JP2009062206A - Hydrogenated amorphous carbon film - Google Patents

Hydrogenated amorphous carbon film Download PDF

Info

Publication number
JP2009062206A
JP2009062206A JP2007229766A JP2007229766A JP2009062206A JP 2009062206 A JP2009062206 A JP 2009062206A JP 2007229766 A JP2007229766 A JP 2007229766A JP 2007229766 A JP2007229766 A JP 2007229766A JP 2009062206 A JP2009062206 A JP 2009062206A
Authority
JP
Japan
Prior art keywords
amorphous carbon
film
carbon film
hydrogenated amorphous
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007229766A
Other languages
Japanese (ja)
Inventor
Kentaro Komori
健太郎 小森
Satoshi Yoshida
聡 吉田
Kazumi Ogawa
和美 小川
Akira Hiroshima
晶 廣嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007229766A priority Critical patent/JP2009062206A/en
Publication of JP2009062206A publication Critical patent/JP2009062206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenated amorphous carbon film which has a low aggressiveness against mating materials due to its low surface roughness, has a high hardness, is excellent in wear resistance, can be formed by a CVD method which offers a higher productivity and an excellent film deposition as compared to a conventional PVD method and is therefore capable of realizing a low cost. <P>SOLUTION: The hydrogenated amorphous carbon film is prepared from a hydrocarbon gas through a plasma CVD method and is characterized by a G band shift of 1,550-1,559 cm<SP>-1</SP>and a half-width of G band of 180-197 cm<SP>-1</SP>in a Raman spectrum measured by Raman spectroscopy with an Ar laser (wavelength: 488 nm). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車をはじめとする機械装置の摺動部品、工具、金型等に利用できる水素化アモルファスカーボン膜に関する。   The present invention relates to a hydrogenated amorphous carbon film that can be used for sliding parts, tools, molds, and the like of mechanical devices including automobiles.

従来、非晶質(アモルファス)カーボン膜は、従来、アークイオンプレーティングによって成膜されている。このアークイオンプレーティングは、固体炭素を溶融蒸発させて炭素イオンを生成し、基材に蒸着させるPVD(物理蒸着)を利用する成膜方法である。そして、これまでにDLC(Diamond-Like-Carbon)をはじめとするアモルファス(非晶質)カーボン膜は、低摩擦係数かつ耐磨耗性に優れることから、自動車をはじめとする機械装置の摺動部品、切削工具、切断工具、あるいは金型の表面被膜として利用されている。例えば、特許文献1〜3には、切削工具や切断工具の表面に耐摩耗性、耐溶着性等を付与するため、切削工具等の表面を非晶質(アモルファス)カーボン膜で被覆することが開示されている。   Conventionally, an amorphous carbon film is conventionally formed by arc ion plating. This arc ion plating is a film forming method using PVD (physical vapor deposition) in which solid carbon is melted and evaporated to generate carbon ions and vapor-deposited on a substrate. So far, amorphous carbon films such as DLC (Diamond-Like-Carbon) have low friction coefficient and excellent wear resistance. It is used as a surface coating for parts, cutting tools, cutting tools, or dies. For example, in Patent Documents 1 to 3, the surface of a cutting tool or the like may be coated with an amorphous carbon film in order to impart wear resistance, welding resistance, or the like to the surface of the cutting tool or cutting tool. It is disclosed.

このアークイオンプレーティングにより得られる非晶質(アモルファス)カーボン膜は、水素原子をほとんど含まない非晶質炭素膜であり、緻密で非常に高硬度であることが知られている。これは、従来、非晶質(アモルファス)カーボン膜は、水素を含有すると硬度低下が起こる、と考えられ、そのため、原理的に水素原子を含まない非晶質(アモルファス)カーボン膜を形成できるアークイオンプレーティングが用いられている。
特開2003−62705号公報 特開2003−62706号公報 特開2003−62708号公報
An amorphous carbon film obtained by this arc ion plating is an amorphous carbon film containing almost no hydrogen atoms, and is known to be dense and extremely high in hardness. This is because, conventionally, an amorphous carbon film is considered to have a reduced hardness when it contains hydrogen. Therefore, in principle, an arc that can form an amorphous carbon film that does not contain hydrogen atoms. Ion plating is used.
JP 2003-62705 A JP 2003-62706 A JP 2003-62708 A

しかしながら、アークイオンプレーティングによる非晶質(アモルファス)カーボン膜は、蒸着したままでは非常に面粗度が大きく、表面が荒れた状態となり、高硬度であるために摺動材として用いた場合には相手攻撃性が非常に高くなるという問題がある。そのため、成膜後にマシニングやラッピング等の研磨工程が必要であった。   However, an amorphous carbon film formed by arc ion plating has a very large surface roughness as it is deposited, a rough surface, and a high hardness, so when used as a sliding material. Has a problem that the opponent's aggression becomes very high. Therefore, a polishing process such as machining or lapping is necessary after film formation.

また、従来のアークイオンプレーティングによって得られる非晶質(アモルファス)カーボン膜は、高硬度であるが、残留応力が非常に高く、膜が厚すぎると自己破壊するため、膜厚が0.5μm程度に制限され、膜厚を厚くできない。   In addition, the amorphous carbon film obtained by conventional arc ion plating has a high hardness, but the residual stress is very high. If the film is too thick, the film is self-destructed, so the film thickness is 0.5 μm. The film thickness cannot be increased.

さらに、従来のアークイオンプレーティングによって得られる非晶質(アモルファス)カーボン膜は、複雑な形状への膜の着きまわりが悪く、また、被覆領域に制約がある。したがって、生産性や効率の点で劣る。
さらにまた、面粗度や相手攻撃性の問題を解決するため、成膜工程で生じる溶融粒子を取り除くための様々なフィルタリング手法が考案されているが、生産性や効率が悪く、比較的小さな面積にしか成膜できないという問題がある。
Furthermore, the amorphous carbon film obtained by the conventional arc ion plating has poor adhesion to the film in a complicated shape, and has a limited coverage area. Therefore, it is inferior in terms of productivity and efficiency.
Furthermore, in order to solve the problems of surface roughness and opponent attack, various filtering methods have been devised to remove molten particles generated in the film formation process, but the productivity and efficiency are low, and a relatively small area. There is a problem that the film can only be formed.

そこで、本発明の課題は、低面粗度による低い相手攻撃性を示すばかりでなく、高硬度を有するため優れた耐磨耗性を有するとともに、従来のPVD法よりも生産性が高く、膜の着き回り性に優れるCVD法によって製造できるため、低コストを実現できる水素化アモルファスカーボン膜を提供することにある。   Therefore, the object of the present invention is not only to show low opponent attack due to low surface roughness, but also to have excellent wear resistance due to high hardness, and higher productivity than the conventional PVD method. It is an object of the present invention to provide a hydrogenated amorphous carbon film that can be manufactured at a low cost because it can be manufactured by a CVD method that is excellent in the ringing property.

前記課題を解決するために、請求項1に係る発明は、プラズマCVD法によって炭化水素ガスから得られる水素化アモルファスカーボン膜であって、Arレーザ(波長:488nm)によるラマン分光分析によって測定されるラマンスペクトルのGバンドシフトが1550〜1559cm−1、かつGバンド半値幅が180〜197cm−1であることを特徴とする。 In order to solve the above-mentioned problems, the invention according to claim 1 is a hydrogenated amorphous carbon film obtained from a hydrocarbon gas by a plasma CVD method, and is measured by Raman spectroscopic analysis using an Ar laser (wavelength: 488 nm). The G band shift of the Raman spectrum is 1550 to 1559 cm −1 , and the G band half width is 180 to 197 cm −1 .

この水素化アモルファスカーボン膜は、プラズマCVD法によって炭化水素ガスから生成し、さらに、Arレーザ(波長:488nm)によるラマン分光分析によって測定されるラマンスペクトルのGバンドシフトが1550〜1559cm−1、かつGバンド半値幅が180〜197cm−1を示すものであるため、低面粗度による低い相手攻撃性を示すばかりでなく、高硬度を有するため優れた耐磨耗性を有するとともに、従来のPVD法よりも生産性が高く、膜の着き回り性に優れるCVD法によって製造できるため、低コストを実現できる。 This hydrogenated amorphous carbon film is generated from a hydrocarbon gas by a plasma CVD method. Further, the G band shift of the Raman spectrum measured by Raman spectroscopy using an Ar laser (wavelength: 488 nm) is 1550 to 1559 cm −1 , and Since the G band half-width is 180 to 197 cm −1 , not only shows low opponent aggression due to low surface roughness, but also has high wear resistance due to high hardness, and conventional PVD Since it can be manufactured by the CVD method, which is higher in productivity than the method and excellent in the ringing property of the film, low cost can be realized.

請求項2に係る発明は、前記水素化アモルファスカーボン膜において、水素の含有量が、17〜30原子%であることを特徴とする。   The invention according to claim 2 is characterized in that the hydrogenated amorphous carbon film has a hydrogen content of 17 to 30 atomic%.

この水素化アモルファスカーボン膜は、水素の含有量が17〜30原子%であるものが、硬度および耐摩耗性がより良好であるため、好ましい。   As this hydrogenated amorphous carbon film, one having a hydrogen content of 17 to 30 atomic% is preferable because it has better hardness and wear resistance.

請求項3に係る発明は、前記水素化アモルファスカーボン膜において、マルテンス硬度が9000N/mm以上であることを特徴とする。 The invention according to claim 3 is characterized in that the hydrogenated amorphous carbon film has a Martens hardness of 9000 N / mm 2 or more.

この水素化アモルファスカーボン膜は、マルテンス硬度が9000N/mm以上であるものが、自動車の摺動部材の摺動面等に適用して、適度な硬さ、耐摩耗性および相手攻撃性を得ることができる。 This hydrogenated amorphous carbon film has a Martens hardness of 9000 N / mm 2 or more, and is applied to the sliding surface of a sliding member of an automobile to obtain appropriate hardness, wear resistance and opponent attack be able to.

本発明の水素化アモルファスカーボン膜は、低面粗度による低い相手攻撃性を有するばかりでなく、高硬度で優れた耐磨耗性を有する。すなわち、成膜された表面の面粗度が小さいとともに、硬度が高いため、摺動部における相手攻撃性や摩擦係数が低減する。そして、従来のPVD法よりも生産性が高いCVD法に着き回り性に優れる膜を成膜できるため、被覆性の向上と低コストを実現できる。そのため、本発明の水素化アモルファスカーボン膜は、幅広い工業製品への応用が可能であり、例えば、自動車をはじめとする各種の機械装置、工業製品の幅広い分野における摺動部品、工具、金型の摺動面や摩擦面に適用して、その性能の向上を得ることができる。   The hydrogenated amorphous carbon film of the present invention has not only low attacking ability due to low surface roughness, but also high hardness and excellent wear resistance. That is, since the surface roughness of the film-formed surface is small and the hardness is high, the opponent aggression property and the friction coefficient in the sliding portion are reduced. And since the film | membrane which is superior to the CVD method whose productivity is higher than the conventional PVD method, and is excellent in the covering property can be formed, the improvement of covering property and low cost are realizable. Therefore, the hydrogenated amorphous carbon film of the present invention can be applied to a wide range of industrial products. For example, various mechanical devices including automobiles, sliding parts, tools and molds in a wide range of industrial products. When applied to sliding surfaces and friction surfaces, the performance can be improved.

本発明において、従来は、水素を含有すると硬度低下が起こるために敬遠されていた水素化アモルファスカーボン膜が、プラズマCVD法を用いることで硬度低下なく生成でき、その生産性の高さから低コストでの成膜が可能となる。
また、本発明の水素化アモルファスカーボン膜は、水素を含有することにより、オイルや添加剤等の潤滑剤との親和性、さらには表面官能基との置換による更なる高機能化が期待できる。
In the present invention, a hydrogenated amorphous carbon film, which has conventionally been avoided because of a decrease in hardness when it contains hydrogen, can be generated without a decrease in hardness by using the plasma CVD method, and it is low in cost because of its high productivity. It becomes possible to form a film with this.
Moreover, the hydrogenated amorphous carbon film of the present invention can be expected to have higher functionality by substitution with surface functional groups due to its affinity with lubricants such as oil and additives by containing hydrogen.

以下、本発明の水素化アモルファスカーボン膜(以下、「本発明のDLC膜」という)について詳細に説明する。   Hereinafter, the hydrogenated amorphous carbon film of the present invention (hereinafter referred to as “the DLC film of the present invention”) will be described in detail.

本発明のDLC膜は、プラズマCVD法によって炭化水素ガスを原料として得られるものである。
ここで、プラズマCVD法は、高周波、マイクロ波等の放電により原料ガスをプラズマ励起させて、基板上にイオンやラジカルを堆積させ、基板表面でのイオンやラジカル種の結合によって所望の化合物を結晶または非晶質の状態で成長させる方法である。本発明においては、原料ガスとして、炭化水素ガスを用いることによって、DLC膜を成膜することができる。
The DLC film of the present invention is obtained by using a hydrocarbon gas as a raw material by a plasma CVD method.
Here, in the plasma CVD method, a source gas is plasma-excited by high frequency, microwave discharge, etc., ions and radicals are deposited on the substrate, and a desired compound is crystallized by bonding ions and radical species on the substrate surface. Alternatively, it is a method of growing in an amorphous state. In the present invention, a DLC film can be formed by using a hydrocarbon gas as a source gas.

このプラズマCVD法によって炭化水素ガスを原料として得られる、本発明のDLC膜は、従来のアークイオンプレーティング法によって得られるアモルファスカーボン膜がほとんど水素を含有しないものであるのとは異なり、水素を含有するものである。そして、本発明のDLC膜は、水素含有量が17〜30原子%であるものが、硬度および耐摩耗性が優れるものであるため、機械部品の摺動部や金型・工具の表面処理に好適である。   The DLC film of the present invention obtained by this plasma CVD method using hydrocarbon gas as a raw material is different from the amorphous carbon film obtained by the conventional arc ion plating method that contains almost no hydrogen. It contains. And since the DLC film of the present invention has a hydrogen content of 17 to 30 atomic%, it has excellent hardness and wear resistance, so it can be used for sliding parts of machine parts and surface treatment of dies and tools. Is preferred.

本発明において、DLC膜の製造に用いられるプラズマCVD法は、特に制限されず、炭化水素ガスを原料としてDLC膜を成膜できる方法であれば、いずれの方法によって成膜してもよい。特に、表面荒れの要因の1つである溶融粒子(ドロップレット)の発生が少ないソフトなプロセスであることから、高周波プラズマCVD法が有利である。   In the present invention, the plasma CVD method used for the production of the DLC film is not particularly limited, and may be formed by any method as long as the DLC film can be formed using a hydrocarbon gas as a raw material. In particular, the high-frequency plasma CVD method is advantageous because it is a soft process with less generation of molten particles (droplets), which is one of the causes of surface roughness.

図1は、本発明のDLC膜の製造に用いる高周波誘導結合プラズマCVD装置の構成例を示す。
図1に示す高周波誘導結合プラズマCVD装置1は、反応チャンバ2と、高周波電源3と、基板バイアス電圧印加装置4と、真空ポンプ5とを備える。反応チャンバ2内には、基板6を支持する基板支持部材7と、高周波電源3に接続され反応チャンバ2内に導入される炭化水素ガスHCに高周波を印加するループ状の高周波アンテナ8とが配設されている。
FIG. 1 shows a configuration example of a high frequency inductively coupled plasma CVD apparatus used for manufacturing the DLC film of the present invention.
A high frequency inductively coupled plasma CVD apparatus 1 shown in FIG. 1 includes a reaction chamber 2, a high frequency power source 3, a substrate bias voltage applying device 4, and a vacuum pump 5. In the reaction chamber 2, a substrate support member 7 that supports the substrate 6 and a loop-shaped high-frequency antenna 8 that is connected to the high-frequency power source 3 and applies a high frequency to the hydrocarbon gas HC introduced into the reaction chamber 2 are arranged. It is installed.

この高周波誘導結合プラズマCVD装置1においては、真空ポンプ5によって反応チャンバ2内を、2.0×10−3Pa程度に減圧した後、反応チャンバ2に設けられた原料ガス導入口2aから炭化水素ガスHCを反応チャンバ2内に導入する。導入された炭化水素ガスHCは、高周波電源3から高周波電力を供給される高周波アンテナ8から放電される高周波(例えば、周波数:13.56MHz、出力:50〜200W)によって、プラズマ励起される。プラズマ励起によって生成したラジカルは、回転する基板支持部材7に支持された基板6の表面に堆積して、DLC膜が成膜される。 In this high frequency inductively coupled plasma CVD apparatus 1, the inside of the reaction chamber 2 is depressurized to about 2.0 × 10 −3 Pa by the vacuum pump 5, and then hydrocarbons are introduced from the source gas inlet 2 a provided in the reaction chamber 2. Gas HC is introduced into the reaction chamber 2. The introduced hydrocarbon gas HC is plasma-excited by high frequency (for example, frequency: 13.56 MHz, output: 50 to 200 W) discharged from the high frequency antenna 8 to which high frequency power is supplied from the high frequency power source 3. The radicals generated by the plasma excitation are deposited on the surface of the substrate 6 supported by the rotating substrate support member 7 to form a DLC film.

本発明のDLC膜は、Arレーザ(波長:488nm)によるラマン分光分析によって測定されるラマンスペクトルのGバンドシフトが1550〜1559cm−1、かつGバンド半値幅が180〜197cm−1である。図2に、DLC膜について測定されるラマンスペクトルの一例を示す。このDLC膜のラマンスペクトルは、図2に示すように、1555cm−1付近にピークを有するGバンドと、1390cm−1付近にピークを有するDバンドと、の2つのピークに波形分離される。このDLCのラマンスペクトルの測定は、特に制限されず、汎用されるレーザラマン分光分析装置を用いて行うことができる。 The DLC film of the present invention has a G spectrum shift of 1550 to 1559 cm −1 and a G band half width of 180 to 197 cm −1 of the Raman spectrum measured by Raman spectroscopy using an Ar laser (wavelength: 488 nm). FIG. 2 shows an example of a Raman spectrum measured for the DLC film. As shown in FIG. 2, the Raman spectrum of the DLC film is waveform-separated into two peaks: a G band having a peak near 1555 cm −1 and a D band having a peak near 1390 cm −1. The measurement of the Raman spectrum of DLC is not particularly limited, and can be performed using a widely used laser Raman spectroscopic analyzer.

本発明において、G−バンドシフトが1550〜1559cm−1、G−バンドシフトの半値幅が180〜197cm−1であるDLC膜は、マルテンス硬度9000N/mm以上の高硬度を示し、機械摺動部の耐磨耗膜として好ましい。 In the present invention, a DLC film having a G-band shift of 1550 to 1559 cm −1 and a G-band shift half-value width of 180 to 197 cm −1 exhibits a high hardness with a Martens hardness of 9000 N / mm 2 or more, and mechanical sliding It is preferable as a wear-resistant film for the part.

次に、本発明のDLC膜の製造方法について、前記図1に示す高周波誘導結合プラズマCVD装置1を用いる場合について図3によって説明する。
本発明のDLC膜は、まず、高周波誘導結合プラズマCVD装置1の基板支持部材7に基板6を載置した後、原料導入口2aからArガスを反応チャンバ2内に40sccmの流量で供給するとともに、高周波電源3から高周波電力を供給して高周波アンテナ8から高周波放電を行ってプラズマを生成し、そのプラズマによってArガスをイオン化して、基板6の表面に衝突させる処理、すなわち、イオンボンバードによって、基板6の表面を10分間洗浄する(基板洗浄:ステップS1)。
Next, the manufacturing method of the DLC film of the present invention will be described with reference to FIG. 3 in the case of using the high frequency inductively coupled plasma CVD apparatus 1 shown in FIG.
In the DLC film of the present invention, first, after the substrate 6 is placed on the substrate support member 7 of the high frequency inductively coupled plasma CVD apparatus 1, Ar gas is supplied into the reaction chamber 2 from the raw material inlet 2 a at a flow rate of 40 sccm. , By supplying high frequency power from the high frequency power source 3 to generate high frequency discharge from the high frequency antenna 8 to generate plasma, and ionizing Ar gas by the plasma to collide with the surface of the substrate 6, that is, by ion bombardment, The surface of the substrate 6 is cleaned for 10 minutes (substrate cleaning: step S1).

次に、TMS(テトラメチルシラン)ガスを、原料導入口2aから10sccmの流量で供給するとともに、高周波アンテナ8から5分間高周波放電を行って、基板6の表面に中間層としてSi−C膜を成膜する(中間層の形成:ステップS2)。この中間層は、その上に成膜するDLC膜の密着性の向上のために形成するものであり、形成しなくてもよい。   Next, TMS (tetramethylsilane) gas is supplied from the raw material inlet 2a at a flow rate of 10 sccm, and high frequency discharge is performed from the high frequency antenna 8 for 5 minutes to form a Si—C film as an intermediate layer on the surface of the substrate 6. Film formation is performed (intermediate layer formation: step S2). This intermediate layer is formed in order to improve the adhesion of the DLC film formed thereon, and need not be formed.

次に、原料導入口2aから反応チャンバ2内に原料ガスとして炭化水素ガスを供給するとともに、高周波電源3から高周波電力を供給して高周波アンテナ8から高周波放電を行ってプラズマを生成し、そのプラズマによって基板6の表面にDLC膜を成膜する(DLC膜の形成:ステップS3)。   Next, a hydrocarbon gas is supplied as a raw material gas into the reaction chamber 2 from the raw material inlet 2a, a high frequency power is supplied from the high frequency power source 3 and a high frequency discharge is performed from the high frequency antenna 8 to generate plasma. Thus, a DLC film is formed on the surface of the substrate 6 (formation of DLC film: step S3).

この製造方法において、DLC膜を成膜する基板6の代わりに、実際にDLC膜を成膜する部材等を、基板支持部材7に取り付けて、前記の方法によってDLC膜を成膜することによって、低面粗度による低い相手攻撃性を示すばかりでなく、高硬度を有するため耐摩耗性に優れるDLC膜を表面に有する部材等を得ることができる。このDLC膜を成膜する対象は、特に制限されず、本発明のDLC膜は、例えば、自動車をはじめとする機械装置の摺動部品、切削工具、切断工具、あるいは金型、また、耐傷付き性の向上や防錆を目的とした耐環境保護膜等として広範囲の工業製品に適用して、高硬度かつ優れた耐磨耗性を有し、低面粗度による低い相手攻撃性を有する被膜を形成することができる。そして、本発明のDLC膜は、従来のPVD法よりも生産性が高く、膜の着き回り性に優れるCVD法によって製造できるため、低コストを実現できる。   In this manufacturing method, instead of the substrate 6 on which the DLC film is formed, a member or the like that actually forms the DLC film is attached to the substrate support member 7, and the DLC film is formed by the above method, A member having a DLC film on the surface having excellent wear resistance due to high hardness as well as low opponent attack due to low surface roughness can be obtained. The object on which the DLC film is formed is not particularly limited, and the DLC film of the present invention is, for example, a sliding part, a cutting tool, a cutting tool, or a die of a mechanical device such as an automobile, or a scratch-resistant material. Applying to a wide range of industrial products as an environmental protection film for the purpose of improving safety and preventing rust, it has high hardness, excellent wear resistance, and low attack resistance due to low surface roughness Can be formed. Since the DLC film of the present invention has a higher productivity than the conventional PVD method and can be manufactured by a CVD method that is excellent in the wearability of the film, low cost can be realized.

また、DLC膜を成膜するために原料として用いられる炭化水素ガスは、C、C、CH、シクロヘキサン、トルエン、ヘキサン、ブタン、ペンタン、エタン等を用いることができる。中でも、イオン化ポテンシャルが低く、成膜速度や効率が高く、かつ、水素原子の含有量が少ないことから、C、Cが好ましい。 As the hydrocarbon gas used as a raw material for forming the DLC film, C 2 H 2 , C 6 H 6 , CH 4 , cyclohexane, toluene, hexane, butane, pentane, ethane, or the like can be used. Among these, C 2 H 2 and C 6 H 6 are preferable because of their low ionization potential, high film formation rate and high efficiency, and low hydrogen atom content.

本発明のDLC膜は、マルテンス硬度が9000N/mm以上であるものが、自動車の摺動部材の摺動面等に適用して、適度な硬さおよび耐摩耗性を得ることができることから、好ましい。本発明において、マルテンス硬度は、先端が尖った三角錐状の圧子を、DLC膜の表面に荷重を加えながら押し込み、負荷増加時の荷重−押し込み深さ曲線の値から求められる硬さであり、例えば、ISO14577に準拠した方法によって測定される。 Since the DLC film of the present invention has a Martens hardness of 9000 N / mm 2 or more, it can be applied to a sliding surface of a sliding member of an automobile, etc., so that appropriate hardness and wear resistance can be obtained. preferable. In the present invention, the Martens hardness is a hardness obtained from a value of a load-indentation depth curve when a load is increased by pushing a triangular pyramid-shaped indenter with a sharp tip while applying a load to the surface of the DLC film, For example, it is measured by a method based on ISO14577.

以下、本発明の実施例および比較例により本発明を具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although the present invention will be specifically described with reference to examples and comparative examples of the present invention, the present invention is not limited to the following examples.

(実施例1〜7、比較例1〜6)
図1に示す構造を有する高周波誘導結合プラズマCVD装置を用いて、原料ガスのガス種および流量(sccm)、RF出力、基板バイアス電圧、バイアス形式等の成膜条件を、表1または表3に示すように変えて、SPCC(冷間圧延鋼板)、ハイス鋼、超硬合金からなる基板の表面に水素化アモルファスカーボン膜を成膜した。
(Examples 1-7, Comparative Examples 1-6)
Using the high frequency inductively coupled plasma CVD apparatus having the structure shown in FIG. 1, the deposition conditions such as the gas type and flow rate (sccm) of the source gas, the RF output, the substrate bias voltage, and the bias type are shown in Table 1 or Table 3. As shown, a hydrogenated amorphous carbon film was formed on the surface of a substrate made of SPCC (cold rolled steel plate), high-speed steel, or cemented carbide.

得られた水素化アモルファスカーボン膜について、下記の装置および測定条件で、ラマン分光分析を行い、また、マルテンス硬度および面粗度を測定した。さらに、参考例として、水素化アモルファスカーボン膜を有しない未処理基板についても面粗度を測定した。
結果を表2および表4に示す。
The obtained hydrogenated amorphous carbon film was subjected to Raman spectroscopic analysis with the following apparatus and measurement conditions, and the Martens hardness and surface roughness were measured. Furthermore, as a reference example, the surface roughness of an untreated substrate that does not have a hydrogenated amorphous carbon film was also measured.
The results are shown in Table 2 and Table 4.

ラマン分光分析
レーザーラマン分光分析装置:日本分光(株)製、NRS−2100
レーザー:波長488nmのArレーザを用いて出力を45〜55mWに調整した。
波形分離:フォークト関数によりカーブフィッティングし、波形分離してG−バンドシフト、G−バンド半値幅、D−バンドシフトおよびD−バンド半値幅を求めた。
Raman spectroscopic analysis Laser Raman spectroscopic analyzer: manufactured by JASCO Corporation, NRS-2100
Laser: The output was adjusted to 45 to 55 mW using an Ar laser having a wavelength of 488 nm.
Waveform separation: curve fitting was performed using a Forked function, and waveform separation was performed to obtain G-band shift, G-band half width, D-band shift, and D-band half width.

マルテンス硬度の測定(ISO14577準拠)
硬さ試験機:(株)フィッシャーインストルメンツ製、超微小硬さ試験機 PICODENTOR、HM500を用いて、微小ビッカース型ダイヤモンド圧子の荷重2.45mNでマルテンス硬度(HM)を測定した。
Martens hardness measurement (ISO14577 compliant)
Hardness tester: Martens hardness (HM) was measured at a load of 2.45 mN of a micro Vickers type diamond indenter using an ultra micro hardness tester PICODERTOR, HM500 manufactured by Fisher Instruments Co., Ltd.

面粗度
表面粗さ測定機((株)ミツトヨ製、SV−3000CNC)により、JIS B 0601に準拠して面粗度を測定した。
Surface Roughness Surface roughness was measured with a surface roughness measuring machine (manufactured by Mitutoyo Corporation, SV-3000 CNC) according to JIS B 0601.

次に、実施例および比較例で得られたDLC膜について、走査型プローブ顕微鏡((株)島津製作所製、SPH−1)を用いて観察し、表面状態を示す写真を得た。図4(A)が実施例3で得られたDLC膜の表面状態を示す写真、図4(B)が比較例2で得られたDLC膜の表面状態を示す写真である。
これらの写真から、表2および表4に示すとおり、実施例3のDLCと比較例2のDLC膜とは、面粗度が著しく異なり、実施例3のDLC膜の方が、比較例2のDLC膜よりも面粗度が小さいことが分かる。
Next, the DLC films obtained in Examples and Comparative Examples were observed using a scanning probe microscope (manufactured by Shimadzu Corporation, SPH-1) to obtain a photograph showing the surface state. 4A is a photograph showing the surface state of the DLC film obtained in Example 3, and FIG. 4B is a photograph showing the surface state of the DLC film obtained in Comparative Example 2.
From these photographs, as shown in Table 2 and Table 4, the DLC film of Example 3 and the DLC film of Comparative Example 2 are significantly different in surface roughness, and the DLC film of Example 3 is more in Comparative Example 2. It can be seen that the surface roughness is smaller than that of the DLC film.

また、表2に示す実施例1〜7のDLC膜と、表4に示す比較例1〜4のDLC膜とは、面粗度(Ra,Ry,Rz)がほぼ同程度の数値を示しており、面粗度に大きな差はない。しかし、硬度(マルテンス硬度:HM)では、表2に示す実施例1〜7は、表4に示す比較例1〜4に比べて、高い硬度(9000N/mm以上)を有するものであることが分かる。したがって、プラズマCVD法によって成膜した場合でも、ラマンスペクトルのGバンドシフトが1550〜1559cm−1、かつGバンド半値幅が180〜197cm−1である実施例1〜7のDLC膜が、このGバンドシフトおよびGバンド半値幅が、前記条件を同時に満たさない比較例1〜4のDLC膜に比べて、高い硬度を有するものであることを示している。そのため、本発明のDLC膜は、低面粗度による低い相手攻撃性を示すばかりでなく、高硬度を有するため優れた耐磨耗性を有するものであることが分かる。 In addition, the DLC films of Examples 1 to 7 shown in Table 2 and the DLC films of Comparative Examples 1 to 4 shown in Table 4 show numerical values with substantially the same surface roughness (Ra, Ry, Rz). There is no significant difference in surface roughness. However, in hardness (Martens hardness: HM), Examples 1 to 7 shown in Table 2 have higher hardness (9000 N / mm 2 or more) than Comparative Examples 1 to 4 shown in Table 4. I understand. Therefore, even when the film is formed by the plasma CVD method, the DLC films of Examples 1 to 7 in which the G band shift of the Raman spectrum is 1550 to 1559 cm −1 and the G band half width is 180 to 197 cm −1 It is shown that the band shift and the G band half width have higher hardness than the DLC films of Comparative Examples 1 to 4 that do not satisfy the above conditions at the same time. Therefore, it can be seen that the DLC film of the present invention not only exhibits low opponent attack due to low surface roughness, but also has excellent wear resistance due to its high hardness.

高周波プラズマCVD装置の概略構成を示す図である。It is a figure which shows schematic structure of a high frequency plasma CVD apparatus. 本発明の水素化アモルファスカーボン膜の製造工程を示す図である。It is a figure which shows the manufacturing process of the hydrogenation amorphous carbon film | membrane of this invention. ラマンスペクトルの一例を示す図である。It is a figure which shows an example of a Raman spectrum. (A)は、実施例3で得られたDLC膜の表面状態を示す走査型プローブ顕微鏡写真、(B)は、比較例2で得られたDLC膜の表面状態を示す走査型プローブ顕微鏡写真である。(A) is a scanning probe micrograph showing the surface state of the DLC film obtained in Example 3, and (B) is a scanning probe micrograph showing the surface state of the DLC film obtained in Comparative Example 2. is there.

符号の説明Explanation of symbols

1 高周波誘導結合プラズマCVD装置
2 反応チャンバ
2a 原料導入口
3 高周波電源
4 基板バイアス電圧印加装置
5 真空ポンプ
6 基板
7 基板支持部材
8 高周波アンテナ
DESCRIPTION OF SYMBOLS 1 High frequency inductively coupled plasma CVD apparatus 2 Reaction chamber 2a Raw material introduction port 3 High frequency power supply 4 Substrate bias voltage application device 5 Vacuum pump 6 Substrate 7 Substrate support member 8 High frequency antenna

Claims (3)

プラズマCVD法によって炭化水素ガスから得られる水素化アモルファスカーボン膜であって、
Arレーザ(波長:488nm)によるラマン分光分析によって測定されるラマンスペクトルのGバンドシフトが1550〜1559cm−1、かつGバンド半値幅が180〜197cm−1であることを特徴とする水素化アモルファスカーボン膜。
A hydrogenated amorphous carbon film obtained from a hydrocarbon gas by a plasma CVD method,
Hydrogenated amorphous carbon characterized in that the G band shift of the Raman spectrum measured by Raman spectroscopy with an Ar laser (wavelength: 488 nm) is 1550 to 1559 cm −1 and the G band half-value width is 180 to 197 cm −1. film.
水素の含有量が、17〜30原子%であることを特徴とする請求項1に記載の水素化アモルファスカーボン膜。   2. The hydrogenated amorphous carbon film according to claim 1, wherein the hydrogen content is 17 to 30 atomic%. マルテンス硬度が9000N/mm以上であることを特徴とする請求項1または請求項2に記載の水素化アモルファスカーボン膜。 The hydrogenated amorphous carbon film according to claim 1, wherein the Martens hardness is 9000 N / mm 2 or more.
JP2007229766A 2007-09-05 2007-09-05 Hydrogenated amorphous carbon film Pending JP2009062206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229766A JP2009062206A (en) 2007-09-05 2007-09-05 Hydrogenated amorphous carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229766A JP2009062206A (en) 2007-09-05 2007-09-05 Hydrogenated amorphous carbon film

Publications (1)

Publication Number Publication Date
JP2009062206A true JP2009062206A (en) 2009-03-26

Family

ID=40557156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229766A Pending JP2009062206A (en) 2007-09-05 2007-09-05 Hydrogenated amorphous carbon film

Country Status (1)

Country Link
JP (1) JP2009062206A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185336A (en) * 2008-02-06 2009-08-20 Yamaguchi Prefecture Amorphous carbon film and method for forming the same
JP2010126419A (en) * 2008-11-28 2010-06-10 Kanagawa Prefecture Dlc film, dlc coating member, and method for production thereof
WO2012117854A1 (en) * 2011-02-28 2012-09-07 本田技研工業株式会社 Slide member
JP2013220987A (en) * 2012-04-19 2013-10-28 Mitsuba Corp Carbon film, polymer product, method for manufacturing carbon film coated material, method of forming film, and film forming device
CN103449402A (en) * 2013-08-23 2013-12-18 吉林大学 Hydrogenated carbon nanosphere as well as preparation method and application thereof
JP2015085319A (en) * 2013-09-26 2015-05-07 Toto株式会社 Metallic components for water-area
ES2552104A1 (en) * 2015-04-23 2015-11-25 Advanced Nanotechnologies S.L. Guide for printer print head support slider, procedure for obtaining a printer guide and installation for obtaining this guide (Machine-translation by Google Translate, not legally binding)
PL447875A1 (en) * 2024-02-28 2024-10-07 Politechnika Warszawska Method of producing carbon coatings on a 35HGSA nanobainitic steel substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185336A (en) * 2008-02-06 2009-08-20 Yamaguchi Prefecture Amorphous carbon film and method for forming the same
JP2010126419A (en) * 2008-11-28 2010-06-10 Kanagawa Prefecture Dlc film, dlc coating member, and method for production thereof
WO2012117854A1 (en) * 2011-02-28 2012-09-07 本田技研工業株式会社 Slide member
JP6063376B2 (en) * 2011-02-28 2017-01-18 本田技研工業株式会社 Sliding member
JP2013220987A (en) * 2012-04-19 2013-10-28 Mitsuba Corp Carbon film, polymer product, method for manufacturing carbon film coated material, method of forming film, and film forming device
CN103449402A (en) * 2013-08-23 2013-12-18 吉林大学 Hydrogenated carbon nanosphere as well as preparation method and application thereof
CN103449402B (en) * 2013-08-23 2015-10-14 吉林大学 A kind of hydrogenated carbon nanometer ball and its production and use
JP2015085319A (en) * 2013-09-26 2015-05-07 Toto株式会社 Metallic components for water-area
ES2552104A1 (en) * 2015-04-23 2015-11-25 Advanced Nanotechnologies S.L. Guide for printer print head support slider, procedure for obtaining a printer guide and installation for obtaining this guide (Machine-translation by Google Translate, not legally binding)
WO2016170212A1 (en) * 2015-04-23 2016-10-27 Advanced Nanotechnologies, S.L. Guide for a runner supporting the printing head of a printer, method for producing a printer guide, and facility for producing said guide
PL447875A1 (en) * 2024-02-28 2024-10-07 Politechnika Warszawska Method of producing carbon coatings on a 35HGSA nanobainitic steel substrate

Similar Documents

Publication Publication Date Title
JP2009062206A (en) Hydrogenated amorphous carbon film
Moriguchi et al. History and applications of diamond-like carbon manufacturing processes
Huang et al. Graphite-like carbon films by high power impulse magnetron sputtering
Capote et al. Improvement of the properties and the adherence of DLC coatings deposited using a modified pulsed-DC PECVD technique and an additional cathode
Ferreira et al. Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering
KR100586803B1 (en) A method of coating edges with diamond-like carbon
US20150017468A1 (en) Coated tool and methods of making and using the coated tool
Grigore et al. Zirconium carbonitride films deposited by combined magnetron sputtering and ion implantation (CMSII)
JP2009545670A (en) Surface modification process and equipment
JP6103040B2 (en) Manufacturing method of coated tool
JP6364685B2 (en) Piston ring and manufacturing method thereof
Fujii et al. Dry machining of metal using an engraving cutter coated with a droplet-free ta-C film prepared via a T-shape filtered arc deposition
Zhao et al. Structural, mechanical and tribological characterizations of aC: H: Si films prepared by a hybrid PECVD and sputtering technique
EP3239349B1 (en) Wear resistant tetrahedral diamond like carbon layer
CN111560582A (en) Method for manufacturing superhard high-entropy alloy nitride coating on alloy cutter
CN102286726A (en) Surface wear-resistance coating applied to automobile ordinary carbon steel movement friction pair
JP2013087325A (en) Hard carbon film, and method for forming the same
JP5126867B2 (en) Carbon film manufacturing method
Xie et al. Microstructure and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings
Man et al. Plasma boronitriding of WC (Co) substrate as an effective pretreatment process for diamond CVD
Hodroj et al. Nanocrystalline diamond coatings: Effects of time modulation bias enhanced HFCVD parameters.
Khun et al. Tribological properties of platinum/ruthenium/nitrogen doped diamond-like carbon thin films deposited with different negative substrate biases
TWI554633B (en) A diamond-like carbon film and manufacturing method thereof
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP3260156B2 (en) Method for producing diamond-coated member