JP4747593B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4747593B2
JP4747593B2 JP2005032371A JP2005032371A JP4747593B2 JP 4747593 B2 JP4747593 B2 JP 4747593B2 JP 2005032371 A JP2005032371 A JP 2005032371A JP 2005032371 A JP2005032371 A JP 2005032371A JP 4747593 B2 JP4747593 B2 JP 4747593B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
fatty acid
phenol
trimethylolpropane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005032371A
Other languages
Japanese (ja)
Other versions
JP2006219543A (en
Inventor
大介 廣兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005032371A priority Critical patent/JP4747593B2/en
Publication of JP2006219543A publication Critical patent/JP2006219543A/en
Application granted granted Critical
Publication of JP4747593B2 publication Critical patent/JP4747593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

近年、電子機器の高度化、軽薄短小化が求められる中、半導体素子の高集積化、表面実装化が進んでいる。これに伴い、半導体封止用エポキシ樹脂組成物への要求は、益々過酷なものとなっているのが現状である。特に半導体装置の表面実装に際しては、吸湿した水分が半田処理時の昇温過程で急激に膨張し、半導体素子とエポキシ樹脂組成物の硬化物との界面における密着性を低下させ、半導体装置の信頼性を損なうといった問題が生じている。このためエポキシ樹脂組成物の硬化物と半導体素子間の密着性の改善、ひいては耐半田性の向上は、封止材料にとって重要な課題となっている。   In recent years, as electronic devices have become more sophisticated and lighter, thinner and smaller, semiconductor devices have been highly integrated and surface-mounted. In connection with this, the present condition is that the demand for the epoxy resin composition for semiconductor encapsulation becomes increasingly severe. In particular, when surface mounting a semiconductor device, the moisture that has been absorbed rapidly expands during the temperature rising process during the soldering process, reducing the adhesion at the interface between the semiconductor element and the cured product of the epoxy resin composition. There is a problem of losing sex. For this reason, the improvement of the adhesiveness between the hardened | cured material of an epoxy resin composition and a semiconductor element and by extension, the improvement of solder resistance have become an important subject for a sealing material.

一般に、耐半田性を向上させる手段としては、(1)低粘度の樹脂成分を用いることで無機質充填材の高充填化を可能にし、エポキシ樹脂組成物の硬化物を低熱膨張化、低吸湿化させる(例えば、特許文献1参照。)、(2)吸湿性が少なく可撓性を有する樹脂を使用する等が挙げられる。しかしながら、低粘度成分であるビフェニル型エポキシ樹脂等の結晶性エポキシ樹脂とフェノール樹脂系の硬化剤を用いる場合、硬化物の架橋密度が低くなり、機械的強度や熱時弾性率が低下する。このため、硬化物が金型から離型する際に金型表面に付着したり、硬化物に亀裂や欠陥が生じたりするといった問題が生じることがある。また低吸湿性で可撓性を有するフェノールアラルキル樹脂等を用いる場合、耐半田性は向上するものの熱時の剛性に欠け、硬化速度も遅いため金型からの離型性に劣るという問題があった。   In general, as means for improving solder resistance, (1) it is possible to increase the filling of inorganic fillers by using a low viscosity resin component, and the cured product of the epoxy resin composition has low thermal expansion and low moisture absorption. (For example, refer to Patent Document 1), (2) use of a resin having low hygroscopicity and flexibility. However, when a crystalline epoxy resin such as a biphenyl type epoxy resin which is a low-viscosity component and a phenol resin-based curing agent are used, the crosslinking density of the cured product is lowered, and the mechanical strength and the elastic modulus during heat are lowered. For this reason, when hardened | cured material releases from a metal mold | die, the problem that it adheres to a metal mold | die surface or a crack and a defect arise in hardened | cured material may arise. In addition, when using phenol aralkyl resin having low hygroscopicity and flexibility, there is a problem that although solder resistance is improved, rigidity at the time of heating is lacking and the curing speed is slow, so that the releasability from the mold is poor. It was.

上記問題点に対して、離型性を向上させる手段としては離型剤を多量に配合する方法が挙げられる。しかしながら多量の離型剤の配合は金型からの離型性を向上させる一方で、半導体装置内部の半導体素子やそれを搭載するリードフレームとエポキシ樹脂組成物の硬化物との間の密着性を低下させる。また、離型性が優れるという点で従来用いられてきたポリエチレンワックスは、結晶性が高く、融点が130℃程度であり、各成分を加熱混練してエポキシ樹脂組成物を製造する時に十分に溶融せず、分散性に劣るといった問題があり、また十分に融けずに残ったポリエチレンの粒子が流動性を低下させるおそれがあった。このため半導体装置における耐半田性等の信頼性を低下させずに、流動性、離型性、ひいては連続成形性等の成形性に優れた半導体封止用エポキシ樹脂組成物の開発が望まれている。   As a means for improving the releasability with respect to the above problems, a method of blending a large amount of a release agent can be mentioned. However, while a large amount of the release agent improves the mold release from the mold, the adhesion between the semiconductor element inside the semiconductor device and the lead frame on which it is mounted and the cured epoxy resin composition is improved. Reduce. In addition, polyethylene wax that has been conventionally used in terms of excellent releasability has high crystallinity and a melting point of about 130 ° C., and is sufficiently melted when an epoxy resin composition is produced by heating and kneading each component. In other words, there is a problem that the dispersibility is inferior, and there is a possibility that the polyethylene particles remaining without being sufficiently melted may lower the fluidity. For this reason, development of an epoxy resin composition for semiconductor encapsulation excellent in fluidity, releasability, and in turn, moldability such as continuous moldability without reducing reliability such as solder resistance in a semiconductor device is desired. Yes.

特開2002−348352号公報(第2〜5頁)JP 2002-348352 A (pages 2 to 5)

本発明は、半導体装置における耐半田性等の信頼性を低下させずに、流動性、離型性、連続成形性に優れた半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置を提供するものである。   The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in fluidity, releasability, and continuous moldability without reducing reliability such as solder resistance in a semiconductor device, and a semiconductor device using the same To do.

本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機質
充填材、及び(E)トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルを必須成分とする半導体封止用エポキシ樹脂組成物であって、前記(A)エポキシ樹脂がビフェニル型エポキシ樹脂であり、前記(B)フェノール樹脂がフェニレン骨格を有するフェノールアラルキル樹脂であることを特徴とする半導体封止用エポキシ樹脂組成物、
[2] 上記(E)トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸
トリエステルが、全エポキシ樹脂組成物中に0.02〜0.5重量%含まれる第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3] 第[1]項又は[2]項記載の半導体封止用エポキシ樹脂組成物を用いて半導体
素子を封止してなることを特徴とする半導体装置、
である。

The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, and (E) fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms An epoxy resin composition for encapsulating semiconductors, wherein the (A) epoxy resin is a biphenyl type epoxy resin, and the (B) phenol resin is a phenol aralkyl resin having a phenylene skeleton. An epoxy resin composition for semiconductor encapsulation,
[2] Item [1], wherein (E) the fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms is contained in the total epoxy resin composition in an amount of 0.02 to 0.5% by weight. Epoxy resin composition for semiconductor encapsulation,
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to the item [1] or [2].
It is.

本発明のエポキシ樹脂組成物は、流動性、離型性に優れ、その結果として連続成形性等の成形性に優れることから半導体装置の生産性向上に寄与し、産業上有用である。   The epoxy resin composition of the present invention is excellent in fluidity and releasability and, as a result, excellent in moldability such as continuous moldability, contributes to improving the productivity of semiconductor devices and is industrially useful.

本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、無機質充填材を主成分とするエポキシ樹脂組成物に、トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルを配合することにより、半導体装置における耐半田性等の信頼性を低下させずに、流動性、離型性、連続成形性に優れた半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置が得られるものである。
以下、本発明について詳細に説明する。
By blending a fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms into an epoxy resin composition mainly composed of an epoxy resin, a phenol resin, a curing accelerator, and an inorganic filler. An epoxy resin composition for semiconductor encapsulation excellent in fluidity, releasability, and continuous moldability and a semiconductor device using the same can be obtained without reducing reliability such as solder resistance in the semiconductor device. is there.
Hereinafter, the present invention will be described in detail.

本発明で用いられるエポキシ樹脂は、分子中に2個以上のエポキシ基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられるが、これらに限定されるものではない。これらのエポキシ樹脂は単独で用いても2種類以上併用しても構わない。これらの内で特に耐半田性が求められる場合、常温では結晶性の固体であるが、融点以上では極めて低粘度の液状となり、無機質充填材を高充填化できるビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等が好ましい。その他のエポキシ樹脂も極力粘度の低いものを使用することが望ましい。しかし低粘度のエポキシ樹脂を用いることにより無機質充填材を高充填化できるが、架橋密度が低くなるため離型性に難点があり、後述の離型剤を用いることにより離型性を改善できる。   The epoxy resin used in the present invention is a monomer, oligomer, or polymer in general having two or more epoxy groups in the molecule. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, bisphenol type Epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, alkyl modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin, etc. However, it is not limited to these. These epoxy resins may be used alone or in combination of two or more. Among these, when solder resistance is particularly required, it is a crystalline solid at room temperature, but becomes a very low-viscosity liquid above the melting point, and can be highly filled with inorganic fillers. Biphenyl type epoxy resins and bisphenol type epoxy resins Stilbene type epoxy resins are preferred. It is desirable to use other epoxy resins having a viscosity as low as possible. However, although an inorganic filler can be highly filled by using a low-viscosity epoxy resin, there is a difficulty in releasability because the crosslinking density is lowered, and releasability can be improved by using a release agent described later.

本発明で用いられるフェノール樹脂は、分子中に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般であり、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル(フェニレン、ビフェニレン骨格を有する)樹脂、ナフトールアラルキル(フェニレン、ビフェニレン骨格を有する)樹脂等が挙げられるが、これらに限定されるものではない。これらのフェノール樹脂は単独で用いても2種類以上併用しても構わない。これらの内で特に耐半田性が求められる場合、エポキシ樹脂と同様に低粘度の樹脂が無機質充填材の高充填化でき、更に可撓性、低吸湿化のためには、フェノールアラルキル(フェニレン骨格を有する)樹脂の使用が好ましい。低粘度や可撓性を有するフェノール樹脂は、架橋密度が低くなるため離型性に難点があり、後述の離型剤を用いることにより離型性を改善できる。
本発明に用いられる全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比としては、成形性、耐半田性等の点から0.5〜2が好ましく、特に0.7〜1.3が望ましい。
The phenol resin used in the present invention is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in the molecule. For example, a phenol novolak resin, a cresol novolak resin, a triphenolmethane resin, a terpene-modified phenol resin, Examples include, but are not limited to, dicyclopentadiene-modified phenol resins, phenol aralkyl (phenylene and biphenylene skeleton) resins, and naphthol aralkyl (phenylene and biphenylene skeleton) resins. These phenolic resins may be used alone or in combination of two or more. Of these, when solder resistance is particularly required, a low-viscosity resin can be filled with an inorganic filler in the same manner as an epoxy resin, and phenol aralkyl ( phenylene skeleton) is used for flexibility and low moisture absorption. Use of a resin is preferred. The phenol resin having low viscosity and flexibility has a difficulty in releasability because of its low crosslinking density, and the releasability can be improved by using a release agent described later.
The equivalent ratio of the epoxy groups of all epoxy resins and the phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, particularly 0.7 to 1. 3 is desirable.

本発明で用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えばトリエチルアミン、トリブチルアミン、ベンジルジメチルアミン、α−メチルベンジルアミン等の3級アミン系化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、1,5−ジアザビシクロ(4,3,0)ノネン、7−メチル−1,5,7−トリアザビシクロ(4,4,0)デセン−5等のアミジン系化合物、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン、トリス(4−アルキルフェニル)ホスフィン、トリアルキルホスフィン、テトラフェニルホスホニウム、テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ウンデシルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は単独で用いても2種類以上併用しても構わない。   The curing accelerator used in the present invention refers to one that can serve as a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin, for example, a tertiary amine system such as triethylamine, tributylamine, benzyldimethylamine, α-methylbenzylamine, etc. Compound, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diazabicyclo (4,3,0) nonene, 7-methyl-1,5,7-triazabicyclo (4,4, 0) Amidine compounds such as decene-5, organic compounds such as triphenylphosphine, tris (2,6-dimethoxyphenyl) phosphine, tris (4-alkylphenyl) phosphine, trialkylphosphine, tetraphenylphosphonium, tetraphenylborate salts Phosphorus compounds, 2-methylimidazole, 2-phenylimidazole 2-phenyl-4-methylimidazole, 2-imidazole compounds of undecyl imidazole and the like, but not limited thereto. These curing accelerators may be used alone or in combination of two or more.

本発明で用いられる無機質充填材としては、例えば非結晶性シリカ、結晶性シリカ、アルミナ、酸化チタン、酸化マグネシウム、窒化珪素、窒化アルミニウム、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム等が挙げられるが、これらに限定されるものではない。これらの無機質充填材は単独で用いても2種類以上併用しても構わない。無機質充填材の形状としては、球状、破砕状等のものを選択可能であるが、配合量を高め、かつエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、主に球状のものが好ましい。更に配合量を高めるためには、無機質充填材の粒度分布がより広くなるように調整することが望ましい。無機質充填材の配合量としては、機械的強度、低吸湿性、低熱膨張性といった点から全エポキシ樹脂組成物中70〜95重量%が好ましい。   Examples of the inorganic filler used in the present invention include amorphous silica, crystalline silica, alumina, titanium oxide, magnesium oxide, silicon nitride, aluminum nitride, calcium silicate, calcium carbonate, and magnesium carbonate. It is not limited to. These inorganic fillers may be used alone or in combination of two or more. As the shape of the inorganic filler, a spherical shape, a crushed shape, or the like can be selected. However, in order to increase the blending amount and suppress the increase in the melt viscosity of the epoxy resin composition, a spherical shape is mainly preferable. . In order to further increase the blending amount, it is desirable to adjust so that the particle size distribution of the inorganic filler becomes wider. The blending amount of the inorganic filler is preferably 70 to 95% by weight in the total epoxy resin composition in terms of mechanical strength, low hygroscopicity, and low thermal expansion.

本発明で用いられるトリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルは、エポキシ樹脂組成物に充分な流動性を付与し、更に離型性を向上する機能を有している。トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルは、トリメチロールプロパンと炭素数18〜36の飽和脂肪酸とのエステル化反応によって得られる。通常、エステル化反応は両成分が溶解しうる溶媒中にて,バラトルエンスルホン酸などの有機酸、硫酸、塩酸などの無機酸、アルカリ、テトラアルコキシチタン等の触媒を用いて行うのが一般的であるが、必ずしもこれに限定されるものではない。また、トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルとしては、トリメチロールプロパンのトリモンタン酸エステル等が挙げられるが、これらはクラリアントジャパン株式会社より市販されており市場より容易に入手できる。
更に、トリメチロールプロパンのトリステアリン酸エステルは、BASF Japan Ltd.等より市販されているトリメチロールプロパン、及び日本油脂株式会社等より市販されているステアリン酸を用い、前述エステル化反応を用いて容易に合成することも可能である。
エステル化に用いる飽和脂肪酸が、炭素数17以下では十分な離型性が得られないため好ましくない。炭素数37以上では分子量が大き過ぎるため流動性が低下したり、過度に染み出すことにより金型汚れの原因となるので好ましくない。またモノエステル、ジエステルでは、残存する水酸基の影響によってエポキシ樹脂組成物の硬化物の耐湿性が低下し、その結果として耐半田性に悪影響を及ぼすので好ましくない。なお、本発明での飽和脂肪酸の炭素数とは、飽和脂肪酸中のアルキル基とカルボキシル基の炭素数を合計したものを指す。
The fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms used in the present invention has a function of imparting sufficient fluidity to the epoxy resin composition and further improving releasability. . A fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms is obtained by an esterification reaction of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms. Usually, the esterification reaction is carried out in a solvent in which both components can be dissolved, using an organic acid such as valatoluene sulfonic acid, an inorganic acid such as sulfuric acid and hydrochloric acid, a catalyst such as alkali and tetraalkoxytitanium. However, it is not necessarily limited to this. Examples of the fatty acid triester of trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms include trimontanic acid ester of trimethylolpropane, which are commercially available from Clariant Japan Co., Ltd. Available.
Furthermore, tristearol ester of trimethylolpropane can be easily obtained by using the above esterification reaction using trimethylolpropane commercially available from BASF Japan Ltd. and stearic acid commercially available from Nippon Oil & Fats Co., Ltd. It is also possible to synthesize.
If the saturated fatty acid used for esterification is 17 or less carbon atoms, it is not preferable because sufficient releasability cannot be obtained. If the number of carbon atoms is 37 or more, the molecular weight is too large, so that the fluidity is lowered or excessively exuded, which causes mold contamination, which is not preferable. Monoesters and diesters are not preferable because the moisture resistance of the cured product of the epoxy resin composition is lowered by the influence of the remaining hydroxyl groups, and as a result, the solder resistance is adversely affected. In addition, the carbon number of the saturated fatty acid in the present invention refers to the sum of the carbon number of the alkyl group and the carboxyl group in the saturated fatty acid.

本発明では、トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルを用いることによる特徴を損なわない範囲で他の離型剤を併用することもできる。例えばカルナバワックス、ライスワックス等の天然ワックス、ポリエチレンワックス、酸化ポリエチレンワックス、アミドワックス等の合成ワックス、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸の金属塩類等が挙げられる。   In this invention, another mold release agent can also be used together in the range which does not impair the characteristic by using the fatty acid triester of a trimethylol propane and a C18-C36 saturated fatty acid. Examples thereof include natural waxes such as carnauba wax and rice wax, synthetic waxes such as polyethylene wax, oxidized polyethylene wax and amide wax, and metal salts of higher fatty acids such as zinc stearate and calcium stearate.

本発明のエポキシ樹脂組成物は、(A)〜(E)成分を必須成分とするが、これ以外に必要に応じてアミノシラン、エポキシシラン、メルカプトシラン等のシランカップリング剤、臭素化エポキシ樹脂、金属水酸化物、無機リン、有機リン系化合物等の難燃剤、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の難燃助剤、カーボンブラック、ベンガラ等の着色剤、ハイドロタルサイト系、ビスマス系等のイオン補捉剤、シリコーンオイル、シリコーンゴム、変性ニトリルゴム、変性ポリブタジエンゴム等の低応力剤、酸化防止剤等の各種添加剤を適宜配合してもよい。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分及びその他の添加剤等をミキサー等で混合後、加熱ニーダ、熱ロール、押し出し機等を用いて加熱混練を行い、次いで冷却、粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises the components (A) to (E) as essential components, but in addition to this, a silane coupling agent such as aminosilane, epoxysilane, mercaptosilane, brominated epoxy resin, Flame retardants such as metal hydroxides, inorganic phosphorus and organic phosphorus compounds, flame retardant aids such as antimony trioxide, antimony tetroxide and antimony pentoxide, colorants such as carbon black and bengara, hydrotalcite, bismuth Various additives such as a low-stress agent such as a silicone oil, silicone rubber, modified nitrile rubber, and modified polybutadiene rubber, and an antioxidant may be appropriately blended.
The epoxy resin composition of the present invention is prepared by mixing the components (A) to (E) and other additives with a mixer or the like, then performing heat kneading using a heating kneader, a heat roll, an extruder, etc., and then cooling, It is obtained by grinding.
In order to seal an electronic component such as a semiconductor element by using the epoxy resin composition of the present invention and manufacture a semiconductor device, it may be cured by a conventional molding method such as transfer molding, compression molding, injection molding, or the like. .

以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000HK、融点105℃、エポキシ当量191) 6.4重量部
フェノールアラルキル樹脂(三井化学(株)製、XLC−LL、軟化点79℃、水酸基当量174) 5.8重量部
1、8−ジアザビシクロ(5、4、0)ウンデセン−7(以下、DBUと略記)
0.2重量部
球状シリカ(平均粒径20μm) 87.0重量部
化合物1:トリメチロールプロパンとモンタン酸から成るトリエステル
0.3重量部
カーボンブラック 0.3重量部
をミキサーを用いて混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練し、得られた混練物シートを冷却後粉砕して、エポキシ樹脂組成物とした。得られたエポキシ樹脂組成物の特性を以下の方法で評価した。結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. The blending ratio is parts by weight.
Example 1
Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000HK, melting point 105 ° C., epoxy equivalent 191) 6.4 parts by weight Phenol aralkyl resin (manufactured by Mitsui Chemicals, Inc., XLC-LL, softening point 79 ° C., hydroxyl equivalent) 174) 5.8 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter abbreviated as DBU)
0.2 parts by weight Spherical silica (average particle size 20 μm) 87.0 parts by weight Compound 1: Triester composed of trimethylolpropane and montanic acid
0.3 parts by weight Carbon black 0.3 parts by weight was mixed using a mixer, then kneaded 20 times using a biaxial roll having surface temperatures of 95 ° C. and 25 ° C., and the resulting kneaded material sheet was cooled. An epoxy resin composition was obtained by pulverization. The characteristics of the obtained epoxy resin composition were evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
離型荷重:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間90秒で直径15mm、厚さ1.5mmの円盤状の成形品を10ショット連続で成形し、10ショット目の成形品を金型から抜き出す際に必要な荷重をプッシュ/プルゲージにて測定した。尚、測定は各品番5回づつ行い、その平均値を離型荷重の値とした。単位はN。
連続成形性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.3MPa、硬化時間60秒で160pQFP(24mm×24mm×1.4mm厚さ)を連続で成形した。未充填、ゲート詰まり、エアベント詰まり、金型へのパッケージ取られ、カル落ち等の成形不良が発生するまでのショット数を示した。
耐半田性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.3MPa、硬化時間60秒で80pQFP(14mm×20mm×2.7mm厚さ)を成形、175℃で4時間ポストキュアした後、85℃、相対湿度85%の恒温恒湿層に168時間放置、IRリフロー処理して耐半田性を調べた。処理後にクラック、剥離の発生がないものを合格とした(n=36)
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Mold release load: Using a transfer molding machine, a disk-shaped molded product having a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 90 seconds and a diameter of 15 mm and a thickness of 1.5 mm was molded continuously for 10 shots. The load required when the molded product of the 10th shot was extracted from the mold was measured with a push / pull gauge. The measurement was performed 5 times for each product number, and the average value was taken as the value of the release load. The unit is N.
Continuous moldability: 160pQFP (24 mm × 24 mm × 1.4 mm thickness) was continuously molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.3 MPa, and a curing time of 60 seconds. The number of shots until molding defects such as unfilled, gate clogged, air vent clogged, packaged in a mold, and cull dropping were shown.
Solder resistance: Molding 80pQFP (14mm x 20mm x 2.7mm thickness) at a mold temperature of 175 ° C, injection pressure of 9.3MPa, curing time of 60 seconds using transfer molding machine, post cure at 175 ° C for 4 hours After that, it was left for 168 hours in a constant temperature and humidity layer at 85 ° C. and a relative humidity of 85%, and IR reflow treatment was conducted to examine the solder resistance. Those that did not crack or peel after the treatment were regarded as acceptable (n = 36).

実施例2〜4、7〜9参考例1〜2、比較例1〜4
実施例1以外に用いた各成分は、以下の通りである。
オルソクレゾールノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量196)
ジシクロペンタジエン変性フェノール型エポキシ樹脂(軟化点60℃、エポキシ当量263)
フェノールノボラック樹脂(軟化点81℃、水酸基当量105)
化合物2:トリメチロールプロパンとステアリン酸のトリエステル
化合物3:トリメチロールプロパンとモンタン酸のモノエステル
化合物4:トリメチロールプロパンとウンデシル酸のトリエステル
化合物5:トリメチロールプロパンと炭素数40の脂肪酸のトリエステル
ステアリン酸亜鉛(融点125℃)
ポリエチレン(融点130℃)
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1、表2に示す。
Examples 2-4 , 7-9 , Reference Examples 1-2, Comparative Examples 1-4
Each component used in addition to Example 1 is as follows.
Orthocresol novolac type epoxy resin (softening point 55 ° C., epoxy equivalent 196)
Dicyclopentadiene-modified phenolic epoxy resin (softening point 60 ° C., epoxy equivalent 263)
Phenol novolac resin (softening point 81 ° C, hydroxyl group equivalent 105)
Compound 2: Trimethylolpropane and stearic acid triester Compound 3: Trimethylolpropane and montanic acid monoester compound 4: Trimethylolpropane and undecyl acid triester Compound 5: Trimethylolpropane and 40-carbon fatty acid triester Zinc ester stearate (melting point 125 ° C)
Polyethylene (melting point 130 ° C)
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

Figure 0004747593
Figure 0004747593

Figure 0004747593
Figure 0004747593

本発明によると、半導体装置における耐半田性等の信頼性を低下させずに、流動性、離型性、連続成形性に優れた半導体封止用エポキシ樹脂組成物が得られることから、半導体装置の生産性向上に寄与することができ、産業上極めて有用である。   According to the present invention, an epoxy resin composition for semiconductor encapsulation excellent in fluidity, releasability, and continuous moldability can be obtained without reducing reliability such as solder resistance in the semiconductor device. It can contribute to the improvement of productivity and is extremely useful industrially.

Claims (3)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機質充填材及び(E)トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルを必須成分とする半導体封止用エポキシ樹脂組成物であって、前記(A)エポキシ樹脂がビフェニル型エポキシ樹脂であり、前記(B)フェノール樹脂がフェニレン骨格を有するフェノールアラルキル樹脂であることを特徴とする半導体封止用エポキシ樹脂組成物。 (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, and (E) fatty acid triester of trimethylolpropane and saturated fatty acid having 18 to 36 carbon atoms as essential components An epoxy resin composition for semiconductor encapsulation, wherein (A) the epoxy resin is a biphenyl type epoxy resin, and (B) the phenol resin is a phenol aralkyl resin having a phenylene skeleton. Stopping epoxy resin composition. 上記(E)トリメチロールプロパンと炭素数18〜36の飽和脂肪酸との脂肪酸トリエステルが、全エポキシ樹脂組成物中に0.02〜0.5重量%含まれる請求項1記載の半導体封止用エポキシ樹脂組成物。 2. The semiconductor encapsulation according to claim 1, wherein the fatty acid triester of (E) trimethylolpropane and a saturated fatty acid having 18 to 36 carbon atoms is contained in the total epoxy resin composition in an amount of 0.02 to 0.5 wt%. Epoxy resin composition. 請求項1又は2記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。
A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for semiconductor sealing according to claim 1.
JP2005032371A 2005-02-08 2005-02-08 Epoxy resin composition and semiconductor device Expired - Fee Related JP4747593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032371A JP4747593B2 (en) 2005-02-08 2005-02-08 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032371A JP4747593B2 (en) 2005-02-08 2005-02-08 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2006219543A JP2006219543A (en) 2006-08-24
JP4747593B2 true JP4747593B2 (en) 2011-08-17

Family

ID=36982069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032371A Expired - Fee Related JP4747593B2 (en) 2005-02-08 2005-02-08 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4747593B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141132B2 (en) * 2006-08-31 2013-02-13 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5277609B2 (en) * 2006-10-30 2013-08-28 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5332097B2 (en) * 2006-10-31 2013-11-06 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5157473B2 (en) * 2007-03-28 2013-03-06 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5169287B2 (en) * 2007-09-21 2013-03-27 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5115405B2 (en) * 2007-10-22 2013-01-09 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5125901B2 (en) * 2007-12-18 2013-01-23 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037401A1 (en) * 1990-08-01 1992-02-06 Bayer Ag HIGH MOLECULAR POLYESTERS BASED ON 1,1-BIS (4-HYDROXYPHENYL) -ALKYLCYCLOALCANES AND THERMOPLASTIC ALLOYS THEREOF
JPH08258077A (en) * 1996-04-22 1996-10-08 Nitto Denko Corp Semiconductor device
MXPA01010422A (en) * 1999-04-16 2002-08-30 Dupont Dow Elastomers Llc Compatible thermoplastic polyurethane-polyolefin blend compositions.
JP4788033B2 (en) * 2000-11-27 2011-10-05 住友ベークライト株式会社 Method for producing mold release recovery resin composition
JP2003128750A (en) * 2001-10-19 2003-05-08 Toray Ind Inc Epoxy-based resin composition and semiconductor device
JP3957270B2 (en) * 2002-01-21 2007-08-15 日東電工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
CA2423078A1 (en) * 2002-10-22 2004-04-22 Nicholas A. Farkas Scratch and mar resistant soft ethylene elastomer compositions
JP2004300239A (en) * 2003-03-31 2004-10-28 Sumitomo Bakelite Co Ltd Resin-sealed semiconductor device and epoxy resin composition for sealing semiconductor

Also Published As

Publication number Publication date
JP2006219543A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
TWI388620B (en) Epoxy resin composition for encapsulating semiconductors, and semiconductor device
JP5605394B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4747593B2 (en) Epoxy resin composition and semiconductor device
JP3033445B2 (en) Inorganic filler for resin and epoxy resin composition
JP2006257240A (en) Epoxy resin composition and semiconductor device
US8048969B2 (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JPH08188638A (en) Resin-sealed semiconductor device and its production
JP5164076B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5141132B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP5008222B2 (en) Epoxy resin composition and semiconductor device
JP3167853B2 (en) Semiconductor device
JP5298310B2 (en) Resin composition for sealing electronic components and electronic component device using the same
JP5277609B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP3957270B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5162833B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP4910240B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JP2003212958A (en) Epoxy resin composition and semiconductor device
JP4770039B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5326975B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees