JP4558549B2 - Manufacturing method of covering member - Google Patents

Manufacturing method of covering member Download PDF

Info

Publication number
JP4558549B2
JP4558549B2 JP2005074129A JP2005074129A JP4558549B2 JP 4558549 B2 JP4558549 B2 JP 4558549B2 JP 2005074129 A JP2005074129 A JP 2005074129A JP 2005074129 A JP2005074129 A JP 2005074129A JP 4558549 B2 JP4558549 B2 JP 4558549B2
Authority
JP
Japan
Prior art keywords
intermediate layer
nitride intermediate
forming
nitride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005074129A
Other languages
Japanese (ja)
Other versions
JP2006257466A (en
Inventor
淳二 安藤
寛文 桑原
資丈 古橋
広行 森
和之 中西
英男 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyota Central R&D Labs Inc
Original Assignee
JTEKT Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyota Central R&D Labs Inc filed Critical JTEKT Corp
Priority to JP2005074129A priority Critical patent/JP4558549B2/en
Publication of JP2006257466A publication Critical patent/JP2006257466A/en
Application granted granted Critical
Publication of JP4558549B2 publication Critical patent/JP4558549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属製の基材に硬質膜等を被覆した被覆部材に関するもので、基材と被覆膜との密着性に優れた被覆部材の製造方法に関するものである。   The present invention relates to a covering member obtained by coating a metal base material with a hard film or the like, and relates to a method for manufacturing a covering member having excellent adhesion between the base material and the covering film.

金属製の基材の表面に、表面特性を向上させることを目的として、耐摩耗性や耐蝕性、絶縁性等を有する被覆膜を形成した被覆部材が広く使用されている。してがって、被覆膜を形成することにより得られる特性を長期にわたって保持するためには、基材と被覆膜との密着性が重要となる。   For the purpose of improving surface characteristics, a covering member in which a coating film having wear resistance, corrosion resistance, insulation, and the like is formed on the surface of a metal substrate is widely used. Therefore, in order to maintain the characteristics obtained by forming the coating film over a long period of time, the adhesion between the substrate and the coating film is important.

そこで、特許文献1には、被覆膜を形成する前処理として、基材の表面に強度の高い窒化物中間層を形成し、さらに、希ガスあるいは水素ガス等のクリーニングガスによるイオン衝撃によって、中間層の表面に数十nm程度の凹凸面を形成することによって、その後形成される被覆膜との密着性を向上させている。特許文献1の方法では、窒化物中間層を形成するだけでは被覆膜との密着性が不十分である。そのため、さらに、イオン衝撃によって窒化物中間層の表面に凹凸面を形成している。
特開平11−310868号公報
Therefore, in Patent Document 1, as a pretreatment for forming the coating film, a high-strength nitride intermediate layer is formed on the surface of the substrate, and further, by ion bombardment with a cleaning gas such as a rare gas or hydrogen gas, By forming a concavo-convex surface of about several tens of nanometers on the surface of the intermediate layer, adhesion with a coating film formed thereafter is improved. In the method of Patent Document 1, the adhesion with the coating film is insufficient only by forming the nitride intermediate layer. Therefore, an uneven surface is further formed on the surface of the nitride intermediate layer by ion bombardment.
JP-A-11-310868

本発明者らは、窒化物からなる中間層を形成する際に中間層の表面に所望の凹凸面を形成でき、基材と被覆膜との密着性に優れた被覆部材の製造方法を想到した。すなわち、本発明は、基材と被覆膜との密着性に優れた被覆部材が得られる新規な被覆部材の製造方法を提供することを目的とする。   The inventors of the present invention have conceived a method for producing a covering member that can form a desired uneven surface on the surface of the intermediate layer when forming the intermediate layer made of nitride and has excellent adhesion between the substrate and the covering film. did. That is, an object of this invention is to provide the manufacturing method of the novel coating | coated member from which the coating | coated member excellent in the adhesiveness of a base material and a coating film is obtained.

本発明の被覆部材の製造方法は、基材の表面部に窒化物からなる窒化物中間層を形成する窒化物中間層形成工程と、該窒化物中間層上に被覆膜を形成する被覆膜形成工程と、よりなる被覆部材の製造方法であって、
記窒化物中間層形成工程は、炭素鋼からなる前記基材を窒化処理することにより窒素と鉄との化合物を含む前記窒化物中間層を形成するとともに該窒化物中間層の表面に凹凸面を形成する工程であって、該窒化物中間層を1μm以上形成することで該窒化物中間層の表面平均高さが10〜100nmで平均の幅が10〜500nmである凸部をもつ前記凹凸面を得ることを特徴とする。
の際、前記窒化物中間層形成工程は、少なくとも窒素を含むプラズマにより前記窒化物中間層を形成する工程であるのが望ましい。
The method for producing a covering member of the present invention includes a nitride intermediate layer forming step of forming a nitride intermediate layer made of nitride on a surface portion of a base material, and a coating for forming a coating film on the nitride intermediate layer A method for producing a covering member comprising a film forming step,
Before SL nitride intermediate layer forming step, the irregular surface on the surface of the nitride intermediate layer and forming the nitride intermediate layer comprising a compound of nitrogen and iron by nitriding the base material made of carbon steel and forming a even One convex portion width of the average mean height in 10~100nm the surface of the nitride intermediate layer is 10~500nm by forming more than 1μm and the nitride intermediate layer characterized Rukoto obtain the uneven surface.
During this, the nitride intermediate layer forming step is desirably a step of forming the nitride intermediate layer by plasma containing at least nitrogen.

前記窒化物中間層形成工程は、前記基材の温度を420〜590℃にして前記窒化物中間層を形成する工程であるのが望ましい。また、前記窒化物中間層形成工程は、0.12W/cm2 以上の電力密度で前記プラズマを発生させて前記窒化物中間層を形成する工程であるのが望ましい。 The nitride intermediate layer forming step is preferably a step of forming the nitride intermediate layer at a temperature of the base material of 420 to 590 ° C. Further, the nitride intermediate layer forming step is preferably a step of forming the nitride intermediate layer by generating the plasma at a power density of 0.12 W / cm 2 or more.

本発明の被覆部材の製造方法によれば、窒化物中間層形成工程において、窒化物中間層を1μm以上形成することにより、基材の表面部を窒化するとともに、被覆膜との高い密着性を保持するのに十分な凹凸面を形成することができる。   According to the manufacturing method of the covering member of the present invention, in the nitride intermediate layer forming step, the surface portion of the substrate is nitrided by forming the nitride intermediate layer to 1 μm or more, and the adhesiveness to the coating film is high. It is possible to form a concavo-convex surface sufficient to hold

また、窒化物中間層形成工程での基材の温度を420〜590℃とすれば、高強度の窒化物中間層を形成することができる。また、窒化物中間層の形成時の電力密度を0.12W/cm2 以上とすれば、上記凹凸面を良好に形成することができ、基材と被覆膜との密着性がさらに向上する。 Moreover, if the temperature of the base material in the nitride intermediate layer forming step is set to 420 to 590 ° C., a high-strength nitride intermediate layer can be formed. Further, if the power density at the time of forming the nitride intermediate layer is 0.12 W / cm 2 or more, the uneven surface can be satisfactorily formed, and the adhesion between the substrate and the coating film is further improved. .

本発明の被覆部材の製造方法は、主として、基材の表面部に窒化物からなる窒化物中間層を形成する窒化物中間層形成工程と、窒化物中間層上に被覆膜を形成する被覆膜形成工程と、からなる。本発明に用いられる基材は、その形状に特に限定はないため、摺動部材、構造部材などの種々の部品、装置の一部を構成するものであればよい。具体的には、自動変速機に用いられる各種クラッチやブレーキの部品であるクラッチ板、シンクロナイザーリング、CVTのトルク伝達部材等が挙げられる。また、基材は、鉄系金属であれば炭素鋼であるのが好ましい。また、基材の表面粗さは、被覆部材の用途にもよるが、用途がクラッチ板であれば、十点平均粗さで2〜6μmRzであるのが好ましい。 The covering member manufacturing method of the present invention mainly includes a nitride intermediate layer forming step of forming a nitride intermediate layer made of nitride on a surface portion of a base material, and a coating for forming a coating film on the nitride intermediate layer. And a covering film forming step. Since the substrate used in the present invention is not particularly limited in shape, various parts such as a sliding member and a structural member and a part of the apparatus may be used. Specific examples include various clutches and brake parts used in automatic transmissions, clutch plates, synchronizer rings, and CVT torque transmission members. The base material is preferably carbon steel if it is an iron- based metal. Moreover, although the surface roughness of a base material is based also on the use of a coating | coated member, if a use is a clutch board, it is preferable that it is 2-6 micrometers Rz by 10-point average roughness.

窒化物中間層形成工程は、窒化物中間層を1μm以上形成して、その窒化物中間層の表面を平均高さが10〜100nmで平均の幅が10〜500nmである凸部をもつ凹凸面とする工程である。   In the nitride intermediate layer forming step, the nitride intermediate layer is formed to have a thickness of 1 μm or more, and the surface of the nitride intermediate layer has an uneven surface having a convex portion with an average height of 10 to 100 nm and an average width of 10 to 500 nm. It is a process.

窒化物中間層は、いわゆる窒化処理により形成される。本発明では、各種窒化処理の中でも、窒素をプラズマ状態で供給するプラズマ窒化処理を用いるとよい。プラス極とマイナス極の二つの電極の間に電力を印加することにより、グロー放電が生じる。プラズマ窒化処理では、この電極間に、窒素ガス等を導入し、グロー放電により窒素原子を活性化させることにより窒素プラズマを発生させ、基材に窒素イオンを衝突させて窒化を行う。プラズマ窒化処理は、基材をマイナス極に結線しグロー放電させる直流プラズマCVD法や高周波プラズマCVD法などのプラズマCVD法により、基材の表面部を窒化するのが望ましい。この場合、基材は、導電性材料からなるのが好ましく、具体的には、体積抵抗率が、108 Ω・cm以下であるのが好ましい。 The nitride intermediate layer is formed by a so-called nitriding process. In the present invention, among various nitriding treatments, a plasma nitriding treatment for supplying nitrogen in a plasma state may be used. Glow discharge is generated by applying electric power between the two electrodes, the positive electrode and the negative electrode. In the plasma nitriding treatment, nitrogen gas or the like is introduced between the electrodes, and nitrogen atoms are activated by glow discharge to generate nitrogen plasma, and nitriding is performed by colliding nitrogen ions with the substrate. In the plasma nitriding treatment, it is desirable to nitride the surface portion of the base material by a plasma CVD method such as a direct current plasma CVD method or a high frequency plasma CVD method in which the base material is connected to the negative electrode and glow discharge is performed. In this case, the base material is preferably made of a conductive material, and specifically, the volume resistivity is preferably 10 8 Ω · cm or less.

プラズマ窒化処理の際には、少なくとも窒素を含むプラズマを用いれば、窒化とともに凹凸面が形成される。窒素としては、窒素ガスやアンモニア等の窒素含有ガスを用いればよい。また、窒素に加え、さらに、水素および希ガス等のうちの一種以上を用いれば、均一で微細な凹凸面が形成されやすくなる。特に、アルゴン等の重い希ガスを用いれば、基材の表面がイオンエッチングされ、凹凸面が形成されやすく、好ましい。   In the plasma nitriding treatment, if plasma containing at least nitrogen is used, an uneven surface is formed together with nitriding. Nitrogen-containing gas such as nitrogen gas or ammonia may be used as nitrogen. Further, in addition to nitrogen, if one or more of hydrogen, a rare gas, and the like are used, a uniform and fine uneven surface can be easily formed. In particular, the use of a heavy rare gas such as argon is preferable because the surface of the substrate is ion-etched and an uneven surface is easily formed.

また、形成される窒化物中間層は、周期律表の第4属〜第6属に属する元素の少なくとも1種を有する窒化物からなるのが好ましい。なお、窒化物の組成は、処理ガスの組成を調整することにより変化する。   Further, the formed nitride intermediate layer is preferably made of a nitride having at least one element belonging to Group 4 to Group 6 of the periodic table. Note that the composition of the nitride changes by adjusting the composition of the processing gas.

窒化物中間層形成工程では、窒化物中間層を1μm以上形成する。上述の方法により1μm以上形成すれば、窒化物中間層の表面に十分な凹凸面が形成される。したがって、窒化物中間層を形成後に、さらに、中間層の表面にイオン衝撃により凹凸面を形成する工程を行う必要がない。1μm未満であると、凹凸面の形成が不十分であり、窒化物中間層の表面に凸部が形成されない部分が存在するため、被覆膜を形成した場合にはその部分から膜の剥離が進行し、密着性が悪い。そのため、窒化物中間層は、好ましくは1〜15μm、さらに好ましくは3〜10μm形成される。   In the nitride intermediate layer forming step, the nitride intermediate layer is formed with a thickness of 1 μm or more. If 1 μm or more is formed by the above-described method, a sufficient uneven surface is formed on the surface of the nitride intermediate layer. Therefore, after forming the nitride intermediate layer, there is no need to perform a step of forming an uneven surface on the surface of the intermediate layer by ion bombardment. When the thickness is less than 1 μm, the formation of the uneven surface is insufficient, and there is a portion where the convex portion is not formed on the surface of the nitride intermediate layer. Therefore, when the coating film is formed, the film is peeled off from the portion. Progress and poor adhesion. Therefore, the nitride intermediate layer is preferably formed to 1 to 15 μm, more preferably 3 to 10 μm.

窒化物中間層の表面には、平均高さが10〜100nmの範囲、平均の幅が10〜500nmの範囲の凹凸面が形成される。なお、凸部は半球状やコーン状等の形状に形成される。ここで、凸部の高さとは凸部を半球状とみなした場合にこの半球状の凸部の底から頂点までの距離を、凸部の幅とは凸部を半球状とみなした場合に半球状の凸部の底の最大径(凸部の底面形状が真円の場合は直径、凸部の底面形状が楕円の場合は長軸径)に相当する水平方向の距離をいう。   An uneven surface having an average height in the range of 10 to 100 nm and an average width in the range of 10 to 500 nm is formed on the surface of the nitride intermediate layer. The convex portion is formed in a hemispherical shape or a cone shape. Here, the height of the convex part is the distance from the bottom to the apex of the convex part of the hemispherical part when the convex part is considered hemispherical, and the width of the convex part is when the convex part is considered hemispherical The distance in the horizontal direction corresponding to the maximum diameter of the bottom of the hemispherical convex portion (the diameter when the bottom shape of the convex portion is a perfect circle, and the long axis diameter when the bottom shape of the convex portion is an ellipse).

平均高さの範囲が10〜100nmであれば、機械的なアンカー効果が得られ、基材と被覆膜との密着性が向上する。なお、より好ましい平均高さの範囲は20〜70nmであり、より密着性が向上する。また、平均の幅が10〜500nmの範囲であれば、好適なアンカー効果が得られ、密着性が向上するためである。より好ましい平均の幅は、30〜400nmであり、この範囲であれば、さらに密着性が向上する。なお、凸部の大きさは従来の表面粗さ計(触針法)では測定できない程度の大きさである。そのため、凸部の大きさ、幅はSEM(走査型電子顕微鏡)観察及びAFM(原子間力顕微鏡)などの微小な形状測定によって行うことができる。   When the average height is in the range of 10 to 100 nm, a mechanical anchor effect is obtained, and the adhesion between the substrate and the coating film is improved. In addition, the range of a more preferable average height is 20-70 nm, and adhesiveness improves more. Moreover, if the average width is in the range of 10 to 500 nm, a suitable anchor effect is obtained, and the adhesion is improved. A more preferable average width is 30 to 400 nm, and if in this range, the adhesion is further improved. In addition, the magnitude | size of a convex part is a magnitude | size which is a grade which cannot be measured with the conventional surface roughness meter (stylus method). Therefore, the size and width of the convex portion can be measured by minute shape measurement such as SEM (scanning electron microscope) observation and AFM (atomic force microscope).

凸部の大きさが所定のものであっても、凸部の面積が少なければ、膜の密着性には効果が得られない。凹凸面に占める凸部の面積割合は、凹凸面の面積を100%とすると、凸部の占める面積は少なくとも10%以上、好ましくは30%以上であることが望ましい。機械的なアンカー効果が増し、膜の密着性が高いものとなる。   Even if the size of the convex portion is a predetermined one, if the area of the convex portion is small, an effect on the adhesion of the film cannot be obtained. It is desirable that the area ratio of the protrusions on the uneven surface is at least 10%, preferably 30% or more, assuming that the area of the uneven surface is 100%. The mechanical anchor effect is increased and the adhesion of the film becomes high.

窒化物中間層形成工程は、基材の温度を420〜590℃にして窒化物中間層を形成する工程であるのが望ましい。なお、ここでいう「基材の温度」とは、基材の少なくとも表面の温度を指し、基材の少なくとも表面が上記温度範囲に達していればよい。上記の温度で窒化物中間層を形成すれば、高強度の窒化物中間層を形成することができる。基材の温度が高すぎると、窒化物の構造が変化して層厚が減少するとともに、歪が大きいブラウンナイト層が形成され易くなるため好ましくない。より望ましい基材の温度は、475〜550℃であり、厚さが1μm以上で高強度の窒化物中間層を良好に形成することができる。   The nitride intermediate layer forming step is preferably a step of forming the nitride intermediate layer by setting the temperature of the base material to 420 to 590 ° C. Here, the “temperature of the substrate” refers to the temperature of at least the surface of the substrate, as long as at least the surface of the substrate reaches the above temperature range. If the nitride intermediate layer is formed at the above temperature, a high-strength nitride intermediate layer can be formed. If the temperature of the substrate is too high, the structure of the nitride is changed, the layer thickness is reduced, and a brownite layer having a large strain is easily formed, which is not preferable. A more preferable temperature of the substrate is 475 to 550 ° C., and a high-strength nitride intermediate layer having a thickness of 1 μm or more can be satisfactorily formed.

また、窒化物中間層形成工程は、0.12W/cm2 以上の電力密度でプラズマを発生させて窒化物中間層を形成する工程であるのが望ましい。電力密度を上記範囲にして窒化物中間層を形成すれば、安定したグロー放電が発生し、均一で微細なナノオーダーの凹凸面を形成することができ、基材と被覆膜との密着性がさらに向上する。より望ましい電力密度の範囲は、0.2W/cm2 以上であり、さらに高い密着力が得られる。また、放電の安定性の観点から、放電密度は、0.49W/cm2 以下が望ましい。 The nitride intermediate layer forming step is preferably a step of forming a nitride intermediate layer by generating plasma at a power density of 0.12 W / cm 2 or more. If the nitride intermediate layer is formed with the power density in the above range, a stable glow discharge is generated, and a uniform and fine nano-order uneven surface can be formed, and the adhesion between the substrate and the coating film Is further improved. A more desirable power density range is 0.2 W / cm 2 or more, and an even higher adhesion can be obtained. From the viewpoint of discharge stability, the discharge density is preferably 0.49 W / cm 2 or less.

なお、窒化物中間層形成工程の処理時間は、望ましくは30〜90分さらに望ましくは50〜70分である。上記範囲の時間内で窒化を行えば、1μm以上で表面に均一で微細な凹凸面をもつ窒化物中間層を形成することができる。   In addition, the processing time of the nitride intermediate layer forming step is desirably 30 to 90 minutes, and more desirably 50 to 70 minutes. If nitriding is performed within the time in the above range, a nitride intermediate layer having a uniform fine uneven surface on the surface can be formed at 1 μm or more.

被覆膜形成工程は、窒化物中間層上に被覆膜を形成する。すなわち、図1に断面を模式的に示すように、被覆膜2は、基材1の表面部に形成された窒化物中間層10の凹凸面11上に形成される。なお、窒化物中間層の形成量は、図1の「d」で表され、本発明において「d」は1μm以上とする。   In the coating film forming step, a coating film is formed on the nitride intermediate layer. That is, as schematically shown in cross section in FIG. 1, the coating film 2 is formed on the uneven surface 11 of the nitride intermediate layer 10 formed on the surface portion of the substrate 1. The formation amount of the nitride intermediate layer is represented by “d” in FIG. 1, and “d” is 1 μm or more in the present invention.

被覆膜を形成する方法としては、イオンプレティーング(アーク、ホロカソード方式など)、スパッタリング、真空蒸着、プラズマCVD等により被覆膜を形成できる。形成された被覆膜は中間層表面が微細な凹凸面となっているため、基材に強固に密着する。特に、被覆膜をプラズマCVD法により成膜すれば、窒化物中間層形成工程と被覆膜形成工程とを同一装置内で行うことができるので、作業工程が簡略化され、また、凹凸面の汚染を抑制できるため、望ましい。また、直流プラズマCVD法を用いれば、凹凸面の表面形状に沿って成膜されるため、たとえばクラッチ板のように、ある程度の表面粗さが必要な部材には好適である。   As a method for forming the coating film, the coating film can be formed by ion plating (arc, holocathode method, etc.), sputtering, vacuum deposition, plasma CVD, or the like. Since the formed coating film has a fine uneven surface on the surface of the intermediate layer, it firmly adheres to the substrate. In particular, if the coating film is formed by the plasma CVD method, the nitride intermediate layer forming step and the coating film forming step can be performed in the same apparatus, so that the work process is simplified and the uneven surface This is desirable because it can suppress contamination. Further, if the direct-current plasma CVD method is used, the film is formed along the surface shape of the concavo-convex surface, so that it is suitable for a member that requires a certain degree of surface roughness such as a clutch plate.

被覆膜は、基材の少なくとも一部の表面を覆い、その表面に耐蝕性、耐摩耗性、装飾性等の機能を付加するもので、かつ、中間層とは異なる組成の被膜からなる。具体的には、被覆膜を形成する金属被膜としてはクロム、ニッケル、タングステン等を、またセラミックス被膜としては周期律表IV族〜VI族の元素またはそれらのひとつを含む複合元素からなる炭化物膜、酸化物膜、ほう化物膜、窒化物被膜などを、炭素系被膜としては、DLC(ダイヤモンドライクカーボン)、ダイヤモンド等を挙げることができる。被覆膜は上記の被膜を複数種類組み合わせることもできる。   The coating film covers at least a part of the surface of the substrate, adds functions such as corrosion resistance, abrasion resistance, and decorativeness to the surface, and is made of a film having a composition different from that of the intermediate layer. Specifically, the metal film for forming the coating film is chromium, nickel, tungsten or the like, and the ceramic film is a carbide film made of elements of groups IV to VI of the periodic table or a composite element containing one of them. An oxide film, a boride film, a nitride film, and the like, and examples of the carbon-based film include DLC (diamond-like carbon) and diamond. The coating film can be a combination of a plurality of types of the above films.

被覆膜の厚さは、膜の種類や付加したい機能にもよるが、0.5μm〜20μmとするのが好ましく、被覆膜の機能を十分に発揮することができる。なお、厚さが20μm以上では、膜の内部応力が増し、被覆膜が剥離しやすくなるため望ましくない。   The thickness of the coating film is preferably 0.5 μm to 20 μm, although it depends on the type of film and the function to be added, and can sufficiently exhibit the function of the coating film. A thickness of 20 μm or more is not desirable because the internal stress of the film increases and the coating film is easily peeled off.

被覆膜が硬質膜である場合には、この被覆部材は耐摩耗性が必要な摺動部材に使用できる。特に、硬質膜がDLC膜であれば、高い耐摩耗性に加え、相手攻撃性が低いため、摺動部材として好適である。たとえば、摺動を伴う機械部品として、自動変速機に用いられるクラッチ部品やブレーキ部品、エンジン部品(ピストン、ピストンリング、バルブステム、シム板等)、コンプレッサー部品(ベーン、シュー等)、噴射ポンプ(ロータ、プランジャ、ニードル等)の摺動部に使用できる。   When the coating film is a hard film, the coating member can be used as a sliding member that requires wear resistance. In particular, if the hard film is a DLC film, in addition to high wear resistance, the opponent attack is low, so it is suitable as a sliding member. For example, as mechanical parts with sliding, clutch parts and brake parts used in automatic transmissions, engine parts (pistons, piston rings, valve stems, shim plates, etc.), compressor parts (vanes, shoes, etc.), injection pumps ( (Rotor, plunger, needle, etc.).

なお、本発明の被覆部材が摩擦によってクラッチ板等のトルクを伝達する部材である場合には、被覆膜の剥離が発生すると、表面性状の変化によりトルク伝達性が変化してしまう。また、本発明のクラッチ用摺動部材が、電磁クラッチに使用されるクラッチ板であれば、使用中に硬質膜の剥離が発生すると、クラッチ板の押圧力が変化する。電磁クラッチは、磁気的な力でクラッチ板と相手部材とを摩擦係合/非係合とすることによりトルクを伝達したり、伝達を絶ったりする。この際、被覆膜の剥離が発生すると、電磁クラッチを通る磁束の強度が増加する。その結果、クラッチ板と相手部材とを摩擦係合する力も増加するため、伝達されるトルク値が増加する。特に、被覆膜が非磁性体のDLC膜である場合は、膜の剥離が発生すると磁気抵抗が変化し、トルク値に大きく影響する。密着性に優れた被覆膜をもつ電磁クラッチであれば、トルク値の安定性を長期にわたって保持することができる。   When the covering member of the present invention is a member that transmits torque such as a clutch plate by friction, when the covering film is peeled off, the torque transmission property is changed due to the change in surface properties. If the clutch sliding member of the present invention is a clutch plate used for an electromagnetic clutch, the pressing force of the clutch plate changes when the hard film is peeled off during use. The electromagnetic clutch transmits or discontinues torque by frictionally engaging / disengaging the clutch plate and the mating member with magnetic force. At this time, if peeling of the coating film occurs, the strength of the magnetic flux passing through the electromagnetic clutch increases. As a result, the force for frictionally engaging the clutch plate and the mating member also increases, so that the transmitted torque value increases. In particular, when the coating film is a non-magnetic DLC film, the magnetic resistance changes when the film is peeled off, which greatly affects the torque value. If the electromagnetic clutch has a coating film with excellent adhesion, the stability of the torque value can be maintained over a long period of time.

また、基材が、油中で用いられる湿式クラッチに使用されるクラッチ板であれば、優れたμ−v特性を発揮する。μ−v特性とは、速度(v)に対する摩擦係数(μ)の依存性を示し、クラッチ用摺動部材においては、μ−v特性を正勾配(すなわち、dμ/dv≧0)とすることが有効である。ところが、使用中にクラッチ用摺動部材の被覆膜が剥離すると、基材表面の凸部が摩耗して摺動面に生じる油膜を切る効果が低減し、摺動面に形成された油膜により固体接触が阻害され、μ−v特性が負勾配となる。本発明の製造方法により得られる被覆部材であれば、被覆膜の剥離が低減されるため、凹凸面が油膜を良好に切って適度な固体接触が得られ、優れたμ−v特性を発揮する。   Moreover, if the base material is a clutch plate used in a wet clutch used in oil, excellent μ-v characteristics are exhibited. The μ-v characteristic indicates the dependence of the coefficient of friction (μ) on the speed (v). In the clutch sliding member, the μ-v characteristic is a positive gradient (that is, dμ / dv ≧ 0). Is effective. However, if the coating film of the clutch sliding member peels off during use, the effect of cutting the oil film generated on the sliding surface due to wear of the convex portions on the substrate surface is reduced, and the oil film formed on the sliding surface Solid contact is inhibited and the μ-v characteristic has a negative slope. In the case of the covering member obtained by the production method of the present invention, the peeling of the covering film is reduced, so that the uneven surface cuts the oil film well to obtain an appropriate solid contact and exhibits excellent μ-v characteristics. To do.

以下に、本発明の被覆部材の製造方法の実施例を、比較例とともに図面を用いて説明する。はじめに、プラズマ窒化処理およびDLC膜の成膜に用いるプラズマCVD装置について、図11を用いて説明する。   Below, the Example of the manufacturing method of the coating | coated member of this invention is described using drawing with a comparative example. First, a plasma CVD apparatus used for plasma nitriding and film formation of a DLC film will be described with reference to FIG.

[プラズマCVD装置]
本装置は、炭素工具鋼からなる基材5の表裏面および外周面にプラズマ窒化処理を施した後に、窒化された面にDLC膜を成膜する装置である。成膜炉には、円筒形の炉室をもつステンレス製のチャンバー41を用い、チャンバー41は、排気通路42によりチャンバー41と連通する排気系43を有する。排気系43は、油回転ポンプ、メカニカルブースターポンプ、油拡散ポンプからなり、排気通路42に配した排気調整バルブ45を開閉することによりチャンバー41内の処理圧力を調整する。また、チャンバー41には、側面より炉外へ突出する透光窓48を設け、透光窓48を介して赤外線放射温度計(図示せず)により基材5の表面温度を測定する。
[Plasma CVD equipment]
This apparatus is an apparatus for forming a DLC film on the nitrided surface after subjecting the front and back surfaces and outer peripheral surface of the base material 5 made of carbon tool steel to plasma nitriding. The film forming furnace uses a stainless steel chamber 41 having a cylindrical furnace chamber, and the chamber 41 has an exhaust system 43 communicating with the chamber 41 through an exhaust passage 42. The exhaust system 43 includes an oil rotary pump, a mechanical booster pump, and an oil diffusion pump, and adjusts a processing pressure in the chamber 41 by opening and closing an exhaust adjustment valve 45 disposed in the exhaust passage 42. The chamber 41 is provided with a translucent window 48 protruding from the side surface to the outside of the furnace, and the surface temperature of the substrate 5 is measured by an infrared radiation thermometer (not shown) through the translucent window 48.

チャンバー41内には、プラズマ電源(直流電源)46のマイナス極に通電された基材固定手段50と、ガス供給手段60と、が配設される。   In the chamber 41, a base material fixing means 50 and a gas supply means 60 that are energized to the negative pole of a plasma power source (DC power source) 46 are disposed.

基材固定手段50は、プラズマ電源46のマイナス極に連結された支持台54と、支持台54上に載置された5つの基材固定具53と、からなり、それぞれの基材固定具53には基材5が固定される。なお、基材5は、厚さ0.9mmのリング状の円板で、その内周面に内歯を有する鉄製のクラッチプレートである。   The base material fixing means 50 includes a support base 54 connected to the negative pole of the plasma power source 46 and five base material fixtures 53 placed on the support base 54. The base material 5 is fixed to. The substrate 5 is an iron clutch plate having a ring-shaped disk having a thickness of 0.9 mm and having inner teeth on the inner peripheral surface thereof.

板状の支持台54は、円板形状で、チャンバー41と同軸的に炉室の底部に固定される。5つの基材固定具53は炭素鋼製で、円筒状のチャンバー41と同軸的になるよう支持台54上に等間隔にリング状に配置される。   The plate-like support base 54 has a disk shape and is fixed to the bottom of the furnace chamber coaxially with the chamber 41. The five base material fixtures 53 are made of carbon steel, and are arranged in a ring shape at equal intervals on the support base 54 so as to be coaxial with the cylindrical chamber 41.

また、基材固定具53は、支持台54上で支持され垂直に延びる円筒状の固定柱(図略)と、複数の基材5を等間隔で平行かつ厚さ方向に積層状態にして固定するための複数個の治具(図略)と、からなる。基材5を基材固定具53に固定する際には、基材5の内歯を2つの治具の間に挟持して固定する。こうして、1つの基材固定具53に、100枚(合計500枚)の基材5を固定した。   In addition, the base material fixture 53 is fixed on a cylindrical fixing column (not shown) that is supported on the support base 54 and extends vertically and a plurality of base materials 5 that are stacked at equal intervals in parallel and in the thickness direction. And a plurality of jigs (not shown). When fixing the base material 5 to the base material fixture 53, the internal teeth of the base material 5 are clamped and fixed between two jigs. Thus, 100 (total 500) base materials 5 were fixed to one base material fixing tool 53.

ガス供給手段60は、混合ガスを規定の流量比でチャンバー41に供給する。混合ガスは、マスフローコントローラ(MFC)63により流量を調整後、ガス供給バルブ64を経てガス供給管65によりチャンバー41の内部に供給される。ガス供給管65は、チャンバー41内で、中央のガスノズル61と、周囲の6本のガスノズル62とに分岐する。ガスノズル61は、チャンバー41の中心部に位置するように設置される。また、6本のガスノズル62は、リング状に配置されたワーク固定具53の遠心方向側に等間隔にリング状に配置される。ガスノズル61には、その先端に、複数の孔が形成されており、混合ガスが噴出する。また、ガスノズル62には、その長さ方向に等間隔で複数の孔が開いており、そこから混合ガスが供給される。   The gas supply means 60 supplies the mixed gas to the chamber 41 at a specified flow rate ratio. The mixed gas is supplied into the chamber 41 through the gas supply valve 64 and the gas supply pipe 65 after the flow rate is adjusted by the mass flow controller (MFC) 63. The gas supply pipe 65 branches into a central gas nozzle 61 and six surrounding gas nozzles 62 in the chamber 41. The gas nozzle 61 is installed so as to be located at the center of the chamber 41. Further, the six gas nozzles 62 are arranged in a ring shape at equal intervals on the centrifugal direction side of the work fixture 53 arranged in a ring shape. The gas nozzle 61 has a plurality of holes formed at the tip thereof, and the mixed gas is ejected. In addition, the gas nozzle 62 has a plurality of holes at equal intervals in the length direction, and a mixed gas is supplied therefrom.

プラズマ電源46のプラス極は、チャンバー41に通電される。プラス極はアースされ、チャンバー41の内面が接地電極(陽極40)となる。すなわち、基材固定手段50およびそれに保持された基材5を陰極50、チャンバー41を陽極40、としてプラズマCVD法によるプラズマ窒化処理およびDLC膜の成膜が行われる。   The positive electrode of the plasma power supply 46 is energized to the chamber 41. The positive electrode is grounded, and the inner surface of the chamber 41 serves as a ground electrode (anode 40). That is, plasma nitriding and film formation of a DLC film are performed by plasma CVD using the substrate fixing means 50 and the substrate 5 held thereon as the cathode 50 and the chamber 41 as the anode 40.

[プラズマ窒化処理]
はじめに、基材5の表面にプラズマ窒化処理を行った。また、排気系43によりチャンバー41内を到達真空度が6.7×10-3Paまで排気した。つぎに、ガス供給バルブ64を開け、水素ガスおよび窒素ガスの流量をMFC63で調整し、チャンバー41内に供給した。その後、排気調整バルブ45の開度を調整し、チャンバー41内の処理ガス圧を133Paとした。
[Plasma nitriding]
First, plasma nitriding treatment was performed on the surface of the substrate 5. The exhaust system 43 evacuated the chamber 41 to a vacuum degree of 6.7 × 10 −3 Pa. Next, the gas supply valve 64 was opened and the flow rates of hydrogen gas and nitrogen gas were adjusted by the MFC 63 and supplied into the chamber 41. Thereafter, the opening degree of the exhaust adjustment valve 45 was adjusted, and the processing gas pressure in the chamber 41 was set to 133 Pa.

そして、プラズマ電源46により陰極50に80Vの電圧を印加した。電圧を印加すると、陰極50の周辺にグロー放電が生じ、放電電力を調整(335V,30A)し、このグロー放電により、基材5を550℃に加熱した。なお、基材の温度の測定には、上記の赤外線放射温度計を用いた。基材5が550℃に到達後60分間の放電(処理時間)により、基材5の表面部に窒化物中間層(以下「中間層」と略記)を形成した。なお、混合ガスの流量は、温度25℃にて、窒素ガス:500cc/min、水素ガス:500cc/minとした。   Then, a voltage of 80 V was applied to the cathode 50 by the plasma power source 46. When voltage was applied, glow discharge was generated around the cathode 50, discharge power was adjusted (335V, 30A), and the substrate 5 was heated to 550 ° C. by this glow discharge. In addition, said infrared radiation thermometer was used for the measurement of the temperature of a base material. A nitride intermediate layer (hereinafter abbreviated as “intermediate layer”) was formed on the surface portion of the base material 5 by discharging (processing time) for 60 minutes after the base material 5 reached 550 ° C. The flow rate of the mixed gas was set to nitrogen gas: 500 cc / min and hydrogen gas: 500 cc / min at a temperature of 25 ° C.

[DLC膜の成膜]
つづいて、中間層が形成された基材5の表面に、DLC膜を成膜した。具体的には、ガス供給バルブ64を開け、水素ガス(希釈ガス)の流量をMFC63で調整し、チャンバー41内に供給した。その後、排気調整バルブ45の開度を調整し、チャンバー41内の処理ガス圧を466Paとした。
[DLC film formation]
Subsequently, a DLC film was formed on the surface of the substrate 5 on which the intermediate layer was formed. Specifically, the gas supply valve 64 was opened, and the flow rate of hydrogen gas (dilution gas) was adjusted by the MFC 63 and supplied into the chamber 41. Thereafter, the opening degree of the exhaust adjustment valve 45 was adjusted, and the processing gas pressure in the chamber 41 was set to 466 Pa.

そして、プラズマ電源46により陰極50に390Vの電圧を印加した。電圧を印加すると、陰極50の周辺にグロー放電が生じ、放電電力を調整(390V,30A)し、このグロー放電により、基材5を530℃に加熱した。なお、基材の温度の測定には、上記の赤外線放射温度計を用いた。基材5が530℃に到達したら、原料ガスであるメタンとTMSを所定の流量で供給し、基材5の表面に非晶質炭素膜を成長させた。なお、混合ガスの流量は、温度25℃にて、メタン:500cc/min、TMS:100cc/min、水素ガス:300cc/min、アルゴンガス:300cc/minとした。こうして、50分間の放電により、基材5の表面に膜厚3μmのDLC膜を形成し、試料Hを得た。   Then, a voltage of 390 V was applied to the cathode 50 by the plasma power source 46. When voltage was applied, glow discharge was generated around the cathode 50, the discharge power was adjusted (390V, 30A), and the substrate 5 was heated to 530 ° C. by this glow discharge. In addition, said infrared radiation thermometer was used for the measurement of the temperature of a base material. When the base material 5 reached 530 ° C., source gases methane and TMS were supplied at a predetermined flow rate, and an amorphous carbon film was grown on the surface of the base material 5. The flow rate of the mixed gas was methane: 500 cc / min, TMS: 100 cc / min, hydrogen gas: 300 cc / min, and argon gas: 300 cc / min at a temperature of 25 ° C. In this way, a DLC film having a thickness of 3 μm was formed on the surface of the substrate 5 by discharging for 50 minutes, and a sample H was obtained.

また、プラズマ窒化処理の処理条件を変更した他は、上記試料Hと同様にして試料A〜G,I〜Yを作製した。また、比較として、中間層の厚さが1μm未満である試料Zを作製した。各試料の処理条件を表1〜表3に示す。   Samples A to G and I to Y were prepared in the same manner as the sample H except that the processing conditions of the plasma nitriding treatment were changed. For comparison, a sample Z having an intermediate layer thickness of less than 1 μm was prepared. The processing conditions for each sample are shown in Tables 1 to 3.

Figure 0004558549
Figure 0004558549

Figure 0004558549
Figure 0004558549

Figure 0004558549
Figure 0004558549

なお、中間層厚さは、走査電子顕微鏡(FE−SEM)による断面観察より測定した。また、密着力は、スクラッチ試験法(JIS R3255に準拠)により測定した剥離荷重でしめす。試料Zに関しては、DLCの成膜後に膜の剥離が生じたためスクラッチ試験を行わなかった。結果を図2〜図4のグラフにまとめる。   The intermediate layer thickness was measured by cross-sectional observation using a scanning electron microscope (FE-SEM). The adhesion force is determined by a peel load measured by a scratch test method (based on JIS R3255). For sample Z, no scratch test was performed because film peeling occurred after DLC film formation. The results are summarized in the graphs of FIGS.

図2は、試料A〜JのDLC膜の密着力を示すグラフである。グラフ中の符号A〜Jは、試料A〜Jに相当する。中間層の厚さが厚いほど密着力は向上した。そして、中間層厚さが1μm以上であれば、4N以上の良好な密着力をもつ被覆部材が得られることがわかる。   FIG. 2 is a graph showing the adhesion of the DLC films of Samples A to J. Reference signs A to J in the graph correspond to samples A to J. The adhesion strength improved as the thickness of the intermediate layer increased. It can be seen that when the intermediate layer thickness is 1 μm or more, a covering member having a good adhesion of 4 N or more can be obtained.

また、図3は、試料K〜Tについて、処理温度に対する中間層の厚さを示すグラフである。グラフ中の符号K〜Tは、試料K〜Tに相当する。処理温度が高いほど中間層の厚さは増加した。そして、グラフの傾向より、処理温度を420℃以上とすれば、1μm以上の中間層が形成されることがわかる。なお、処理温度が600℃の試料Sおよび試料Tでは、中間層の厚さは5μm程度であるが、歪の大きいブラウンナイト層が形成された。   Moreover, FIG. 3 is a graph which shows the thickness of the intermediate | middle layer with respect to process temperature about sample KT. The symbols K to T in the graph correspond to the samples K to T. The higher the processing temperature, the greater the thickness of the intermediate layer. From the tendency of the graph, it can be seen that if the treatment temperature is 420 ° C. or higher, an intermediate layer of 1 μm or more is formed. In Sample S and Sample T at a processing temperature of 600 ° C., the thickness of the intermediate layer was about 5 μm, but a brownite layer having a large strain was formed.

図4は、試料U〜Yについて、電力密度に対するDLC膜の密着力を示すグラフである。グラフ中の符号U〜Yは、試料U〜Yに相当する。電力密度が高いほどDLC膜の密着力は増加した。すなわち、電力密度が高いほど、良好な凹凸面が中間層の表面に形成された。   FIG. 4 is a graph showing the adhesion of the DLC film to the power density for samples U to Y. The symbols U to Y in the graph correspond to the samples U to Y. The higher the power density, the greater the adhesion of the DLC film. That is, the higher the power density, the better the uneven surface was formed on the surface of the intermediate layer.

さらに、試料Kおよび試料Z(比較例)に対して、FE−SEMによる表面観察を行った。図5は試料K、図6は試料ZのSEM像であり、ともにDLC膜の成膜前に観察を行った。なお、図5の下図は、試料Kの表面形状を模式的に示した断面図である。中間層が3μm形成された試料Kでは、基材5の表面全体に平均高さが10〜100nmで平均の幅が10〜500nmである凸部52をもつ凹凸面51が形成されていることが観察できた。なお、A〜J、L〜Yの各試料においても、試料Kと同様に、基材の表面全体に平均高さが10〜100nmで平均の幅が10〜500nmである凸部をもつ凹凸面が形成された。一方、中間層が0.5μm形成された試料Zでは、凹凸面が十分に形成されていない部分(図6の右側の色の濃い部分)が観察された。   Furthermore, surface observation by FE-SEM was performed on sample K and sample Z (comparative example). FIG. 5 is an SEM image of sample K and FIG. 6 is an SEM image of sample Z, both of which were observed before the DLC film was formed. 5 is a cross-sectional view schematically showing the surface shape of the sample K. In the sample K in which the intermediate layer is 3 μm, the uneven surface 51 having the convex portions 52 having an average height of 10 to 100 nm and an average width of 10 to 500 nm is formed on the entire surface of the substrate 5. I was able to observe. In each of the samples A to J and L to Y, similarly to the sample K, the concavo-convex surface having convex portions having an average height of 10 to 100 nm and an average width of 10 to 500 nm on the entire surface of the substrate. Formed. On the other hand, in Sample Z in which the intermediate layer was formed to have a thickness of 0.5 μm, a portion where the uneven surface was not sufficiently formed (the dark portion on the right side in FIG. 6) was observed.

また、試料Qおよび試料Zに対して耐久試験を行い、耐久前後のμ−v特性を評価した。ここでは、2枚のクラッチプレートの間で、負荷エネルギー780W、温度85℃にて35時間の連続すべり耐久試験を行い、この耐久試験前後のμ−v特性を差動回転数ΔNを上昇させる場合と、ΔNを下降させる場合と、を測定した。結果を図7および図9に示す。また、試料Qおよび試料Zの耐久前(初期状態)と耐久後におけるEPMA(電子線マイクロアナライザ)による表面分析の結果を図8および図10に示す。なお、図8および図10では、黒い部分が、DLC膜が剥離した部分である。   Further, a durability test was performed on the sample Q and the sample Z, and the μ-v characteristics before and after the durability were evaluated. Here, a continuous slip durability test is performed between two clutch plates at a load energy of 780 W and a temperature of 85 ° C. for 35 hours, and the μ-v characteristics before and after the durability test are increased by the differential rotational speed ΔN. And when ΔN is lowered. The results are shown in FIGS. 8 and 10 show the results of surface analysis by EPMA (electron beam microanalyzer) before and after endurance (initial state) of sample Q and sample Z. FIG. In FIGS. 8 and 10, the black portion is the portion where the DLC film is peeled off.

図7によれば、1μm以上の中間層をもつ試料Qでは、耐久後であってもdμ/dvは正勾配であり、良好なμ−v特性を有した。また、図8からわかるように、耐久試験前の初期状態でのDLC膜の剥離はほとんど見られず、耐久後の表面においてもDLC膜の剥離が抑制された。   According to FIG. 7, in the sample Q having an intermediate layer of 1 μm or more, dμ / dv had a positive gradient even after endurance and had good μ-v characteristics. Further, as can be seen from FIG. 8, almost no peeling of the DLC film was observed in the initial state before the durability test, and the peeling of the DLC film was suppressed even on the surface after the durability test.

一方、図9によれば、中間層が1μm未満である試料Zでは、耐久後のdμ/dvは負勾配であった。また、試料Qでは見られなかったシャダー(自励振動;図9の囲み部参照)が発生した。EPMAによれば、耐久試験前の初期状態で既にDLC膜の剥離が見られ、耐久後の表面においてはDLC膜の大部分が剥離した。すなわち、中間層が1μm未満では、DLC膜の密着力が低く、耐久後ではDLC膜の大部分が剥離し、凹凸面の凸部が摩耗して平滑化したため、シャダーが発生した。   On the other hand, according to FIG. 9, in the sample Z whose intermediate layer is less than 1 μm, dμ / dv after endurance had a negative gradient. Further, a shudder (self-excited vibration; see the boxed portion in FIG. 9) that was not seen in the sample Q occurred. According to EPMA, the DLC film was already peeled off in the initial state before the durability test, and most of the DLC film was peeled off on the surface after the durability test. That is, when the intermediate layer was less than 1 μm, the adhesion of the DLC film was low, and after the endurance, most of the DLC film was peeled off, and the projections on the concavo-convex surface were worn and smoothed.

本発明の被覆部材の製造方法により製造される被覆部材の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the coating | coated member manufactured by the manufacturing method of the coating | coated member of this invention. 実施例の試料A〜Jに関し、窒化物中間層の厚さに対する基材と被覆膜の密着力を示すグラフである。It is a graph which shows the adhesive force of the base material with respect to the thickness of a nitride intermediate | middle layer, and a coating film regarding the sample AJ of an Example. 実施例の試料K〜Tに関し、プラズマ窒化処理の処理時間に対する窒化物中間層の厚さを示すグラフである。It is a graph which shows the thickness of the nitride intermediate | middle layer with respect to the process time of a plasma nitriding process regarding the samples KT of an Example. 実施例の試料U〜Yに関し、プラズマ窒化処理時の電力密度に対する基材と被覆膜との密着力を示すグラフである。It is a graph which shows the adhesive force of the base material with respect to the power density at the time of a plasma nitriding process, and the coating film regarding the sample UY of an Example. 被覆膜形成前の試料Kの窒化物中間層表面を観察したSEM像である。It is the SEM image which observed the nitride intermediate | middle layer surface of the sample K before coating film formation. 被覆膜形成前の試料Zの窒化物中間層表面を観察したSEM像である。It is the SEM image which observed the nitride intermediate | middle layer surface of the sample Z before coating film formation. 耐久前後の試料Qのμ−v特性を示すグラフである。It is a graph which shows the μ-v characteristic of the sample Q before and after durability. 耐久前後の試料QのEPMAによる表面分析の結果を示す。The result of the surface analysis by EPMA of the sample Q before and after durability is shown. 耐久前後の試料Zのμ−v特性を示すグラフである。It is a graph which shows the μ-v characteristic of the sample Z before and after durability. 耐久前後の試料ZのEPMAによる表面分析の結果を示す。The result of the surface analysis by EPMA of the sample Z before and after durability is shown. 実施例の被覆部材の製造方法に用いられる装置の概略説明図である。It is a schematic explanatory drawing of the apparatus used for the manufacturing method of the coating | coated member of an Example.

符号の説明Explanation of symbols

1,5:基材
10:窒化物中間層
11,51:凹凸面
52:凸部
2:被覆膜
DESCRIPTION OF SYMBOLS 1,5: Base material 10: Nitride intermediate | middle layer 11, 51: Uneven surface 52: Convex part 2: Coating film

Claims (10)

基材の表面部に窒化物からなる窒化物中間層を形成する窒化物中間層形成工程と、該窒化物中間層上に被覆膜を形成する被覆膜形成工程と、よりなる被覆部材の製造方法であって、
前記窒化物中間層形成工程は、炭素鋼からなる前記基材を窒化処理することにより窒素と鉄との化合物を含む前記窒化物中間層を形成するとともに該窒化物中間層の表面に凹凸面を形成する工程であって、該窒化物中間層を1μm以上形成することで該窒化物中間層の表面平均高さが10〜100nmで平均の幅が10〜500nmである凸部をもつ前記凹凸面を得ることを特徴とする被覆部材の製造方法。
A nitride intermediate layer forming step of forming a nitride intermediate layer made of nitride on the surface portion of the substrate, a coating film forming step of forming a coating film on the nitride intermediate layer, and a covering member comprising: A manufacturing method comprising:
The nitride intermediate layer forming step forms the nitride intermediate layer containing a compound of nitrogen and iron by nitriding the base material made of carbon steel , and has an uneven surface on the surface of the nitride intermediate layer. and forming, One also a convex portion which is the width of the average mean height to the surface of the nitride intermediate layer is in 10~100nm by forming more than 1μm and the nitride intermediate layer is 10~500nm the method of manufacturing a covering member, characterized in Rukoto give an uneven surface.
前記窒化物中間層形成工程は、少なくとも窒素を含むプラズマにより前記窒化物中間層および前記凹凸面を形成する工程である請求項1記載の被覆部材の製造方法。 The method for manufacturing a covering member according to claim 1, wherein the nitride intermediate layer forming step is a step of forming the nitride intermediate layer and the concavo-convex surface by a plasma containing at least nitrogen. 前記窒化物中間層形成工程は、プラズマCVD法により前記窒化物中間層および前記凹凸面を形成する工程である請求項2記載の被覆部材の製造方法。 The method for manufacturing a covering member according to claim 2, wherein the nitride intermediate layer forming step is a step of forming the nitride intermediate layer and the uneven surface by a plasma CVD method. 前記窒化物中間層形成工程は、前記基材の温度を420〜590℃にして前記窒化物中間層および前記凹凸面を形成する工程である請求項1〜3のいずれかに記載の被覆部材の製造方法。 The covering member according to any one of claims 1 to 3, wherein the nitride intermediate layer forming step is a step of forming the nitride intermediate layer and the uneven surface by setting the temperature of the base material to 420 to 590 ° C. Production method. 前記窒化物中間層形成工程は、0.12W/cm以上の電力密度で前記プラズマを発生させて前記窒化物中間層および前記凹凸面を形成する工程である請求項2〜4のいずれかに記載の被覆部材の製造方法。 The nitride intermediate layer forming step, in any one of claims 2-4 to generate the plasma at 0.12 W / cm 2 power density of greater than a step of forming the nitride intermediate layer and the uneven surface The manufacturing method of the covering member of description. 前記窒化物中間層形成工程は、窒素ガスおよび水素ガスの混合ガスを用いたプラズマCVD法により行う工程である請求項2〜5のいずれかに記載の被覆部材の製造方法。 The method for manufacturing a covering member according to claim 2, wherein the nitride intermediate layer forming step is a step performed by a plasma CVD method using a mixed gas of nitrogen gas and hydrogen gas . 前記被覆膜は、プラズマCVD法により形成される請求項1〜6のいずれかに記載の被覆部材の製造方法。 The coating film, method of manufacturing a covering member according to any one of claims 1 to 6 that will be formed by a plasma CVD method. 前記基材は、クラッチ板である請求項1〜7のいずれかに記載の被覆部材の製造方法。 The said base material is a clutch board, The manufacturing method of the coating | coated member in any one of Claims 1-7 . 前記被覆膜は、硬質膜である請求項1〜8のいずれかに記載の被覆部材の製造方法。 The said covering film is a hard film | membrane, The manufacturing method of the covering member in any one of Claims 1-8 . 前記硬質膜は、非晶質炭素膜である請求項1〜9のいずれかに記載の被覆部材の製造方法。 The method for manufacturing a covering member according to any one of claims 1 to 9 , wherein the hard film is an amorphous carbon film.
JP2005074129A 2005-03-15 2005-03-15 Manufacturing method of covering member Active JP4558549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074129A JP4558549B2 (en) 2005-03-15 2005-03-15 Manufacturing method of covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074129A JP4558549B2 (en) 2005-03-15 2005-03-15 Manufacturing method of covering member

Publications (2)

Publication Number Publication Date
JP2006257466A JP2006257466A (en) 2006-09-28
JP4558549B2 true JP4558549B2 (en) 2010-10-06

Family

ID=37097048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074129A Active JP4558549B2 (en) 2005-03-15 2005-03-15 Manufacturing method of covering member

Country Status (1)

Country Link
JP (1) JP4558549B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127059A (en) * 2007-11-20 2009-06-11 Tokyo Denki Univ Method for forming diamond-like carbon film
EP2578725B1 (en) * 2010-05-31 2019-02-20 JTEKT Corporation Process for production of a covered member
JP2013087325A (en) * 2011-10-18 2013-05-13 Nippon Itf Kk Hard carbon film, and method for forming the same
JP2018043286A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Metal tube molding roll, metal tube molding device, and metal tube molding method
WO2019160836A1 (en) 2018-02-13 2019-08-22 Schaeffler Technologies AG & Co. KG Coated bearing components
JP7183523B2 (en) * 2019-01-07 2022-12-06 三菱マテリアル株式会社 DLC coating material
JP7258598B2 (en) * 2019-02-27 2023-04-17 三井化学株式会社 Bonded structures and metal members
JP7310723B2 (en) 2019-06-27 2023-07-19 Jfeスチール株式会社 Steel part and its manufacturing method
WO2023079831A1 (en) * 2021-11-04 2023-05-11 株式会社レゾナック Laminate, and electrode for electrolysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248418A (en) * 1993-02-26 1994-09-06 Yamaha Motor Co Ltd Driven drum structure of centrifugal clutch
JPH07118850A (en) * 1993-10-20 1995-05-09 Limes:Kk Formation of hard film by ion nitriding and plasma cvd
JPH10130817A (en) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc Coating material and its production
JP2000017420A (en) * 1998-07-02 2000-01-18 Pascal Kk Glow discharge treatment of type to make combination use of high-voltage peak pulse impression and glow discharge treatment apparatus
JP2001304275A (en) * 2000-04-19 2001-10-31 Koyo Seiko Co Ltd Rolling bearing
JP2002332571A (en) * 2001-05-08 2002-11-22 Denso Corp Gasoline lubricating slide member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248418A (en) * 1993-02-26 1994-09-06 Yamaha Motor Co Ltd Driven drum structure of centrifugal clutch
JPH07118850A (en) * 1993-10-20 1995-05-09 Limes:Kk Formation of hard film by ion nitriding and plasma cvd
JPH10130817A (en) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc Coating material and its production
JP2000017420A (en) * 1998-07-02 2000-01-18 Pascal Kk Glow discharge treatment of type to make combination use of high-voltage peak pulse impression and glow discharge treatment apparatus
JP2001304275A (en) * 2000-04-19 2001-10-31 Koyo Seiko Co Ltd Rolling bearing
JP2002332571A (en) * 2001-05-08 2002-11-22 Denso Corp Gasoline lubricating slide member

Also Published As

Publication number Publication date
JP2006257466A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4558549B2 (en) Manufacturing method of covering member
JP5630931B2 (en) Method for producing amorphous carbon coating member
JP4725085B2 (en) Amorphous carbon, amorphous carbon coating member and amorphous carbon film forming method
KR101338059B1 (en) Method for coating basic material of mold
JP2620976B2 (en) Sliding member
JP5508657B2 (en) Amorphous carbon coating material
JP2004010923A (en) Sliding member and its production method
WO2006057436A1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
JP4578716B2 (en) Gasoline lubricated sliding member
JP6364685B2 (en) Piston ring and manufacturing method thereof
JPWO2015068776A1 (en) Method for forming intermediate layer formed between substrate and DLC film, method for forming DLC film, intermediate layer forming substrate comprising substrate and intermediate layer, and DLC coating substrate
CN111500982A (en) Tetrahedral amorphous carbon composite coating and preparation method thereof
TW201344762A (en) Surface treatment method for diamond-like carbon layer and product manufactured by the method
JP4365501B2 (en) Hard carbon laminated film and method for forming the same
CN111218663A (en) Diamond-like protective coating and preparation method thereof
JP5295102B2 (en) Conductive protective film and manufacturing method thereof
JP2009035584A (en) Sliding member
JP2013087325A (en) Hard carbon film, and method for forming the same
CN110923650B (en) DLC coating and preparation method thereof
JP2004137541A (en) Dlc gradient structural hard film, and its manufacturing method
CN108396306A (en) A kind of method for the diamond-like carbon composite film that low temperature depositing hardness is controllable
JP5724197B2 (en) Covering member and manufacturing method thereof
WO2015068655A1 (en) Dlc film formation method
JP3693316B2 (en) Manufacturing method of covering member
JP2010156026A (en) Hard carbon film, and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350