JP2842720B2 - Die for wire drawing and manufacturing method thereof - Google Patents

Die for wire drawing and manufacturing method thereof

Info

Publication number
JP2842720B2
JP2842720B2 JP3315680A JP31568091A JP2842720B2 JP 2842720 B2 JP2842720 B2 JP 2842720B2 JP 3315680 A JP3315680 A JP 3315680A JP 31568091 A JP31568091 A JP 31568091A JP 2842720 B2 JP2842720 B2 JP 2842720B2
Authority
JP
Japan
Prior art keywords
die
film
wire drawing
less
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3315680A
Other languages
Japanese (ja)
Other versions
JPH05146820A (en
Inventor
明俊 富山
文雄 福丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3315680A priority Critical patent/JP2842720B2/en
Publication of JPH05146820A publication Critical patent/JPH05146820A/en
Application granted granted Critical
Publication of JP2842720B2 publication Critical patent/JP2842720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/025Dies; Selection of material therefor; Cleaning thereof comprising diamond parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • C04B41/5002Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属を線材化する時に
用いられる伸線用ダイスの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a wire drawing die used for converting a metal into a wire.

【0002】[0002]

【従来技術】従来より、中心に孔が形成されたダイスに
金属素材を通して引き抜くことにより金属を線材化する
方法が知られている。この伸線用ダイスは、一般には鋼
製、超硬合金製、ダイヤモンド製のものが使用されてい
る。
2. Description of the Related Art Conventionally, there has been known a method of turning a metal into a wire by drawing a metal material through a die having a hole formed in the center. The dies for wire drawing are generally made of steel, cemented carbide, or diamond.

【0003】伸線しようとする金属が、Al、Au、A
g、Cu等の軟質金属であっても、通常、ダイスの孔内
面は摩耗が生じる。孔内面に摩耗が生じると引き出され
た線材の断面形状が変化し、また表面に凹凸が形成され
る。そのために摩耗が大きくなると孔内面を研磨して再
使用されるが、線材の太さが研磨前よりも大きくなると
いう問題がある。よって、ダイスは再研磨するまでのダ
イス寿命が長いことが望まれるために、金属との接触部
分、即ち孔の内面を高硬度の材質で形成することが提案
されている。
[0003] The metal to be drawn is Al, Au, A
Even with soft metals such as g and Cu, the inner surface of the hole of the die usually wears. When abrasion occurs on the inner surface of the hole, the cross-sectional shape of the drawn wire changes, and irregularities are formed on the surface. Therefore, when the abrasion increases, the inner surface of the hole is polished and reused, but there is a problem that the thickness of the wire becomes larger than before the polishing. Therefore, since it is desired that the die has a long life before re-polishing, it has been proposed to form a contact portion with the metal, that is, the inner surface of the hole with a material having high hardness.

【0004】従来の伸線用ダイスの材質としてはダイヤ
モンドが最も優れているが、ダイヤモンド自体が非常に
高価であるために小型のダイスにしか適用できなかっ
た。
[0004] Diamond is the best material for the conventional wire drawing dies, but the diamond itself is very expensive, so that it can be applied only to small dies.

【0005】そこで、最近に至り、孔の内面に硬質の材
料を被覆することによりダイス寿命を延長することが提
案されている。例えば、特開昭61−74725号で
は、WCダイスの孔内面にTiNを被覆することが提案
され、また、特開平1−62213号、特開平3−11
4610号にはCVD法によりダイヤモンド膜やこれに
類似する硬度を有する炭素膜を、特開平3−23010
号には、硬質炭素膜を被覆することが提案されている。
Therefore, it has recently been proposed to extend the life of the die by coating the inner surface of the hole with a hard material. For example, Japanese Patent Application Laid-Open No. 61-74725 proposes coating the inner surface of a hole of a WC die with TiN.
No. 4610 discloses a diamond film or a carbon film having a hardness similar thereto by a CVD method.
Proposes to coat a hard carbon film.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、特開
平1−62213号には、金属基体に直接又は中間層を
介してダイヤモンド膜を形成しようとするものである
が、金属基体とは中間層とを介してもダイヤモンド膜と
の付着強度が足りず、しかも一般的CVD法では成膜表
面が結晶により凹凸を有するために研磨することが必要
であるが、付着強度が小さいと研磨することが困難であ
り、しかも使用中に膜が剥離するという問題がある。
However, Japanese Patent Application Laid-Open No. 1-62213 discloses an attempt to form a diamond film on a metal substrate directly or through an intermediate layer. The bonding strength with the diamond film is insufficient even through the method, and the general CVD method requires polishing because the formed surface has irregularities due to crystals. However, if the bonding strength is low, polishing is difficult. In addition, there is a problem that the film peels during use.

【0007】また、特開平3−114610号では、膜
厚を50〜150μmと厚くするために成膜表面の凹凸
がさらに大きくなり、これを研磨するためには多大な時
間と費用を要する。また、記載される熱フィラメントC
VD法ではダイス孔内部や回りにフィラメントを設置す
ることが必要であり、生産性に乏しくフィラメントのメ
ンテナンス等の問題がある。
In Japanese Patent Application Laid-Open No. 3-114610, since the film thickness is increased to 50 to 150 μm, the unevenness of the surface of the film is further increased, and much time and cost are required to polish the surface. Also, the described hot filament C
In the VD method, it is necessary to set a filament inside or around a die hole, and there is a problem in poor productivity and maintenance of the filament.

【0008】さらに、特開平3−23010号は、超硬
合金基体に硬質炭素膜を形成したものであるが、この膜
が非晶質炭素膜であり、一般にDLC(ダイヤモンド−
ライク−カーボン)と呼ばれる水素を多く含んだ膜であ
り、結晶質のダイヤモンドに比較して硬度は約半分程度
と耐摩耗性に劣っている。また、伸線が高速度になると
ダイス温度が上昇し膜に含有されている水素が膜から抜
けてグラファイトとなるために更に耐摩耗性が劣化して
いく恐れがある。また、前処理として塩酸でダイス表面
のCo相を除去しているために基体のダイスが脆くなり
伸線加工時に破損する恐れがある。
Further, Japanese Patent Application Laid-Open No. 3-23010 discloses a hard carbon film formed on a cemented carbide substrate, and this film is an amorphous carbon film, which is generally DLC (diamond-based).
It is a film containing a large amount of hydrogen called like-carbon, and has a hardness of about half that of crystalline diamond and is inferior in wear resistance. Further, when the drawing speed is high, the die temperature rises, and the hydrogen contained in the film escapes from the film to become graphite, which may further deteriorate the wear resistance. In addition, since the Co phase on the surface of the die is removed with hydrochloric acid as a pretreatment, the die of the substrate becomes brittle and may be damaged during wire drawing.

【0009】これらの先行技術によれば、いずれもダイ
スの長寿命化という観点からは不十分であり、また、い
ずれも孔径がある程度大きいダイスにしか適用すること
のできないものであり、孔径が小さいダイスに適用しよ
うとすると、孔の入口付近にのみ膜が生成し孔の内面に
成膜することができないという問題があった。また、熱
フィラメント法で孔内部にフィラメントを設置すること
はフィラメントの過熱、あるいは母材が導電性である場
合にはショートする恐れがあり、現実的には不可能であ
る。
According to these prior arts, all of them are insufficient from the viewpoint of extending the life of the dies, and all of them can only be applied to dies having a relatively large hole diameter, and have a small hole diameter. When applied to a die, there is a problem that a film is formed only near the entrance of the hole and cannot be formed on the inner surface of the hole. In addition, it is practically impossible to place the filament inside the hole by the hot filament method, because the filament may be overheated or short-circuited when the base material is conductive.

【0010】よって、本発明の目的は、孔径が小さいダ
イスに対して優れた耐摩耗性と長寿命化を図ることので
きる伸線用ダイス、および孔内面に均一に耐摩耗性に優
れた硬質炭素膜を生成させるための方法を提供するにあ
る。
[0010] Accordingly, an object of the present invention is to provide a wire drawing die capable of achieving excellent wear resistance and a long life for a die having a small hole diameter, and a hard die having uniformly excellent wear resistance on the inner surface of the hole. It is an object of the present invention to provide a method for producing a carbon film.

【0011】[0011]

【問題点を解決するための手段】本発明者等は上記目的
に対して検討を重ねた結果、孔径が1mm以下の伸線用
ダイスに対して硬質炭素膜を形成する場合の各種の成膜
方法や、生成される炭素膜の特性について詳細に検討し
たところ、成膜方法として電子サイクロトロンプラズマ
CVD法により所定の条件にて成膜すると、孔径が1m
m以下の微小孔径の伸線用ダイスに対しても孔内面に均
一で且つ耐摩耗性に優れた硬質炭素膜が生成されること
を知見した。
Means for Solving the Problems As a result of repeated studies on the above object, the present inventors have found that various types of film formation in the case of forming a hard carbon film on a wire drawing die having a hole diameter of 1 mm or less. The method and the characteristics of the carbon film to be formed were examined in detail. When the film was formed under a predetermined condition by an electron cyclotron plasma CVD method, the hole diameter was 1 m.
It has been found that a hard carbon film that is uniform and has excellent wear resistance is formed on the inner surface of a hole even for a wire drawing die having a micropore diameter of not more than m.

【0012】即ち、本発明は、孔径が1mm以下の伸線
用ダイスの少なくとも孔内面に、ダイヤモンドと非晶質
炭素から構成され、結晶の平均粒径が1μm以下、ラマ
ン分光スペクトル分析において1333±10cm-1
存在するピークをH1 、1500±100cm-1に存在
するピークをH2 とした時のH2 /H1 で表される強度
比が0.35乃至20であり、且つ表面粗さ(Rma
x)が0.8μm以下の硬質炭素膜を被覆したことを特
徴とするものである。また、上記のような性質を有する
硬質炭素膜を孔内面に形成する方法としては、内部に、
孔径が1mm以下の伸線用ダイスが設置された反応炉内
に炉内圧力1torr以下の条件にて炭素含有ガスを導
入し、マイクロ波によりプラズマを発生させるととも
に、該プラズマが発生した領域に磁界を作用させること
により電子サイクロトロン共鳴プラズマを生ぜしめるこ
とを特徴とするものである。
That is, the present invention provides a wire drawing die having a hole diameter of 1 mm or less, wherein at least the inner surface of the hole is made of diamond and amorphous carbon, the average crystal grain diameter is 1 μm or less, and 1333 ± 1 When the peak existing at 10 cm -1 is H 1 and the peak existing at 1500 ± 100 cm -1 is H 2 , the intensity ratio expressed as H 2 / H 1 is 0.35 to 20, and the surface roughness is Sa (Rma
x) is coated with a hard carbon film of 0.8 μm or less. Further, as a method of forming a hard carbon film having the above properties on the inner surface of the hole,
A carbon-containing gas is introduced into a reactor having a wire drawing die having a hole diameter of 1 mm or less under a furnace pressure of 1 torr or less, plasma is generated by microwaves, and a magnetic field is generated in a region where the plasma is generated. Is used to generate electron cyclotron resonance plasma.

【0013】以下、本発明を詳述する。本発明における
伸線用ダイスは、図1に示すようにダイス孔Aの孔径a
が1mm以下の微小孔径よりなるものである。そして、
孔Aの内面には硬質炭素膜が被着形成されている。この
硬質炭素膜は、その表面粗さRmaxが0.8μm以下
であることが必要で、表面粗さが0.8μmより大きい
と伸線加工時に線材の断面形状が変化したり、線材表面
に傷が付いたりするとともに加工時の金属との接触抵抗
が大きく、硬質炭素膜の摩耗が大きくなったり、炭素膜
の剥がれ等を生じるためである。
Hereinafter, the present invention will be described in detail. As shown in FIG. 1, the wire drawing die of the present invention has a hole diameter a of a die hole A.
Has a micropore diameter of 1 mm or less. And
A hard carbon film is formed on the inner surface of the hole A. This hard carbon film needs to have a surface roughness Rmax of 0.8 μm or less, and if the surface roughness is larger than 0.8 μm, the cross-sectional shape of the wire changes at the time of wire drawing, or the wire surface is damaged. This is because the contact resistance with the metal at the time of processing is large, the wear of the hard carbon film is increased, and the carbon film is peeled off.

【0014】表面粗さは、通常研磨加工により制御する
ことができるが、孔径の小さいダイス等の内面を研磨加
工することは困難である。そこで、本発明では、硬質炭
素膜を構成する結晶の平均粒径が1μm以下の微細な結
晶よりなるとともに、膜自体がダイヤモンドと非晶質炭
素により構成され、その比率がラマン分光スペクトル分
析において1333±10cm-1に存在するピーク強度
をH1 、1500±100cm-1に存在するピーク強度
をH2 とした時のH2 /H1 で表される強度比が0.3
5乃至20、特に1〜10である。結晶の平均粒径が1
μmよりも大きいと炭素膜の表面粗さを上記の範囲に制
御することが困難である。また、硬質炭素膜がダイヤモ
ンドのみからなると結晶性が高まり、結晶の平均粒径が
大きくなるとともに表面粗さも大きくなるからである。
The surface roughness can usually be controlled by polishing, but it is difficult to polish the inner surface of a die or the like having a small hole diameter. Therefore, in the present invention, the hard carbon film is composed of fine crystals having an average particle diameter of 1 μm or less, and the film itself is composed of diamond and amorphous carbon. When the peak intensity existing at ± 10 cm −1 is H 1 and the peak intensity existing at 1500 ± 100 cm −1 is H 2 , the intensity ratio represented by H 2 / H 1 is 0.3.
5-20, especially 1-10. The average crystal grain size is 1
If it is larger than μm, it is difficult to control the surface roughness of the carbon film within the above range. Further, when the hard carbon film is made of only diamond, the crystallinity is enhanced, and the average grain size of the crystal is increased and the surface roughness is also increased.

【0015】なお、本発明において伸線用ダイスの基材
としては、特に限定されるものではないが、例えば窒化
珪素、炭化珪素等のセラミックス材料の他にWC−Co
系超硬合金やTiC、TiCNを主成分とするサーメッ
ト等を用いることができるが、これらの中でも特に窒化
珪素が付着力が高いことから望ましい。
In the present invention, the base material of the wire drawing die is not particularly limited. For example, in addition to ceramic materials such as silicon nitride and silicon carbide, WC-Co
A cemented carbide or a cermet containing TiC or TiCN as a main component can be used. Among them, silicon nitride is particularly preferable because of its high adhesive force.

【0016】上記伸線用ダイスを製造するためには、成
膜方法として、電子サイクロトロンプラズマCVD法
(以下、ECRプラズマ法という)を採用する。この方
法による製造方法について図2をもとに説明する。反応
炉1内には炭素膜が形成される孔径が1mm以下の伸線
用ダイス基材2が設置されている。また反応炉の周囲に
は反応炉内にプラズマを発生させるためのマイクロ波発
生装置3および磁界を発生させるための電磁コイル4が
配置されている。
In order to manufacture the wire drawing die, an electron cyclotron plasma CVD method (hereinafter, referred to as an ECR plasma method) is employed as a film forming method. A manufacturing method according to this method will be described with reference to FIG. In the reaction furnace 1, a wire drawing die substrate 2 having a hole diameter of 1 mm or less for forming a carbon film is provided. A microwave generator 3 for generating plasma in the reactor and an electromagnetic coil 4 for generating a magnetic field are arranged around the reactor.

【0017】かかる装置を用いて成膜する場合には、反
応炉内に炭素膜生成用ガスとして少なくとも炭素を含有
する原料ガスを、場合により水素等のキャリアガスとと
もにガス導入路5を経由して路内に導入して反応炉内を
圧力1torr以下の低圧力に維持すると同時に、導波
管6により2.45GHzのマイクロ波を炉内に導入す
る。それと同時に電磁コイル4により約875ガウス以
上のレベルの磁界を印加する。これにより、電子はサイ
クロトロン周波数f=eB/2πm(m:電子の質量、
e:電子の電荷、B:磁束密度)に基づきサイクロトロ
ン運動を起こす。この周波数がマイクロ波の周波数
(2.45GHz)と一致するとき、即ち、磁束密度B
が875ガウスとなる時に、電子サイクロトロン共鳴が
生じる。これにより電子はマイクロ波のエネルギーを著
しく吸収して加速され、中性分子に衝突し電離を起こさ
せ、低圧力でも高密度のプラズマを生成するようにな
る。
When a film is formed using such an apparatus, a raw material gas containing at least carbon as a gas for forming a carbon film is supplied through a gas introduction path 5 together with a carrier gas such as hydrogen, if necessary, in a reaction furnace. At the same time, the inside of the reactor is maintained at a low pressure of 1 torr or less by introducing into the passage, and at the same time, microwaves of 2.45 GHz are introduced into the furnace by the waveguide 6. At the same time, a magnetic field of a level of about 875 gauss or more is applied by the electromagnetic coil 4. As a result, the electron has a cyclotron frequency f = eB / 2πm (m: mass of the electron,
e: charge of electrons, B: magnetic flux density), and cause cyclotron motion. When this frequency coincides with the microwave frequency (2.45 GHz), that is, the magnetic flux density B
Is 875 Gauss, electron cyclotron resonance occurs. As a result, electrons are remarkably absorbed by microwave energy and accelerated, collide with neutral molecules to cause ionization, and generate high-density plasma even at low pressure.

【0018】なお、この時の基体の温度を150〜12
00℃に保持することにより、基体表面に炭素膜を形成
することができる。
The temperature of the substrate at this time is set to 150 to 12
By maintaining the temperature at 00 ° C., a carbon film can be formed on the substrate surface.

【0019】本発明において、前述した所定の特性を有
する硬質炭素膜を生成させる場合には、およそ基体温度
を150℃〜800℃、原料ガス濃度を10〜60%、
炉内圧力を1×10-3torr〜1torrの範囲に設
定すればよい。
In the present invention, when a hard carbon film having the above-mentioned predetermined characteristics is formed, the substrate temperature is set to about 150 ° C. to 800 ° C., the source gas concentration is set to about 10% to 60%,
The furnace pressure may be set in the range of 1 × 10 −3 torr to 1 torr.

【0020】上記製造方法において用いられる炭素含有
原料ガスとしては、メタン、エタン、プロパン等の炭化
水素ガスの他にCX Y Z (x、y、zはいずれも1
以上)で示されるような有機化合物やCO、CO2 等の
ガスを用いることもできる。
As the carbon-containing raw material gas used in the above-mentioned production method, in addition to hydrocarbon gas such as methane, ethane and propane, C x H Y O Z (x, y and z are each 1)
Organic compounds and gases such as CO and CO 2 as described above can also be used.

【0021】これらのガスの配合比率や種類は、特開昭
60−19197号や特開昭61−183198号等の
開示される公知の方法のいずれを用いても本発明の効果
に何ら影響を及ぼさない。
The mixing ratio and type of these gases have no effect on the effect of the present invention regardless of any of the known methods disclosed in JP-A-60-19197 and JP-A-61-183198. Has no effect.

【0022】[0022]

【作用】成膜時の基体形状に対して生成される膜厚の均
一性は、成膜時のプラズマ密度と、プラズマ中に基体を
設置した時の基体の表面に形成されるプラズマシースの
厚さに大きく左右されるが、低圧の成膜条件下ではプラ
ズマ密度が大きいほどプラズマシースの厚みが小さくな
り、また、プラズマシースの厚みが小さいほど複雑な表
面形状を有する基体に均一に生成することができる。
The uniformity of the film thickness generated with respect to the shape of the substrate during film formation depends on the plasma density during film formation and the thickness of the plasma sheath formed on the surface of the substrate when the substrate is placed in the plasma. However, under low pressure deposition conditions, the higher the plasma density, the smaller the thickness of the plasma sheath, and the smaller the thickness of the plasma sheath, the more uniformly the plasma sheath is formed on a substrate having a complicated surface shape. Can be.

【0023】従来のマイクロ波によりプラズマを発生さ
せて所定の基体表面に炭素膜を形成するマイクロ波プラ
ズマCVD法では、炉内の圧力が高く、しかもプラズマ
密度が低いためにプラズマシースが厚く、そのために孔
径が1mm以下の小さいダイスの孔内面にはシースが形
成されず、均一に炭素膜を生成することが困難である。
また、高周波プラズマCVD法では、シース部が時間的
に変動し、プラズマ密度に関係なく厚いシースが形成さ
れるために、同様に均一な成膜を行うことが困難であ
る。熱フィラメント法においてもダイス孔内面等の複雑
な凹凸形状を有する基体表面には均一に成膜できない。
In the conventional microwave plasma CVD method in which plasma is generated by microwaves to form a carbon film on a predetermined substrate surface, the pressure inside the furnace is high and the plasma density is low, so that the plasma sheath is thick, In addition, a sheath is not formed on the inner surface of a small die having a hole diameter of 1 mm or less, and it is difficult to uniformly generate a carbon film.
In the high-frequency plasma CVD method, the sheath portion fluctuates with time, and a thick sheath is formed regardless of the plasma density. Therefore, it is difficult to form a uniform film. Even in the hot filament method, a uniform film cannot be formed on the surface of a substrate having a complicated uneven shape such as the inner surface of a die hole.

【0024】これに対して、本発明によれば、炉内圧力
を1torr以下と非常に低い領域で成膜時のプラズマ
密度を高めることができ、また電子サイクロトロン共鳴
により基体近傍にて発生するプラズマ密度を通常のプラ
ズマCVD法に比較して10倍以上に高めることができ
る。これにより成膜時の基体表面のプラズマシースの厚
みを薄くすることができ、孔径の小さいダイスの孔内面
に均一な炭素膜を形成することができる。
On the other hand, according to the present invention, the plasma density at the time of film formation can be increased in a very low pressure range of 1 torr or less, and the plasma generated near the substrate by electron cyclotron resonance can be increased. The density can be increased ten times or more as compared with the ordinary plasma CVD method. This makes it possible to reduce the thickness of the plasma sheath on the surface of the substrate during film formation, and to form a uniform carbon film on the inner surface of the hole of a die having a small hole diameter.

【0025】また、かかる方法によりダイヤモンドと非
晶質炭素が混在した膜を形成することにより炭素膜の結
晶性が緩和され、成膜後の表面粗さが小さく、耐摩耗性
に優れた炭素膜となるために膜の研磨加工をとりわけ必
要とせず、しかも軟質金属の溶着が生じることがなく、
ダイスの長寿命化を図ることができる。
Further, by forming a film in which diamond and amorphous carbon are mixed by such a method, the crystallinity of the carbon film is relaxed, the surface roughness after film formation is small, and the carbon film is excellent in wear resistance. Does not require polishing processing of the film in particular, and no welding of soft metal occurs,
The life of the die can be extended.

【0026】さらに、本発明における硬質炭素膜は摩擦
係数が低いために金属の引き抜き時の抵抗が小さく、引
き抜き速度を上げても発熱が生じにくいという利点を有
し、また、孔径の小さいダイスであっても摩耗して寿命
がつきたダイスに再度炭素膜を当初の孔径になるまで被
覆を行うことにより同寸法のダイスとして再生を行うこ
とができる。
Further, the hard carbon film of the present invention has the advantage that the resistance at the time of metal extraction is low due to the low coefficient of friction, and it is difficult to generate heat even if the extraction speed is increased. Even if there is any wear, the dice having the same life can be regenerated by coating the carbon film again to the original pore diameter on the dice having a long life.

【0027】[0027]

【実施例】図2に示したような装置を用いて、反応炉内
に直径が40mm、表面粗さRmaxが0.1μmの超
硬合金製のディスク基体を設置し、ECRプラズマCV
D法により、最大2kガウスの強度の磁場を印加すると
ともに、マイクロ波出力3.0kWの条件で、基体温度
650℃、炉内圧力0.3torrの条件で基体表面に
成膜を行った。なお、反応ガスとしてはメタンガス、C
2 および水素ガスをそれぞれ54sccm、36sc
cm、210sccmの流量比で混合したものを用い
た。この条件で炭素膜が約6μmの膜厚となるように作
成した。
EXAMPLE Using a device as shown in FIG. 2, a disk substrate made of cemented carbide having a diameter of 40 mm and a surface roughness Rmax of 0.1 μm was set in a reactor, and ECR plasma CV was used.
According to Method D, a magnetic field having a maximum intensity of 2 kGauss was applied, and a film was formed on the surface of the substrate under the conditions of a microwave output of 3.0 kW, a substrate temperature of 650 ° C., and a furnace pressure of 0.3 torr. The reaction gas is methane gas, C
O 2 and hydrogen gas at 54 sccm and 36 sccm respectively
and a mixture at a flow rate of 210 sccm. Under these conditions, the carbon film was formed so as to have a thickness of about 6 μm.

【0028】このときのプラズマ密度と電子温度をラン
グミュアプローブにより測定したところ、プラズマ密度
(np)は4×1011cm-3、電子温度(Te)は4e
Vであった。なお、npとTeよりプラズマシースの厚
みは70μm以下と計算された。
When the plasma density and the electron temperature at this time were measured with a Langmuir probe, the plasma density (np) was 4 × 10 11 cm −3 and the electron temperature (Te) was 4e.
V. Note that the thickness of the plasma sheath was calculated to be 70 μm or less from np and Te.

【0029】得られた炭素膜に対して、膜表面のラマン
分光スペクトル分析を行ったところ、ダイヤモンドのピ
ークと若干の非晶質炭素のピークが観察され、ダイヤモ
ンドと非晶質炭素との2相構造であることがわかった。
なお、ラマン分光は488nmのArレーザビームをビ
ーム径約1μmに絞って行った。ピーク強度比は110
0cm-1と1700cm-1の位置間で斜線を引き、これ
をベースラインとしてそれぞれのピークをローレンツタ
イプとしてカーブフィッティング処理を行い、ピーク分
離した後、各ピークの高さを求め、比率を算出した。ま
た、表面粗さを触針式表面粗さ計により評価したとこ
ろ、Rmax0.3μm以下であった。
When the obtained carbon film was analyzed by Raman spectroscopy of the film surface, a diamond peak and a slight amorphous carbon peak were observed, and two phases of diamond and amorphous carbon were observed. It turned out to be a structure.
The Raman spectroscopy was performed by narrowing an 488 nm Ar laser beam to a beam diameter of about 1 μm. Peak intensity ratio is 110
Pull the hatched between positions 0 cm -1 and 1700 cm -1, which performs curve fitting process each peak as the baseline as the Lorentz type, after peak separation, obtains the height of each peak was calculated the ratio . In addition, when the surface roughness was evaluated by a stylus type surface roughness meter, it was Rmax 0.3 μm or less.

【0030】この膜の摺動特性を評価するために、炭素
膜が形成された超硬合金ディスクと先端部が曲率半径R
=4.763mmのアルミニウム製のピンを用いてピン
オンディスク法により摺動試験を行った。摺動条件は荷
重19.6N、摺動速度2m/sec、室温、大気中、
無潤滑で約45時間試験連続して試験を行った。この試
験により摩擦係数、比摩耗量の評価を行った。比較のた
めに炭素膜を有しない超硬合金ディスクでも同様な摺動
試験を行った。
In order to evaluate the sliding characteristics of this film, the cemented carbide disk on which the carbon film was formed and the tip portion had a radius of curvature R
= 4.763 mm, and a sliding test was performed by a pin-on-disk method. The sliding conditions were a load of 19.6 N, a sliding speed of 2 m / sec, room temperature, air,
The test was performed continuously for about 45 hours without lubrication. By this test, the friction coefficient and the specific wear amount were evaluated. For comparison, a similar sliding test was performed on a cemented carbide disk having no carbon film.

【0031】図3に摺動特性(距離)に対する摩擦係数
の変化の様子を示した。炭素膜を被覆しない超硬合金デ
ィスクでは摩擦係数が0.6〜0.8の間を推移してお
りバラツキも大きい。それに対して、本発明に基づき炭
素膜を形成したディスクは、摺動初期から0.1以下の
低い摩擦係数を示し、ほとんどバラツキもないことが判
る。また摺動痕を観察すると被覆しないディスクはピン
で削り取られた痕跡があり、その深さは約5μmであっ
た。また摺動痕全体にべっとりアルミニウムが付着して
いるのが観察された。それに対して炭素膜を被覆したデ
ィスクはアルミニウムピンではほとんど削り取られず、
深さは2μm程度であり、アルミニウムの溶着もほとん
ど見られなかった。摺動痕を表面粗さ計で測定した結果
を図4に示した。このようにして求めた摺動痕の断面積
より炭素膜および超硬合金の比摩耗量を見積もることが
できる。その結果、炭素膜を形成したディスクではアル
ミニウムピンの重量減少は0.012g、比摩耗量は
2.0×10-17 2 /Nであったのに対して、炭素膜
を形成しないディスクではアルミニウムピンの重量減少
量が0.096g、比摩耗量は2.0×10-15 2
Nであり、上記方法により作成した炭素膜は超硬合金に
比較して100倍もの耐摩耗性を有することがわかっ
た。
FIG. 3 shows how the friction coefficient changes with the sliding characteristics (distance). The friction coefficient of the cemented carbide disk not coated with the carbon film varies between 0.6 and 0.8, and the dispersion is large. On the other hand, it can be seen that the disk on which the carbon film is formed according to the present invention shows a low friction coefficient of 0.1 or less from the initial stage of sliding, and there is almost no variation. When the sliding trace was observed, the disc not covered had a trace scraped off with a pin and had a depth of about 5 μm. Further, it was observed that aluminum was adhered to the entire sliding mark. In contrast, discs coated with carbon film are hardly scraped off with aluminum pins,
The depth was about 2 μm, and almost no aluminum welding was observed. FIG. 4 shows the results of measuring the sliding marks with a surface roughness meter. The specific wear of the carbon film and the cemented carbide can be estimated from the cross-sectional area of the sliding trace obtained in this manner. As a result, the weight loss of the aluminum pin was 0.012 g and the specific wear amount was 2.0 × 10 −17 m 2 / N in the disk with the carbon film formed thereon, whereas the disk without the carbon film formed the disk with the specific wear amount of 2.0 × 10 −17 m 2 / N. The weight loss of the aluminum pin is 0.096 g, and the specific wear is 2.0 × 10 −15 m 2 /
N, and it was found that the carbon film formed by the above method had abrasion resistance 100 times that of the cemented carbide.

【0032】次に、孔内面を表面粗さRmax0.1μ
m以下に鏡面仕上げ加工した孔径が0.4mmの窒化珪
素製のアルミニウム伸線用ダイスの孔内面に上記炭素膜
を2μm成膜した。成膜時はガスの流通をよくするため
に基板ホルダーからダイスを浮かせて保持し、被覆の必
要のない箇所には金属板によりマスキングを行い、炭素
膜が被覆しないようにした。成膜後のダイスは表面が平
滑で且つ剥離のない硬質炭素膜が一様に被覆されてい
た。同ロットのダイスを破断し、炭素膜の表面粗さを測
定したところ、Rmax0.3μmであり、ダイスの仕
様を十分に満足していた。またSEMにより膜厚分布を
調べたところ、±10%以内でほぼ均一であることが確
認された。
Next, the inner surface of the hole is made to have a surface roughness Rmax of 0.1 μm.
The above carbon film was formed in a thickness of 2 μm on the inner surface of a hole of a silicon nitride aluminum wire drawing die having a hole diameter of 0.4 mm, which was mirror-finished to a diameter of 0.4 mm or less. At the time of film formation, the dice were floated and held from the substrate holder in order to improve the gas flow, and portions not requiring coating were masked with a metal plate so that the carbon film was not coated. The die after film formation had a smooth surface and was uniformly coated with a hard carbon film without peeling. The dies of the same lot were broken, and the surface roughness of the carbon film was measured. The Rmax was 0.3 μm, which sufficiently satisfied the specifications of the dies. When the film thickness distribution was examined by SEM, it was confirmed that the film thickness was almost uniform within ± 10%.

【0033】このダイスを用いて直径0.4mmのアル
ミニウムの伸線加工を行ったところ、40万mのアルミ
ニウムの伸線を行うことができた。比較のために従来の
超硬合金製の同形状のダイスで同様に伸線加工を行った
ところ、8万mの伸線で摩耗により劣化した。
When a die having a diameter of 0.4 mm was drawn using this die, it was possible to draw a wire having a length of 400,000 m. For comparison, when wire drawing was performed in the same manner using a conventional die of the same shape made of cemented carbide, the wire was 80,000 m drawn and deteriorated due to wear.

【0034】上記の試験を、硬質炭素膜を種々の条件で
被覆する以外は、上記と全く同様な方法により伸線加工
を行った。なお、伸線加工はアルミニウム以外に銅でも
行った。なお、試料No.1〜No.11についてはいずれ
もECRプラズマCVD法により成膜し、試料No.13
は通常のマイクロ波プラズマCVD法、試料No.14は
熱フィラメント法によりフィラメントをダイスの下部に
設置して成膜を行った。その結果を表1に示した。
In the above test, wire drawing was performed in the same manner as described above, except that the hard carbon film was coated under various conditions. Note that the wire drawing was performed with copper in addition to aluminum. Samples No. 1 to No. 11 were all formed by the ECR plasma CVD method.
Is a conventional microwave plasma CVD method, and a sample No. 14 is formed by placing a filament below the die by a hot filament method. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1によれば、本発明の条件を満たす試料
No.1〜5はいずれもアルミニウム線、銅線の伸線にお
いて、従来の超硬合金ダイス(試料No.12)の数倍の
寿命を得ていることがわかる。また、試料No.6、7は
表面粗さRmaxが0.8μmよりも大きいためにスカ
イフ法により鏡面仕上げしなければ試料No.1〜5と同
等の特性が得られなかった。
According to Table 1, samples Nos. 1 to 5 satisfying the conditions of the present invention were several times as many as the conventional hard metal dies (sample No. 12) in drawing aluminum and copper wires. It can be seen that the life is obtained. Samples Nos. 6 and 7 had surface roughness Rmax greater than 0.8 μm, so that the same characteristics as samples Nos. 1 to 5 could not be obtained unless mirror-finished by the skiff method.

【0037】また、H2 /H1 比率において、比率が
0.35よりも小さい試料No.6、711は、いずれも
膜の結晶性が高く、膜を構成する粒子が大きく、膜の表
面粗さが大きくなった。また比率が20よりも大きい試
料No.10では、従来品の試料No.12に比較してダイ
ス寿命は若干向上したが、膜の磨滅が認められた。
In Samples Nos. 6 and 711, in which the ratio of H 2 / H 1 was smaller than 0.35, the crystallinity of the film was high, the particles constituting the film were large, and the surface roughness of the film was high. Has grown. In the case of sample No. 10 having a ratio of more than 20, the die life was slightly improved as compared with the conventional sample No. 12, but the film was worn.

【0038】さらに、比較のためにマイクロ波プラズマ
CVD法による試料No.13、および熱フィラメントC
VD法による試料No.14では、膜自体はダイヤモンド
よりなるものの、ダイスの外面および孔内面の外側に近
い部分のみに膜が形成され、内面にはダイスとして使用
に耐えうる炭素膜が形成されなかった。
For comparison, a sample No. 13 and a hot filament C by microwave plasma CVD were used for comparison.
In the sample No. 14 by the VD method, although the film itself was made of diamond, the film was formed only on the outer surface of the die and the portion near the outer surface of the hole inner surface, and no carbon film that could be used as a die was formed on the inner surface. Was.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明によれば孔径
の小さい伸線用ダイスに対して硬質で、成膜後の表面粗
さの小さい炭素膜を均一に形成することができるととも
に、AlやCu等の軟質な金属の伸線加工においてダイ
スに対して溶着等が生じずにダイスの長寿命化を図るこ
とができる。
As described above in detail, according to the present invention, it is possible to uniformly form a carbon film which is harder than a wire drawing die having a small hole diameter and has a small surface roughness after film formation. In the wire drawing of a soft metal such as Al or Cu, the life of the die can be extended without causing welding or the like to the die.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の伸線用ダイスの一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a wire drawing die of the present invention.

【図2】本発明において用いられる成膜装置の概略図で
ある。
FIG. 2 is a schematic view of a film forming apparatus used in the present invention.

【図3】摺動時間(距離)に対する摩擦係数の変化を示
した図である。
FIG. 3 is a diagram showing a change in a friction coefficient with respect to a sliding time (distance).

【図4】摺動痕の表面粗さを示す図であり、(a)が超
硬合金表面に硬質炭素膜を形成したもの、(b)が超硬
合金のみからなるものである。
4A and 4B are diagrams showing the surface roughness of a sliding mark, in which (a) shows a hard carbon film formed on a cemented carbide surface, and (b) shows only a cemented carbide.

【符号の説明】[Explanation of symbols]

1 反応炉 2 基材 3 マイクロ波発生装置 4 電磁コイル 5 ガス導入炉 A ダイス孔 a ダイス孔径 DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Substrate 3 Microwave generator 4 Electromagnetic coil 5 Gas introduction furnace A Die hole a Dice hole diameter

フロントページの続き (56)参考文献 特開 平3−23010(JP,A) 特開 平3−114610(JP,A) 特開 平2−155520(JP,A) 特開 平2−232106(JP,A) 特開 平3−153874(JP,A) 特開 平5−123908(JP,A) (58)調査した分野(Int.Cl.6,DB名) B21C 1/00 B21C 3/00 C04B 41/00 C23C 16/00Continuation of the front page (56) References JP-A-3-23010 (JP, A) JP-A-3-114610 (JP, A) JP-A-2-155520 (JP, A) JP-A-2-232106 (JP) JP-A-3-153874 (JP, A) JP-A-5-123908 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B21C 1/00 B21C 3/00 C04B 41/00 C23C 16/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】孔径が1mm以下の伸線用ダイスの少なく
とも孔内面に、ダイヤモンドと非晶質炭素から構成さ
れ、結晶の平均粒径が1μm以下、ラマン分光スペクト
ル分析において1333±10cm-1に存在するピーク
をH1 、1500±100cm-1に存在するピークをH
2 とした時のH2 /H1 で表される強度比が0.35乃
至20であり、且つ表面粗さ(Rmax)が0.8μm
以下の硬質炭素膜を被覆したことを特徴とする伸線用ダ
イス。
1. A drawing die having a pore size of 1 mm or less, comprising at least the inner surface of a hole made of diamond and amorphous carbon, having an average crystal grain size of 1 μm or less, and having a mean particle size of 1333 ± 10 cm -1 in Raman spectroscopy. The peak present is H 1 , the peak present at 1500 ± 100 cm −1 is H
The intensity ratio represented by H 2 / H 1 is 0.35 to 20 and the surface roughness (Rmax) is 0.8 μm.
A wire drawing die coated with the following hard carbon film.
【請求項2】内部に、孔径が1mm以下の伸線用ダイス
が設置された反応炉内に炉内圧力1torr以下の条件
にて炭素含有ガスを導入し、マイクロ波によりプラズマ
を発生させるとともに、該プラズマが発生した領域に磁
界を作用させることにより電子サイクロトロン共鳴プラ
ズマを生ぜしめて、前記伸線用ダイスの孔内面に、実質
的にダイヤモンドと非晶質炭素から構成され、結晶の平
均粒径が1μm以下、ラマン分光スペクトル分析におい
て、1333±10cm-1に存在するピークをH1 、1
500±100cm-1に存在するピークをH2 とした時
のH2 /H1 で表される強度比が0.35乃至20であ
り、且つ表面粗さ(Rmax)が0.8μm以下の硬質
炭素膜を被覆したことを特徴とする伸線用ダイスの製造
方法。
2. A carbon-containing gas is introduced into a reaction furnace in which a wire drawing die having a hole diameter of 1 mm or less is installed at a furnace pressure of 1 torr or less, and plasma is generated by microwaves. An electron cyclotron resonance plasma is generated by applying a magnetic field to a region where the plasma is generated, and the inner surface of the hole of the wire drawing die is substantially composed of diamond and amorphous carbon. The peak existing at 1333 ± 10 cm −1 in Raman spectroscopy at 1 μm or less was H 1 , 1
When the peak existing at 500 ± 100 cm -1 is H 2 , the intensity ratio represented by H 2 / H 1 is 0.35 to 20 and the surface roughness (Rmax) is 0.8 μm or less. A method for producing a wire drawing die, wherein the die is coated with a carbon film.
JP3315680A 1991-11-29 1991-11-29 Die for wire drawing and manufacturing method thereof Expired - Fee Related JP2842720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3315680A JP2842720B2 (en) 1991-11-29 1991-11-29 Die for wire drawing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3315680A JP2842720B2 (en) 1991-11-29 1991-11-29 Die for wire drawing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05146820A JPH05146820A (en) 1993-06-15
JP2842720B2 true JP2842720B2 (en) 1999-01-06

Family

ID=18068270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3315680A Expired - Fee Related JP2842720B2 (en) 1991-11-29 1991-11-29 Die for wire drawing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2842720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159775A1 (en) * 2015-12-30 2017-06-30 Trafileria Lombarda Spa STRUCTURE OF SUPPLY CHAIN IN PARTICULAR FOR THE COLD DRAWING OF STAINLESS STEELS AND SPECIAL ALLOYS
DE102016122024A1 (en) * 2016-11-16 2018-05-17 Euromicron Werkzeuge Gmbh Nozzle and method of manufacture

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604717B2 (en) * 1994-03-24 2004-12-22 東北特殊鋼株式会社 Hard coating tool for plastic working
ATE229386T1 (en) * 2000-02-01 2002-12-15 Nexans METHOD FOR PRODUCING METAL TUBES
FR2847911B1 (en) * 2002-12-02 2006-04-28 Lorraine Inst Nat Polytech PROCESS FOR REINFORCING THE DETOUCHING HOLE OF A HOLLOW BODY BY A DIAMOND SYNTHESIS TECHNIQUE, REACTOR FOR IMPLEMENTATION AND HOLLOW BODY OBTAINED
US7883775B2 (en) 2003-07-31 2011-02-08 A.L.M.T. Corp. Diamond film coated tool and process for producing the same
KR20080047917A (en) * 2006-11-27 2008-05-30 삼성에스디아이 주식회사 A carbon-based material for an electron emission source, an electron emission source comprising the same, an electron emission device comprising the electron emission source and a method for preparing the electron emission source
EP2647444B1 (en) * 2007-01-19 2017-03-29 Sumitomo Electric Industries, Ltd. Wire drawing die
JP4593684B1 (en) * 2010-02-22 2010-12-08 昭和電工株式会社 Drawing die, method for producing the same and drawing method
DE102017103169A1 (en) * 2016-12-22 2018-06-28 Euromicron Werkzeuge Gmbh Nozzle and method of manufacture
WO2018123513A1 (en) * 2016-12-26 2018-07-05 株式会社アライドマテリアル Atypically-shaped diamond die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159775A1 (en) * 2015-12-30 2017-06-30 Trafileria Lombarda Spa STRUCTURE OF SUPPLY CHAIN IN PARTICULAR FOR THE COLD DRAWING OF STAINLESS STEELS AND SPECIAL ALLOYS
DE102016122024A1 (en) * 2016-11-16 2018-05-17 Euromicron Werkzeuge Gmbh Nozzle and method of manufacture

Also Published As

Publication number Publication date
JPH05146820A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
JP2842720B2 (en) Die for wire drawing and manufacturing method thereof
JP3435258B2 (en) Manufacturing method of synthetic diamond film
JPH07172988A (en) Cvd diamond thin film with smooth surface and its preparation
JPH1192935A (en) Wear resistant hard carbon coating
CN111218663A (en) Diamond-like protective coating and preparation method thereof
CN108728816A (en) Wire-drawing die and preparation method thereof with a variety of coatings
JPH1192934A (en) Hard carbon thick coating and its production
JP2801451B2 (en) Jig for metal processing
JP3291105B2 (en) Hard carbon film and hard carbon film coated member
JPH01230496A (en) Novel diamond carbon membrane and its production
US6500488B1 (en) Method of forming fluorine-bearing diamond layer on substrates, including tool substrates
JPS62138395A (en) Preparation of diamond film
CN113403602B (en) PCBN cutter with nano-diamond film coating on surface and preparation method thereof
Jackson et al. Manufacture of diamond-coated cutting tools for micromachining applications
JP2813077B2 (en) Sliding member
JP2002020869A (en) Method for depositing diamondlike carbon film and surface treating method therefor
JP3130094B2 (en) Mold with diamond-like protective film
JP3205363B2 (en) Mold with diamond-like protective film
JP3245320B2 (en) Hard carbon film and hard carbon film coated member
JP3273106B2 (en) Hard carbon film coated member and method of manufacturing the same
JP3548337B2 (en) Metal plastic working parts
JP4116144B2 (en) Manufacturing method of hard carbon coating member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees