JP2002332571A - Gasoline lubricating slide member - Google Patents

Gasoline lubricating slide member

Info

Publication number
JP2002332571A
JP2002332571A JP2001137459A JP2001137459A JP2002332571A JP 2002332571 A JP2002332571 A JP 2002332571A JP 2001137459 A JP2001137459 A JP 2001137459A JP 2001137459 A JP2001137459 A JP 2001137459A JP 2002332571 A JP2002332571 A JP 2002332571A
Authority
JP
Japan
Prior art keywords
gasoline
dlc film
sliding
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001137459A
Other languages
Japanese (ja)
Other versions
JP4578716B2 (en
Inventor
Tsuneaki Minamiguchi
経昭 南口
Hidemi Mori
英視 森
Nozomi Okumura
望 奥村
Takashi Furukawa
隆 古川
Hiroyuki Mori
広行 森
Hideo Tachikawa
英男 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2001137459A priority Critical patent/JP4578716B2/en
Publication of JP2002332571A publication Critical patent/JP2002332571A/en
Application granted granted Critical
Publication of JP4578716B2 publication Critical patent/JP4578716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the fear of the wear and the stripping of a slide film caused by the deterioration of slide environment in a conventional gasoline lubricating slide member. SOLUTION: The gasoline lubricating slide member is provided with a slide part and a diamond like carbon film (DLC film) formed on a slide surface of the slide part. That is, the gasoline lubricating slide member has not a resin or ceramic coating film, but the DLC film formed on the slide surface of the slide member. The DLC film has remarkably high hardness and low friction coefficient. The gasoline lubricating slide member having excellent wear resistance and seizure resistance in a gasoline bath is provided by forming the DLC film on the slide surface of the slide part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリン浴中にお
いて摺動するガソリン潤滑摺動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasoline lubricated sliding member that slides in a gasoline bath.

【0002】[0002]

【従来の技術】自動車などに用いられるガソリン潤滑摺
動部材には、例えば燃料ポンプのプランジャ、ピストン
のピストンヘッド、燃料噴射弁のバルブニードルなどが
ある。これらガソリン潤滑摺動部材の摺動面には、耐摩
耗性、耐焼き付き性などを向上させるため、樹脂やセラ
ミックなどによる被膜が形成される場合が多い。例え
ば、直噴エンジンに用いられる燃料噴射ポンプのプラン
ジャの摺動面には、NiP−PTFE膜が形成されてい
る。
2. Description of the Related Art Gasoline lubricated sliding members used in automobiles and the like include, for example, a plunger of a fuel pump, a piston head of a piston, and a valve needle of a fuel injection valve. On the sliding surfaces of these gasoline lubricated sliding members, a coating of resin, ceramic, or the like is often formed to improve wear resistance, seizure resistance, and the like. For example, the sliding surface of the plunger of the fuel injection pump for use in a direct injection engine, N i P-PTFE film is formed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら近年、ガ
ソリン潤滑摺動部材の摺動環境は悪化の一途をたどって
いる。その理由は、近年における社会的要請により、低
燃費化や強化された排ガス規制への対応が急務となって
いるためである。例えば直噴エンジン用の燃料噴射ポン
プにおいては、燃料噴射弁から燃焼室に噴射されるガソ
リンの微細化を図るため、噴射圧力を上げる必要があ
り、そのため摺動面に加わる面圧も上がっている。
However, in recent years, the sliding environment of gasoline lubricated sliding members has been deteriorating. The reason for this is that due to recent social demands, it has become urgent to respond to low fuel consumption and stricter emission regulations. For example, in a fuel injection pump for a direct injection engine, it is necessary to increase the injection pressure in order to miniaturize the gasoline injected from the fuel injection valve into the combustion chamber, so that the surface pressure applied to the sliding surface also increases. .

【0004】このように悪化した摺動条件下で従来のガ
ソリン潤滑摺動部材を使用すると、母材上の被膜が摩耗
したり、また母材から被膜が剥離したりするおそれがあ
る。
When a conventional gasoline lubricated sliding member is used under such deteriorated sliding conditions, the coating on the base material may be worn or the coating may peel off from the base material.

【0005】そこで、従来のガソリン潤滑摺動部材に用
いられた被膜よりも、さらに摺動特性に優れた被膜の開
発が急務となっている。ここで本発明者は、種々の被膜
の中からDLC膜(ダイヤモンド−ライク−カーボン
膜)に注目した。DLC膜は非晶質炭素のことであり、
微視的にはダイヤモンド結合を有する。このため硬度が
非常に高くまた摩擦係数が低い。このような優れた摺動
特性を有するため、DLC膜は従来から摺動材として使
用されていた。
[0005] Therefore, there is an urgent need to develop a coating film having more excellent sliding characteristics than a coating film used for a conventional gasoline lubricated sliding member. Here, the present inventor paid attention to a DLC film (diamond-like-carbon film) among various coating films. DLC film is amorphous carbon,
Microscopically, it has a diamond bond. Therefore, the hardness is very high and the friction coefficient is low. Because of having such excellent sliding characteristics, the DLC film has been conventionally used as a sliding material.

【0006】しかしながら、DLC膜は無潤滑条件下で
使用される場合が多かった。例えば、磁気ディスクにお
ける保護膜などでは実績ある被膜と言える。しかし、こ
ういった使用環境では無潤滑状態とはいえ、接触時の荷
重が低く、DLC膜と母材は低い密着力であっても機能
を満足することができる。しかし、ガソリン摺動部材と
して用いる場合は、被膜が摩耗して母材が露出したり、
密着力が低くて被膜が剥離してしまうと、鋼材同士の摺
動となって焼き付きが発生してしまうため、製品機能を
満足できなくなってしまう。つまり、ガソリン摺動部材
においては、DLC膜の耐焼き付きや耐摩耗性を向上さ
せ、製品機能を保証するために、被膜特性(組成、膜
厚、硬さ、密着力等)の最適化が不可欠である。
[0006] However, DLC films are often used under non-lubricated conditions. For example, it can be said that this is a proven film for a protective film of a magnetic disk. However, in such a use environment, the load at the time of contact is low, and the function can be satisfied even if the DLC film and the base material have low adhesion force, even though they are not lubricated. However, when used as a gasoline sliding member, the coating is worn away and the base material is exposed,
If the coating is peeled off due to low adhesion, the steel materials slide with each other and seizure occurs, so that the product function cannot be satisfied. In other words, in gasoline sliding members, optimization of coating properties (composition, film thickness, hardness, adhesion, etc.) is indispensable to improve seizure resistance and wear resistance of the DLC film and to guarantee product functions. It is.

【0007】本発明のガソリン潤滑摺動部材は上記課題
に鑑みて完成されたものである。すなわち本発明は、耐
摩耗性や耐焼き付き性などに優れたガソリン潤滑摺動部
材を提供することを目的とする。
The gasoline lubricated sliding member of the present invention has been completed in view of the above problems. That is, an object of the present invention is to provide a gasoline lubricated sliding member having excellent wear resistance and seizure resistance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明のガソリン潤滑摺動部材は、摺動部と、摺動部の
摺動面に形成されるDLC膜と、を備えることを特徴と
する。
In order to solve the above problems, a gasoline lubricating sliding member according to the present invention comprises a sliding portion and a DLC film formed on a sliding surface of the sliding portion. And

【0009】つまり、本発明のガソリン潤滑摺動部材
は、摺動部の摺動面に、樹脂やセラミックによる被膜で
はなく、DLC膜を形成するものである。上述したよう
に、DLC膜は硬度が非常に高く摩擦係数が低い。
That is, the gasoline-lubricated sliding member of the present invention forms a DLC film on the sliding surface of the sliding portion instead of a resin or ceramic coating. As described above, the DLC film has a very high hardness and a low coefficient of friction.

【0010】本発明によると、DLC膜を摺動部の摺動
面に形成することより、ガソリン浴中における耐摩耗性
および耐焼き付き性に優れたガソリン潤滑摺動部材を提
供することができる。
According to the present invention, a gasoline lubricated sliding member excellent in wear resistance and seizure resistance in a gasoline bath can be provided by forming the DLC film on the sliding surface of the sliding portion.

【0011】[0011]

【発明の実施の形態】以下、本発明のガソリン潤滑摺動
部材の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the gasoline lubricated sliding member of the present invention will be described below.

【0012】(1)DLC膜 まず摺動部の摺動面に形成されるDLC膜の実施形態に
ついて説明する。DLC膜はCとHとSiおよび不可避
の不純物とからなり、このDLC膜中のSi/C重量%
比を0<Si/C≦0.7とするのが好ましい。
(1) DLC Film First, an embodiment of the DLC film formed on the sliding surface of the sliding portion will be described. DLC film is composed of a C and H and S i and inevitable impurities, S i / C wt% in the DLC film
Preferably, the ratio is 0 <S i /C≦0.7.

【0013】DLC膜をCとHとSiにより構成したの
は、これらの元素を用いたDLC膜は、DLC膜特有の
高硬度と低摩擦係数という特長を、Si/C重量%比で
広範囲において維持することができ、しかもSiを含有
させることで成膜速度が向上するからである。
[0013] The DLC films were formed by C, H and S i is, DLC films using these elements, a feature that DLC films unique high hardness and low friction coefficient, at S i / C weight percent ratio It can be maintained over a wide range, yet because the deposition rate is improved by the inclusion of S i.

【0014】また、Si/C重量%比を0<Si/C≦
0.7としたのは、後述する実験により明らかになった
ことだが、ガソリン浴中においては、Si/C重量%比
が0.7を超えると耐焼き付き性が低下するためであ
る。
Further, the ratio of S i / C weight% is set to 0 <S i / C ≦
The reason why the ratio is set to 0.7 is that, as will be apparent from an experiment described later, in a gasoline bath, if the Si / C weight% ratio exceeds 0.7, the seizure resistance decreases.

【0015】DLC膜の膜厚は、0.5μm以上10μ
m以下とするのが好ましい。0.5μm以上としたの
は、0.5μm未満だと耐摩耗性が十分満足できないた
めである。また10μm以下としたのは、10μmを超
えるとDLC膜の母材表面に対する密着力が低下するた
めである。密着力が低下すると、面圧が高い場合や摺動
速度が高い場合にDLC膜が剥離しやすくなる。このた
め耐焼き付き性が低下する。
The thickness of the DLC film is 0.5 μm to 10 μm.
m or less. The reason why the thickness is 0.5 μm or more is that if it is less than 0.5 μm, the wear resistance cannot be sufficiently satisfied. The reason why the thickness is 10 μm or less is that if the thickness exceeds 10 μm, the adhesion of the DLC film to the surface of the base material decreases. When the adhesion is reduced, the DLC film is easily peeled when the surface pressure is high or when the sliding speed is high. For this reason, the seizure resistance decreases.

【0016】なおDLC膜の膜厚は、後述するDLC膜
形成の際における形成時間やバイアス電圧を制御するこ
とにより調整することができる。またDLC膜の膜厚
は、例えば摺動部のDLC膜形成部分を膜に対し垂直に
切断し、切断面を顕微鏡観察することで測定できる。ま
た、膜厚測定器(商品名:カロテスト)を用いて測定す
ることもできる。
The thickness of the DLC film can be adjusted by controlling the formation time and bias voltage when forming a DLC film described later. The thickness of the DLC film can be measured, for example, by cutting a portion of the sliding portion where the DLC film is formed perpendicular to the film and observing the cut surface with a microscope. Further, it can also be measured using a film thickness measuring instrument (trade name: Calotest).

【0017】またDLC膜の硬さは、HVで2000以
上であることが好ましい。HV2000未満だと、ガソ
リン潤滑摺動部材として充分な耐摩耗性が確保しにくい
からである。
[0017] The hardness of DLC film is preferably in the H V of 2000 or more. If it is less than H V 2000, sufficient abrasion resistance as gasoline lubricating sliding member is because hardly ensured.

【0018】またDLC膜の密着力は、スクラッチ試験
における剥離開始荷重が30N以上であることが好まし
い。剥離開始荷重が30N未満だと、摺動時にDLC膜
が母材表面から剥離するおそれがあり、耐焼き付き性が
低下するためである。
The adhesion of the DLC film is preferably such that the peeling start load in the scratch test is 30 N or more. If the separation start load is less than 30 N, the DLC film may be separated from the base material surface during sliding, and the seizure resistance is reduced.

【0019】ここでスクラッチ試験とは、頂角120
゜、先端0.2mmRのダイヤモンドコーンの先端をD
LC膜表面に所定の荷重で圧接させ、この状態でダイヤ
モンドコーンを移動させることによりDLC膜の剥離を
観察する試験方法である。荷重は、移動距離1mmに対
し10Nの割合で徐々に増加する。そして、DLC膜が
剥離し始めた際の荷重を剥離開始荷重とする。
Here, the scratch test means that the apex angle is 120.
゜, The tip of the diamond cone with a tip of 0.2mmR is D
This is a test method in which the DLC film is peeled off by pressing the surface of the LC film under a predetermined load and moving the diamond cone in this state. The load gradually increases at a rate of 10 N for a movement distance of 1 mm. The load at which the DLC film starts to peel is defined as the peeling start load.

【0020】DLC膜は、例えばイオンプレーティング
法、スパッタリング法のようなPVD(物理真空蒸着)
法や、プラズマCVD(化学真空蒸着)法などの方法で
形成することができる。プラズマCVD法には、直流
(DC)、高周波(RF)、電子サイクロトロン共鳴
(ECR)プラズマCVD法などの手法があるが、中で
も好ましくは、直流(DC)プラズマCVD法により形
成するものがよい。直流(DC)プラズマCVD法にお
いては、まず密閉容器内にDLC膜を形成する母材を配
置し、密閉容器内を例えば0.013Pa以下まで排気
する。次に連続排気しながら密閉容器内に水素ガスなど
の昇温用ガスを導入する。そして直流放電によりプラズ
マエネルギを発生させ、母材を昇温する。それから密閉
容器内にDLC膜形成ガスを導入し放電させ、母材表面
上にDLC膜を形成させる。このときの密閉容器内の圧
力は、1.3〜1330Pa程度に調整する。ここでD
LC膜形成ガスは、DLC膜原料ガスと雰囲気ガスとか
らなる。このうちDLC膜原料ガスは、珪素化合物ガス
と炭素化合物ガスと水素ガスとからなる。珪素化合物ガ
スとしては、例えばテトラメチルシラン(Si(CH3
4)、シラン(Si4)、四塩化珪素(SiCl4)など
を用いることができる。また炭素化合物ガスとしては、
例えばメタン(CH4)などの炭化水素ガスなどを用い
ることができる。また雰囲気ガスとしては、水素ガス、
アルゴンガスなどを用いることができる。
The DLC film is formed by PVD (physical vacuum deposition) such as ion plating and sputtering.
It can be formed by a method such as a plasma CVD (chemical vacuum deposition) method or the like. The plasma CVD method includes a direct current (DC), a high frequency (RF), an electron cyclotron resonance (ECR) plasma CVD method and the like, and among them, a method formed by a direct current (DC) plasma CVD method is preferable. In the direct current (DC) plasma CVD method, first, a base material for forming a DLC film is placed in a closed container, and the inside of the closed container is evacuated to, for example, 0.013 Pa or less. Next, a temperature increasing gas such as hydrogen gas is introduced into the closed container while continuously evacuating. Then, plasma energy is generated by DC discharge, and the base material is heated. Then, a DLC film forming gas is introduced into the closed container and discharged to form a DLC film on the surface of the base material. At this time, the pressure in the sealed container is adjusted to about 1.3 to 1330 Pa. Where D
The LC film forming gas includes a DLC film source gas and an atmosphere gas. Among these, the DLC film source gas is composed of a silicon compound gas, a carbon compound gas, and a hydrogen gas. As the silicon compound gas, such as tetramethyl silane (S i (CH 3)
4), silane (S i H 4), or the like can be used, silicon tetrachloride (S i Cl 4). Also, as the carbon compound gas,
For example, a hydrocarbon gas such as methane (CH 4 ) can be used. As the atmosphere gas, hydrogen gas,
Argon gas or the like can be used.

【0021】CVD法によりDLC膜を形成すると、C
とHとSiとにより構成される被膜を比較的簡単な製法
で得ることができる。さらにプラズマCVD法によれば
鋼のような母材に対しても比較的低温で処理でき、か
つ、比較的表面積の大きな部品に対しても生産性よく表
面全体を処理できる。さらに直流プラズマCVD法によ
れば簡便な装置で処理が可能である。
When a DLC film is formed by the CVD method, C
Film formed between the H and S i can be obtained by a relatively simple method to. Further, according to the plasma CVD method, a base material such as steel can be treated at a relatively low temperature, and a part having a relatively large surface area can be treated on the entire surface with high productivity. Further, according to the DC plasma CVD method, the processing can be performed with a simple apparatus.

【0022】(2)DLC膜を形成する母材 次にDLC膜を形成する母材の実施形態について説明す
る。DLC膜が形成されている摺動部の母材表面はDL
C膜の密着力を高めるため、高さ10nm以上200n
m以下であるとともに平均幅300nm以下の凸部を持
つ微小凹凸を備えるものがよい。母材表面に凹凸を形成
すると母材表面とDLC膜とがジグザグ状に噛み合う。
これにより母材表面とDLC膜との密着力が増す効果、
いわゆるアンカー効果が得られる。微小凹凸の高さを1
0nm以上としたのは、10nm未満だと充分なアンカ
ー効果が得られず、密着力が低下するためである。また
微小凹凸の高さを200nm以下としたのは、200n
mを超えると平滑な面が得られないからである。DLC
膜の表面が平滑でないと、当然耐摩耗性、耐焼き付き性
は低下する。また凹凸の平均幅を300nmとしたの
は、ガソリン浴中においては、幅がこの値より大きくて
も小さくても充分なアンカー効果が得られないからであ
る。
(2) Base Material for Forming DLC Film Next, an embodiment of a base material for forming a DLC film will be described. The base material surface of the sliding part on which the DLC film is formed is DL
In order to enhance the adhesion of the C film, the height is 10 nm or more and 200 n.
It is preferable that the substrate be provided with minute projections and depressions having a projection not more than m and an average width of not more than 300 nm. When irregularities are formed on the surface of the base material, the surface of the base material and the DLC film mesh in a zigzag manner.
This has the effect of increasing the adhesion between the base material surface and the DLC film,
A so-called anchor effect is obtained. The height of minute irregularities is 1
The reason why the thickness is set to 0 nm or more is that if the thickness is less than 10 nm, a sufficient anchor effect cannot be obtained, and the adhesive strength decreases. The reason why the height of the minute unevenness is 200 nm or less is that 200 n
This is because if it exceeds m, a smooth surface cannot be obtained. DLC
If the surface of the film is not smooth, the wear resistance and the seizure resistance naturally decrease. The reason why the average width of the unevenness is 300 nm is that a sufficient anchor effect cannot be obtained in a gasoline bath even if the width is larger or smaller than this value.

【0023】凸部の形状は、例えば半球状あるいはコー
ン状などとすることができる。凸部の高さとは、凸部を
半円球状と見なした場合における凸部の底から頂点まで
の距離をいう。また凸部の幅とは、凸部を半円球状と見
なした場合における凸部の底面の最大径をいう。なお、
これらの凸部の高さおよび幅は、SEM(走査型電子顕
微鏡)やAFM(原子間力顕微鏡)などにより形状を観
察して測定する。
The shape of the projection can be, for example, a hemisphere or a cone. The height of the convex portion refers to the distance from the bottom to the vertex of the convex portion when the convex portion is regarded as a hemispherical shape. The width of the convex portion refers to the maximum diameter of the bottom surface of the convex portion when the convex portion is regarded as a semi-spherical shape. In addition,
The height and width of these projections are measured by observing the shape with a scanning electron microscope (SEM) or an atomic force microscope (AFM).

【0024】母材表面に微小凹凸を形成する方法として
は、凹凸形成ガスと凹凸促進ガスとの混合ガスを用いて
摺動面をイオン衝撃する方法がある。ここで凹凸形成ガ
スとしては、アルゴン、ヘリウムなどの希ガスや水素ガ
スなどを用いることができる。また凹凸促進ガスとして
は、窒素ガスや酸素ガスなどを用いることができる。
As a method for forming fine irregularities on the surface of the base material, there is a method in which a sliding surface is subjected to ion bombardment using a mixed gas of an irregularity forming gas and an irregularity promoting gas. Here, as the unevenness forming gas, a rare gas such as argon or helium, a hydrogen gas, or the like can be used. As the unevenness promoting gas, a nitrogen gas, an oxygen gas, or the like can be used.

【0025】この方法においては、まずこれらの凹凸形
成ガスと凹凸促進ガスとを混合し混合ガスを調製する。
次に圧力0.1〜2700Pa程度の密閉容器内に、摺
動部の摺動面を配置する。それからこの密閉容器内に先
程調製した混合ガスを導入する。そして最後にグロー放
電やイオンビームなどによりイオン衝撃を行う。このよ
うにして摺動面上に微小凹凸を形成する。
In this method, first, the unevenness forming gas and the unevenness promoting gas are mixed to prepare a mixed gas.
Next, the sliding surface of the sliding portion is arranged in a closed container having a pressure of about 0.1 to 2700 Pa. Then, the mixed gas prepared above is introduced into the closed container. Finally, ion bombardment is performed by glow discharge or ion beam. In this way, minute irregularities are formed on the sliding surface.

【0026】また摺動部は、DLC膜と母材の界面にお
いて母材の内部方向に20nm以上の深さの炭素拡散層
を備えるものである方が好ましい。この炭素拡散層は、
母材表面上に形成されるDLC膜中の炭素を拡散させて
形成する。このため炭素拡散層を形成させる方が、より
母材とDLC膜との結合が緊密となり密着力が向上す
る。ここで炭素拡散層の深さを20nm以上としたの
は、20nm未満だと充分な密着力が得られにくく、敢
えて炭素拡散層を形成する意義が小さくなるためであ
る。
Further, it is preferable that the sliding portion is provided with a carbon diffusion layer having a depth of 20 nm or more at the interface between the DLC film and the base material in the inner direction of the base material. This carbon diffusion layer
It is formed by diffusing carbon in the DLC film formed on the surface of the base material. Therefore, when the carbon diffusion layer is formed, the bond between the base material and the DLC film becomes tighter, and the adhesion is improved. Here, the reason why the depth of the carbon diffusion layer is set to 20 nm or more is that if the depth is less than 20 nm, it is difficult to obtain a sufficient adhesive force, and the purpose of forming the carbon diffusion layer is reduced.

【0027】なお、炭素拡散層の深さはAES(オージ
ェ電子分光)を用いて測定することができる。
The depth of the carbon diffusion layer can be measured using AES (Auger electron spectroscopy).

【0028】また母材を鋼製とする場合は、摺動部の母
材表面に5μm以上の深さの窒化層を備えるものである
方が好ましい。窒化層においては窒素が母材に拡散し窒
素拡散層を形成する。この窒素拡散層はDLC膜中の炭
素を比較的取り込みやすい。したがって窒化層を形成す
ると、よりDLC膜中の炭素が母材表面へ拡散しやすく
なる。このため母材とDLC膜との密着力が向上する。
窒化層の厚さを5μm以上としたのは、5μm未満だと
母材とDLC膜との間に充分な密着力が得られにくいか
らである。なお窒化層深さは、断面組織観察や断面から
のEPMA(電子線プローブ微小分析)などを用いて測
定することができる。
When the base material is made of steel, it is preferable that the sliding portion be provided with a nitride layer having a depth of 5 μm or more on the surface of the base material. In the nitride layer, nitrogen diffuses into the base material to form a nitrogen diffusion layer. This nitrogen diffusion layer relatively easily takes in carbon in the DLC film. Therefore, when a nitride layer is formed, carbon in the DLC film is more easily diffused to the surface of the base material. For this reason, the adhesion between the base material and the DLC film is improved.
The reason why the thickness of the nitrided layer is 5 μm or more is that if it is less than 5 μm, it is difficult to obtain a sufficient adhesion between the base material and the DLC film. The depth of the nitride layer can be measured by observing the cross-sectional structure or using EPMA (electron probe microanalysis) from the cross-section.

【0029】窒化層はガス窒化法、ガス軟窒化法、塩浴
窒化法、イオン窒化法のいずれかの方法により形成する
のが好ましい。ガス窒化法とは、加工材料をアンモニア
ガスを主体とする雰囲気の中で加熱し窒化をする方法で
ある。またガス軟窒化法とは、加工材料を軟窒化性雰囲
気の中で加熱し軟窒化する方法である。また塩浴軟窒化
法とは、加工材料を軟窒化性塩浴の中で加熱し軟窒化す
る方法である。またイオン窒化法とは、減圧した窒化性
雰囲気の中で陰極とした加工材料を陽極との間に生じる
グロー放電によるプラズマを用いて窒化する方法であ
る。窒化層を形成するのにこれらの方法が好ましい理由
は、比較的コストがかからず簡便に窒化できるからであ
る。
The nitride layer is preferably formed by any of a gas nitriding method, a gas soft nitriding method, a salt bath nitriding method, and an ion nitriding method. The gas nitriding method is a method in which a processing material is heated and nitrided in an atmosphere mainly composed of ammonia gas. Further, the gas nitrocarburizing method is a method in which a processing material is heated in a nitrocarburizing atmosphere to nitrocarburize. Further, the salt bath nitrocarburizing method is a method in which a processing material is heated in a nitrocarburizing salt bath to nitrocarburize. The ion nitriding method is a method of nitriding a processing material used as a cathode in a reduced-pressure nitriding atmosphere using plasma generated by glow discharge generated between the processing material and the anode. The reason that these methods are preferable for forming a nitrided layer is that nitridation can be performed easily at a relatively low cost.

【0030】なかでもイオン窒化法は、上記DLC膜の
形成に用いる炉と同一の炉で引き続き作業を行うことが
可能であり工程を簡略化できるため特に好ましい。
Above all, the ion nitriding method is particularly preferred because the operation can be continued in the same furnace as the furnace used for forming the DLC film and the process can be simplified.

【0031】摺動部の摺動面の硬さは、HV500以上
である方が好ましい。HV500未満だと高面圧下での
母材の変形が大きくなり、DLC膜がその変形に耐えら
れず割れて剥離してしまうため、必要な耐摩耗性が得ら
れにくいからである。
The hardness of the sliding surface of the sliding part is preferably H V 500 or more. Deformation of the base material in high surface pressure and less than H V 500 is increased, since the DLC film peels off cracked not withstand its deformation, because the wear resistance is difficult to obtain necessary.

【0032】(3)その他 以上、本発明のガソリン潤滑摺動部材の実施の形態につ
いて説明したが、実施の形態は上記形態に限定されるも
のではない。当業者が行いうる種々の変形的、改良的形
態で実施することもできる。
(3) Others While the embodiments of the gasoline lubricated sliding member of the present invention have been described above, the embodiments are not limited to the above embodiments. Various modifications and improvements that can be performed by those skilled in the art can also be implemented.

【0033】[0033]

【実施例】以下、本発明のガソリン潤滑摺動部材につい
て行った実験について説明する。なお実験において用い
るのは、実際のガソリン潤滑摺動部材ではなく、鋼板と
鋼板上に形成されたDLC膜とからなるサンプルであ
る。なお鋼材はマルテンサイト系ステンレスとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An experiment conducted on the gasoline lubricated sliding member of the present invention will be described below. The sample used in the experiment is not an actual gasoline-lubricated sliding member, but a sample composed of a steel plate and a DLC film formed on the steel plate. The steel was martensitic stainless steel.

【0034】(1)サンプルの作製 〈実施例1〉実施例1のサンプルは以下の手順により作
製した。
(1) Preparation of Sample <Example 1> The sample of Example 1 was prepared by the following procedure.

【0035】まず、母材の配置された密閉容器内を0.
001Pa以下まで排気した。続いて連続排気しながら
密閉容器を電熱器により昇温した。
First, the inside of the closed container in which the base material is placed is set to 0.
The gas was exhausted to 001 Pa or less. Subsequently, the temperature of the sealed container was increased by an electric heater while continuously evacuating.

【0036】それから密閉容器内にアルゴンガスを導入
して放電させ、母材表面上に真空蒸着法を用いてSi
を形成した。このときの密閉容器内の圧力は0.5Pa
程度に調整した。また、このSi層の厚さは0.1μm
とした。
[0036] Then argon gas was introduced is discharged into the sealed container, to form a S i layer by vacuum evaporation on the surface of the base material. At this time, the pressure in the closed container is 0.5 Pa
Adjusted to the extent. The thickness of the S i layer 0.1μm
And

【0037】続いて密閉容器内にDLC形成ガスを導入
して放電させ、Si層表面上にDLC膜を生長させた。
このときの密閉容器内の圧力は、10Pa程度に調整し
た。DLC膜形成ガスは、DLC膜原料ガスとしてのメ
タンガス(CH4)のみであった。このことから、DL
C膜組成はCとHからのみなり、SiとCとの重量%比
はSi/C=0である。
[0037] Subsequently to discharge by introducing DLC formation gas in a sealed container, were grown DLC film on S i layer surface.
At this time, the pressure in the closed container was adjusted to about 10 Pa. The DLC film forming gas was only methane gas (CH 4 ) as a DLC film raw material gas. From this, DL
The composition of the C film consists only of C and H, and the weight percentage ratio of Si and C is S i / C = 0.

【0038】上記手順により作製したサンプルについて
実施例1とし、被膜特性(膜厚、密着力、膜硬さ)の評
価結果を表1中実施例1に示す。
The sample prepared by the above procedure is referred to as Example 1, and the evaluation results of the film properties (film thickness, adhesion, and film hardness) are shown in Example 1 in Table 1.

【0039】〈実施例2〉実施例2のサンプルは以下の
手順により作製した。
Example 2 The sample of Example 2 was manufactured according to the following procedure.

【0040】まず、母材の配置された密閉容器を0.0
13Pa以下まで排気した。次に連続排気しながら密閉
容器内の圧力が470Paとなるように水素ガスを導入
した。そして直流放電によりプラズマエネルギを発生さ
せ、母材を昇温した。
First, the sealed container in which the base material is placed is set to 0.0
Evacuation was performed to 13 Pa or less. Next, while continuously evacuating, hydrogen gas was introduced so that the pressure in the sealed container became 470 Pa. Then, plasma energy was generated by DC discharge, and the base material was heated.

【0041】次に、母材表面に窒化層を形成した。この
窒化層はイオン窒化法により形成した。なお窒化層の母
材表面からの深さは20μmに調整した。
Next, a nitride layer was formed on the surface of the base material. This nitrided layer was formed by an ion nitriding method. The depth of the nitride layer from the base material surface was adjusted to 20 μm.

【0042】続いて窒化層を形成した母材表面に、微小
凹凸を形成した。微小凹凸は以下の様に形成した。ま
ず、アルゴンガスと水素ガスを混合して混合ガスを調製
した。そして、連続排気しながら密閉容器内の圧力が約
470Paとなるように混合ガスを導入した。そして放
電出力を500Wとしイオン衝撃を行った。このように
して、高さ25nm、平均幅60nmの凸部を持つ微小
凹凸を形成した。
Subsequently, fine irregularities were formed on the surface of the base material on which the nitride layer was formed. The fine irregularities were formed as follows. First, a mixed gas was prepared by mixing argon gas and hydrogen gas. Then, while continuously evacuating, the mixed gas was introduced so that the pressure in the sealed container became about 470 Pa. The discharge output was set to 500 W and ion bombardment was performed. In this way, minute unevenness having a height of 25 nm and an average width of 60 nm was formed.

【0043】それから微小凹凸を形成した母材表面上
に、DLC膜を形成した。DLC膜は以下のように形成
した。まず密閉容器内にDLC膜形成ガスを導入し放電
させ、母材表面上にDLC膜を生成させた。このときの
密閉容器内の圧力は、600Pa程度に調整した。DL
C膜形成ガスは、DLC膜原料ガスとしてのメタンガス
(CH4)とテトラメチルシラン(Si(CH34)と、
雰囲気ガスとしてのアルゴンガスと水素ガスとから構成
した。このうちDLC膜原料ガスの組成は、SiとCと
の重量%比がSi/C=約0.2となるように調整し
た。
Then, a DLC film was formed on the surface of the base material on which the fine irregularities were formed. The DLC film was formed as follows. First, a gas for forming a DLC film was introduced into a sealed container and discharged to form a DLC film on the surface of the base material. At this time, the pressure in the closed container was adjusted to about 600 Pa. DL
The C film forming gas includes methane gas (CH 4 ) and tetramethylsilane (S i (CH 3 ) 4 ) as DLC film source gases;
The atmosphere gas was composed of argon gas and hydrogen gas. The composition of these DLC film material gas, the weight percent ratio of Si and C was adjusted to S i / C = 0.2.

【0044】上記手順により作製したサンプルについて
実施例2とし、被膜特性(膜厚、密着力、膜硬さ)の評
価結果を表1中実施例2に示す。
The sample prepared according to the above procedure is referred to as Example 2, and the evaluation results of the film properties (film thickness, adhesion, and film hardness) are shown in Example 2 in Table 1.

【0045】〈実施例3〉実施例3のサンプルも、上記
実施例2を作製した場合と同様の手順により作製した。
実施例2を作製した場合との相違点は、DLC膜原料ガ
スの組成を、SiとCとの重量%比がSi/C=約0.4
4となるように調整した点である。すなわち実施例3と
実施例2とはSi/C重量%比が異なり、実施例3のSi
/C重量%比は約0.44である。また被膜特性(膜
厚、密着力、膜硬さ)の評価結果を表1中実施例3に示
す。
Example 3 The sample of Example 3 was manufactured in the same procedure as in the case of Example 2 described above.
The difference from the case of manufacturing the second embodiment, the composition of the DLC film material gas, the weight% ratio of the S i and C S i / C = 0.4
That is, it was adjusted to be 4. That is different S i / C weight percent ratio is as in Example 3 and Example 2, Example 3 S i
The / C wt% ratio is about 0.44. Further, the evaluation results of the film properties (film thickness, adhesion, and film hardness) are shown in Example 3 in Table 1.

【0046】〈実施例4〉実施例4のサンプルも、上記
実施例2を作製した場合と同様の手順により作製した。
実施例2を作製した場合との相違点は、DLC膜原料ガ
スの組成を、SiとCとの重量%比がSi/C=約0.6
8となるように調整した点である。すなわち実施例4と
実施例2とはSi/C重量%比が異なり、実施例4のSi
/C重量%比は約0.68である。また被膜特性(膜
厚、密着力、膜硬さ)の評価結果を表1中実施例4に示
す。
Example 4 The sample of Example 4 was manufactured in the same procedure as in the case of Example 2 described above.
The difference from the case of manufacturing the second embodiment, the composition of the DLC film material gas, the weight% ratio of the S i and C S i / C = 0.6
That is, it is adjusted to be 8. That is different S i / C weight percent ratio is as in Example 4 to Example 2, Example 4 S i
The / C wt% ratio is about 0.68. The results of evaluation of the film properties (film thickness, adhesion, and film hardness) are shown in Example 4 in Table 1.

【0047】〈実施例5〉実施例5のサンプルも、上記
実施例2を作製した場合と同様の手順により作製した。
実施例2を作製した場合との相違点は、DLC膜原料ガ
スの組成を、SiとCとの重量%比がSi/C=約0.8
2となるように調整した点である。すなわち実施例5と
実施例2とはSi/C重量%比が異なり、実施例5のSi
/C重量%比は約0.82ある。また被膜特性(膜厚、
密着力、膜硬さ)の評価結果を表1中実施例5に示す。
Example 5 The sample of Example 5 was manufactured in the same procedure as in the case of Example 2 described above.
The difference from the case of manufacturing the second embodiment, the composition of the DLC film material gas, the weight% ratio of the S i and C S i / C = about 0.8
That is, the adjustment was made to be 2. That is different S i / C weight percent ratio is as in Example 5 and Example 2, Example 5 S i
The / C wt% ratio is about 0.82. In addition, film properties (film thickness,
The evaluation results of (adhesion force, film hardness) are shown in Example 5 in Table 1.

【0048】〈実施例6〉実施例6のサンプルも、上記
実施例2を作製した場合と同様の手順により作製した。
実施例2を作製した場合との相違点は、DLC膜原料ガ
スの組成を、SiとCとの重量%比がSi/C=約1.0
となるように調整した点である。すなわち実施例6と実
施例2とはSi/C重量%比が異なり、実施例6のSi
C重量%比は約1.0である。また被膜特性(膜厚、密
着力、膜硬さ)の評価結果を表1中実施例6に示す。
Example 6 The sample of Example 6 was produced in the same procedure as in the case of Example 2 described above.
The difference from the case of manufacturing the second embodiment, the composition of the DLC film material gas, the weight% ratio of the S i and C S i / C = about 1.0
This is the point adjusted so that That is different S i / C weight percent ratio is as in Example 6 and Example 2, Example 6 S i /
The C weight% ratio is about 1.0. Further, the evaluation results of the film properties (film thickness, adhesion, film hardness) are shown in Example 6 in Table 1.

【0049】〈実施例7〉実施例7のサンプルも、上記
実施例2を作製した場合と同様の手順により作製した。
実施例2を作製した場合との相違点は、DLC膜原料ガ
スの組成を、SiとCとの重量%比がSi/C=約1.0
8となるように調整した点である。すなわち実施例7と
実施例2とはSi/C重量%比が異なり、実施例7のSi
/C重量%比は約1.08である。また被膜特性(膜
厚、密着力、膜硬さ)の評価結果を表1中実施例7に示
す。
Example 7 The sample of Example 7 was produced in the same procedure as in Example 2 above.
The difference from the case of manufacturing the second embodiment, the composition of the DLC film material gas, the weight% ratio of the S i and C S i / C = about 1.0
That is, it is adjusted to be 8. That is different S i / C weight percent ratio is as in Example 7 and Example 2, S i of Example 7
The / C wt% ratio is about 1.08. The results of evaluation of the film properties (film thickness, adhesion, and film hardness) are shown in Example 7 in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】(2)実験方法 以上のようにして作製したサンプルに対し、耐焼き付き
性および相手攻撃性を測定する実験を行った。なお、D
LC膜表面の面粗さはRZ0.4以下とした。
(2) Experimental Method An experiment for measuring the seizure resistance and the aggressiveness to the opponent was performed on the samples prepared as described above. Note that D
The surface roughness of the LC film surface was set to R Z 0.4 or less.

【0052】〈耐焼き付き性〉耐焼き付き性の測定は、
バーベルプレート試験により行う。バーベルプレート試
験とは、ガソリン浴中においてバーベル形状の相手材を
プレートのDLC膜表面に接触させ、この状態で荷重を
加えながら相手材を回転させることにより、相手材の表
面とDLC膜の表面とを摺動させる試験である。相手材
はφ13mm×厚さ5mmの二つの円盤とこれら二つの
円盤の中央部分を連結する軸とからなるマルテンサイト
系ステンレスである。このうちDLC膜表面と摺接する
のは円盤の周縁部分である。ここで、圧接荷重は50N
毎分で階段状に増加させながら試験を実施し、摺動によ
る摩擦力が急激に増加した時点での荷重を焼付荷重と
し、測定パラメータとした。
<Seizure Resistance> The seizure resistance was measured as follows.
Performed by barbell plate test. In the barbell plate test, a barbell-shaped mating member is brought into contact with the surface of the DLC film of the plate in a gasoline bath, and the mating member is rotated while applying a load in this state, so that the surface of the mating member and the surface of the DLC film are separated. This is a test in which is slid. The mating material is martensitic stainless steel composed of two disks of φ13 mm × thickness of 5 mm and a shaft connecting the central portions of these two disks. Of these, the portion in sliding contact with the surface of the DLC film is the peripheral portion of the disk. Here, the pressure load is 50 N
The test was performed while increasing stepwise at every minute, and the load at the time when the frictional force due to the sliding increased sharply was taken as the seizure load and used as a measurement parameter.

【0053】〈相手攻撃性〉相手攻撃性の測定は、DL
C膜との摺動による相手材の摩耗程度を調査するために
行った。測定するパラメータは、相手材の摩耗面積であ
る。相手攻撃性の測定実験はバーベルプレート試験によ
り行った。前述DLC膜表面と摺接する円盤の周縁部分
は、DLC膜との摺動により摩耗し、徐々に平板状とな
っていく。本実験においては、この平板状部分の面積を
摩耗面積とした。
<Opponent aggression> The measurement of the opponent's aggression is performed using the DL
This was performed to investigate the degree of wear of the mating material due to sliding with the C film. The parameter to be measured is the wear area of the mating material. The measurement experiment of the opponent aggression was performed by a barbell plate test. The periphery of the disk that is in sliding contact with the surface of the DLC film is worn by sliding with the DLC film, and gradually becomes flat. In this experiment, the area of this flat plate-shaped portion was defined as the wear area.

【0054】(3)実験結果 〈耐焼き付き性〉各々のサンプルについて2回ずつ焼き
付き荷重を測定した結果のグラフを図1に示す。グラフ
にプロットされたデータは、左から右に実施例1〜実施
例7の順番に並んでいる。サンプル全般において良好な
焼き付き荷重が測定できたが、実施例2〜実施例4に対
し、実施例1と実施例5〜実施例7は耐焼き付き性が著
しく低下することが判る。このため耐焼き付き性という
観点から特に好ましい組成範囲は、0<Si/C重量%
比≦0.7であるといえる。
(3) Experimental Results <Seizure Resistance> FIG. 1 is a graph showing the result of measuring the seizure load twice for each sample. The data plotted on the graph are arranged in order from Example 1 to Example 7 from left to right. A good seizure load could be measured for all the samples, but it can be seen that, in contrast to Examples 2 to 4, Examples 1 and Examples 5 to 7 have significantly reduced seizure resistance. Therefore, a particularly preferable composition range from the viewpoint of seizure resistance is 0 <S i / C weight%.
It can be said that the ratio ≤ 0.7.

【0055】〈相手攻撃性〉各々のサンプルについて2
回ずつ相手材の摩耗面積を測定した結果のグラフを図2
に示す。グラフにプロットされたデータは、左から右に
実施例1〜実施例7の順番に並んでいる。摩耗面積につ
いてもサンプル全般において良好な結果が得られた。た
だし、実施例1および実施例5〜実施例7の場合、摩耗
面積が広くなることが判る。このため相手攻撃性という
観点からも特に好ましい組成範囲は、0<Si/C重量
%比≦0.7であるといえる。
<Opponent aggression> 2 for each sample
Fig. 2 shows a graph of the result of measuring the wear area of the mating material each time.
Shown in The data plotted on the graph are arranged in order from Example 1 to Example 7 from left to right. With respect to the wear area, good results were obtained for all the samples. However, in the case of Example 1 and Examples 5 to 7, it can be seen that the wear area is increased. For this reason, it can be said that a particularly preferable composition range from the viewpoint of opponent aggression is 0 <S i / C weight% ratio ≦ 0.7.

【0056】[0056]

【発明の効果】本発明のガソリン潤滑摺動部材による
と、ガソリン中において良好な耐摩耗性、耐焼き付き性
を有する摺動部材を提供することができる。
According to the gasoline-lubricated sliding member of the present invention, a sliding member having good abrasion resistance and seizure resistance in gasoline can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例サンプルの焼き付き荷重を測定した結
果を示すグラフである。
FIG. 1 is a graph showing the result of measuring the seizure load of an example sample.

【図2】 実施例サンプルの相手材の摩耗面積を測定し
た結果を示すグラフである。
FIG. 2 is a graph showing a result of measuring a wear area of a mating material of an example sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 28/04 C23C 28/04 F02F 3/12 F02F 3/12 F02M 59/44 F02M 59/44 B 61/10 61/10 M 61/18 360 61/18 360A (72)発明者 森 英視 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 奥村 望 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 古川 隆 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 森 広行 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 太刀川 英男 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 3G066 AA01 AB02 AC01 AC02 AC07 AD02 BA18 BA32 BA36 BA46 BA49 BA50 CA09 CC14 CD14 CD21 4K028 AA02 AA03 AB01 BA02 BA12 4K030 AA10 BA28 CA02 FA01 JA01 LA23 4K044 AA03 AB10 BA18 BA19 BB03 BC01 BC05 BC11 CA12 CA13 CA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 28/04 C23C 28/04 F02F 3/12 F02F 3/12 F02M 59/44 F02M 59/44 B 61 / 10 61/10 M 61/18 360 61/18 360A (72) Inventor Hidemi Mori 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation (72) Inventor Nozomi Okumura 1, Showa-cho, Kariya-shi, Aichi Prefecture 1-chome DENSO Corporation (72) Inventor Takashi Furukawa 1-1-1 Showa-cho, Kariya-shi, Aichi Prefecture In-house DENSO Corporation (72) Inventor Hiroyuki Mori 41-Chome, Nagakute-cho, Nagakute-cho, Aichi-gun, Aichi Prefecture (1) Inside the Toyota Central Research Institute, Inc. (72) Inventor Hideo Tachikawa F-term, 41 Toyota Central Research Institute, Inc. Remarks) 3G066 AA01 AB02 AC01 AC02 AC07 AD02 BA18 BA32 BA36 BA46 BA49 BA50 CA09 CC14 CD14 CD21 4K028 AA02 AA03 AB01 BA02 BA12 4K030 AA10 BA28 CA02 FA01 JA01 LA23 4K044 AA03 AB10 BA18 BA19 BB03 BC01 BC05 BC11 CA12 CA13 CA14

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 摺動部と、該摺動部の摺動面に形成され
るDLC膜と、を備えるガソリン潤滑摺動部材。
1. A gasoline-lubricated sliding member comprising a sliding portion and a DLC film formed on a sliding surface of the sliding portion.
【請求項2】 前記DLC膜はCとHとSiおよび不可
避の不純物とからなり、該DLC膜中のSi/C重量%
比は0<Si/C≦0.7であることを特徴とするガソ
リン潤滑摺動部材。
Wherein said DLC film is composed of a C and H and S i and inevitable impurities, the DLC film S i / C wt% in
A gasoline lubricated sliding member having a ratio of 0 <S i /C≦0.7.
【請求項3】 前記DLC膜の膜厚は、0.5μm以上
10μm以下である請求項1に記載のガソリン潤滑摺動
部材。
3. The gasoline lubricated sliding member according to claim 1, wherein the thickness of the DLC film is 0.5 μm or more and 10 μm or less.
【請求項4】 前記DLC膜の硬さは、HV2000以
上である請求項1に記載のガソリン潤滑摺動部材。
Wherein the hardness of the DLC film, gasoline lubricating sliding member according to claim 1 is H V 2000 or more.
【請求項5】 前記DLC膜は、スクラッチ試験におけ
る剥離開始荷重が30N以上である請求項1に記載のガ
ソリン潤滑摺動部材。
5. The gasoline-lubricated sliding member according to claim 1, wherein the DLC film has a separation starting load of 30 N or more in a scratch test.
【請求項6】 前記摺動部のDLC形成面の母材表面
は、高さ10nm以上200nm以下であるとともに平
均幅300nm以下の凸部を持つ微小凹凸を備える請求
項1に記載のガソリン潤滑摺動部材。
6. The gasoline lubricating slide according to claim 1, wherein the base material surface of the DLC forming surface of the sliding portion has fine irregularities having a height of 10 nm to 200 nm and an average width of 300 nm or less. Moving member.
【請求項7】 前記摺動部は、前記摺動面のDLC膜と
母材の界面において母材の内部方向に20nm以上の深
さの炭素拡散層を備える請求項1に記載のガソリン潤滑
摺動部材。
7. The gasoline lubricating slide according to claim 1, wherein the sliding portion includes a carbon diffusion layer having a depth of 20 nm or more in an inner direction of the base material at an interface between the DLC film on the sliding surface and the base material. Moving member.
【請求項8】 前記摺動部の母材は鋼製であり、該摺動
部の前記摺動面の母材表面に5μm以上の深さの窒化層
を備える請求項1に記載のガソリン潤滑摺動部材。
8. The gasoline lubrication according to claim 1, wherein the base material of the sliding portion is made of steel, and a nitride layer having a depth of 5 μm or more is provided on the base material surface of the sliding surface of the sliding portion. Sliding member.
【請求項9】 前記窒化層は、ガス窒化法、塩浴窒化
法、ガス軟窒化法、イオン窒化法のいずれかにより形成
される請求項8に記載のガソリン潤滑摺動部材。
9. The gasoline-lubricated sliding member according to claim 8, wherein the nitrided layer is formed by any one of a gas nitriding method, a salt bath nitriding method, a gas soft nitriding method, and an ion nitriding method.
【請求項10】 前記摺動部の前記摺動面の母材の硬さ
は、HV500以上である請求項1に記載のガソリン潤
滑摺動部材。
10. A hardness of the base material of the sliding surface of the sliding portion, gasoline lubricating sliding member according to claim 1 is H V 500 or more.
【請求項11】 前記DLC膜は、プラズマCVD法に
より前記摺動部の前記摺動面の母材に形成される請求項
1に記載のガソリン潤滑摺動部材。
11. The gasoline-lubricated sliding member according to claim 1, wherein the DLC film is formed on a base material of the sliding surface of the sliding portion by a plasma CVD method.
JP2001137459A 2001-05-08 2001-05-08 Gasoline lubricated sliding member Expired - Fee Related JP4578716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137459A JP4578716B2 (en) 2001-05-08 2001-05-08 Gasoline lubricated sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137459A JP4578716B2 (en) 2001-05-08 2001-05-08 Gasoline lubricated sliding member

Publications (2)

Publication Number Publication Date
JP2002332571A true JP2002332571A (en) 2002-11-22
JP4578716B2 JP4578716B2 (en) 2010-11-10

Family

ID=18984564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137459A Expired - Fee Related JP4578716B2 (en) 2001-05-08 2001-05-08 Gasoline lubricated sliding member

Country Status (1)

Country Link
JP (1) JP4578716B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292934A (en) * 2003-03-28 2004-10-21 Shinko Seiki Co Ltd Ion nitriding apparatus and deposition system using the same
JP2005089735A (en) * 2003-08-08 2005-04-07 Nissan Motor Co Ltd Sliding member
JP2005097570A (en) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd Low frictional sliding member and low frictional sliding mechanism by using the same
JP2005161431A (en) * 2003-12-01 2005-06-23 Kiwa Tekkosho:Kk Machine tool guide device and its coating method
JP2005314454A (en) * 2004-04-27 2005-11-10 Toyota Central Res & Dev Lab Inc Low-friction slide member
JP2005336456A (en) * 2004-04-27 2005-12-08 Toyota Central Res & Dev Lab Inc Low-frictional sliding member
WO2006004221A1 (en) * 2004-07-06 2006-01-12 Toyota Jidosha Kabushiki Kaisha Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
JP2006257466A (en) * 2005-03-15 2006-09-28 Jtekt Corp Method for producing coated member
JP2006283970A (en) * 2005-03-09 2006-10-19 Toyota Central Res & Dev Lab Inc Piston ring and piston provided with it
JP2006291355A (en) * 2005-03-15 2006-10-26 Jtekt Corp Amorphous-carbon coated member
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
JP2007327135A (en) * 2006-05-12 2007-12-20 Denso Corp Coating structure and method for forming the same
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
US8206035B2 (en) 2003-08-06 2012-06-26 Nissan Motor Co., Ltd. Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
JP2015143169A (en) * 2013-12-25 2015-08-06 日立造船株式会社 Carbon nano-tube creation substrate, production method thereof, and reuse method thereof
US9932928B2 (en) 2014-05-23 2018-04-03 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine
US10208703B2 (en) 2015-03-17 2019-02-19 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, internal combustion engine including this piston, and manufacturing method of this piston

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493903A (en) * 2011-12-05 2012-06-13 北京理工大学 Method for manufacturing high-flow gas nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130817A (en) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc Coating material and its production
JPH11152560A (en) * 1997-11-17 1999-06-08 Daido Steel Co Ltd Machine parts having sliding part
JPH11172413A (en) * 1997-09-30 1999-06-29 Teikoku Piston Ring Co Ltd Piston ring
JPH11310876A (en) * 1998-04-30 1999-11-09 Toyota Central Res & Dev Lab Inc Production of coated member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130817A (en) * 1996-10-23 1998-05-19 Toyota Central Res & Dev Lab Inc Coating material and its production
JPH11172413A (en) * 1997-09-30 1999-06-29 Teikoku Piston Ring Co Ltd Piston ring
JPH11152560A (en) * 1997-11-17 1999-06-08 Daido Steel Co Ltd Machine parts having sliding part
JPH11310876A (en) * 1998-04-30 1999-11-09 Toyota Central Res & Dev Lab Inc Production of coated member

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
JP2004292934A (en) * 2003-03-28 2004-10-21 Shinko Seiki Co Ltd Ion nitriding apparatus and deposition system using the same
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8206035B2 (en) 2003-08-06 2012-06-26 Nissan Motor Co., Ltd. Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
US8575076B2 (en) 2003-08-08 2013-11-05 Nissan Motor Co., Ltd. Sliding member and production process thereof
JP2005089735A (en) * 2003-08-08 2005-04-07 Nissan Motor Co Ltd Sliding member
JP2005097570A (en) * 2003-08-21 2005-04-14 Nissan Motor Co Ltd Low frictional sliding member and low frictional sliding mechanism by using the same
JP2011089644A (en) * 2003-08-21 2011-05-06 Nissan Motor Co Ltd Low friction sliding member and low friction sliding mechanism using the same
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
JP2005161431A (en) * 2003-12-01 2005-06-23 Kiwa Tekkosho:Kk Machine tool guide device and its coating method
JP2005314454A (en) * 2004-04-27 2005-11-10 Toyota Central Res & Dev Lab Inc Low-friction slide member
JP2005336456A (en) * 2004-04-27 2005-12-08 Toyota Central Res & Dev Lab Inc Low-frictional sliding member
JP4572688B2 (en) * 2004-04-27 2010-11-04 株式会社豊田中央研究所 Low friction sliding member
WO2006004221A1 (en) * 2004-07-06 2006-01-12 Toyota Jidosha Kabushiki Kaisha Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
KR100867912B1 (en) * 2004-07-06 2008-11-10 도요다 지도샤 가부시끼가이샤 Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
JP2006283970A (en) * 2005-03-09 2006-10-19 Toyota Central Res & Dev Lab Inc Piston ring and piston provided with it
JP4558549B2 (en) * 2005-03-15 2010-10-06 株式会社ジェイテクト Manufacturing method of covering member
JP2006291355A (en) * 2005-03-15 2006-10-26 Jtekt Corp Amorphous-carbon coated member
JP2006257466A (en) * 2005-03-15 2006-09-28 Jtekt Corp Method for producing coated member
JP2007327135A (en) * 2006-05-12 2007-12-20 Denso Corp Coating structure and method for forming the same
JP2015143169A (en) * 2013-12-25 2015-08-06 日立造船株式会社 Carbon nano-tube creation substrate, production method thereof, and reuse method thereof
US9932928B2 (en) 2014-05-23 2018-04-03 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine
US10208703B2 (en) 2015-03-17 2019-02-19 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, internal combustion engine including this piston, and manufacturing method of this piston

Also Published As

Publication number Publication date
JP4578716B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP2002332571A (en) Gasoline lubricating slide member
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
US7416786B2 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
KR100867912B1 (en) Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
EP1841896A1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
JP6511126B1 (en) Sliding member and piston ring
EP0878558B1 (en) Coated material and method of manufacturing the same
JP2016502591A (en) Component having coating and method for manufacturing the same
JP4558549B2 (en) Manufacturing method of covering member
JP2004169137A (en) Sliding member
JPH1192935A (en) Wear resistant hard carbon coating
JP2971928B2 (en) Hard amorphous carbon-hydrogen-silicon thin film having lubricity, iron-based metal material having the thin film on its surface, and method for producing the same
JP2009035584A (en) Sliding member
JP2013087325A (en) Hard carbon film, and method for forming the same
JP2018076873A5 (en) Liners for internal combustion engines
JP7115849B2 (en) sliding member
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP3693316B2 (en) Manufacturing method of covering member
JP2001107220A (en) Machine parts coated with hard carbon film and its production method
JP6413060B1 (en) Hard carbon film, method for producing the same, and sliding member
JP2005015852A (en) Hard carbon film and method for manufacturing the same
CN115413313B (en) Piston ring and method for manufacturing same
JPH11310876A (en) Production of coated member
JP6938807B1 (en) Sliding members and piston rings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4578716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees