JP3339994B2 - Wear-resistant material - Google Patents
Wear-resistant materialInfo
- Publication number
- JP3339994B2 JP3339994B2 JP19520995A JP19520995A JP3339994B2 JP 3339994 B2 JP3339994 B2 JP 3339994B2 JP 19520995 A JP19520995 A JP 19520995A JP 19520995 A JP19520995 A JP 19520995A JP 3339994 B2 JP3339994 B2 JP 3339994B2
- Authority
- JP
- Japan
- Prior art keywords
- hard carbon
- film
- carbon film
- substrate
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐摩耗性部材や摺
動部材として優れた硬質炭素膜被覆チタン合金に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy coated with a hard carbon film which is excellent as a wear-resistant member or a sliding member.
【0002】[0002]
【従来の技術】ダイヤモンドは、硬度、耐摩耗性、固体
潤滑性、熱伝導性などに優れていることから、例えば摺
動部材、切削工具類、研磨材、耐摩耗性機械部品などの
各種部材に利用されつつある。また近年、低圧下での気
相成長法によるダイヤモンド膜等の硬質炭素膜の合成が
可能となったため、前述したような用途に対して需要が
さらに増加しつつある。2. Description of the Related Art Diamond is excellent in hardness, wear resistance, solid lubricating property, heat conductivity, etc., so that various members such as sliding members, cutting tools, abrasives, and wear-resistant mechanical parts are used. It is being used for. Further, in recent years, it has become possible to synthesize a hard carbon film such as a diamond film by a vapor phase growth method under a low pressure, so that the demand for the above-mentioned applications is further increasing.
【0003】[0003]
【発明が解決しようとする課題】しかし、気相成長法に
より作製した硬質炭素膜被覆部材は、膜自体は高い硬
度、低い摩擦係数といった特性を有するものの、基体と
なる物質と膜との密着強度が不足しているため、膜の剥
離が起こり、硬質炭素膜の持つ高硬度及び低摩擦係数と
いった摺動部材や耐摩耗性部材として優れた特性を発揮
するには至っていない。However, the hard carbon film-coated member produced by the vapor phase growth method has characteristics such as high hardness and low coefficient of friction, but the adhesion strength between the substrate material and the film. Is insufficient, the film is peeled off, and the hard carbon film has not yet exhibited excellent properties such as high hardness and low friction coefficient as a sliding member or a wear-resistant member.
【0004】この基体と、硬質炭素膜との密着強度が低
い理由としてはいくつか考えられている。There are several reasons why the adhesion strength between the substrate and the hard carbon film is low.
【0005】(1)ダイヤモンドやダイヤモンド状炭素の
ような硬質炭素は、他の物質との濡れ性が悪い。(1) Hard carbon such as diamond and diamond-like carbon has poor wettability with other substances.
【0006】(2)硬質炭素膜と基体との熱膨張係数の違
いにより残留応力が発生する。(2) Residual stress is generated due to a difference in thermal expansion coefficient between the hard carbon film and the substrate.
【0007】(3)超硬合金のように基体中に炭素の拡散
が容易なFe,Co,Niなどの金属元素を含む基体の
場合、これらの金属元素上にグラファイトが優先的に生
成しやすい。(3) In the case of a substrate containing a metal element such as Fe, Co, or Ni in which carbon is easily diffused into the substrate, such as a cemented carbide, graphite is likely to be preferentially formed on these metal elements. .
【0008】前記(3) に対する解決策としては、例え
ば、特開平1−201475号公報に記載の、超硬合金
の表面を酸溶液でエッチングして結合相のFe,Coな
どの金属元素を除去する方法がある。しかし、この方法
では結合相が除去されることにより硬質相が欠落しやす
くなり、基体強度が低下し、硬質炭素膜は基体ごと剥が
れ落ちるといった問題が生じる。As a solution to the above (3), for example, the surface of a cemented carbide is etched with an acid solution to remove metal elements such as Fe and Co in a binding phase described in JP-A-1-201475. There is a way to do that. However, in this method, there is a problem that the hard phase is easily dropped due to the removal of the binder phase, the strength of the base is reduced, and the hard carbon film is peeled off together with the base.
【0009】前記(2) に対する解決策としては、例え
ば、特開昭61−291493号公報に、ダイヤモンド
と近似する熱膨張係数を持つ窒化ケイ素または炭化ケイ
素を主成分とするセラミック焼結体を基体として用いる
方法が記載されている。この方法によると、前記(2) の
熱膨張係数の問題は解決されるものの、前記(1) の理由
により密着強度が不足しているのが現状である。また、
耐摩耗性部材、摺動部材、切削工具類などの治工具は過
酷な環境で使用されることから、高強度、高靭性が求め
られる。例えば、窒化ケイ素をはじめとするセラミック
焼結体を基体とする場合、靭性に乏しいという点が欠点
となる。As a solution to the above (2), for example, Japanese Unexamined Patent Publication (Kokai) No. 61-291493 discloses a ceramic sintered body mainly composed of silicon nitride or silicon carbide having a thermal expansion coefficient close to that of diamond. Are described. According to this method, the problem of the coefficient of thermal expansion described in (2) can be solved, but at present, the adhesion strength is insufficient for the reason of (1). Also,
Jigs and tools such as wear-resistant members, sliding members, and cutting tools are used in harsh environments, and therefore require high strength and high toughness. For example, when a ceramic sintered body such as silicon nitride is used as a base, the toughness is a disadvantage.
【0010】本発明は、上記問題を解決し、硬質炭素膜
の密着強度と、耐欠損性に優れた硬質炭素膜被覆耐摩耗
性部材を提供することを目的とする。An object of the present invention is to solve the above-mentioned problems and to provide a hard carbon film-coated wear-resistant member having excellent adhesion strength of a hard carbon film and excellent fracture resistance.
【0011】[0011]
【課題を解決するための手段】本発明者は上記目的に対
して検討を重ねた結果、基体としてチタンあるいはチタ
ンを主とするチタン合金を用い、その基体の表面に少な
くともダイヤモンドと炭化珪素を含有する中間層を介し
て硬質炭素膜を被覆するとともに、硬質炭素膜の表面粗
さ(Rmax)を2μm以下、ラマン分光スペクトル分
析において1160±40cm-1にピークが存在する膜
を形成することにより耐摩耗性部材として、優れた密着
性と耐摩耗性が達成されることを見いだしたものであ
る。As a result of repeated studies on the above object, the present inventor has found that titanium or a titanium alloy mainly containing titanium is used as a substrate, and that the surface of the substrate contains at least diamond and silicon carbide. The hard carbon film is coated with an intermediate layer having a surface roughness (Rmax) of 2 μm or less, and a film having a peak at 1160 ± 40 cm −1 in Raman spectroscopic analysis is formed. It has been found that as a wearable member, excellent adhesion and wear resistance are achieved.
【0012】[0012]
【発明の実施の形態】本発明の耐摩耗性部材は、図1に
示すように、基体1と、中間層2と硬質炭素膜3により
構成される。基体1は、前記したように、その使用環境
から高強度、高靭性とともに、硬質炭素膜との密着性が
求められる。高強度、高靭性材料としては超硬合金が適
しているものの、前述したように硬質炭素膜との密着性
を向上させるにはかなり困難である。そこで、本発明に
よれば、高強度でかつ高靭性である材料として、チタン
あるいはチタン合金を用いることが重要である。チタン
は航空機用構造材や医療材料などに利用され、金属材料
の中では最高の比強度を有するものとして知られてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS A wear-resistant member according to the present invention comprises a substrate 1, an intermediate layer 2, and a hard carbon film 3, as shown in FIG. As described above, the base 1 is required to have high strength and high toughness and adhesion to the hard carbon film from the usage environment. Although a cemented carbide is suitable as a high-strength, high-toughness material, it is quite difficult to improve the adhesion to a hard carbon film as described above. Therefore, according to the present invention, it is important to use titanium or a titanium alloy as a material having high strength and high toughness. Titanium is used in aircraft structural materials and medical materials, and is known to have the highest specific strength among metallic materials.
【0013】本発明において用いられるチタンあるいは
チタン合金としては、チタン金属、あるいはチタンとA
l、V、Mo、Zr、Sn、Cr、Mn、Feとの合金
であり、チタンを70重量%以上含有することが望まし
い。より望ましくは、チタンを主成分として、少なくと
もAlを2〜8重量%含有する合金が望ましい。The titanium or titanium alloy used in the present invention includes titanium metal or titanium and A
It is an alloy with 1, V, Mo, Zr, Sn, Cr, Mn, and Fe, and desirably contains 70% by weight or more of titanium. More desirably, an alloy containing titanium as a main component and containing at least 2 to 8% by weight of Al is desirable.
【0014】さらに、本発明によれば、耐摩耗性部材と
して充分利用できるだけの密着強度を得るために、図1
に示すように、硬質炭素膜3と基体1との間に少なくと
もダイヤモンド4と炭化珪素5を含有する中間層2を設
けることが重要である。Further, according to the present invention, in order to obtain an adhesion strength enough to be used as a wear-resistant member, FIG.
It is important to provide an intermediate layer 2 containing at least diamond 4 and silicon carbide 5 between the hard carbon film 3 and the base 1 as shown in FIG.
【0015】このような中間層の形成により、硬質炭素
膜と基体との密着強度が向上する理由は次のように考え
られる。原子同士は電子を介在することにより結合され
ているが、一般に、原子間の電子が一方に存在して電気
的な結び付きにより結合しているイオン結合よりも、電
子を双方の原子で共有している共有結合の方が強い結合
力を持つ。ダイヤモンドは炭素の共有結合により構成さ
れているので強い結合力を有している。The reason why the formation of such an intermediate layer improves the adhesion strength between the hard carbon film and the substrate is considered as follows. Atoms are bonded by intervening electrons, but in general, electrons are shared by both atoms rather than ionic bonds, in which electrons between atoms are present on one side and bonded by electrical connection. An existing covalent bond has a stronger binding force. Diamond has a strong bonding force because it is constituted by a covalent bond of carbon.
【0016】したがって、ダイヤモンドと異種化合物と
の密着強度を向上させるためには類似の結合様式である
共有結合性の化合物であることが望ましいと考えられ
る。また、ダイヤモンドの成分である炭素を含む化合物
の方がより整合性がよいと思われる。炭素化合物は数多
く存在するがその多くはイオン性結合を主体としたもの
である。本発明によれば、共有結合性化合物である炭化
珪素とダイヤモンドが混在する層を硬質炭素膜と基体と
の間に形成することにより、硬質炭素膜と基体との密着
強度が向上する。Therefore, in order to improve the adhesion strength between diamond and a different compound, it is considered that a compound having a covalent bond having a similar bonding mode is desirable. Also, it seems that a compound containing carbon which is a component of diamond has better consistency. There are many carbon compounds, most of which are mainly ionic bonds. ADVANTAGE OF THE INVENTION According to this invention, the adhesion strength of a hard carbon film and a base | substrate improves by forming the layer in which silicon carbide and a diamond which are covalent bond compounds are mixed between a hard carbon film and a base | substrate.
【0017】また、この中間層におけるダイヤモンド4
と金属炭化物5は層状に分離して存在しているのではな
く、図1に示されるように、ダイヤモンド4の周りを金
属炭化物5が取り囲むような構造、すなわち、ダイヤモ
ンドが島状に分布することにより、いわゆるアンカー効
果が期待でき、硬質炭素膜3と基体1との密着強度が向
上すると考えられる。なお、中間層2は、0.1〜10
μm、特に0.5〜5μmの厚みで形成されることが望
ましい。また、硬質炭素膜3と中間層2との全体厚み
は、1〜100μm、特に2〜20μmが望ましい。Further, in the intermediate layer, the diamond 4
The metal carbide 5 and the metal carbide 5 do not exist separately in layers, but as shown in FIG. 1, a structure in which the metal carbide 5 surrounds the diamond 4, that is, the diamond is distributed in an island shape. Thus, a so-called anchor effect can be expected, and it is considered that the adhesion strength between the hard carbon film 3 and the base 1 is improved. The intermediate layer 2 has a thickness of 0.1 to 10
It is desirable that the film be formed with a thickness of μm, particularly 0.5 to 5 μm. The total thickness of the hard carbon film 3 and the intermediate layer 2 is preferably 1 to 100 μm, particularly preferably 2 to 20 μm.
【0018】本発明の耐摩耗性部材は、チタンあるいは
チタン合金からなる基体の表面に硬質炭素膜を被覆して
なるものであるが、特にその硬質炭素膜の表面粗さを2
μm以下に制御することが重要である。これは摩擦相手
材との接触面における硬質炭素膜の表面粗さが、耐摩耗
性、摺動性に大きく影響を与えるためである。よって、
硬質炭素膜の表面粗さが2μmを越えると、相手材が硬
質炭素膜により削られたり、傷つけられたりする。膜の
表面粗さは特に1μm以下であることが望ましい。The wear-resistant member of the present invention is obtained by coating a surface of a substrate made of titanium or a titanium alloy with a hard carbon film.
It is important to control the thickness to less than μm. This is because the surface roughness of the hard carbon film on the contact surface with the friction partner greatly affects the wear resistance and slidability. Therefore,
If the surface roughness of the hard carbon film exceeds 2 μm, the mating material is scraped or damaged by the hard carbon film. It is particularly desirable that the surface roughness of the film is 1 μm or less.
【0019】硬質炭素膜の表面粗さは、膜の結晶性に大
きく影響を受ける。硬質炭素膜の結晶性が高く、ダイヤ
モンドを主体として構成される場合には、膜を構成する
結晶粒径が大きくなる傾向にあるために膜の表面粗さも
大きくなる。これに対して、硬質炭素膜の結晶性を低く
し、微結晶ダイヤモンドを存在せしめることにより膜の
表面粗さを小さく制御することできる。しかも、耐摩耗
性の点からも微結晶ダイヤモンドを含む方が耐摩耗性に
優れる。The surface roughness of a hard carbon film is greatly affected by the crystallinity of the film. When the hard carbon film has high crystallinity and is composed mainly of diamond, the surface roughness of the film also increases because the crystal grain size of the film tends to increase. On the other hand, the surface roughness of the hard carbon film can be controlled to be small by lowering the crystallinity of the hard carbon film and allowing microcrystalline diamond to be present. In addition, from the viewpoint of wear resistance, the inclusion of microcrystalline diamond is more excellent in wear resistance.
【0020】このような微結晶ダイヤモンドは、ラマン
分光スペクトル分析において、1160±40cm-1の
ピークとしてその存在を確認できる。従って、このピー
ク強度が大きいほど微結晶ダイヤモンドが多数存在し、
膜の表面粗さも小さくなる傾向にある。このような膜構
成にすることにより、硬質炭素膜の研磨工程の短縮する
ことができ、さらに生産性が向上する。この微結晶ダイ
ヤモンドのピーク強度I2 は、ラマン分光スペクトル分
析におけるダイヤモンドの主結晶のピークである133
3±10cm-1のピーク強度I1 に対する強度比(I2
/I1 )が0.02以上、特に0.15以上であること
が望ましい。The presence of such microcrystalline diamond can be confirmed as a peak at 1160 ± 40 cm −1 in Raman spectroscopy. Therefore, the greater the peak intensity, the more microcrystalline diamonds are present,
The surface roughness of the film also tends to be small. With such a film configuration, the polishing step of the hard carbon film can be shortened, and the productivity is further improved. The peak intensity I 2 of this microcrystalline diamond is 133 which is the peak of the main crystal of the diamond in Raman spectroscopy.
The intensity ratio (I 2) to the peak intensity I 1 of 3 ± 10 cm −1
/ I 1 ) is desirably 0.02 or more, especially 0.15 or more.
【0021】本発明の耐摩耗性部材を作製する方法とし
ては、気相成長法において、基体の設置した反応室内に
原料ガスとして水素と炭素含有ガス、および珪素含有ガ
スを導入し、励起することによりダイヤモンドと炭化珪
素が混在する中間層を形成することができ、さらに珪素
含有ガスの供給を停止すれば、硬質炭素膜を形成するこ
とができる。このように各ガス種の供給量をコントロー
ルするだけで本発明の硬質炭素膜被覆耐摩耗性部材を合
成することができるので生産性も従来と変わらず優れた
部材を提供することができる。As a method for producing the wear-resistant member of the present invention, in a vapor phase growth method, hydrogen, a carbon-containing gas, and a silicon-containing gas are introduced as raw material gases into a reaction chamber in which a substrate is provided, and are excited. Thus, an intermediate layer in which diamond and silicon carbide are mixed can be formed, and if the supply of the silicon-containing gas is stopped, a hard carbon film can be formed. As described above, the hard carbon film-coated abrasion-resistant member of the present invention can be synthesized only by controlling the supply amount of each gas type, so that a member excellent in productivity as before can be provided.
【0022】膜形成において用いる炭素含有ガスとして
は、例えば、メタン、エタン、プロパンなどのアルカン
類、エチレン、プロピレンなどのアルケン類、アセチレ
ンなどのアルキン類、ベンゼンなどの芳香族炭化水素
類、シクロプロパンなどのシクロパラフィン類、シクロ
ペンテンなどのシクロオレフィン類などが挙げられる。Examples of the carbon-containing gas used in forming the film include alkanes such as methane, ethane and propane, alkenes such as ethylene and propylene, alkynes such as acetylene, aromatic hydrocarbons such as benzene, and cyclopropane. And cycloolefins such as cyclopentene.
【0023】また一酸化炭素、二酸化炭素、メチルアル
コール、エチルアルコール、アセトンなどの含酸素炭素
化合物、モノ(ジ、トリ)メチルアミン、モノ(ジ、ト
リ)エチルアミンなどの含窒素炭素化合物なども炭素源
ガスとして使用することができる。これらは一種単独で
用いることもできるし、二種以上で併用することもでき
る。Oxygen-containing carbon compounds such as carbon monoxide, carbon dioxide, methyl alcohol, ethyl alcohol and acetone, and nitrogen-containing carbon compounds such as mono (di, tri) methylamine and mono (di, tri) ethylamine are also carbon. Can be used as source gas. These can be used alone or in combination of two or more.
【0024】前記珪素含有ガスとしては、四フッ化ケイ
素、四塩化ケイ素、四臭化ケイ素などのハロゲン化物、
二酸化ケイ素などの酸化物の他に、モノ(ジ、トリ、テ
トラ、ペンタ)シラン、モノ(ジ、トリ、テトラ)メチ
ルシランなどのシラン化合物、トリメチルシラノールな
どのシラノール化合物などが挙げられる。これらは一種
単独で用いることもできるし、二種以上で併用すること
もできる。Examples of the silicon-containing gas include halides such as silicon tetrafluoride, silicon tetrachloride, and silicon tetrabromide;
In addition to oxides such as silicon dioxide, silane compounds such as mono (di, tri, tetra, penta) silane and mono (di, tri, tetra) methylsilane, and silanol compounds such as trimethylsilanol can be given. These can be used alone or in combination of two or more.
【0025】また、硬質炭素膜を形成する上記の原料ガ
ス中には、キャリアガスとして水素、アルゴン、ヘリウ
ムガスの他に、酸素含有ガスを導入することにより膜質
を向上し成膜速度を高めることができる。用いる酸素含
有ガスとしては、O2 、CO、CO2 、NO、NO2 、
H2 O,H2 O2 などの2〜4つの原子からなる構成さ
れる化合物、メチルアルコール、エチルアルコールなど
のアルコール類、エチルエーテルなどのエーテル類、ア
セトンなどのケトン類、アセトアルデヒドなどのアルデ
ヒド類、酢酸などの酸、または酸エステル類、エチレン
グリコールなどのグリコール類などの有機酸素含有化合
物も用いることができる。Further, by introducing an oxygen-containing gas in addition to hydrogen, argon and helium gas as a carrier gas into the above-mentioned raw material gas for forming the hard carbon film, the film quality is improved and the film forming rate is increased. Can be. As the oxygen-containing gas used, O 2 , CO, CO 2 , NO, NO 2 ,
Compounds composed of 2 to 4 atoms such as H 2 O and H 2 O 2 , alcohols such as methyl alcohol and ethyl alcohol, ethers such as ethyl ether, ketones such as acetone, and aldehydes such as acetaldehyde And organic oxygen-containing compounds such as acids such as acetic acid, or acid esters, and glycols such as ethylene glycol.
【0026】これらの原料ガスを反応室に1×10-3〜
100torrの圧力で導入し、そこにマイクロ波また
は高周波を印加してプラズマを発生させ、200〜10
00℃に加熱された基体を晒すことにより、基体表面に
炭化珪素とダイヤモンドとが混在した中間層あるいは硬
質炭素膜を形成することができる。さらには、磁場を印
加することにより磁気共鳴(ECR)プラズマを発生さ
せることもできる。These raw material gases are introduced into the reaction chamber at 1 × 10 -3 to
Introduced at a pressure of 100 torr, a microwave or high frequency was applied to generate plasma, and 200 to 10
By exposing the substrate heated to 00 ° C., an intermediate layer in which silicon carbide and diamond are mixed or a hard carbon film can be formed on the substrate surface. Furthermore, magnetic resonance (ECR) plasma can be generated by applying a magnetic field.
【0027】また、前述したように、硬質炭素膜の表面
粗さ(Rmax)が2μm以下となるように調製するこ
とが必要であるが、表面粗さは、生成された硬質炭素膜
を研磨すればよいが、後述する実施例から明らかなよう
に、成膜過程で炭素含有ガス濃度を比較的高くするとと
もに、原料ガス中の酸素の割合を少なくすることにより
微結晶のダイヤモンドを含む硬質炭素膜を形成すること
ができる。その場合には成膜後の表面粗さが小さいため
に、硬質炭素膜を研磨する必要がないか、必要であって
も短時間で調整できる。Further, as described above, it is necessary to adjust the surface roughness (Rmax) of the hard carbon film to 2 μm or less, but the surface roughness is determined by polishing the generated hard carbon film. As is clear from the examples described later, the hard carbon film containing microcrystalline diamond is obtained by increasing the concentration of the carbon-containing gas in the film forming process and reducing the proportion of oxygen in the source gas, as is clear from the examples described later. Can be formed. In this case, since the surface roughness after film formation is small, it is not necessary to polish the hard carbon film, or even if necessary, it can be adjusted in a short time.
【0028】なお、本発明の耐摩耗性部材は、切削工具
をはじめ、金属加工用の治具、線引きダイス、スライダ
ー部材など種々の摺動部材、切削工具類、研磨材、耐摩
耗性機械部品として使用できる。The wear-resistant member of the present invention includes various types of sliding members such as cutting tools, jigs for metal working, drawing dies, slider members, cutting tools, abrasives, and wear-resistant mechanical parts. Can be used as
【0029】[0029]
【作用】本発明によれば、基体にチタン合金を採用する
ことにより、基体の靱性を高めることができるために過
酷な使用条件下での基体の欠けを防ぐとともに、基体に
対する密着性を高めることができる。特に、硬質炭素膜
とチタン合金基体との間に少なくともダイヤモンドと炭
化珪素を含有する層を配することでさらに硬質炭素膜の
剥離を抑えることができる。According to the present invention, by adopting a titanium alloy for the substrate, it is possible to increase the toughness of the substrate, thereby preventing chipping of the substrate under severe use conditions and improving the adhesion to the substrate. Can be. In particular, by disposing a layer containing at least diamond and silicon carbide between the hard carbon film and the titanium alloy substrate, the peeling of the hard carbon film can be further suppressed.
【0030】さらに、チタン合金基体の表面に形成され
る硬質炭素膜の表面粗さを小さくすることにより耐摩耗
性部材としての耐摩耗性を向上させるとともに被摩耗部
材への損傷を防止することができる。特に、硬質炭素膜
中に、微結晶のダイヤモンドを含ませて結晶性が低下せ
しめることにより、硬質炭素膜の表面粗さを小さくする
ことができる。これにより膜の研磨工程を短縮すること
ができ、また相手材との接触において優れた耐摩耗性、
摺動特性を示すことができる。Further, by reducing the surface roughness of the hard carbon film formed on the surface of the titanium alloy substrate, it is possible to improve the wear resistance of the wear-resistant member and to prevent damage to the wear-receiving member. it can. In particular, by including microcrystalline diamond in the hard carbon film to lower crystallinity, the surface roughness of the hard carbon film can be reduced. As a result, the film polishing process can be shortened, and excellent abrasion resistance in contact with a counterpart material,
It can show sliding characteristics.
【0031】[0031]
実施例1 反応炉内に原料ガスを導入して、反応室内圧力を0.1
torr、基体温度800℃に設定した。原料ガスの種
類、流量は表1に示す。ECRプラズマCVD法により
最大2kガウスの強度の磁場を印加させ、マイクロ波出
力3.0KWの条件で、Ti−6%Al−4%V合金
(合金の比率は、以下いずれも重量%)基体に成膜を行
った(試料No.1)。成膜時の原料ガス流量及び圧力の
変化を成膜時間の経過と共に表1に示す。なお、試料N
o.1についてラマン分光分析結果を図2に示した。Example 1 A raw material gas was introduced into a reaction furnace, and the pressure in the reaction chamber was set to 0.1.
The torr and the substrate temperature were set to 800 ° C. Table 1 shows the types and flow rates of the source gases. A magnetic field having a maximum intensity of 2 kGauss is applied by an ECR plasma CVD method, and under a condition of a microwave output of 3.0 KW, a Ti-6% Al-4% V alloy (alloy ratio is hereinafter referred to as "weight%") is applied to a substrate. A film was formed (Sample No. 1). Table 1 shows changes in the flow rate and pressure of the source gas during the film formation with the elapse of the film formation time. The sample N
FIG. 2 shows the results of Raman spectroscopic analysis for o.1.
【0032】[0032]
【表1】 [Table 1]
【0033】また、基体をTi−8%Al−1%V−1
%Mo合金、Ti−10%V−2%Fe−3%Al合
金、Ti100%、Ti−15%Mo−5%Zr−3%
Alに代えて、同様の手法でコーテイングを行った(試
料No.2,3,4,5)。作製した試料に対していずれ
も20分の研磨工程を行った。The substrate was made of Ti-8% Al-1% V-1
% Mo alloy, Ti-10% V-2% Fe-3% Al alloy, Ti100%, Ti-15% Mo-5% Zr-3%
Coating was performed in the same manner in place of Al (Sample Nos. 2, 3, 4, and 5). Each of the prepared samples was subjected to a polishing step for 20 minutes.
【0034】さらに、比較例として、前記表1に示す原
料ガス組成のうち、Si(CH3 )4 を供給しない他は
前述と同様の手法で比較試料(試料No.6、7、8)を
作製した。Further, as a comparative example, a comparative sample (sample Nos. 6, 7, and 8) was prepared in the same manner as described above except that Si (CH 3 ) 4 was not supplied from the source gas compositions shown in Table 1 above. Produced.
【0035】得られた膜に対して、X線回折測定により
検出相を同定し結果を表3に示した。また、顕微ラマン
分光法によりスペクトル測定を行い、1333±10c
m-1のピーク強度I1 、1160±40cm-1のピーク
強度I2 との強度比(I1 /I2 )を表3に示した。さ
らに、表面粗さ(Rmax)を触針式表面粗さ計により
測定した。With respect to the obtained film, a detection phase was identified by X-ray diffraction measurement, and the results are shown in Table 3. Further, the spectrum was measured by Raman microspectroscopy, and 1333 ± 10c
peak intensity I 1 of the m -1, 1160 intensity ratio of the peak intensity I 2 of ± 40 cm -1 to (I 1 / I 2) are shown in Table 3. Further, the surface roughness (Rmax) was measured by a stylus type surface roughness meter.
【0036】また、これらの部材に対して、耐摩耗摺動
特性(ピンの摩耗量及び摩擦係数)をピンオンディスク
法により評価した。摺動試験の条件は、室温、大気中、
無潤滑において、荷重39.2N、摺動速度2m/se
c、24時間で行った。ピンはアルミニウム製のものを
用いた。試験前後のアルミニウムピンの重量変化でピン
の摩耗量を評価した。ピンの摩耗量と摩擦係数を表3に
示す。The sliding resistance (wear amount and friction coefficient of pins) of these members was evaluated by a pin-on-disk method. The conditions of the sliding test were room temperature, air,
Without lubrication, load 39.2N, sliding speed 2m / sec
c, 24 hours. The pins used were made of aluminum. The wear amount of the aluminum pin was evaluated based on the weight change of the aluminum pin before and after the test. Table 3 shows the pin wear and the coefficient of friction.
【0037】さらに、ビッカース硬度計を用いて、膜に
荷重をかけて基体表面から膜を浮かせ、膜と基体との付
着力を評価した。膜に剥離が生じはじめた荷重(臨界荷
重)を測定した結果を表3に示す。Further, using a Vickers hardness tester, a load was applied to the film to lift the film from the surface of the substrate, and the adhesion between the film and the substrate was evaluated. Table 3 shows the results of measuring the load (critical load) at which peeling of the film began to occur.
【0038】実施例2 次に、基体としてTi−6%Al−4%V、Ti−8%
Al−1%V−1%Mo合金を用いて、原料ガスを表2
に示すように調整する以外は実施例1と全く同様にし
て、結晶性の良い硬質炭素膜を形成し、試料No.9につ
いては、研磨工程を20分間行い、試料No.10、11
についてはいずれも40時間行った。Example 2 Next, Ti-6% Al-4% V, Ti-8%
Table 2 shows the raw material gas using an Al-1% V-1% Mo alloy.
A hard carbon film having good crystallinity was formed in exactly the same manner as in Example 1 except that the adjustment was performed as shown in Fig. 9. For Sample No. 9, a polishing process was performed for 20 minutes.
Was carried out for 40 hours.
【0039】なお、参考のために、基体として超硬合金
を用いて、表1の条件で硬質炭素膜を形成し、上記と同
様の評価を行った(試料No.12)。For reference, a hard carbon film was formed under the conditions shown in Table 1 using a cemented carbide as a substrate, and the same evaluation as described above was performed (Sample No. 12).
【0040】[0040]
【表2】 [Table 2]
【0041】得られた硬質炭素膜被覆部材に対して、実
施例1と同様にして、ラマン分光スペクトルによる結晶
相の同定、ピーク強度比、表面粗さ、摺動特性、臨界荷
重を測定し表3に示した。With respect to the obtained hard carbon film-coated member, the identification of the crystal phase by Raman spectroscopy, the peak intensity ratio, the surface roughness, the sliding characteristics, and the critical load were measured in the same manner as in Example 1. 3 is shown.
【0042】[0042]
【表3】 [Table 3]
【0043】表3の結果において、試料No.6,7,8
は、ダイヤモンドと炭化物との間に中間層を形成しなか
ったものであり、摩耗試験においてはいずれも試験開始
後5分以内で膜の剥離が生じたので、途中で試験を中止
した。膜の剥離が容易に生じたことから耐摩耗性部材と
して膜と基板との密着強度が充分でないことがわかる。
また、臨界荷重も本発明試料に比べてきわめて低い値で
ある。In the results of Table 3, the samples No. 6, 7, 8
Shows that no intermediate layer was formed between the diamond and the carbide. In the abrasion test, the film was peeled off within 5 minutes after the start of the test, so the test was stopped halfway. Since the peeling of the film easily occurred, it can be seen that the adhesion strength between the film and the substrate was not sufficient as a wear-resistant member.
Also, the critical load is an extremely low value as compared with the sample of the present invention.
【0044】試料No.9は、結晶性のよいダイヤモンド
膜を中間層を介して形成したものであるが、表面粗さが
2μmを越えるために、耐摩耗性が不十分であり、ピン
の摩耗が極めて早く、試験開始後30分で試験を中止し
た。In sample No. 9, a diamond film having good crystallinity was formed via an intermediate layer. However, since the surface roughness exceeded 2 μm, the wear resistance was insufficient, and Was very early and the test was stopped 30 minutes after the start of the test.
【0045】上記以外の試料は、いずれも摺動試験にお
いて剥離は起こらず、ピンの摩耗量は0.03g以下の
優れた摺動性を示した。ただし、試料No.1と試料No.
10、試料No.2と試料No.11との対比から明らかな
ように、1160±40cm-1のピークが存在しない試
料No.10、No.11では、研磨工程に100倍以上の
時間を要した上に、他に比べてやや大きい摩耗量を示
し、試料No.1、試料No.2に比べて特性、生産性がや
や劣ることがわかる。All of the samples other than those described above did not peel off in the sliding test, and exhibited excellent sliding properties with a pin abrasion of 0.03 g or less. However, Sample No. 1 and Sample No.
10. As is clear from the comparison between Sample No. 2 and Sample No. 11, in Samples No. 10 and No. 11 having no peak at 1160 ± 40 cm −1 , the polishing step required 100 times or more. In addition, the sample showed a slightly larger amount of wear than the others, indicating that the characteristics and productivity were slightly inferior to those of Sample No. 1 and Sample No. 2.
【0046】また、従来から基体として用いられている
超硬合金(試料No.12)では密着強度が劣っており、
本発明に基づき、耐摩耗性部材における基体としてチタ
ンあるいはチタン合金が優れていることが確認された。Further, the cemented carbide (sample No. 12) conventionally used as a substrate has poor adhesion strength,
Based on the present invention, it has been confirmed that titanium or a titanium alloy is excellent as a substrate in a wear-resistant member.
【0047】実施例3 SGN422の形状を有するTi−10%V−2%Fe
−3%Al合金製の切削チップを基体として、上記実施
例1の表1の条件に基づき、中間層厚み5μm、硬質炭
素膜50μmとなるように時間を調整して切削工具を作
製した。Example 3 Ti-10% V-2% Fe having the shape of SGN422
Using a cutting tip made of a -3% Al alloy as a substrate, a cutting tool was produced by adjusting the time so that the thickness of the intermediate layer was 5 μm and the hard carbon film was 50 μm based on the conditions shown in Table 1 of Example 1 above.
【0048】また、比較のために同一形状の窒化ケイ素
焼結体(5重量%Al2 O3 、3重量%Y2 O3 含有)
を基体として、上記と同様の条件で硬質炭素膜を形成
し、比較を行った。For comparison, a silicon nitride sintered body of the same shape (containing 5% by weight of Al 2 O 3 and 3% by weight of Y 2 O 3 )
Was used as a substrate to form a hard carbon film under the same conditions as above, and a comparison was made.
【0049】これらの切削工具を用いて、被削材として
アルミニウム−12%シリコン合金を用い、切削速度8
00m/分、送り0.1mm/rev、切り込み0.2
mmの条件により乾式で30分間の切削加工試験評価を
行い、試験後のフランク摩耗量を測定した。その結果、
チタン合金基体の本発明品ではフランク摩耗が0.03
mmで、被削材の加工面も光沢を帯びて美しく仕上がっ
ていた。また、窒化ケイ素焼結体基体品でも0.04m
mであり、で被削材の加工面もきれいに仕上がってい
た。Using these cutting tools, an aluminum-12% silicon alloy was used as a work material, and a cutting speed of 8% was used.
00m / min, feed 0.1mm / rev, cut 0.2
The cutting test was evaluated for 30 minutes in a dry system under the condition of mm, and the flank wear after the test was measured. as a result,
With the titanium alloy substrate of the present invention, the flank wear was 0.03.
mm, the work surface of the work material was glossy and beautifully finished. In addition, a silicon nitride sintered body base product of 0.04 m
m, and the machined surface of the work material was also beautifully finished.
【0050】次に、各工具10個に対して、被削材とし
て外周面に軸方向に伸びる4本の溝が形成されたアルミ
ニウム−12%シリコン合金を用い、切削速度800m
/分、送り0.1mm/rev、切り込み0.2mmの
条件により乾式で30分間切削後の耐欠損性を調べた結
果、本発明品では、欠損するものは一つもなかったが、
窒化ケイ素焼結体基体からなる工具では、10個中4個
の工具に欠損が生じており、チタン合金製の基体が優れ
ていることを確認した。Next, for each of the ten tools, an aluminum-12% silicon alloy having four grooves extending in the axial direction on the outer peripheral surface was used as a work material, and the cutting speed was 800 m.
/ Min, feed 0.1 mm / rev, cutting depth 0.2 mm, and as a result of examining the chipping resistance after cutting for 30 minutes in a dry system, there was no chipping in the product of the present invention.
In the tool comprising the silicon nitride sintered body substrate, four out of ten tools had defects, and it was confirmed that the titanium alloy substrate was excellent.
【0051】[0051]
【発明の効果】以上、詳述したように、本発明の耐摩耗
性部材は、硬質炭素膜と基体との密着強度に優れ、また
膜自体が耐摩耗性に優れていることから、耐摩耗性部材
や摺動部材に適していることがわかる。また、本発明は
チタンあるいはチタン合金を基体としていることから靭
性に優れ、基体の欠損を防ぐことができ、切削工具等に
用いた場合においてもチッピングが生じにくいものであ
った。さらに、硬質炭素膜中に微結晶ダイヤモンドを含
むことにより、成膜後の膜表面の平滑性に優れ、膜の表
面の研磨を容易に行うことができる。As described in detail above, the wear-resistant member of the present invention has excellent adhesion strength between the hard carbon film and the substrate, and the film itself has excellent wear resistance. It can be seen that it is suitable for a flexible member and a sliding member. Further, since the present invention uses titanium or a titanium alloy as a substrate, it has excellent toughness, can prevent the substrate from being broken, and hardly causes chipping even when used for a cutting tool or the like. Further, by including microcrystalline diamond in the hard carbon film, the film surface after film formation is excellent in smoothness, and the film surface can be easily polished.
【図1】本発明の耐摩耗性部材の構造を説明するための
模式図である。FIG. 1 is a schematic view for explaining the structure of a wear-resistant member of the present invention.
【図2】本発明における硬質炭素膜のラマン分光分析結
果を示す図である。FIG. 2 is a diagram showing the results of Raman spectroscopic analysis of a hard carbon film according to the present invention.
1 基体 2 中間層 3 硬質炭素膜 4 ダイヤモンド 5 金属炭化物 DESCRIPTION OF SYMBOLS 1 Substrate 2 Intermediate layer 3 Hard carbon film 4 Diamond 5 Metal carbide
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 16/56 C01B 31/00 - 31/36 C30B 29/04 F16C 33/00 - 33/28 B23B 27/14 B23P 15/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-16/56 C01B 31/00-31/36 C30B 29/04 F16C 33/00-33 / 28 B23B 27/14 B23P 15/28
Claims (1)
金からなる基体の表面に少なくともダイヤモンドと炭化
珪素を含有する中間層を介して硬質炭素膜を被覆してな
り、前記硬質炭素膜の表面粗さ(Rmax)が2μm以
下であり、且つラマン分光スペクトル分析において11
60±40cm -1 にピークが存在することを特徴とする
耐摩耗性部材。1. The method according to claim 1, wherein the surface of the substrate made of titanium or a titanium alloy mainly containing titanium is coated with at least diamond and carbon.
A hard carbon film is coated via an intermediate layer containing silicon, the hard carbon film has a surface roughness (Rmax) of 2 μm or less, and has a Raman spectrum of 11 μm or less.
A wear-resistant member having a peak at 60 ± 40 cm −1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19520995A JP3339994B2 (en) | 1995-07-31 | 1995-07-31 | Wear-resistant material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19520995A JP3339994B2 (en) | 1995-07-31 | 1995-07-31 | Wear-resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0941145A JPH0941145A (en) | 1997-02-10 |
JP3339994B2 true JP3339994B2 (en) | 2002-10-28 |
Family
ID=16337279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19520995A Expired - Fee Related JP3339994B2 (en) | 1995-07-31 | 1995-07-31 | Wear-resistant material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3339994B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1149506A (en) * | 1997-07-31 | 1999-02-23 | Kyocera Corp | Ornamental member |
JP5397689B2 (en) * | 2009-12-11 | 2014-01-22 | 三菱マテリアル株式会社 | Diamond coated cutting tool |
JP4750896B1 (en) * | 2010-06-16 | 2011-08-17 | 本田技研工業株式会社 | Diamond-like carbon film coated article |
CN109385600B (en) * | 2017-08-02 | 2023-11-03 | 深圳先进技术研究院 | Titanium-aluminum alloy piece with composite infiltration layer and preparation method thereof, and titanium-aluminum alloy piece with diamond coating and preparation method thereof |
-
1995
- 1995-07-31 JP JP19520995A patent/JP3339994B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0941145A (en) | 1997-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3675577B2 (en) | Method for producing diamond-coated article | |
JP4593852B2 (en) | Coated hard alloy | |
Jahanmir et al. | Tribological characteristics of synthesized diamond films on silicon carbide | |
CA2029873A1 (en) | Diamond-coated member and process for the preparation thereof | |
JPH1149506A (en) | Ornamental member | |
US6585565B2 (en) | Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby | |
JP3340001B2 (en) | Wear-resistant material | |
JP3339994B2 (en) | Wear-resistant material | |
WO1992005904A1 (en) | Hard material clad with diamond, throwaway chip, and method of making said material and chip | |
JPH0621360B2 (en) | Diamond-coated sintered bond excellent in peel resistance and method for producing the same | |
JP2002540970A (en) | Diamond coated tool and method of making same | |
JP3452615B2 (en) | Cemented carbide, hard carbon film coated cemented carbide, method for producing cemented carbide, and tool using these alloys | |
CN116162917B (en) | Multilayer coating cutter and preparation method thereof | |
GB2263709A (en) | Method for producing silicon nitride based members coated with synthetic diamond | |
JP3273106B2 (en) | Hard carbon film coated member and method of manufacturing the same | |
JP5488878B2 (en) | Hard carbon film coated cutting tool | |
Peng et al. | Characterization and adhesion strength of diamond films deposited on silicon nitride inserts by dc plasma jet chemical vapour deposition | |
JP2008100301A (en) | Diamond coated cutting insert and cutting tool | |
JP3512597B2 (en) | Decorative material | |
JP3212057B2 (en) | Diamond coated substrate and method for producing the same | |
JPH01259171A (en) | Cutting tool member coated with hard film | |
JP3548337B2 (en) | Metal plastic working parts | |
JPH1015952A (en) | Resin processing member | |
JPH09291352A (en) | Member for paper processing | |
JP3044944B2 (en) | Manufacturing method of substrate for vapor phase synthetic diamond film formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080816 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080816 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090816 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100816 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110816 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110816 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120816 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |