JPH09291352A - Member for paper processing - Google Patents

Member for paper processing

Info

Publication number
JPH09291352A
JPH09291352A JP10714396A JP10714396A JPH09291352A JP H09291352 A JPH09291352 A JP H09291352A JP 10714396 A JP10714396 A JP 10714396A JP 10714396 A JP10714396 A JP 10714396A JP H09291352 A JPH09291352 A JP H09291352A
Authority
JP
Japan
Prior art keywords
paper
film
hard carbon
carbon film
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10714396A
Other languages
Japanese (ja)
Inventor
Shigeo Atsunushi
成生 厚主
Fumio Fukumaru
文雄 福丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10714396A priority Critical patent/JPH09291352A/en
Publication of JPH09291352A publication Critical patent/JPH09291352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a member for processing paper or a paper, on the surface of which an organic film is formed, is conventionally vigorously worm out and the organic film is coagulated and stuck to the member for paper processing. SOLUTION: The surface of the member for processing paper or the paper, on the surface of which is covered with the organic film, is constituted of a hard carbonaceous film having the perks at 1,340±40cm<-1> and 1,160±40cm<-1> in Raman spectroscopic spectrum and particularly having the peak intensity ratio of 0.05-2 expressed by H1 /H2 when the highest peak intensity in the peaks existing in 1,160±40cm<-1> is expressed by H1 in the Raman spectroscopic chart and the highest peak intensity in the peaks in 1,340±40cm<-1> is expressed by H2 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、紙あるいは表面
に、例えば、ポリエチレンテレフタレート(PET)、
ポリエチレン、ポリプロピレン、ポリビニルアルコー
ル、ナイロンなどの有機質膜が形成された紙を裁断する
ための刃物や曲げ加工するための型材等に使用する紙加
工用部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paper or surface, for example, polyethylene terephthalate (PET),
The present invention relates to a paper processing member used as a cutting tool for cutting paper on which an organic film such as polyethylene, polypropylene, polyvinyl alcohol, or nylon is formed, a mold material for bending, and the like.

【0002】[0002]

【従来技術】従来より、紙または表面に有機質膜が形成
された紙に孔明け加工したり、曲げ加工するための部材
としては、これまで金属を主体にしたものが多用されて
いるが、紙との接触により部材が摩耗するとの問題があ
り、最近では、耐摩耗性に優れたアルミナなどのセラミ
ックスを用いることも提案されている。
2. Description of the Related Art Conventionally, as a member for punching or bending a paper or a paper having an organic film formed on the surface, a member mainly made of a metal has been widely used. There is a problem that the member wears due to contact with, and recently, it has been proposed to use ceramics such as alumina having excellent wear resistance.

【0003】また、耐摩耗性を向上させる1つの手段と
して、部材の表面に高硬度のダイヤモンド膜を形成する
ことも従来から行われている。
Further, as one means for improving wear resistance, forming a diamond film of high hardness on the surface of a member has been conventionally performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、紙加工
にあたって、その量産化に伴い加工速度が高速化した
り、加工条件が過酷になるにつれて、加工用部材の摩耗
が激しくなり、従来のセラミックス部材においてもその
摩耗が極度に進行する傾向にある。また、表面に有機質
膜が形成された紙を加工する場合には、紙または有機質
膜が加工用部材に凝着するという問題があった。
However, in the processing of paper, as the processing speed increases with the mass production thereof and the processing conditions become severe, the wear of the processing member becomes severe, and even in the conventional ceramic member. The wear tends to be extremely advanced. Further, when processing paper having an organic film formed on its surface, there is a problem that the paper or the organic film adheres to the processing member.

【0005】また、部材表面に従来から知られるダイヤ
モンド膜を形成した場合、ある程度の耐摩耗性の向上が
見られるものの、ダイヤモンド膜が大きなダイヤモンド
結晶粒により形成され、また膜中に微小なボイドが存在
するために膜に急激にクラックが発生したり、紙の切断
に用いる刃先において、所望の先端R形状が得られず、
切れ味が悪くなり、さらには有機質膜を有する紙加工に
おいては有機質膜が凝着するなどの問題があった。
Further, when a conventionally known diamond film is formed on the surface of a member, although the wear resistance is improved to some extent, the diamond film is formed by large diamond crystal grains and minute voids are formed in the film. Due to the existence of the film, a crack is suddenly generated in the film, or a desired tip R shape cannot be obtained at the cutting edge used for cutting the paper.
There are problems that the sharpness becomes poor and that the organic film is adhered in the paper processing having the organic film.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに、紙あるいは表面に有機質膜が被覆された紙を加工
するのに適した加工用部材について検討を重ねた結果、
部材の紙または紙表面に形成された有機質膜と接する部
材表面に、ラマン分光スペクトルにおいて1340±4
0cm-1と1160±40cm-1にピークが存在する特
殊な硬質炭素膜を被覆すると、加工時の摩耗を顕著に低
減できるとともに、有機質膜の凝着を低減することもで
き、加工用部材の寿命を大幅に向上できることを見いだ
し本発明に至った。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of repeated studies on a processing member suitable for processing paper or paper whose surface is coated with an organic film,
On the surface of the member in contact with the paper of the member or the organic film formed on the surface of the member, 1340 ± 4 in Raman spectrum
By coating a special hard carbon film having peaks at 0 cm -1 and 1160 ± 40 cm -1 , it is possible to significantly reduce wear during processing and also to reduce adhesion of the organic film. The present invention has been completed by finding that the life can be greatly improved.

【0007】さらに、本発明によれば、部材と硬質炭素
膜との間にダイヤモンドと金属炭化物を含有する中間層
を介在させることにより膜剥離のない極めて長寿命の加
工用部材を提供するに至った。
Further, according to the present invention, an intermediate layer containing diamond and metal carbide is interposed between the member and the hard carbon film to provide a member for working having an extremely long life without film peeling. It was

【0008】[0008]

【発明の実施の形態】本発明における紙加工用部材は、
その部材表面にラマン分光スペクトルにおいて1160
±40cm-1と1340±40cm-1にピークが存在す
る硬質炭素膜を被覆することが大きな特徴である。この
硬質炭素膜は、ダイヤモンドを主とするものであるが、
一般に知られるダイヤモンド膜は、高純度ダイヤモンド
からなり、炭素原子間がSP3 混成で結合された構造か
らなり、ラマン分光スペクトルにおいて1340±40
cm-1にピークを有するもので、場合によってSP2
成で結合されたグラファイト構造の黒鉛等を含む時は1
500〜1600cm-1付近にブロードなピークを有す
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The paper processing member according to the present invention is
The surface of the member has a Raman spectrum of 1160.
A major feature is that the hard carbon film having peaks at ± 40 cm −1 and 1340 ± 40 cm −1 is coated. This hard carbon film is mainly composed of diamond,
A generally known diamond film is made of high-purity diamond, has a structure in which carbon atoms are bonded by SP 3 hybrid, and has a Raman spectrum of 1340 ± 40.
It has a peak at cm -1 , and is 1 when it contains graphite with a graphite structure bonded by SP 2 hybridization in some cases.
It has a broad peak around 500 to 1600 cm -1 .

【0009】これに対して、本発明における硬質炭素膜
は、1340±40cm-1に加え、1160±40cm
-1にピークを有するものである。この1160±40c
-1のピークは、ダイヤモンド構造を有するものの、微
細な結晶のダイヤモンド粒子からなるためにその結晶の
周期が短いことを意味するものと考えられる。従って、
本発明における硬質炭素膜は、ダイヤモンド結晶が極め
て微細な粒子により構成されるもので、従来のようなダ
イヤモンド結晶による凹凸がなく平坦性に優れたもので
ある。また、グラファイト構造の物質を微量含んでいて
も高硬度と耐摩耗性を有するものである。
On the other hand, in the hard carbon film of the present invention, in addition to 1340 ± 40 cm −1 , 1160 ± 40 cm
It has a peak at -1 . This 1160 ± 40c
The m -1 peak is considered to mean that the crystal period is short because it has a diamond structure but is composed of fine crystal diamond particles. Therefore,
In the hard carbon film of the present invention, the diamond crystal is composed of extremely fine particles, and is excellent in flatness without the unevenness caused by the conventional diamond crystal. Also, it has high hardness and abrasion resistance even if it contains a trace amount of a substance having a graphite structure.

【0010】従って、あらゆる形状の部材の表面に被覆
しても部材表面形状に整合した平滑で緻密な被覆面を形
成でき、例えば紙の裁断加工に使用する刃先などにおい
て、鋭い刃先からなる部材であっても、上記の硬質炭素
膜では、被覆後の表面も刃先部材形状に整合した鋭い被
覆面を形成することができる。
Therefore, even if the surface of a member of any shape is coated, a smooth and dense covering surface can be formed that matches the surface shape of the member. For example, in a cutting edge used for cutting paper, a member having a sharp cutting edge can be used. Even with the hard carbon film described above, the surface after coating can also form a sharp coated surface that matches the shape of the cutting edge member.

【0011】一方、紙を曲げ加工する際の摺動面など硬
質炭素膜被覆表面に高い平滑性が要求されるときは、部
材表面を所望の表面粗さに仕上げると、容易に所望の表
面を得ることができる。しかも従来のダイヤモンド膜に
比較して成膜直後の膜表面が平滑性に優れるため研磨加
工も容易に行うことができる。
On the other hand, when high smoothness is required for the surface coated with a hard carbon film such as a sliding surface when bending paper, the desired surface can be easily obtained by finishing the member surface to a desired surface roughness. Obtainable. Moreover, since the film surface immediately after the film formation is excellent in smoothness as compared with the conventional diamond film, the polishing process can be easily performed.

【0012】また、本発明における硬質炭素膜は、緻密
な膜で従来のダイヤモンド膜のようなボイドなどの欠陥
がなく、有機質膜が形成された紙などとの摺動において
も有機質膜の部材表面への凝着を防ぐことができる。
Further, the hard carbon film of the present invention is a dense film and has no defects such as voids as in the conventional diamond film, and the surface of the member of the organic film even when sliding with paper or the like on which the organic film is formed. Can be prevented from sticking to.

【0013】本発明における硬質炭素膜のラマン分光ス
ペクトルにおける1160±40cm-1のピーク強度に
ついて具体的に説明する。図1に示すように得られたラ
マンスペクトルの曲線において、1100cm-1と17
00cm-1の位置間で斜線を引き、これをベースライン
として、1160±40cm-1に存在するピークのうち
最も強度の高いピーク強度をH1 、1340±40cm
-1に存在するピークのうち最も強度の高いピーク強度を
2 とする。このときH1 /H2 で表されるピーク強度
比が0.05乃至2となる組成であることが望ましい。
このピーク強度比が小さすぎると、ダイヤモンド結晶粒
子が大きく成長し過ぎ、膜中にボイドが発生したり膜の
表面粗さが大きくなり耐摩耗性が低下したり有機質膜の
凝着が発生しやすくなる。また前記ピーク強度比が大き
すぎると非晶質ダイヤモンドの存在が増加し、硬質炭素
膜自体の硬度が低下し耐摩耗性が低下する場合がある。
このピーク強度比は0.1乃至1.0であることがさら
に望ましい。
The peak intensity at 1160 ± 40 cm −1 in the Raman spectrum of the hard carbon film of the present invention will be specifically described. In the Raman spectrum curve obtained as shown in FIG. 1, 1100 cm −1 and 17
Pull the hatched between positions 00cm -1, this as a baseline, H 1 the highest intensity peak intensities of the peaks present in 1160 ± 40cm -1, 1340 ± 40cm
High peak intensity of most intense among the peaks present to -1 and H 2. At this time, it is desirable that the composition has a peak intensity ratio represented by H 1 / H 2 of 0.05 to 2.
If this peak intensity ratio is too small, the diamond crystal particles will grow too large and voids will be generated in the film, the surface roughness of the film will be large, and the abrasion resistance will be reduced and the adhesion of the organic film will easily occur. Become. On the other hand, if the peak intensity ratio is too large, the presence of amorphous diamond may increase, and the hardness of the hard carbon film itself may decrease, resulting in a decrease in wear resistance.
More preferably, the peak intensity ratio is 0.1 to 1.0.

【0014】本発明における加工用部材は上記の硬質炭
素膜を被覆してなるものであるが、部材表面への膜の被
覆は、膜の剥離という新たな問題が懸念される。しか
し、本発明における加工用部材によれば、部材と硬質炭
素膜との間に、少なくともダイヤモンドと炭化ケイ素を
含有する層を介在させることにより、極めて密着性の良
い硬質炭素膜を形成することができる。
The processing member in the present invention is formed by coating the above-mentioned hard carbon film, but the coating of the film on the surface of the member may cause a new problem of peeling of the film. However, according to the processing member of the present invention, by interposing a layer containing at least diamond and silicon carbide between the member and the hard carbon film, it is possible to form a hard carbon film having excellent adhesion. it can.

【0015】このような膜構成により硬質炭素膜と母材
との密着強度が向上する理由は次のように考えられる。
原子同士は電子を介在することにより結合されている
が、一般に、原子間の電子が一方に存在して電気的な結
び付きにより結合しているイオン結合よりも、電子を双
方の原子で共有している共有結合の方が強い結合力を持
つ。ダイヤモンドは炭素の共有結合により構成されてい
るので強い結合力を有している。したがって、ダイヤモ
ンドと異種化合物との密着強度を向上させるためには類
似の結合様式である共有結合性の化合物であることが望
ましいと考えられる。またダイヤモンドの成分である炭
素を含む化合物の方がより整合性がよいと思われる。炭
素含有化合物は数多く存在するがその多くはイオン性結
合を主体としたものであるが、共有結合性金属炭化物と
しては炭化ケイ素が挙げられる。
The reason why the adhesion strength between the hard carbon film and the base material is improved by such a film structure is considered as follows.
Atoms are bonded by intervening electrons, but in general, electrons are shared by both atoms rather than ionic bonds, in which electrons between atoms are present on one side and bonded by electrical connection. An existing covalent bond has a stronger binding force. Diamond has a strong bonding force because it is constituted by a covalent bond of carbon. Therefore, in order to improve the adhesion strength between diamond and a different compound, it is considered that a covalent compound having a similar bonding mode is desirable. Also, it seems that a compound containing carbon which is a component of diamond has better consistency. Although there are many carbon-containing compounds, most of them are mainly composed of ionic bonds, and examples of the covalent metal carbide include silicon carbide.

【0016】これらの金属炭化物とダイヤモンドが混在
する層を硬質炭素膜と母材との間に形成することによ
り、硬質炭素膜と母材との密着強度が向上する。またこ
のダイヤモンドと、金属炭化物はダイヤモンドの周りを
取り囲むような構造を呈し、ダイヤモンドが島状に分布
した構造となるために、いわゆるアンカー効果が期待で
き、硬質炭素膜と母材との密着強度が向上する。
By forming a layer in which these metal carbides and diamond are mixed between the hard carbon film and the base material, the adhesion strength between the hard carbon film and the base material is improved. Further, this diamond and the metal carbide have a structure that surrounds the diamond, and since the diamond has a structure in which it is distributed in an island shape, a so-called anchor effect can be expected and the adhesion strength between the hard carbon film and the base material can be expected. improves.

【0017】このような膜構成の作製方法は、気相成長
法に基づき、加工用部材が内部に設置された反応室内
に、原料ガスとして水素と炭素含有ガス、およびケイ素
含有ガスを導入し、励起することによりダイヤモンドと
炭化ケイ素が混在する層を形成することができ、さらに
ケイ素含有ガスの供給を停止することにより硬質炭素膜
を形成することができる。
The method of producing such a film structure is based on the vapor phase growth method, and hydrogen, carbon-containing gas, and silicon-containing gas are introduced as raw material gases into the reaction chamber in which the processing member is installed. A layer in which diamond and silicon carbide are mixed can be formed by excitation, and a hard carbon film can be formed by stopping the supply of the silicon-containing gas.

【0018】この時用いられる炭素含有ガスとしては、
例えば、メタン、エタン、プロパンなどのアルカン類、
エチレン、プロピレンなどのアルケン類、アセチレンな
どのアルキン類、ベンゼンなどの芳香族炭化水素類、シ
クロプロパンなどのシクロパラフィン類、シクロペンテ
ンなどのシクロオレフィン類などが挙げられる。また一
酸化炭素、二酸化炭素、メチルアルコール、エチルアル
コール、アセトンなどの含酸素炭素化合物、モノ(ジ、
トリ)メチルアミン、モノ(ジ、トリ)エチルアミンな
どの含窒素炭素化合物なども炭素源ガスとして使用する
ことができる。
The carbon-containing gas used at this time is
For example, alkanes such as methane, ethane, propane,
Examples thereof include alkenes such as ethylene and propylene, alkynes such as acetylene, aromatic hydrocarbons such as benzene, cycloparaffins such as cyclopropane, and cycloolefins such as cyclopentene. In addition, carbon monoxide, carbon dioxide, oxygen-containing carbon compounds such as methyl alcohol, ethyl alcohol and acetone, mono (di,
Nitrogen-containing carbon compounds such as tri) methylamine and mono (di, tri) ethylamine can also be used as the carbon source gas.

【0019】これらは一種単独で用いることもできる
し、二種以上で併用することもできる。
These may be used alone or in combination of two or more.

【0020】前記ケイ素含有ガスとしては、四フッ化ケ
イ素、四塩化ケイ素、四臭化ケイ素などのハロゲン化
物、二酸化ケイ素などの酸化物の他に、モノ(ジ、ト
リ、テトラ、ペンタ)シラン、モノ(ジ、トリ、テト
ラ)メチルシランなどのシラン化合物、トリメチルシラ
ノールなどのシラノール化合物などが挙げられる。これ
らは一種単独で用いることもできるし、二種以上で併用
することもできる。
Examples of the silicon-containing gas include halides such as silicon tetrafluoride, silicon tetrachloride and silicon tetrabromide, oxides such as silicon dioxide, mono (di, tri, tetra, penta) silane, Examples thereof include silane compounds such as mono (di, tri, tetra) methylsilane and silanol compounds such as trimethylsilanol. These can be used alone or in combination of two or more.

【0021】また、紙加工用部材の母材材種としては、
例えば、窒化ケイ素、炭化珪素、アルミナ、ジルコニア
などのセラミックス、チタン合金、超硬合金、サーメッ
ト、ステンレス鋼などの金属が挙げられる。これらの中
でも窒化ケイ素、炭化ケイ素、超硬合金、サーメットが
望ましい。これらの母材はそのまま用いることもできる
し、気相成長法などの薄膜形成技術で、適当な部材の表
面に薄膜として形成されたものでもよい。
Further, as the base material type of the paper processing member,
Examples thereof include ceramics such as silicon nitride, silicon carbide, alumina and zirconia, titanium alloys, cemented carbides, cermets, metals such as stainless steel. Among these, silicon nitride, silicon carbide, cemented carbide and cermet are preferable. These base materials may be used as they are, or may be formed as a thin film on the surface of an appropriate member by a thin film forming technique such as a vapor phase growth method.

【0022】また、本発明において、前述したような1
340±40cm-1と1160±40cm-1にピークが
存在する硬質炭素膜を形成するには、例えば、上記原料
ガスを反応室内に導入すると同時に、2.45GHzの
マイクロ波を導入し、さらに875ガウス以上のレベル
の磁界を印加させて電子サイクロトロン共鳴プラズマを
発生させる。そして、反応室内を0.01〜0.10t
orrの圧力に維持するとともに部材の温度を400〜
650℃の比較的低温になるようにして成膜することに
より、形成することができる。
Further, in the present invention, the above-mentioned 1
To form a hard carbon film having peaks at 340 ± 40 cm −1 and 1160 ± 40 cm −1 , for example, the above-mentioned source gas is introduced into the reaction chamber and at the same time, a microwave of 2.45 GHz is introduced and further 875 An electron cyclotron resonance plasma is generated by applying a magnetic field of a Gauss level or higher. And 0.01 to 0.10 t in the reaction chamber
Maintaining a pressure of orr and keeping the temperature of the member from 400 ~
It can be formed by forming a film at a relatively low temperature of 650 ° C.

【0023】このように、本発明によれば、紙と接する
部材表面を微粒組織で表面欠陥のない緻密な硬質炭素膜
により被覆することにより、紙加工部材の表面に整合し
た鋭利な刃先を形成できるとともに、紙を曲げ加工する
際の部材の摺動面に適応することにより、紙との接触に
よる摩耗を抑制するとともに、有機質膜が形成された紙
を加工する場合においても有機質膜の凝着を防止でき、
加工用部材の長寿命化を図ることができる。また、部材
表面と硬質炭素膜との間に、少なくともダイヤモンドと
炭化ケイ素を含有する層を介在させることにより、膜剥
離のない部材を提供できる。
As described above, according to the present invention, the surface of the member contacting the paper is coated with the fine hard carbon film having the fine grain structure and having no surface defect to form the sharp cutting edge aligned with the surface of the paper processing member. In addition, by adapting to the sliding surface of the member when bending the paper, abrasion due to contact with the paper is suppressed and adhesion of the organic film also occurs when processing the paper on which the organic film is formed. Can be prevented,
The service life of the processing member can be extended. Further, by interposing a layer containing at least diamond and silicon carbide between the surface of the member and the hard carbon film, it is possible to provide a member without film peeling.

【0024】[0024]

【実施例】【Example】

実施例1(試料No.1、2) 反応炉内に原料ガスを導入して、反応室内圧力を0.0
5Torrに設定した。原料ガスの種類、流量は表1に
示す。電子サイクロトロン共鳴(ECR)プラズマCV
D法により最大2kガウスの強度の磁場を印加させ、マ
イクロ波出力3.0kWの条件で、超硬合金またはチタ
ン合金(Ti−6Al−4V)からなる先端が半径0.
5μmの鋭い刃先からなる紙裁断用刃物部材表面に硬質
炭素膜の成膜を行い、膜厚1μmの硬質炭素膜(うち、
中間層0.5μm)を形成した。
Example 1 (Sample Nos. 1 and 2) A raw material gas was introduced into the reaction furnace so that the pressure in the reaction chamber was 0.0.
It was set to 5 Torr. Table 1 shows the types and flow rates of the raw material gases. Electron Cyclotron Resonance (ECR) Plasma CV
A magnetic field having a maximum intensity of 2 kGauss was applied by the D method, and the tip made of cemented carbide or titanium alloy (Ti-6Al-4V) had a radius of 0.
A hard carbon film having a film thickness of 1 μm is formed on the surface of a blade member for paper cutting having a sharp edge of 5 μm.
An intermediate layer 0.5 μm) was formed.

【0025】成膜時の原料ガス流量及び圧力変化を成膜
時間の経過と共に表1に示す。
Table 1 shows the changes in the raw material gas flow rate and the pressure during film formation, along with the elapsed film formation time.

【0026】[0026]

【表1】 [Table 1]

【0027】得られた膜をX線回折により分析した結
果、いずれの膜もダイヤモンドと炭化ケイ素の存在が確
認され、部材としてチタン合金を用いた試料No.2で
は、中間層にTiCの生成も確認された。また、この硬
質炭素膜をラマン分光法によりスペクトル測定を行った
ところ、いずれの膜も1337cm-1と1154cm-1
にピークが確認された。 (試料No.1、2)。なお、成
膜後の刃先を研磨加工したところ、良好な刃先形状を形
成することができた。
As a result of X-ray diffraction analysis of the obtained films, the presence of diamond and silicon carbide was confirmed in all the films, and in sample No. 2 using a titanium alloy as a member, TiC was also formed in the intermediate layer. confirmed. Moreover, when the spectrum of this hard carbon film was measured by Raman spectroscopy, both films were 1337 cm −1 and 1154 cm −1.
A peak was confirmed at. (Sample Nos. 1 and 2). When the blade edge after film formation was polished, a good blade edge shape could be formed.

【0028】これらの紙裁断用刃物に対して、厚み0.
5mmの紙を裁断する実験を最高100万回繰り返し行
った。裁断回数と刃先の最大摩耗量を表2に示す。
For these paper cutting blades, a thickness of 0.
The experiment of cutting 5 mm paper was repeated up to 1,000,000 times. Table 2 shows the number of times of cutting and the maximum wear amount of the cutting edge.

【0029】実施例2(試料No.3,4、6、7) 実施例1における成膜条件において、硬質炭素膜形成時
の原料ガス濃度と圧力を0.01〜0.10の範囲で変
化させる以外は全く同様にして成膜を行い、H1 /H2
ピーク比の異なる硬質炭素膜をそれぞれ被覆しその表面
を研磨した。このうち、試料No.3は、刃先の研磨加工
が困難であり、試料No.1、2に比較して10倍の時間
を要した。そして、実施例1と同様な方法で紙裁断試験
を行った。結果は表2に示した。
Example 2 (Samples No. 3, 4, 6, 7) Under the film forming conditions in Example 1, the source gas concentration and pressure during the formation of the hard carbon film were changed within the range of 0.01-0.10. that deposition be performed in exactly the same manner except for, H 1 / H 2
Hard carbon films having different peak ratios were coated and the surface was polished. Among them, Sample No. 3 was difficult to polish the cutting edge, and required 10 times as long as Sample Nos. 1 and 2. Then, a paper cutting test was conducted in the same manner as in Example 1. The results are shown in Table 2.

【0030】実施例3(試料No.5) 実施例1における成膜条件において、SiCのみからな
る中間層(0.5μm厚み)を形成しさらに硬質炭素膜
(0.5μm)を形成し、実施例1と同様に評価を行っ
た。結果は表2に示した。
Example 3 (Sample No. 5) Under the film forming conditions of Example 1, an intermediate layer (0.5 μm thick) made of SiC alone was formed, and a hard carbon film (0.5 μm) was further formed. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

【0031】比較例1(試料No.8,9) 硬質炭素膜の形成を従来からの一般的手法であるマイク
ロ波CVD法により0.5μmの中間層と0.5μmの
硬質炭素膜を形成した。得られた硬質炭素膜についてラ
マン分光分析を行うとともに実施例1と同様にして紙裁
断試験を行った。なお、刃先表面の研磨を行ったとこ
ろ、ダイヤモンド結晶粒が大きいことにより所望の先端
R形状が得られなかった。結果は表2に示した。
Comparative Example 1 (Sample Nos. 8 and 9) A hard carbon film was formed by a microwave CVD method, which is a conventional general method, to form an intermediate layer of 0.5 μm and a hard carbon film of 0.5 μm. . Raman spectroscopic analysis was performed on the obtained hard carbon film, and a paper cutting test was performed in the same manner as in Example 1. When the surface of the cutting edge was polished, the desired tip R shape could not be obtained due to the large diamond crystal grains. The results are shown in Table 2.

【0032】比較例2(試料No.10) 従来材種の一つであるステンレス鋼からなる切断刃を用
いて、同様に紙の裁断試験を行った。結果は表2に示し
た。
Comparative Example 2 (Sample No. 10) A paper cutting test was similarly performed using a cutting blade made of stainless steel, which is one of conventional materials. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】なお、表2中、試料No.1(本発明品)お
よび試料No.8(比較品)のラマン分光分析チャート図
を図1および図2にそれぞれ示した。
In Table 2, Raman spectroscopic analysis charts of Sample No. 1 (invention product) and Sample No. 8 (comparative product) are shown in FIGS. 1 and 2, respectively.

【0035】表2の結果によれば、従来のステンレス鋼
では、10万回裁断で裁断不良が頻発し刃先の摩耗が5
μmと大きく、また、硬質炭素膜を被覆した試料でも、
1340±40cm-1にピークがあるものの1160±
40cm-1にピークが認められない試料No.8、9では
いずれも初期の段階で裁断不良が生じ所望のR形状が得
られないことが原因と思われる。
According to the results shown in Table 2, in the conventional stainless steel, cutting defects frequently occur after cutting 100,000 times and the wear of the cutting edge is 5 times.
It is as large as μm, and even with a sample coated with a hard carbon film,
Although there is a peak at 1340 ± 40 cm -1 , it is 1160 ±
It is considered that in Samples Nos. 8 and 9 in which no peak was observed at 40 cm -1 , cutting failure occurred at the initial stage and a desired R shape could not be obtained.

【0036】これに対して、ラマン分光分析において
は、1340±40cm-1と1160±40cm-1にピ
ークが存在する試料No.1〜7ではいずれも100万回
までの良好な裁断が可能であったが、H1 /H2 ピーク
比が0.05〜2の範囲から逸脱する試料No.7では摩
耗が大きくなる傾向にあった。また、中間層がSiCの
みからなる試料No.5では、硬質炭素膜と部材との間に
クラックの発生が認められたが、中間層をダイヤモンド
と炭化ケイ素により構成した試料No.1、3、6、7で
は、試験後も何らクラックの発生や膜剥離等は認められ
なかった。
On the other hand, in Raman spectroscopic analysis, Sample Nos. 1 to 7 having peaks at 1340 ± 40 cm −1 and 1160 ± 40 cm −1 were capable of cutting well up to 1,000,000 times. However, in the sample No. 7 in which the H 1 / H 2 peak ratio deviates from the range of 0.05 to 2 , the wear tended to increase. Further, in the sample No. 5 in which the intermediate layer was composed of only SiC, the occurrence of cracks was observed between the hard carbon film and the member. However, in the sample No. 1, 3 in which the intermediate layer was composed of diamond and silicon carbide, In Nos. 6 and 7, no cracks and no film peeling were observed even after the test.

【0037】実施例4 実施例1、2、比較例1、2と全く同様な方法で、窒化
ケイ素室焼結体、チタン合金(Ti−6Al−4V)を
母材材種とした紙成形用金型表面に種々の硬質炭素膜を
被覆した。なお、膜厚が5μm(中間層1μm)とし
た。また、従来材種として超硬合金製の金型も準備し
た。
Example 4 For paper molding using a silicon nitride chamber sintered body and a titanium alloy (Ti-6Al-4V) as a base material, in the same manner as in Examples 1 and 2 and Comparative Examples 1 and 2. The mold surface was coated with various hard carbon films. The film thickness was 5 μm (intermediate layer 1 μm). Further, a metal mold made of cemented carbide was prepared as a conventional material.

【0038】これらの金型に対して、表面にPET(ポ
リエチレンテレフタレート)樹脂が形成された紙を成形
する実験を最高100万回繰り返した。なお樹脂形成面
が金型と接触するようにして成形を行った。試験中、摺
動面にPET樹脂の凝着が確認された時点で試験は中止
した。結果を表3に示す。
Experiments for molding paper having a PET (polyethylene terephthalate) resin formed on the surface of these molds were repeated up to 1,000,000 times. The molding was performed so that the resin-formed surface was in contact with the mold. During the test, the test was stopped when the adhesion of the PET resin was confirmed on the sliding surface. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3の結果によれば、従来の超硬合金No.
20では、500回程で凝着が認められた。また、硬質
炭素膜を被覆した試料でも、1340±40cm-1にピ
ークがあるものの1160±40cm-1にピークが認め
られない試料No.18、19ではいずれも樹脂の凝着が
認められた。
According to the results shown in Table 3, the conventional cemented carbide No.
In No. 20, adhesion was recognized about 500 times. Also in the sample coated with the hard carbon film, the adhesion of the resin was observed in Sample Nos. 18 and 19 in which the peak was observed at 1340 ± 40 cm −1 but the peak was not observed at 1160 ± 40 cm −1 .

【0041】これに対して、ラマン分光分析において
は、1340±40cm-1と1160±40cm-1にピ
ークが存在する試料No.11、12、14〜17ではい
ずれも100万回までの良好な成形が可能であったが、
1 /H2 ピーク比が0.05より低い試料No.13で
は、50万回の成形でPET樹脂の凝着が生じた。
On the other hand, in Raman spectroscopic analysis, Sample Nos. 11, 12, and 14 to 17 having peaks at 1340 ± 40 cm −1 and 1160 ± 40 cm −1 were all good at up to 1,000,000 times. Molding was possible,
In Sample No. 13 having a H 1 / H 2 peak ratio of less than 0.05, PET resin adhesion occurred after 500,000 moldings.

【0042】また上記ピーク比が2より大きい試料No.
17では100万回成形後に炭素膜に局所摩耗が認めら
れた。また、H1 /H2 ピーク比が0.05〜2の範囲
の試料は、100万回成形後においても摩耗がほとんど
なく、しかも樹脂による凝着も認められなかった。ま
た、中間層がSiCのみからなる試料No.15では、硬
質炭素膜と部材との間にクラックの発生が認められた
が、中間層をダイヤモンドと炭化ケイ素により構成した
試料では、試験後も何らクラックの発生や膜剥離等は認
められなかった。
Further, the sample No.
In No. 17, local abrasion was observed on the carbon film after molding 1 million times. Further, the samples having the H 1 / H 2 peak ratio in the range of 0.05 to 2 showed almost no wear even after molding 1,000,000 times, and no adhesion by the resin was observed. Further, in the sample No. 15 in which the intermediate layer was composed of only SiC, cracks were found between the hard carbon film and the member, but in the sample in which the intermediate layer was composed of diamond and silicon carbide, there was no problem even after the test. Neither cracking nor film peeling was observed.

【0043】[0043]

【発明の効果】以上詳述したように本発明の紙加工用部
材は、その表面を特定の硬質炭素膜で被覆することによ
り、紙との接触による摩耗を抑制するとともに、有機質
膜が形成された紙を加工する場合においても有機質膜の
凝着を防止でき、紙裁断用、孔明け用部材、紙折り曲げ
時の成形用部材などの長寿命化を図ることができる。
As described above in detail, in the paper processing member of the present invention, the surface thereof is coated with a specific hard carbon film to suppress abrasion due to contact with paper and to form an organic film. Even in the case of processing rolled paper, it is possible to prevent the adhesion of the organic film, and it is possible to prolong the life of the paper cutting member, the punching member, the molding member when folding the paper, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における硬質炭素膜のラマン分光分析チ
ャート図である。
FIG. 1 is a Raman spectroscopic analysis chart of a hard carbon film according to the present invention.

【図2】従来の硬質炭素膜のラマン分光分析チャート図
である。
FIG. 2 is a Raman spectroscopic analysis chart of a conventional hard carbon film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】紙または表面に有機質膜が被覆された紙を
加工するための部材であって、該部材表面をラマン分光
スペクトルにおいて1340±40cm-1と1160±
40cm-1にピークが存在する硬質炭素膜で被覆したこ
とを特徴とする紙加工用部材。
1. A member for processing paper or paper having a surface coated with an organic film, the surface of which is 1340 ± 40 cm −1 and 1160 ± 1 in Raman spectrum.
A member for paper processing, which is coated with a hard carbon film having a peak at 40 cm -1 .
【請求項2】前記硬質炭素膜のラマン分光分析チャート
において、1160±40cm-1に存在するピークのう
ち最も強度の高いピーク強度をH1 、1340±40c
-1に存在するピークのうち最も強度の高いピーク強度
をH2 とした時、H1 /H2 で表されるピーク強度比が
0.05乃至2であることを特徴とする紙加工用部材。
2. In the Raman spectroscopic analysis chart of the hard carbon film, the highest peak intensity among the peaks existing at 1160 ± 40 cm −1 is H 1 , 1340 ± 40 c.
When the high peak intensity of most intense among the peaks and with H 2 present in m -1, for paper coating, wherein the peak intensity ratio represented by H 1 / H 2 is 0.05 to 2 Element.
【請求項3】前記硬質炭素膜と前記部材表面との間に、
少なくともダイヤモンドと金属炭化物を含有する中間層
が存在することを特徴とする請求項1記載の紙加工用部
材。
3. Between the hard carbon film and the surface of the member,
The paper processing member according to claim 1, wherein an intermediate layer containing at least diamond and metal carbide is present.
JP10714396A 1996-04-26 1996-04-26 Member for paper processing Pending JPH09291352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10714396A JPH09291352A (en) 1996-04-26 1996-04-26 Member for paper processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10714396A JPH09291352A (en) 1996-04-26 1996-04-26 Member for paper processing

Publications (1)

Publication Number Publication Date
JPH09291352A true JPH09291352A (en) 1997-11-11

Family

ID=14451612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10714396A Pending JPH09291352A (en) 1996-04-26 1996-04-26 Member for paper processing

Country Status (1)

Country Link
JP (1) JPH09291352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054520A1 (en) * 1998-04-22 1999-10-28 Valmet Corporation Parts of a paper/board or finishing machine that are subjected to intensive wear and method for manufacture of such parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054520A1 (en) * 1998-04-22 1999-10-28 Valmet Corporation Parts of a paper/board or finishing machine that are subjected to intensive wear and method for manufacture of such parts

Similar Documents

Publication Publication Date Title
JP3675577B2 (en) Method for producing diamond-coated article
JP2620976B2 (en) Sliding member
EP0413834A1 (en) Diamond-covered member and process for producing the same
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JPS61124573A (en) Diamond-coated base material and its production
JPH1192934A (en) Hard carbon thick coating and its production
JP2842720B2 (en) Die for wire drawing and manufacturing method thereof
JP3273106B2 (en) Hard carbon film coated member and method of manufacturing the same
JP3340001B2 (en) Wear-resistant material
JPH09291352A (en) Member for paper processing
JP3339994B2 (en) Wear-resistant material
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JP3548337B2 (en) Metal plastic working parts
JPH1015952A (en) Resin processing member
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JP3199127B2 (en) Diamond-containing composite coated member and method for producing the same
Cerio et al. Machining of abrasive materials with diamond-coated tungsten carbide inserts
JP3520098B2 (en) Diamond coated cutting tool
JPH01259171A (en) Cutting tool member coated with hard film
JP2623508B2 (en) Coated cemented carbide with adjusted surface roughness
JPS5925970A (en) Coated sintered hard alloy
JP3554119B2 (en) Hard carbon film coated member
JPH09314405A (en) Coated cutting tool
JP3592837B2 (en) Glass forming mold
JP2781041B2 (en) Diamond coated members