているダイアモンド状炭素膜被覆物品を提供する。
【解決手段】少なくとも一部が、アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素(DLC)膜で被覆されているダイアモンド状炭素膜被覆物品W。アモルファス炭化珪素膜は、波長532nmのレーザーを用いるレーザーラマン分光分析においてラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークを示す膜である。
【選択図】図3
Disclosed is a diamond-like carbon film-coated article, which is excellent in adhesion of a diamond-like carbon film to an article body.
A diamond-like carbon film-coated article W that is at least partially coated with a diamond-like carbon (DLC) film formed through an intermediate layer made of an amorphous silicon carbide film. Amorphous silicon carbide film is a film showing a peak in the range of the spectral intensity of Raman shift 1400cm -1 ~1600cm -1 in a laser Raman spectroscopic analysis using a laser with a wavelength of 532 nm.
[Selection] Figure 3

Description

本発明はダイアモンド状炭素膜で少なくとも一部が被覆された物品に関する。
本発明はまたそのようなダイアモンド状炭素膜の形成方法にも関係している。
The present invention relates to an article that is at least partially coated with a diamond-like carbon film.
The present invention also relates to a method for forming such a diamond-like carbon film.

ダイアモンド状炭素膜は高硬度で耐摩耗性に富み、摺動性、電気絶縁性等にも優れる膜として知られている。そのため、高硬度性、耐摩耗性、摺動性、電気絶縁性等のうち1又は2以上が要求される各種機械部品、工具、電気器具部品、装飾品等の各種物品の少なくとも一部をダイアモンド状炭素膜で被覆することが提案され、実施されてきた。   A diamond-like carbon film is known as a film having high hardness, high wear resistance, and excellent slidability and electrical insulation. Therefore, at least a part of various mechanical parts, tools, electric appliance parts, ornaments, etc. that require one or more of high hardness, wear resistance, slidability, electrical insulation, etc. are made of diamond. Coating with a carbon-like carbon film has been proposed and implemented.

ダイアモンド状炭素膜は、多くの場合、プラズマCVD法により形成される。
例えば、特開2000−119853号公報には、真空チャンバ内にダイアモンド状の硬質炭素膜を形成しようとする物品を配置し、同チャンバ内に炭素含有ガスを導入してこれからプラズマ発生させ、このプラズマのもとで物品に硬質炭素膜を形成することが記載されている。
In many cases, the diamond-like carbon film is formed by a plasma CVD method.
For example, in Japanese Patent Application Laid-Open No. 2000-119853, an article intended to form a diamond-like hard carbon film is placed in a vacuum chamber, a carbon-containing gas is introduced into the chamber, and plasma is generated therefrom. The formation of a hard carbon film on an article is described.

同公報には、開口を有する膜形成対象物品のその開口の中央部に補助電極を配置し、その補助電極を接地電位に設定し、該物品に高周波電圧又は負の直流電圧を印加して該開口を含む真空チャンバ内に炭素含有ガスからプラズマを発生させ、該プラズマのもとで該開口内面に膜形成することも記載されている。   In this publication, an auxiliary electrode is disposed at the center of the film-forming article having an opening, the auxiliary electrode is set to a ground potential, and a high-frequency voltage or a negative DC voltage is applied to the article. It is also described that plasma is generated from a carbon-containing gas in a vacuum chamber including an opening, and a film is formed on the inner surface of the opening under the plasma.

また特開2006−199980号公報には、プラズマCVD法による被処理物品(膜形成対象物品)の内面コーティング、特に被処理物品の中空部の内面、例えば筒状被処理物品の中空部の内面へのプラズマCVD法によるコーティング処理が記載されている。   Japanese Patent Application Laid-Open No. 2006-199980 discloses an inner surface coating of an article to be treated (film formation target article) by plasma CVD, particularly an inner surface of a hollow part of the article to be treated, for example, an inner surface of a hollow part of a cylindrical article to be treated. The coating process by the plasma CVD method is described.

さらに言えば、同公報には、内面コーティング対象の被処理物品を真空チャンバ内に配置し、同チャンバに放電用ガス(アルゴンガス及び水素ガス等)を導入するとともにコーティング用材料ガス〔炭素含有ガス(例えばテトラメチルシランガス(TMS)、アセチレンガス等)〕を導入し、チャンバ内ガス圧を制御しつつ被処理物品に放電用電力として非対称パルス電力(プラス側電圧値とマイナス側電圧値とが対称でないパルス電力)を印加し、それにより放電用ガスから筒状被処理物品の中空部に均一なホロー放電を発生させるとともに材料ガスもプラズマ化して該プラズマのもとで被処理物品内面にダイアモンド状炭素(Diamond Like Carbon:DLC)膜を形成することが記載されている。   Furthermore, in this publication, the article to be coated on the inner surface is placed in a vacuum chamber, a discharge gas (such as argon gas and hydrogen gas) is introduced into the chamber, and a coating material gas [carbon-containing gas] (E.g., tetramethylsilane gas (TMS), acetylene gas, etc.)] and asymmetric pulse power (positive voltage value and negative voltage value are symmetrical as discharge power to the article to be processed while controlling the gas pressure in the chamber Non-pulse power) is applied, thereby generating a uniform hollow discharge from the discharge gas in the hollow portion of the cylindrical article to be processed, and the material gas is also turned into a plasma to form a diamond shape on the inner surface of the article to be processed. It describes the formation of a carbon (Diamond Like Carbon: DLC) film.

また、ダイアモンド状炭素膜の被処理物品への密着性を向上させるために、ダイアモンド状炭素膜形成に先立ってチャンバ内に放電用ガス(アルゴンガス及び水素ガス)とともに中間層形成用ガス(テトラメチルシラン(TMS)ガス)を導入し、チャンバ内ガス圧を所定圧に維持しつつこれらガスをプラズマ化し、該プラズマのもとで被処理物品の内面に中間層として炭化珪素膜を形成し、次いで水素ガスに代えてコーティング用材料ガス(アセチレンガス)を導入し、TMSガスは導入するがその量を減らし、これらガスのプラズマのもとで被処理物品内面に中間層(炭化珪素膜)を間にしてダイアモンド状炭素(DLC)膜を密着性良好に形成することが記載されている。   Further, in order to improve the adhesion of the diamond-like carbon film to the article to be processed, an intermediate layer forming gas (tetramethyl) is formed together with a discharge gas (argon gas and hydrogen gas) in the chamber prior to the formation of the diamond-like carbon film. Silane (TMS) gas) is introduced, these gases are turned into plasma while maintaining the gas pressure in the chamber at a predetermined pressure, and a silicon carbide film is formed as an intermediate layer on the inner surface of the article to be processed under the plasma, Instead of hydrogen gas, a coating material gas (acetylene gas) is introduced, and TMS gas is introduced, but the amount is reduced, and an intermediate layer (silicon carbide film) is placed on the inner surface of the article to be treated under the plasma of these gases Thus, it is described that a diamond-like carbon (DLC) film is formed with good adhesion.

特開2000−119853号公報JP 2000-119853 A 特開2006−199980号公報Japanese Patent Laid-Open No. 2006-199980

しかしながら、特開2006−199980号公報に記載された炭化珪素膜を中間層とするDLC膜は、DLC膜形成対象物品にもよるが、膜形成対象物品への密着性の点で未だ十分とは言えない。   However, the DLC film having the silicon carbide film described in JP-A-2006-199980 as an intermediate layer depends on the DLC film formation target article, but is still insufficient in terms of adhesion to the film formation target article. I can not say.

そこで本発明は、少なくとも一部が、アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素膜で被覆されているダイアモンド状炭素膜被覆物品であって、ダイアモンド状炭素膜の物品本体への密着性に優れているダイアモンド状炭素膜被覆物品を提供することを課題とする。   Therefore, the present invention provides a diamond-like carbon film-coated article, at least a part of which is coated with a diamond-like carbon film formed through an intermediate layer made of an amorphous silicon carbide film, and the article body of the diamond-like carbon film It is an object of the present invention to provide a diamond-like carbon film-coated article having excellent adhesion to the surface.

本発明者は前記課題を解決するため研究し、中間層である炭化珪素膜の硬度、ヤング率等が低いと炭化珪素膜がDLC膜を介して加えられる外力により崩壊し易く、炭化珪素膜が崩壊すると、DLC膜の物品本体への密着性が損なわれることを見出した。   The present inventor researched to solve the above problems, and when the hardness, Young's modulus, etc. of the silicon carbide film as an intermediate layer is low, the silicon carbide film is easily collapsed by an external force applied through the DLC film. It has been found that when disintegrated, the adhesion of the DLC film to the article body is impaired.

本発明はこの知見に基づき、前記課題を解決するため、少なくとも一部が、アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素膜で被覆されているダイアモンド状炭素膜被覆物品であり、前記アモルファス炭化珪素膜及び前記ダイアモンド状炭素膜は放電電力として非対称パルス電力を用いるプラズマCVDにより形成された膜であり、前記アモルファス炭化珪素膜は、波長532nmのレーザーを用いるレーザーラマン分光分析においてラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークを示し、インデンテーション硬度が15GPa以上17GPa以下、ヤング率が130GPa以上147.5GPa以下の膜であるダイアモンド状炭素膜被覆物品を提供する。 Based on this knowledge, the present invention is a diamond-like carbon film-coated article in which at least a part is covered with a diamond-like carbon film formed through an intermediate layer made of an amorphous silicon carbide film in order to solve the above-mentioned problems. The amorphous silicon carbide film and the diamond-like carbon film are films formed by plasma CVD using asymmetric pulse power as discharge power, and the amorphous silicon carbide film is obtained by laser Raman spectroscopy using a laser having a wavelength of 532 nm. Raman shift 1400cm a peak of spectral intensity in the range of -1 ~1600cm -1, indentation hardness than 15 GPa 17 GPa or less, a Young's modulus to provide a diamond-like carbon film-coated article is 147.5GPa less film than 130GPa .

ここで、「ダイアモンド状炭素膜被覆物品」は、各種機械部品、工具、電気器具部品、装飾品等の各種物品のうちいずれのものでもよい。
本発明に係るダイアモンド状炭素膜被覆物品における中間層である前記アモルファス炭化珪素からなる中間層は、波長532nmのレーザーを用いるレーザーラマン分光分析においてラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークを示す膜である。
Here, the “diamond-like carbon film-coated article” may be any of various kinds of articles such as various machine parts, tools, electric appliance parts, and ornaments.
An intermediate layer made of the amorphous silicon carbide as the intermediate layer in the diamond-like carbon film-coated article according to the present invention, the spectral intensity in the range of the Raman shift 1400cm -1 ~1600cm -1 in a laser Raman spectroscopic analysis using a laser with a wavelength of 532nm It is a film | membrane which shows no peak.

このことは、中間層であるアモルファス炭化珪素膜がC−H結合よりSi−C結合やC−C結合に富み、強固であることを意味している。
また、中間層であるアモルファス炭化珪素膜はインデンテーション硬度が15GPa以上(低くとも15GPa)17GPa以下、ヤング率が130GPa以上(小さくとも130GPa)147.5GPa以下である。
This means that the amorphous silicon carbide film as the intermediate layer is richer in Si—C bonds and C—C bonds than in C—H bonds and is strong.
Amorphous silicon carbide film as an intermediate layer indentation hardness than 15 GPa (at the lowest 15 GPa) 17 GPa or less, a Young's modulus of more than 130 GPa (also smaller 130GPa) 147.5GPa or less.

かくして本発明に係るダイアモンド状炭素膜被覆物品は、中間層であるアモルファス炭化珪素膜が外力を受けても崩壊し難く、それだけダイアモンド状炭素膜の物品本体への密着性が良好に維持される。   Thus, the diamond-like carbon film-coated article according to the present invention is less likely to collapse even when the amorphous silicon carbide film as the intermediate layer is subjected to external force, and the adhesion of the diamond-like carbon film to the article body is maintained well.

本発明に係るダイアモンド状炭素膜被覆物品は、中間層及びダイアモンド状炭素膜が物品本体の外表面にのみ形成されているものでもよいが、凹み部分の内面に形成されているものでもよい。そのような凹み部分としては、筒状物品の内面部分、リング状物品の内周面、碗状物品の中空部内面、隙間部分の隙間内面等を例示できるが、一般的に言えば、アスペクト比1以上の凹み部分を例示できる。   In the diamond-like carbon film-coated article according to the present invention, the intermediate layer and the diamond-like carbon film may be formed only on the outer surface of the article body, or may be formed on the inner surface of the recessed portion. Examples of such a recessed portion include an inner surface portion of a cylindrical article, an inner peripheral surface of a ring-shaped article, a hollow inner surface of a bowl-shaped article, a gap inner surface of a gap portion, etc., but generally speaking, an aspect ratio One or more recessed portions can be exemplified.

アスペクト比1以上の凹み部分とは、例えば凹み穴のような凹み部分なら、凹みの長さ(或いは深さ)/開口内径が1以上であり、隙間部分のような凹み部分なら、その深さ/隙間寸法が1以上であり、円筒状或いはリング状の物品の内面なら、円筒長さ(リング厚さ)/開口内径が1以上である。   A recessed portion with an aspect ratio of 1 or more is, for example, a recessed portion such as a recessed hole, the length (or depth) of the recessed portion / opening inner diameter is 1 or more, and a recessed portion such as a gap portion is its depth. / If the gap dimension is 1 or more and the inner surface of the cylindrical or ring-shaped article, the cylindrical length (ring thickness) / opening inner diameter is 1 or more.

以上説明したように本発明によると、少なくとも一部が、アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素膜で被覆されているダイアモンド状炭素膜被覆物品であって、ダイアモンド状炭素膜の物品本体への密着性に優れているダイアモンド状炭素膜被覆物品を提供することができる。   As described above, according to the present invention, at least a part is a diamond-like carbon film-coated article coated with a diamond-like carbon film formed through an intermediate layer made of an amorphous silicon carbide film, A diamond-like carbon film-coated article having excellent adhesion of the carbon film to the article body can be provided.

中間層及びダイアモンド状炭素膜を形成するための膜形成装置例を概略的に示す図である。It is a figure which shows roughly the example of a film | membrane formation apparatus for forming an intermediate | middle layer and a diamond-like carbon film. 膜形成対象物品例の平面図である。It is a top view of the example of a film formation object article. 炭素膜被覆物品例の一部の断面を模式的に示す図である。It is a figure which shows typically the cross section of a part of carbon film covering article example. 実施例中間層のレーザーラマン分光分析結果を示す図である。It is a figure which shows the laser Raman spectroscopy analysis result of an Example intermediate | middle layer. 比較例中間層のレーザーラマン分光分析結果を示す図である。It is a figure which shows the laser Raman spectroscopy analysis result of a comparative example intermediate | middle layer.

図1は中間層及びダイアモンド状炭素膜形成のための膜形成装置10を示している。
ダイアモンド状炭素膜は以下DLC膜と言うことがある。
図1の膜形成装置10は、真空チャンバ1、チャンバ1外からチャンバ1内へ立設された支柱状の物品ホルダ2、物品ホルダ2及びそれに支持される膜形成対象物品Wへ非対称パルス電力を供給するためのパルス電源装置3、チャンバ1内から排気してチャンバ1内を所定圧に設定するための排気装置4、チャンバ1内へアルゴン(Ar)ガス、水素ガス(H2 )、テトラメチルシラン(TMS:Si(CH3)4)ガス及びアセチレンガス(C22 )のうち1又は2以上のガスを所定のタイミングで供給できるガス供給装置5を含んでいる。
FIG. 1 shows a film forming apparatus 10 for forming an intermediate layer and a diamond-like carbon film.
The diamond-like carbon film may be hereinafter referred to as a DLC film.
A film forming apparatus 10 in FIG. 1 applies asymmetric pulse power to a vacuum chamber 1, a columnar article holder 2 standing from the outside of the chamber 1 into the chamber 1, an article holder 2, and an article W to be formed supported by the article holder 2. A pulse power supply device 3 for supplying, an exhaust device 4 for exhausting from the chamber 1 and setting the interior of the chamber 1 at a predetermined pressure, argon (Ar) gas, hydrogen gas (H 2 ), tetramethyl into the chamber 1 A gas supply device 5 capable of supplying one or more of silane (TMS: Si (CH 3 ) 4 ) gas and acetylene gas (C 2 H 2 ) at a predetermined timing is included.

真空チャンバ1は接地電位に設定されている。物品ホルダ2は導電のステンレススチール、アルミニウム合金等からなる導電性ホルダであり、チャンバ1の底壁に設けた電気絶縁性部材11を気密に貫通してチャンバ1内へ立ち上がっている。膜形成対象物品Wは物品に応じた導電性の物品保持部材21を用いてホルダ2に支持される。
The vacuum chamber 1 is set to the ground potential. The article holder 2 is electrically conductive stainless steel, a conductive holder made of aluminum alloy or the like, rises into the chamber 1 through the electrically insulating member 11 provided in the bottom wall of the chamber 1 airtight. The film formation target article W is supported by the holder 2 using a conductive article holding member 21 corresponding to the article.

膜形成装置10を用いて膜形成対象物品に炭化珪素膜を中間層としてDLC膜を密着性良好に形成する実施例及び特開2006−199980号公報記載の条件に従って炭化珪素膜を中間層としてDLC膜を形成する比較例を説明する。   An example in which a DLC film is formed with good adhesion using a silicon carbide film as an intermediate layer on a film forming object using the film forming apparatus 10 and a DLC with a silicon carbide film as an intermediate layer according to the conditions described in JP-A-2006-199980 A comparative example for forming a film will be described.

膜形成対象物品Wは、実施例でも、比較例でも同じであり、図2に示すように、中央に円形孔hを有する円盤である。図1に示すように10枚の円盤Wが、各隣り合う円盤間にスペーサリングrを挟んで積み重ねられるとともに、膜形成装置10の支柱状物品ホルダ2に円形孔h及びスペーサリングrの中央孔部分で嵌められ、ホルダ2に予め取り付けておいた物品保持部材21上に搭載される。   The film forming target article W is the same in both the example and the comparative example, and is a disk having a circular hole h in the center as shown in FIG. As shown in FIG. 1, ten disks W are stacked with a spacer ring r between adjacent disks, and a circular hole h and a central hole of the spacer ring r are formed in the columnar article holder 2 of the film forming apparatus 10. It is mounted on the article holding member 21 that is fitted in the part and attached to the holder 2 in advance.

円盤WはJISのSKH51製のものであり、外径D=100mm、中央孔径d=20mm、厚みt=2mmのものである。
スペーサリングrはSUS304製のものであり、外径30mm、中央孔径20mm、厚み10mmである。
図1に示すように各隣り合う円盤Wにおいて、互い向かい合う円盤面間に深さα=35mm、間隙寸法β=10mmの間隙gの形態の凹み部分が形成された恰好になっている。
The disk W is made of JIS SKH51, and has an outer diameter D = 100 mm, a central hole diameter d = 20 mm, and a thickness t = 2 mm.
The spacer ring r is made of SUS304, and has an outer diameter of 30 mm, a central hole diameter of 20 mm, and a thickness of 10 mm.
As shown in FIG. 1, in each adjacent disk W, a concave portion in the form of a gap g having a depth α = 35 mm and a gap dimension β = 10 mm is formed between the mutually facing disk surfaces.

膜形成装置10の支柱状物品ホルダ2は断面円形のホルダであり、その外径は、円盤中央孔径及びスペーサリング中央孔径より僅かに小さく、各円盤Wは重ねられてスペーサリングrと共に物品ホルダ2に嵌装され、物品保持部材21に搭載された状態では物品ホルダ2と電気的に導通状態に置かれる。   The columnar article holder 2 of the film forming apparatus 10 is a holder having a circular cross section, and its outer diameter is slightly smaller than the center hole diameter of the disk and the center hole diameter of the spacer ring. In the state of being mounted on the article holding member 21, the article holder 2 is placed in an electrically conductive state.

(1)実施例1
各物品Wの露出している面に、従って前記の間隙gを形成している円盤面にも中間層及びDLC膜を形成する。
(1) Example 1
An intermediate layer and a DLC film are also formed on the exposed surface of each article W, and thus on the disk surface forming the gap g.

(1-1) 炭化珪素膜からなる中間層の形成
<中間層形成条件>
放電用ガス
アルゴンガス 100sccm
水素ガス 0sccm
中間層材料ガス
TMS 20sccm
チャンバ内圧 100Pa
電源3から供給する非対称パルス電力 100W
(1-1) Formation of an intermediate layer made of a silicon carbide film <Interlayer formation conditions>
Discharge gas Argon gas 100sccm
Hydrogen gas 0sccm
Intermediate layer material gas TMS 20sccm
Chamber internal pressure 100Pa
Asymmetric pulse power supplied from power supply 3 100W

これら条件下で中間層として物品Wの露出面に0.2μmの炭化珪素膜を形成した。
この中間層炭化珪素膜について、堀場製作所製のラマン分光分析装置(U−1000)を用い、以下の分析条件で分析したところ、図4に示すように、ラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークが認められ、C−H結合よりもSi−C結合やC−C結合に富む強固なアモルファス炭化珪素膜であることが確認された。
Under these conditions, a 0.2 μm silicon carbide film was formed on the exposed surface of the article W as an intermediate layer.
The intermediate silicon carbide film was analyzed under the following analysis conditions using a Raman spectroscopic analyzer (U-1000) manufactured by HORIBA, Ltd. As shown in FIG. 4, the Raman shift was 1400 cm −1 to 1600 cm −1 . Spectral intensity peaks were observed in the range, and it was confirmed that the film was a strong amorphous silicon carbide film richer in Si—C bonds and C—C bonds than in C—H bonds.

ラマン分光分析装置による分析条件
分析モード :マクロモード測定
レーザー波長 :532nm
レーザーパワー :バンドパスフィルタ直後にて100mWに設定
レーザーピーム径 :100μm
分光器 :焦点距離1m ダブルモノクロメーター、
1800gr/mm回折格子
分光器スリット幅 :500μm
検出器 :光電子増倍管
測定範囲 :800cm-1〜2000cm-1 測定間隔 :1cm-1
データ取り込み時間 :1sec
Analysis conditions by Raman spectroscopy analyzer Analysis mode: Macro mode measurement Laser wavelength: 532nm
Laser power: Set to 100 mW immediately after the bandpass filter Laser beam diameter: 100 μm
Spectrometer: Focal length 1m Double monochromator,
1800 gr / mm diffraction grating Spectroscopic slit width: 500 μm
Detector: photomultiplier measuring range: 800cm -1 ~2000cm -1 measurement interval: 1 cm -1
Data acquisition time: 1 sec

中間層炭化珪素膜について、エリオニクス社製インデンテーション硬度計(ナノインデンター ENT−1100a)を用い測定荷重100mgでインデンテーション硬度を測定したところ17.0GPaであった。ヤング率は147.5GPaであった。
この中間層炭化珪素膜は水素、炭素、珪素を含有するもの(a−SiC:H)であるが、炭素(C)と珪素(Si)の互いの原子比(atom比)をEDS(エネルギー分散形X線分光器)で測定したところ、C:Si=67:33であった。
When the indentation hardness of the intermediate silicon carbide film was measured with an indentation hardness meter (Nanoindenter ENT-1100a) manufactured by Elionix Co., Ltd. with a measurement load of 100 mg, it was 17.0 GPa. The Young's modulus was 147.5 GPa.
This intermediate silicon carbide film contains hydrogen, carbon, and silicon (a-SiC: H), but the atomic ratio (atom ratio) of carbon (C) and silicon (Si) is determined by EDS (energy dispersion). C: Si = 67: 33 as measured by an X-ray spectrometer.

(1-2) 中間層上のDLC膜形成
<DLC膜形成条件>
使用ガス
アルゴンガス 50sccm
TMS 5sccm
アセチレンガス 50sccm
チャンバ内圧 5Pa
電源3から供給する非対称パルス電力 150W
(1-2) DLC film formation on intermediate layer <DLC film formation conditions>
Working gas Argon gas 50sccm
TMS 5sccm
Acetylene gas 50sccm
Chamber internal pressure 5Pa
Asymmetric pulse power supplied from power supply 3 150W

これら条件下で中間層上に膜厚3.0μmのDLC膜を形成した(図3参照)。
それ自体既に知られているボールオンディスク試験によりDLC膜の剥離荷重を測定したところ3500〔N〕であり、DLC膜の密着性が良好であることが確認された。
なお、ボールオンディスク試験は、JISのSKH51製の円盤下面にJISのSUJ2製ボール(直径3/8インチ)を120度の等中心角度間隔、且つ、円盤中心からボール中心までの距離(ボール回転半径)18mmで3個固定し、室温のエンジンオイルSM5W30中で、該ボールを円盤を介してDLC膜に均等に押しつけつつ該円盤を30rpmで回転させ、押し付け荷重を次第に増加していき、ロードセルにより、DLC膜の剥離等により摩擦力が急激に大きくなるときを把握し、そのときの押しつけ荷重を剥離荷重とする試験である。
Under these conditions, a DLC film having a thickness of 3.0 μm was formed on the intermediate layer (see FIG. 3).
When the peel load of the DLC film was measured by a ball-on-disk test already known per se, it was 3500 [N], and it was confirmed that the adhesion of the DLC film was good.
The ball-on-disk test is performed by placing JIS SUJ2 balls (3/8 inch in diameter) on the lower surface of a JIS SKH51 disk at an equal central angular interval of 120 degrees and the distance from the disk center to the ball center (ball rotation Radius) 3 pieces fixed at 18mm, in the engine oil SM5W30 at room temperature, while the balls are pressed evenly against the DLC film through the disk, the disk is rotated at 30rpm, and the pressing load is gradually increased by the load cell This is a test for grasping when the frictional force suddenly increases due to peeling of the DLC film or the like, and setting the pressing load at that time as the peeling load.

(2)実施例2
実施例1と同様、各物品Wの露出している面に、従って前記の間隙gを形成している円盤面にも中間層及びDLC膜を形成する。
(2) Example 2
As in the first embodiment, the intermediate layer and the DLC film are formed on the exposed surface of each article W, and thus on the disk surface forming the gap g.

(2-1) 炭化珪素膜からなる中間層の形成
<中間層形成条件>
放電用ガス
アルゴンガス 100sccm
水素ガス 10sccm
中間層材料ガス
モノメチルシランガス 20sccm
チャンバ内圧 100Pa
電源3から供給する非対称パルス電力 100W
(2-1) Formation of intermediate layer made of silicon carbide film <Intermediate layer formation conditions>
Discharge gas Argon gas 100sccm
Hydrogen gas 10sccm
Intermediate layer material gas Monomethylsilane gas 20sccm
Chamber internal pressure 100Pa
Asymmetric pulse power supplied from power supply 3 100W

これら条件下で中間層として物品Wの露出面に0.2μmの炭化珪素膜を形成した。
この中間層炭化珪素膜について、実施例1と同じラマン分光分析装置(U−1000)を用い、同じ分析条件で分析したところ、ラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークが認められ、C−H結合よりもSi−C結合やC−C結合に富む強固なアモルファス炭化珪素膜であることが確認された。
Under these conditions, a 0.2 μm silicon carbide film was formed on the exposed surface of the article W as an intermediate layer.
When this intermediate silicon carbide film was analyzed under the same analysis conditions using the same Raman spectroscopic analyzer (U-1000) as in Example 1, a peak of spectral intensity was found in the range of Raman shifts from 1400 cm −1 to 1600 cm −1. As a result, it was confirmed that the film was a strong amorphous silicon carbide film richer in Si—C bonds and C—C bonds than in C—H bonds.

またこの中間層炭化珪素膜について、実施例1と同じ硬度計(ENT−1100a)を用いて測定荷重100mgでインデンテーション硬度を測定したところ15.8GPaであった。ヤング率は138.0GPaであった。
この中間層炭化珪素膜について炭素(C)と珪素(Si)の互いの原子比(atom比)をEDSで測定したところ、C:Si=65:35であった。
Further, when the indentation hardness of the intermediate silicon carbide film was measured with a measurement load of 100 mg using the same hardness meter (ENT-1100a) as in Example 1, it was 15.8 GPa. The Young's modulus was 138.0 GPa.
With respect to this intermediate silicon carbide film, the atomic ratio (atom ratio) of carbon (C) and silicon (Si) was measured by EDS, and C: Si = 65: 35.

(2-2) 中間層上のDLC膜形成
<DLC膜形成条件>
使用ガス
アルゴンガス 50sccm
TMS 5sccm
アセチレンガス 50sccm
チャンバ内圧 5Pa
電源3から供給する非対称パルス電力 150W
(2-2) DLC film formation on intermediate layer <DLC film formation conditions>
Working gas Argon gas 50sccm
TMS 5sccm
Acetylene gas 50sccm
Chamber internal pressure 5Pa
Asymmetric pulse power supplied from power supply 3 150W

これら条件下で中間層上に膜厚3.0μmのDLC膜を形成した。
実施例1と同じボールオンディスク試験によりDLC膜の剥離荷重を測定したところ
3000〔N〕であり、DLC膜の密着性が良好であることが確認された。
Under these conditions, a DLC film having a thickness of 3.0 μm was formed on the intermediate layer.
When the peel load of the DLC film was measured by the same ball-on-disk test as in Example 1, it was 3000 [N], and it was confirmed that the adhesion of the DLC film was good.

(3)比較例
各物品Wの露出している面に、従って前記の間隙gを形成している円盤面にも中間層及びDLC膜を形成する。
(3) Comparative Example An intermediate layer and a DLC film are formed on the exposed surface of each article W, and thus also on the disk surface forming the gap g.

(3-1) 炭化珪素膜からなる中間層の形成
<中間層形成条件>
放電用ガス
アルゴンガス 50sccm
水素ガス 100sccm
中間層材料ガス
TMS 30sccm
チャンバ内圧 8Pa
電源3から供給する非対称パルス電力 100W
(3-1) Formation of intermediate layer made of silicon carbide film <Intermediate layer formation conditions>
Discharge gas Argon gas 50sccm
Hydrogen gas 100sccm
Intermediate layer material gas TMS 30sccm
Chamber internal pressure 8Pa
Asymmetric pulse power supplied from power supply 3 100W

これら条件下で中間層として物品Wの露出面に厚さ0.2μmの炭化珪素膜を形成した。
この中間層炭化珪素膜について、実施例1と同じラマン分光分析装置(U−1000)を用い、同じ分析条件で分析したところ、図5に示すように、ラマンシフト1200cm-1〜1800cm-1の範囲にはスペクトル強度のピークが認められなかった。すなわち、比較例における中間層では、むしろC−H結合に富んでおり、実施例の中間層ほど強固ではないことが分かった。
Under these conditions, a silicon carbide film having a thickness of 0.2 μm was formed on the exposed surface of the article W as an intermediate layer.
The intermediate silicon carbide film was analyzed under the same analysis conditions using the same Raman spectroscopic analyzer (U-1000) as in Example 1. As shown in FIG. 5, the Raman shift was 1200 cm −1 to 1800 cm −1 . No spectral intensity peak was observed in the range. That is, it was found that the intermediate layer in the comparative example is rich in C—H bonds and is not as strong as the intermediate layer in the example.

また中間層炭化珪素膜について、実施例の場合と同じ硬度計を用いて測定荷重100mgでインデンテーション硬度を測定したところ13.5GPaであった。ヤング率は116.8GPaであった。
このように比較例の中間層炭化珪素膜は実施例における中間層炭化珪素膜より硬度等の点で劣っていた。
Further, when the indentation hardness of the intermediate silicon carbide film was measured with a measurement load of 100 mg using the same hardness meter as in the example, it was 13.5 GPa. The Young's modulus was 116.8 GPa.
Thus, the intermediate layer silicon carbide film of the comparative example was inferior in hardness and the like to the intermediate layer silicon carbide film of the example.

(3-2) 中間層上のDLC膜形成
実施例1と同じDLC膜形成条件で中間層上に膜厚3.0μmのDLC膜を形成した。 実施例1と同じボールオンディスク試験によりDLC膜の剥離荷重を測定したところ
1000〔N〕であり、実施例と比べ、DLC膜の密着性が劣っていた。
(3-2) DLC film formation on the intermediate layer A DLC film having a thickness of 3.0 μm was formed on the intermediate layer under the same DLC film formation conditions as in Example 1. When the peel load of the DLC film was measured by the same ball-on-disk test as in Example 1, it was 1000 [N], and the adhesion of the DLC film was inferior to the Example.

従来、放電用ガスとしてアルゴンガスを用いる場合、比較例のように、これを水素ガスで希釈する方が放電が安定することが知られており、また、チャンバ内のガス圧は高くすると放電が起こり難く、比較例のように例えば8Pa程度と低くする方が放電が起こりやすいことが知られていた。TMSガス等の中間層材料ガスを用いて中間層として炭化珪素膜を形成するにあたっても、このような技術常識に従い、強く安定した放電状態に中間層材料ガスを導入して中間層を形成する考え方が支配的であった。   Conventionally, when argon gas is used as the discharge gas, it is known that the discharge is more stable when diluted with hydrogen gas as in the comparative example, and when the gas pressure in the chamber is increased, the discharge is performed. It has been known that discharge is more likely to occur when the pressure is less than about 8 Pa, for example, as in the comparative example. In forming a silicon carbide film as an intermediate layer using an intermediate layer material gas such as TMS gas, the concept of forming the intermediate layer by introducing the intermediate layer material gas into a strong and stable discharge state in accordance with such technical common sense Was dominant.

しかし、この考え方に従って形成される中間層炭化珪素膜は、前記比較例から分かるように、前記実施例におけるようなラマン波形におけるピークが見られないことから、高分子に近い構造であり、且つ、硬度が低い膜であるため、表層のDLC膜と物品本体とを強固に密着させることはできなかった。   However, as can be seen from the comparative example, the intermediate silicon carbide film formed in accordance with this concept has a structure close to a polymer because no peak in the Raman waveform is observed as in the above examples, and Since the film has a low hardness, the surface DLC film and the article main body could not be firmly adhered.

本発明者は思考錯誤を重ね、従来の考え方からすると、その外にある、放電用ガスには水素ガスを用いない、或いは用いてもその量を従来より著しく減らし、そのため、放電電流が従来より低下し、放電が暗くなる、という条件を敢えて採用することで、波長532nmのレーザーを用いるレーザーラマン分光分析においてラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークを示す強固な中間層炭化珪素膜を得ることができることを見いだし本発明を完成したのである。 The present inventor repeated thoughts and errors, and from the conventional viewpoint, hydrogen gas is not used as the discharge gas, or even if it is used, the amount thereof is significantly reduced compared to the conventional one. reduced, discharge becomes dark by dare adopt a condition that a strong intermediate layer exhibiting a peak of spectral intensity in the range of the Raman shift 1400cm -1 ~1600cm -1 in a laser Raman spectroscopic analysis using a laser with a wavelength of 532nm The inventors have found that a silicon carbide film can be obtained and have completed the present invention.

ここで、「放電用ガスには水素ガスを用いない、或いは用いてもその量を従来より著しく減らす」に関連して中間層形成時の導入ガス成分中におけるH2 とSiHx (CH3 y の流量比〔H2 流量/SiHx (CH3 y 流量〕は2以下とする例を挙げることができる。
該流量比は実施例1では0、実施例2では0.5、比較例では3.3である。
Here, H 2 and SiH x (CH 3 ) in the introduced gas component at the time of forming the intermediate layer in relation to “does not use hydrogen gas for the discharge gas, or even if it is used, the amount is significantly reduced compared to the conventional gas”. An example in which the flow rate ratio [H 2 flow rate / SiH x (CH 3 ) y flow rate] of y is 2 or less can be given.
The flow rate ratio is 0 in Example 1, 0.5 in Example 2, and 3.3 in the comparative example.

本発明はダイアモンド状炭素膜の物品本体への密着性に優れているダイアモンド状炭素膜被覆物品を提供することに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used to provide a diamond-like carbon film-coated article that has excellent adhesion of the diamond-like carbon film to the article body.

10 膜形成装置
1 真空チャンバ
2 支柱状物品ホルダ
3 パルス電源装置
4 排気装置
5 ガス供給装置
W 物品
DESCRIPTION OF SYMBOLS 10 Film forming apparatus 1 Vacuum chamber 2 Support | pillar-shaped article holder 3 Pulse power supply apparatus 4 Exhaust apparatus 5 Gas supply apparatus W

Claims (2)

少なくとも一部が、アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素膜で被覆されているダイアモンド状炭素膜被覆物品であり、前記アモルファス炭化珪素膜及び前記ダイアモンド状炭素膜は放電電力として非対称パルス電力を用いるプラズマCVDにより形成された膜であり、前記アモルファス炭化珪素膜は、波長532nmのレーザーを用いるレーザーラマン分光分析においてラマンシフト1400cm-1〜1600cm-1の範囲にスペクトル強度のピークを示し、インデンテーション硬度が15GPa以上17GPa以下、ヤング率が130GPa以上147.5GPa以下の膜であることを特徴とするダイアモンド状炭素膜被覆物品。 A diamond-like carbon film-coated article, at least a part of which is coated with a diamond-like carbon film formed through an intermediate layer made of an amorphous silicon carbide film, wherein the amorphous silicon carbide film and the diamond-like carbon film are discharged a film formed by plasma CVD using an asymmetric pulsed power as the power, the amorphous silicon carbide film, the spectral intensity in the range of the Raman shift 1400cm -1 ~1600cm -1 in a laser Raman spectroscopic analysis using a laser with a wavelength of 532nm a peak, indentation hardness than 15 GPa 17 GPa or less, diamond-like carbon film-coated article, wherein the Young's modulus of 147.5GPa less film than 130 GPa. 前記アモルファス炭化珪素膜からなる中間層を介して形成されたダイアモンド状炭素膜で被覆されている物品部分の少なくとも一部はアスペクト比1以上の凹み部分である請求項1記載のダイアモンド状炭素膜被覆物品。   2. The diamond-like carbon film coating according to claim 1, wherein at least a part of the article portion covered with the diamond-like carbon film formed through the intermediate layer made of the amorphous silicon carbide film is a recessed portion having an aspect ratio of 1 or more. Goods.
JP2010137352A 2010-06-16 2010-06-16 Diamond-like carbon film coated article Active JP4750896B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010137352A JP4750896B1 (en) 2010-06-16 2010-06-16 Diamond-like carbon film coated article
PCT/JP2011/063760 WO2011158890A1 (en) 2010-06-16 2011-06-09 Article covered with diamond-like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137352A JP4750896B1 (en) 2010-06-16 2010-06-16 Diamond-like carbon film coated article

Publications (2)

Publication Number Publication Date
JP4750896B1 true JP4750896B1 (en) 2011-08-17
JP2012001759A JP2012001759A (en) 2012-01-05

Family

ID=44597085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137352A Active JP4750896B1 (en) 2010-06-16 2010-06-16 Diamond-like carbon film coated article

Country Status (2)

Country Link
JP (1) JP4750896B1 (en)
WO (1) WO2011158890A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5873754B2 (en) * 2012-05-08 2016-03-01 本田技研工業株式会社 Diamond-like carbon film-coated member and method for producing the same
WO2015133490A1 (en) * 2014-03-04 2015-09-11 本田技研工業株式会社 Internal-combustion engine cylinder block and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314712A (en) * 2002-04-25 2003-11-06 Sumitomo Electric Ind Ltd Hot water faucet valve
JP2006169558A (en) * 2004-12-13 2006-06-29 Jtekt Corp Deposited film deposition apparatus
JP2009167512A (en) * 2008-01-21 2009-07-30 Kobe Steel Ltd Diamond-like carbon film for sliding component and method for manufacturing the same
JP2010053380A (en) * 2008-08-27 2010-03-11 Nagaoka Univ Of Technology Method of depositing amorphous silicon carbide film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286576A (en) * 1987-05-19 1988-11-24 Idemitsu Petrochem Co Ltd Production of rigid carbon film
JP3134386B2 (en) * 1991-08-28 2001-02-13 株式会社島津製作所 Thin film formation method
JPH0726380A (en) * 1993-07-12 1995-01-27 Daikin Ind Ltd Thin diamondlike carbon film formed body and its production
JP3339994B2 (en) * 1995-07-31 2002-10-28 京セラ株式会社 Wear-resistant material
JPH0987847A (en) * 1995-09-21 1997-03-31 Sumitomo Electric Ind Ltd Formation of hard carbon film and wear resistant part
JP4674091B2 (en) * 2005-01-18 2011-04-20 神港精機株式会社 Inner surface coating method and inner surface coating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314712A (en) * 2002-04-25 2003-11-06 Sumitomo Electric Ind Ltd Hot water faucet valve
JP2006169558A (en) * 2004-12-13 2006-06-29 Jtekt Corp Deposited film deposition apparatus
JP2009167512A (en) * 2008-01-21 2009-07-30 Kobe Steel Ltd Diamond-like carbon film for sliding component and method for manufacturing the same
JP2010053380A (en) * 2008-08-27 2010-03-11 Nagaoka Univ Of Technology Method of depositing amorphous silicon carbide film

Also Published As

Publication number Publication date
WO2011158890A1 (en) 2011-12-22
JP2012001759A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US11247903B2 (en) Coating film, method for manufacturing same, and PVD apparatus
EP1841896B1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
US7427439B2 (en) Amorphous-carbon coated member
JP4085699B2 (en) Sliding member and manufacturing method thereof
EP3196331B1 (en) Coating film, manufacturing method for same
US10077839B2 (en) Piston ring and process for producing same
JP5508657B2 (en) Amorphous carbon coating material
Wu et al. Microstructure and surface properties of chromium-doped diamond-like carbon thin films fabricated by high power pulsed magnetron sputtering
JP5892387B2 (en) Manufacturing method of covering member
JP4558549B2 (en) Manufacturing method of covering member
JP4750896B1 (en) Diamond-like carbon film coated article
WO2017130587A1 (en) Sliding member and production method therefor
JP2009062206A (en) Hydrogenated amorphous carbon film
JP5724197B2 (en) Covering member and manufacturing method thereof
Lenardi et al. Properties of amorphous a-CH (: N) films synthesized by direct ion beam deposition and plasma-assisted chemical vapour deposition
WO2015068655A1 (en) Dlc film formation method
Chang et al. Optimization of DLC films on oxynitriding-treated Vanadis 10 tool steel through the various duty cycles of DC-pulsed plasma-enhanced CVD.
US10634249B2 (en) Piston ring and engine
FR2922559A1 (en) PROCESS FOR PRODUCING A HYDROGENATED AMORPHOUS CARBON COATING
Muley et al. Optimizing mechanical properties in single-layered and multi-layered amorphous carbon coatings
JP7058781B1 (en) Piston ring and its manufacturing method
EP3807450B1 (en) Part coated with a non-hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon
JP2011089199A (en) Hard film excellent in lubricating characteristic, application method of the same, and tool for metal plastic working
JP2011168848A (en) Boron nitride film
Tither et al. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250