JPH11310876A - Production of coated member - Google Patents

Production of coated member

Info

Publication number
JPH11310876A
JPH11310876A JP12113498A JP12113498A JPH11310876A JP H11310876 A JPH11310876 A JP H11310876A JP 12113498 A JP12113498 A JP 12113498A JP 12113498 A JP12113498 A JP 12113498A JP H11310876 A JPH11310876 A JP H11310876A
Authority
JP
Japan
Prior art keywords
gas
coating film
film
forming
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12113498A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
広行 森
Hideo Tachikawa
英男 太刀川
Nozomi Okumura
望 奥村
Hidemi Mori
英視 森
Tsuneaki Minamiguchi
経昭 南口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP12113498A priority Critical patent/JPH11310876A/en
Publication of JPH11310876A publication Critical patent/JPH11310876A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a member high in the adhesion between a base material and a coating film and whose surface has the smooth coating film. SOLUTION: The surface to be coated of a base material is previously applied to ion impact by using a gaseous mixture of a ruggedness forming gas contg. one or more kinds of a gas belonging to a rare gas and hydrogen and a ruggedness promoting gas contg. one or more kinds among nitrogen, carbon and oxygen and projecting parts in which the average height is in the range of 10 to 100 nm and the average width is in the range of 10 to 300 nm are formed to make them into rugged faces. By this rugged faces, a coating film formed thereon is firmly fixed. By jointly using the ruggedness promoting gas, the formation of the rugged faces is made easy and stable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼材料等の基材
に硬質膜等を被覆した被覆部材に関するもので、基材と
被覆膜との密着性が向上した被覆部材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated member in which a base material such as a steel material is coated with a hard film or the like, and to a method for manufacturing a coated member having improved adhesion between the base material and the coated film. It is.

【0002】[0002]

【従来の技術】鉄鋼材料等の表面に数μm〜数10μm
厚さの蒸着皮膜とかスパッタリング皮膜、酸化物皮膜等
をPVD法、CVD法で形成し、基材とこの表面に被覆
された被覆膜とからなる被覆部材が広く使用されてい
る。この被覆部材を形成する基材と被覆膜との密着性が
問題になり皮膜が剥離する場合も経験する。例えば、P
VD法を採用し、基板の温度が600℃以下の低温で薄
膜を被覆する技術では、温度が低いことで基材と被覆膜
との結合が弱く、しばしば剥離が発生する。
2. Description of the Related Art Several μm to several tens μm are formed on the surface of steel material or the like.
A coating member formed of a base material and a coating film formed on a surface by forming a vapor deposition film having a thickness, a sputtering film, an oxide film, or the like by a PVD method or a CVD method is widely used. In some cases, the adhesion between the base material forming the coating member and the coating film becomes a problem, and the coating film is peeled off. For example, P
In the technique of employing a VD method and coating a thin film at a low temperature of 600 ° C. or lower, the bonding between the base material and the coating film is weak due to the low temperature, and peeling often occurs.

【0003】かかる場合、従来基材と被覆膜との結合を
高める手段として、基材表面をブラスト処理することに
より基材表面を粗面化する方法(特開平1ー29487
5)とか、湿式エッチングする方法とか、イオンボンバ
ードにより表面をクリーニングする方法(特開平2ー1
56066)がある。
In such a case, as a conventional means for enhancing the bond between the substrate and the coating film, a method of roughening the surface of the substrate by blasting the surface of the substrate (JP-A-1-29487).
5), a wet etching method, and a method of cleaning the surface by ion bombardment (Japanese Patent Laid-Open No. 2-1)
56066).

【0004】[0004]

【発明が解決しようとする課題】被覆部材を摺動部材と
して使用するには、その被覆膜は平滑でかつ基材との密
着性が高いことが重要である。平滑でないと耐焼付性が
低く相手攻撃性が高い。また、基材との密着性は不足し
ていると剥離が生じ摺動部材に用いることができない。
In order to use the covering member as a sliding member, it is important that the covering film is smooth and has high adhesion to the substrate. If it is not smooth, the seizure resistance is low and the opponent aggression is high. In addition, if the adhesion to the base material is insufficient, peeling occurs and cannot be used as a sliding member.

【0005】しかし、従来のブラスト処理法及び湿式エ
ッチング処理方法では、基材表面を大きく荒らし、最小
でも数ミクロンの程度の凹凸表面となるため平滑な膜が
得られない。このため、その後に被覆される薄膜の面粗
度も悪くなる。たとえば、摺動部材として使用する場合
には、かえって相手材を攻撃して所要の摺動特性が得ら
れなくなる。そのため平滑な表面を必要とする摺動部材
などでは硬質膜の再研磨が必要となる場合が出てくる。
However, in the conventional blasting method and wet etching method, the surface of the base material is greatly roughened, and the surface becomes uneven at least several microns, so that a smooth film cannot be obtained. For this reason, the surface roughness of the thin film to be subsequently coated is also deteriorated. For example, when used as a sliding member, the other member is attacked, and the required sliding characteristics cannot be obtained. Therefore, in the case of a sliding member or the like that requires a smooth surface, the hard film may need to be polished again.

【0006】また、イオンボンバードにより表面をクリ
ーニングする方法ではクリーニングを目的とするため、
不活性ガスが使われ、有機系の汚れや酸化物の除去はで
きるが望ましい微細な凹凸形状を得ることはできない。
本発明はかかる問題のない、基材と被覆膜との密着性が
高く、かつ表面が平滑な被覆部材の製造方法を提供する
ことを目的とする。
In the method of cleaning the surface by ion bombardment, the purpose is to clean the surface.
Since an inert gas is used, organic dirt and oxides can be removed, but a desired fine unevenness cannot be obtained.
An object of the present invention is to provide a method for producing a coated member having no problem and having high adhesion between a substrate and a coating film and having a smooth surface.

【0007】[0007]

【課題を解決するための手段】本発明者は、基材の被覆
すべき表面に予めイオン衝撃を加えることにより微細な
凹凸が形成できることを発見確認し、本発明を完成した
ものである。すなわち、本発明の被覆部材の製造方法
は、基材の被覆すべき表面に予めアルゴン、ヘリウム及
び水素の一種類以上を含む凹凸形成ガスと窒素、炭素及
び酸素の一種類以上を含む凹凸促進ガスとの混合ガスを
用いてイオン衝撃し、平均高さが10〜100nmの範
囲、平均の幅が10〜300nmの範囲にある凸部を形
成して凹凸面とする第1工程と、該凹凸面上に被覆膜を
形成する第2工程と、を有することを特徴とする。
Means for Solving the Problems The present inventors have discovered and confirmed that fine irregularities can be formed by previously applying ion bombardment to the surface of a substrate to be coated, and have completed the present invention. In other words, the method for producing a coated member of the present invention comprises the step of forming a concavo-convex forming gas containing at least one kind of argon, helium and hydrogen and a concavo-convexity promoting gas containing one or more kinds of nitrogen, carbon and oxygen on the surface of the base material to be coated. Ion bombardment using a mixed gas of the above and a first step of forming a projection having an average height in the range of 10 to 100 nm and an average width in the range of 10 to 300 nm to form an uneven surface; A second step of forming a coating film thereon.

【0008】基材と被覆膜の界面が所定高さ、幅の凸部
をもつ凹凸面となっているため両者間の結合が強くより
一体性の高い被覆部材となる。
[0008] Since the interface between the base material and the coating film is an uneven surface having a convex portion of a predetermined height and width, the bonding between the two is strong and the coating member is more integrated.

【0009】[0009]

【発明の実施の態様】本発明の被覆部材の製造方法は基
材の表面をイオン衝撃して凹凸面を形成する第1工程と
得られた凹凸面に被覆膜を形成する第2工程とを有す
る。本発明にかかる基材は基板、摺動部材、構造部材等
の種々の部品、装置の一部を構成するもので金属等で形
成されている。基材を形成する金属としては鋼等の鉄系
金属、チタン、アルミ、銅、マグネシウム等の金属、ま
たはこれら金属の合金、サーメット、セラミックス及び
樹脂等を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a coated member according to the present invention comprises a first step of forming an uneven surface by ion bombardment of the surface of a substrate, and a second step of forming a coating film on the obtained uneven surface. Having. The substrate according to the present invention constitutes various parts such as a substrate, a sliding member, and a structural member, and a part of an apparatus, and is formed of metal or the like. Examples of the metal forming the substrate include iron-based metals such as steel, metals such as titanium, aluminum, copper, and magnesium, or alloys of these metals, cermets, ceramics, and resins.

【0010】第1工程は、基材の被覆すべき表面に予め
アルゴン、ヘリウム、ネオン等の希ガス、及び水素の一
種類以上を含む凹凸形成ガスと窒素、炭素及び酸素の一
種類以上を含む凹凸促進ガスとの混合ガスを用いてイオ
ン衝撃し、平均高さが10〜100nmの範囲、平均の
幅が10〜300nmの範囲にある凸部を形成して凹凸
面とする工程である。
In the first step, the surface of the base material to be coated contains in advance a rare gas such as argon, helium, or neon, and a concavo-convex forming gas containing at least one kind of hydrogen, and at least one kind of nitrogen, carbon and oxygen. This is a step of forming a projection having an average height in the range of 10 to 100 nm and an average width in the range of 10 to 300 nm by ion bombardment using a mixed gas with the unevenness promoting gas to form an uneven surface.

【0011】凹凸形成ガスとしては、希ガス(He、A
r、Ne等)あるいはH2 ガスを用いることができる。
凹凸促進ガスとしては、N2 、NH3 等の窒素原子含有
ガス、CH4、C22等の炭素源と含有ガス、O2、CO
2ガス等を用いることができる。これらのガスを混合し
た混合ガスは、凹凸促進ガス/凹凸形成ガスの値が0.
0001〜0.5であるのが好ましい。なお、この値
は、凹凸形成ガスと凹凸促進ガスの流量比、体積比に相
当する。この値が0.0001未満だと凹凸形成が遅
く、0.5を越えると凹凸形成よりも反応層が形成され
やすくなる。
As the irregularity forming gas, a rare gas (He, A
r, Ne, etc.) or H 2 gas.
Examples of the unevenness promoting gas include a nitrogen atom-containing gas such as N 2 and NH 3 , a carbon source such as CH 4 and C 2 H 2 and a contained gas, O 2 , CO 2
Two gases or the like can be used. In the mixed gas obtained by mixing these gases, the value of the unevenness promoting gas / the unevenness forming gas is 0.
It is preferably from 0001 to 0.5. This value corresponds to the flow ratio and volume ratio of the unevenness forming gas and the unevenness promoting gas. If the value is less than 0.0001, the formation of the unevenness is slow, and if it exceeds 0.5, the reaction layer is more easily formed than the formation of the unevenness.

【0012】混合ガスの圧力は0.001〜20torr程
度、放電出力密度は0.1〜10W/cm2、処理時間
は30〜60分程度が好ましい。より具体的には、密閉
容器内に被処理材たる基材を設置し、密閉容器内の圧力
を10-3〜20torr程度とする。圧力が10-3to
rr未満では、十分に被処理材を加熱することができな
い。20torrを越えると、被処理材を加熱すること
はできるが、微細な凹凸が形成しにくくなる。
Preferably, the pressure of the mixed gas is about 0.001 to 20 torr, the discharge output density is 0.1 to 10 W / cm 2 , and the processing time is about 30 to 60 minutes. More specifically, a substrate to be processed is placed in a closed container, and the pressure in the closed container is set to about 10 -3 to 20 torr. Pressure is 10 -3 to
If it is less than rr, the material to be treated cannot be sufficiently heated. When the pressure exceeds 20 torr, the material to be treated can be heated, but it is difficult to form fine irregularities.

【0013】次に、容器内に処理ガスとしての前記混合
ガスを導入する。この状態でイオン衝撃を与える。イオ
ン衝撃を与える手段としてはグロー放電またはイオンビ
ームを利用できる。放電出力0.1〜10W/cm
2 で、処理時間30〜60分でイオン衝撃を行うと、均
一で微細なナノオーダの凹凸ができる。イオン衝撃を与
えている時に被処理材を硬さが低下しない温度(200
℃以上が好ましい。)にまで加熱すると、さらに均一で
微細なナノオーダの凹凸ができる。
Next, the mixed gas as a processing gas is introduced into the container. In this state, ion bombardment is applied. Glow discharge or an ion beam can be used as a means for applying ion bombardment. Discharge output 0.1 to 10 W / cm
In step 2 , if ion bombardment is performed for a treatment time of 30 to 60 minutes, uniform and fine nano-order irregularities are formed. The temperature at which the hardness of the material to be treated does not decrease during ion bombardment (200
C. or higher is preferred. ), Uniform and fine nano-order irregularities are formed.

【0014】この第1工程により基材表面に、平均高さ
が10〜100nmの範囲、平均の幅が10〜300n
mの範囲の凹凸面を形成する。なお、凸部は半球状やコ
ーン状等の形に形成される。ここで凸部の高さとは凸部
を半球状と見なした場合にこの半球状の凸部の底から頂
点までの距離を、凸部の幅とは凸部を半球状と見なした
場合に半球状の凸部の底の最大径(凸部の底面形状が真
円の場合は直径、凸部の底面形状が楕円の場合は長軸
径)に相当する水平方向の距離をいう。
According to the first step, the average height is in the range of 10 to 100 nm and the average width is in the range of 10 to 300 n on the substrate surface.
An uneven surface in the range of m is formed. The convex portion is formed in a shape such as a hemisphere or a cone. Here, the height of the convex portion is the distance from the bottom to the vertex of the convex portion when the convex portion is regarded as a hemisphere, and the width of the convex portion is when the convex portion is regarded as a hemispherical portion. The distance in the horizontal direction corresponds to the maximum diameter of the bottom of the hemispherical convex portion (the diameter when the bottom shape of the convex portion is a perfect circle, and the major axis diameter when the bottom shape of the convex portion is an ellipse).

【0015】平均高さの範囲を10〜100nmの範囲
としたのは、10nm未満では機械的なアンカー効果が
得られず密着性が不足する。一方、100nmを越える
場合、平滑な膜が得られないためである。なお、より好
ましい平均高さの範囲は20〜70nmであり、より密
着性が向上する。平均の幅を10〜300nmの範囲と
したのは300nmを越えるとアンカー効果が小さくな
り、密着性が低下するためである。10nmより小さい
とアンカー効果が小さくなる。なお、凸部の大きさは従
来の表面粗さ計(触針法)では測定できない。そのため
ここでは凸部の大きさ、幅はSEM(走査型電子顕微
鏡)観察及びAFM(原子間力顕微鏡)などの微小な形
状測定によっている。
The reason why the average height is in the range of 10 to 100 nm is that if the average height is less than 10 nm, a mechanical anchor effect cannot be obtained and the adhesion is insufficient. On the other hand, if it exceeds 100 nm, a smooth film cannot be obtained. Note that a more preferable range of the average height is 20 to 70 nm, and the adhesion is further improved. The reason why the average width is in the range of 10 to 300 nm is that if the average width exceeds 300 nm, the anchor effect is reduced and the adhesion is reduced. If it is smaller than 10 nm, the anchor effect becomes small. The size of the projection cannot be measured by a conventional surface roughness meter (probe method). For this reason, the size and width of the convex portion are determined by microscopic measurement such as SEM (scanning electron microscope) observation and AFM (atomic force microscope).

【0016】凸部の大きさが所定のものであっても、凸
部の面積が少なければ、膜の密着性には効果が得られな
い。凹凸面に占める凸部の面積割合は、凹凸面の面積を
100%とすると凸部の占める面積は30%以上である
のが好ましい。30%以上になると膜の密着性が高いも
のとなる。より好ましくは、50%以上であるとより密
着性が向上する。
Even if the size of the projection is predetermined, if the area of the projection is small, no effect can be obtained on the adhesion of the film. As for the area ratio of the convex portion to the uneven surface, assuming that the area of the uneven surface is 100%, the area occupied by the convex portion is preferably 30% or more. If it is 30% or more, the adhesion of the film becomes high. More preferably, when the content is 50% or more, the adhesion is further improved.

【0017】第2工程の被覆膜を形成する方法として
は、イオンプレティーング(アーク、ホロカソード方式
など)、スパッタリング、真空蒸着、プラズマCVD等
により被覆膜を形成できる。形成された被覆膜は基材表
面が凹凸面となっているため強固に密着したものとな
る。また、得られる被覆膜は凹凸の少ない平滑な面を持
つものとなる。
As the method of forming the coating film in the second step, the coating film can be formed by ion plating (arc, hollow cathode method, etc.), sputtering, vacuum deposition, plasma CVD, or the like. The formed coating film is firmly adhered because the surface of the substrate is uneven. Further, the obtained coating film has a smooth surface with few irregularities.

【0018】第2工程を実施して被覆膜を形成した後で
形成された被覆膜を研磨するとかラッピングするとかの
後処理は特に必要がない。適切に本発明の第1工程およ
び第2工程を実施することにより研磨とかラッピングを
必要としない平滑な被覆層が形成される。被覆膜はこの
基材の少なくとも一部の表面を覆い、その表面に耐蝕
性、耐摩耗性、装飾性等の機能を付加するもので、種々
の被覆方法で形成された、金属皮膜、セラミック皮膜お
よび炭素系皮膜等からなる。具体的には、被覆膜を形成
する金属皮膜としてはクロム、ニッケル、タングステン
等を、またセラミックス皮膜としては周期律表IV族〜
VI族の元素またはそれらのひとつを含む複合元素から
なる窒化物膜、炭化物膜、酸化物膜、ほう化物膜等、お
よびAlN、BN、SiN、SiC等の皮膜を、炭素系
皮膜としては、DLC(ダイヤモンドライクカーボ
ン)、ダイヤモンド等を挙げることができる。被覆膜は
上記の皮膜を複数種類組み合わせることもできる。
After forming the coating film by performing the second step, there is no particular need for post-treatment such as polishing or lapping the formed coating film. By appropriately performing the first and second steps of the present invention, a smooth coating layer that does not require polishing or lapping is formed. The coating film covers at least a part of the surface of the base material and adds a function such as corrosion resistance, abrasion resistance, and decorativeness to the surface, and is formed by various coating methods. It consists of a film and a carbon-based film. Specifically, chromium, nickel, tungsten, and the like are used as the metal film for forming the coating film, and the ceramic film is a group IV to IV of the periodic table.
A nitride film, a carbide film, an oxide film, a boride film, etc., and a film of AlN, BN, SiN, SiC, etc. made of a group VI element or a composite element containing one of them are used. (Diamond-like carbon), diamond and the like. The coating film may be a combination of two or more of the above films.

【0019】被覆膜の厚さとしては、0.5μm〜20
μmとするのが好ましい。厚さが0.5μm以下では、
微細な凹凸が平滑化しにくい。逆に厚さが20μm以上
では、膜の内部応力が増すため、微細な凹凸の効果が減
少する。本発明の方法で得られた被覆膜に耐摩耗性を付
与した場合には、この被覆部材は耐摩耗性が必要な摺動
部材に使用できる。例えば摺動を伴う機械部品として、
エンジン部品(ピストン、ピストンリング、バルブステ
ム、シム板等)、コンプレッサー部品(ベーン、シュウ
等)、噴射ポンプ(ロータ、プランジャ、ニードル等)
の摺動部に使用できる。
The thickness of the coating film is 0.5 μm to 20 μm.
It is preferably set to μm. When the thickness is 0.5 μm or less,
It is difficult to smooth fine irregularities. On the other hand, if the thickness is 20 μm or more, the internal stress of the film increases, and the effect of fine irregularities decreases. When abrasion resistance is imparted to the coating film obtained by the method of the present invention, this coating member can be used for a sliding member requiring abrasion resistance. For example, as a mechanical part with sliding,
Engine parts (pistons, piston rings, valve stems, shim plates, etc.), compressor parts (vanes, shoes, etc.), injection pumps (rotors, plungers, needles, etc.)
Can be used for sliding parts.

【0020】[0020]

【発明の作用効果】本発明の被覆部材の製造方法では、
第1工程のイオン衝撃による基材表面の凹凸の形成に、
凹凸形成ガスと凹凸促進ガスの混合ガスを使用してい
る。このため基材表面に平均高さが10〜100nmの
範囲で平均の幅が10〜300nmの範囲にある凸部を
もつ凹凸面が容易に安定して形成される。そして第2工
程で、この凹凸面に被覆膜が形成される。基材と被覆膜
はその界面の微視的な凹凸により接着面積が増加してい
る。この接着面積の増加に対応して密着強度が増加して
いる。また、この凹凸表面を形成することにより基材表
面が洗浄されかつ活性化しているため強固な被覆膜が形
成される。さらに凸部の境界に形成される凹部の機械的
なアンカー効果により基材と被覆膜とは機械的に結合さ
れ一層強固な結合が得られる。
According to the method for producing a coated member of the present invention,
For the formation of irregularities on the surface of the substrate by the ion bombardment of the first step,
A mixed gas of the unevenness forming gas and the unevenness promoting gas is used. Therefore, an uneven surface having a convex portion having an average height in the range of 10 to 100 nm and an average width in the range of 10 to 300 nm is easily and stably formed on the surface of the base material. Then, in the second step, a coating film is formed on the uneven surface. The bonding area between the base material and the coating film is increased due to microscopic unevenness at the interface. The adhesion strength increases in response to the increase in the bonding area. In addition, since the surface of the substrate is cleaned and activated by forming the uneven surface, a strong coating film is formed. Further, the substrate and the coating film are mechanically connected by the mechanical anchoring effect of the concave portion formed at the boundary of the convex portion, so that a stronger connection can be obtained.

【0021】また、基材の凹凸面の凹凸が10〜100
nmと極めて微小であるため被覆膜表面は平滑なものと
なる。
The unevenness of the uneven surface of the substrate is 10 to 100.
Since it is extremely small, ie, nm, the surface of the coating film becomes smooth.

【0022】[0022]

【実施例】【Example】

【実施例1】基材には、SUS440Cを使用した。ま
た、基材の表面粗さはRz0.05μmとした。イオン
衝撃用ガスとして本発明の共に凹凸形成ガスに当たるア
ルゴンと水素ガスのみ、アルゴンと水素ガスに混合割合
を変えた本発明の凹凸促進ガスに当たる窒素を添加した
混合ガスを用いた。いずれの場合もガス圧力6tor
r、放電出力密度0.001〜2.0W/cm2 で60
分で行った。凹凸形成条件を表1に示す。
Example 1 SUS440C was used as a substrate. The surface roughness of the substrate was Rz 0.05 μm. As the ion bombardment gas, only a mixture of argon and hydrogen gas, which is the same as the irregularity forming gas of the present invention, and nitrogen added as the irregularity accelerating gas of the present invention in which the mixing ratio was changed was used. In any case, gas pressure 6 torr
r, 60 at a discharge power density of 0.001 to 2.0 W / cm 2
Went in minutes. Table 1 shows the concavo-convex formation conditions.

【0023】このイオン衝撃処理で表1に示す凸部が形
成された。この後、プラズマCVD法により基材の凹凸
形成処理がなされた表面にDLCーSi膜よりなる硬質
膜を形成した。膜厚さは3μmであった。硬質膜の密着
性評価は、スクラッチ試験により膜の剥離荷重の大小で
密着性を評価した。その結果を合わせて表1に示す。ま
た、摩擦試験等により実用上必要な膜の密着力を検討し
た結果、鋼部品では30N以上の密着力が得られると、
摺動中に膜の剥離はみられず、実用上の必要な密着力と
した。
The projections shown in Table 1 were formed by this ion bombardment treatment. Thereafter, a hard film made of a DLC-Si film was formed on the surface of the substrate on which the unevenness forming process was performed by a plasma CVD method. The thickness was 3 μm. The adhesion of the hard film was evaluated by a scratch test based on the magnitude of the peeling load of the film. The results are shown in Table 1. In addition, as a result of examining the adhesive force of a film necessary for practical use by a friction test and the like, if an adhesive force of 30 N or more is obtained with steel parts,
No peeling of the film was observed during sliding, and the adhesion required for practical use was determined.

【0024】なお、スクラッチ試験は頂角120°先端
0.2mmRのダイヤモンドコーンを荷重を掛けて引っ
掻くことによって、膜の剥離を測定する方法で剥離した
ときの荷重を臨界荷重といい、その臨界荷重の大小によ
り硬質膜の密着性を評価するものである。なお、表1に
おいて試料1−1、1−2及び1−3は比較例に該当し
試料1−4、1−5が実施例に相当する。
In the scratch test, a load applied when a diamond cone having a vertex angle of 120 ° and a tip of 0.2 mmR is scratched under a load to measure the peeling of the film is referred to as a critical load. The adhesiveness of the hard film is evaluated based on the magnitude of the above. In Table 1, samples 1-1, 1-2 and 1-3 correspond to comparative examples, and samples 1-4 and 1-5 correspond to examples.

【0025】 表1から明らかなように、試料1−1では凸部は形成さ
れなかった。試料1−2では凸部の大きさが5nmであ
り、密着力が12Nと低い。ガスの混合割合を1.0に
した試料1−3では、凸部の大きさが10nm以下であ
るため密着力も低い。試料1−4及び試料1−5は凸部
の面積率が50%以上と高く、密着力も40N以上と高
い。これによってアルゴン+水素ガスの凹凸形成ガスに
混合割合0.01、0.1の凹凸促進ガスである窒素を
添加した混合ガスによるイオン衝撃処理が好ましいこと
がわかる。
[0025] As is clear from Table 1, no protrusion was formed in Sample 1-1. In Sample 1-2, the size of the convex portion was 5 nm, and the adhesion was as low as 12 N. In the sample 1-3 in which the mixing ratio of the gas was 1.0, the adhesion was low because the size of the convex portion was 10 nm or less. In Samples 1-4 and 1-5, the area ratio of the protrusions is as high as 50% or more, and the adhesion is as high as 40N or more. Thus, it is understood that the ion bombardment treatment using a mixed gas obtained by adding the unevenness forming gas of argon + hydrogen gas to the unevenness promoting gas of nitrogen at a mixing ratio of 0.01 or 0.1 is preferable.

【0026】[0026]

【実施例2】基材には、SKH51を使用した。また、
基材の表面粗さはRz0.05μmとした。イオン衝撃
用ガスとしてアルゴンガスのみ、アルゴンガスに混合割
合0.05のメタンを添加した混合ガスの2種類を用い
た。ガス圧力3torr、放電出力1.5〜3.0W/
cm2 で60〜240分で行った。このイオン衝撃処理
で表2に示す凸部が形成された。
Example 2 SKH51 was used as a substrate. Also,
The surface roughness of the substrate was Rz 0.05 μm. As the ion bombardment gas, only argon gas and two types of mixed gas obtained by adding methane having a mixing ratio of 0.05 to argon gas were used. Gas pressure 3 torr, discharge output 1.5 to 3.0 W /
Performed in cm 2 for 60-240 minutes. The projections shown in Table 2 were formed by this ion bombardment treatment.

【0027】この後、アークイオンプレーティング法に
より300℃以下の温度で基材表面にTiN膜を形成し
た。膜厚さは3μmであった。密着性評価した結果を表
2に示す。なお、表2中試料2−1、2−3が比較例
に、試料2−2が実施例に該当する。 表2から明らかなように、試料2−1は凸部の高さは1
0nm以下で凸部の幅も小さく、さらに凸部面積率も小
さく、密着性は低い。試料2−3はCH4ガスを多めに
添加したが凹凸形成が十分ではなく密着性が低かった。
Thereafter, a TiN film was formed on the substrate surface at a temperature of 300 ° C. or less by an arc ion plating method. The thickness was 3 μm. Table 2 shows the results of the adhesion evaluation. In Table 2, Samples 2-1 and 2-3 correspond to Comparative Examples, and Sample 2-2 corresponds to Examples. As is clear from Table 2, Sample 2-1 had a height of the convex portion of 1
At 0 nm or less, the width of the projections is small, the area ratio of the projections is small, and the adhesion is low. In Sample 2-3, a large amount of CH4 gas was added, but the formation of unevenness was insufficient and the adhesion was low.

【0028】本発明品の試料2−2は、凸部の高さ、
幅、面積率のいずれも機械的なアンカー効果が得られる
凹凸が形成され、密着性も40Nと高いことがわかっ
た。
The sample 2-2 of the product of the present invention has a height of the convex portion,
It was found that irregularities were formed in both the width and the area ratio to obtain a mechanical anchor effect, and the adhesion was as high as 40 N.

【0029】[0029]

【実施例3】基材には、A2017を使用した。また、
基材の表面粗さはRz0.5μmとした。イオン衝撃用
ガスとしてヘリウムガスのみ、ヘリウムガスに混合割合
0.005の凹凸促進ガスである酸素を添加した混合ガ
スの2種類を用いた。ガス圧力2torr、放電出力密
度0.3W/cm2 で30分で行った。このイオン衝撃
処理で表3に示す凸部が形成された。
Example 3 A2017 was used as a substrate. Also,
The surface roughness of the substrate was Rz 0.5 μm. As the ion bombardment gas, only helium gas and two types of mixed gas obtained by adding oxygen which is a helium gas and a concavity-promoting gas having a mixing ratio of 0.005 were used. The test was performed at a gas pressure of 2 torr and a discharge output density of 0.3 W / cm 2 for 30 minutes. The projections shown in Table 3 were formed by this ion bombardment treatment.

【0030】この後、プラズマCVD法により基材表面
にDLC膜を形成した。膜厚さは1μmであった。密着
性評価した結果を表3に示す。ただし、基材が軟質なア
ルミ合金を用いたため、通常のスクラッチ試験では基材
が大きく塑性変形し、膜の剥離荷重が決定できないた
め、微少荷重のスクラッチ試験機を用いて評価した。な
お、表3中試料3−1が比較例に、試料3−2が実施例
に該当する。 この実施例3でも、試料3−1と試料3−2を比較する
ことにより、凹凸形成ガスのみで形成した試料3−1よ
り、凹凸形成ガスと凹凸促進ガスとの混合ガスを用いた
本発明の試料3−2が高い凸部面積率を達成でき、密着
性も比較例の試料3−1に比べ40mNと高いことがわ
かる。
Thereafter, a DLC film was formed on the surface of the substrate by a plasma CVD method. The thickness was 1 μm. Table 3 shows the results of the adhesion evaluation. However, since a soft aluminum alloy was used as the base material, the base material was largely plastically deformed in a normal scratch test, and the peeling load of the film could not be determined. Therefore, the evaluation was performed using a scratch test machine with a small load. In Table 3, sample 3-1 corresponds to a comparative example, and sample 3-2 corresponds to an example. Also in Example 3, by comparing the sample 3-1 with the sample 3-2, the present invention using the mixed gas of the unevenness forming gas and the unevenness promoting gas is different from the sample 3-1 formed only with the unevenness forming gas. It can be seen that the sample 3-2 of Example 3 can achieve a high convex area ratio and the adhesiveness is as high as 40 mN as compared with the sample 3-1 of the comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太刀川 英男 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 奥村 望 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 森 英視 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 南口 経昭 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideo Tachikawa 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. No. 1 Inside Denso Corporation (72) Inventor Hidemi Mori 1-1-1, Showa-cho, Kariya City, Aichi Prefecture Inside (72) Inventor Tsuneaki Minamiguchi 1-1-1, Showa-cho, Kariya City, Aichi Prefecture Stock Association Inside DENSO

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材の被覆すべき表面に予め希ガス及び
水素の一種類以上を含む凹凸形成ガスと窒素、炭素及び
酸素の一種類以上を含む凹凸促進ガスとの混合ガスを用
いてイオン衝撃し、平均高さが10〜100nmの範
囲、平均の幅が10〜300nmの範囲にある凸部を形
成して凹凸面とする第1工程と、 該凹凸面上に被覆膜を形成する第2工程と、を有するこ
とを特徴とする被覆部材の製造方法。
An ion-forming method using a mixed gas of a concavo-convex forming gas containing at least one kind of rare gas and hydrogen and a concavo-convexity promoting gas containing at least one kind of nitrogen, carbon and oxygen on a surface of a base material to be coated. A first step of forming a projection having an average height in the range of 10 to 100 nm and an average width in the range of 10 to 300 nm to form an uneven surface, and forming a coating film on the uneven surface And a second step.
【請求項2】 前記凹凸促進ガス/前記凹凸形成ガスは
0.0001〜0.5である請求項1記載の被覆部材の
製造方法。
2. The method for manufacturing a coated member according to claim 1, wherein the unevenness promoting gas / the unevenness forming gas is 0.0001 to 0.5.
【請求項3】 前記凹凸面のうち前記凸部のしめる面積
は30%以上である請求項1記載の被覆部材の製造方
法。
3. The method for manufacturing a covering member according to claim 1, wherein an area of the projections in the uneven surface is 30% or more.
JP12113498A 1998-04-30 1998-04-30 Production of coated member Pending JPH11310876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12113498A JPH11310876A (en) 1998-04-30 1998-04-30 Production of coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12113498A JPH11310876A (en) 1998-04-30 1998-04-30 Production of coated member

Publications (1)

Publication Number Publication Date
JPH11310876A true JPH11310876A (en) 1999-11-09

Family

ID=14803724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12113498A Pending JPH11310876A (en) 1998-04-30 1998-04-30 Production of coated member

Country Status (1)

Country Link
JP (1) JPH11310876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332571A (en) * 2001-05-08 2002-11-22 Denso Corp Gasoline lubricating slide member
CN1331376C (en) * 2003-10-06 2007-08-08 Fcm株式会社 Conductive sheet, product using the same, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332571A (en) * 2001-05-08 2002-11-22 Denso Corp Gasoline lubricating slide member
CN1331376C (en) * 2003-10-06 2007-08-08 Fcm株式会社 Conductive sheet, product using the same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7833626B2 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
JP3453033B2 (en) Coating member and method of manufacturing the same
JP4578716B2 (en) Gasoline lubricated sliding member
CN104812928B (en) Have cated component and its manufacture method
WO2006004221A1 (en) Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
JP4683177B2 (en) Amorphous carbon coating, method for producing amorphous carbon coating, and coating member for amorphous carbon coating
JPH06146825A (en) Titanium engine valve
JP4558549B2 (en) Manufacturing method of covering member
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
CN110423989A (en) A kind of preparation method of the hard DLC film of low residual stress
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
JP2004269991A (en) Diamond like carbon multilayer film having excellent wear resistance in different environment
JPH11310868A (en) Production of coated member
JP2013087325A (en) Hard carbon film, and method for forming the same
JPH11310876A (en) Production of coated member
JP2018076873A5 (en) Liners for internal combustion engines
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP2001107220A (en) Machine parts coated with hard carbon film and its production method
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
JP4581861B2 (en) Hard carbon thin film and method for producing the thin film
JP2000319784A (en) Sliding component and its production
JP3260156B2 (en) Method for producing diamond-coated member
JP3212636B2 (en) Sliding material
KR100650210B1 (en) Method of manufacturing diamond-like carbon film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A02 Decision of refusal

Effective date: 20050218

Free format text: JAPANESE INTERMEDIATE CODE: A02