JP4747533B2 - Manufacturing method of ceramic electronic component - Google Patents

Manufacturing method of ceramic electronic component Download PDF

Info

Publication number
JP4747533B2
JP4747533B2 JP2004249602A JP2004249602A JP4747533B2 JP 4747533 B2 JP4747533 B2 JP 4747533B2 JP 2004249602 A JP2004249602 A JP 2004249602A JP 2004249602 A JP2004249602 A JP 2004249602A JP 4747533 B2 JP4747533 B2 JP 4747533B2
Authority
JP
Japan
Prior art keywords
conductor
magnetic
electronic component
ceramic electronic
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004249602A
Other languages
Japanese (ja)
Other versions
JP2005159301A (en
Inventor
秀明 松嶋
智之 前田
英一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004249602A priority Critical patent/JP4747533B2/en
Publication of JP2005159301A publication Critical patent/JP2005159301A/en
Application granted granted Critical
Publication of JP4747533B2 publication Critical patent/JP4747533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

本発明は、積層インダクタ、トランス、インダクタアレイ、LC複合部品といったセラミック電子部品およびその製造方法に関するものである。   The present invention relates to a ceramic electronic component such as a multilayer inductor, a transformer, an inductor array, and an LC composite component, and a manufacturing method thereof.

従来、積層インダクタは、表面に内部電極となる導体パターンを形成した、磁性体層となる磁性体シートを複数枚積層し、磁性体シートに設けたスルーホールを介して各導体パターン相互間を接続した積層体からなり、この積層体を焼成することにより製造されていた。   Conventionally, multilayer inductors are made by laminating a plurality of magnetic sheets to be magnetic layers with conductor patterns to be used as internal electrodes on the surface, and connecting the conductor patterns to each other through through holes provided in the magnetic sheets. It was manufactured by firing this laminate.

この積層インダクタでは、焼成過程において、最高温度付近で磁性体層と導電体層とが焼結一体化するが、室温まで冷却する際に、熱膨張率の違いから残留応力が磁性体層に内在し、電気特性の低下・マイクロクラックの発生といった不都合を生じている。   In this multilayer inductor, the magnetic layer and the conductive layer are sintered and integrated near the maximum temperature during the firing process. However, when cooling to room temperature, residual stress is inherent in the magnetic layer due to the difference in thermal expansion coefficient. However, there are inconveniences such as degradation of electrical characteristics and generation of microcracks.

その不都合の解決策として、特許文献1においては、図12に示すように、帯状の導電体層41と磁性体層(フェライト層)44との間における、導電体層41の厚さ方向に空隙43を設けることで、この残留応力による不都合を緩和する方法が開示されている。
特開平4−65807号公報(公開日:1992年3月2日)
As a solution for the inconvenience, in Patent Document 1, as shown in FIG. 12, there is a gap in the thickness direction of the conductor layer 41 between the belt-like conductor layer 41 and the magnetic layer (ferrite layer) 44. A method for alleviating the inconvenience due to the residual stress by providing 43 is disclosed.
JP-A-4-65807 (publication date: March 2, 1992)

しかしながら、上記従来の特許文献1に記載の積層インダクタでは、導電体層41と磁性体層44と間に空隙43を導電体層41の厚さ方向に設けているため、積層インダクタの抗折強度が低くなり、機械的ストレスに非常に弱いという問題を生じている。そのため、従来においては、他の手段によって、残留応力による不都合を緩和することが必要とされている。   However, in the conventional multilayer inductor described in Patent Document 1, since the gap 43 is provided in the thickness direction of the conductor layer 41 between the conductor layer 41 and the magnetic layer 44, the bending strength of the multilayer inductor is reduced. Has become low and is very vulnerable to mechanical stress. Therefore, conventionally, it is necessary to alleviate the disadvantage caused by the residual stress by other means.

本発明のセラミック電子部品は、以上の課題を解決するために、磁性体からなるセラミック本体と、前記セラミック本体内に形成された帯状の内部導体とを有し、前記セラミック本体は、前記内部導体における幅方向の少なくとも一端に、前記内部導体の長手方向に沿った空隙を備えていることを特徴としている。   In order to solve the above problems, a ceramic electronic component of the present invention has a ceramic main body made of a magnetic material and a strip-shaped inner conductor formed in the ceramic main body, and the ceramic main body includes the inner conductor. A gap along the longitudinal direction of the internal conductor is provided at least at one end in the width direction.

上記セラミック電子部品では、前記セラミック本体内の前記内部導体と前記空隙とを合わせて内部導体形成部としたとき、前記内部導体幅方向に前記セラミック本体を切断した断面において、前記空隙が前記内部導体形成部に対して占める断面積比の平均値が、面積比で2%〜12%であることが好ましい。   In the ceramic electronic component, when the inner conductor and the gap in the ceramic body are combined to form an inner conductor forming portion, the gap is the inner conductor in a cross section of the ceramic body cut in the inner conductor width direction. It is preferable that the average value of the cross-sectional area ratio with respect to the formation part is 2% to 12% in terms of area ratio.

上記セラミック電子部品においては、前記セラミック本体は、複数の磁性体層からなる積層体であり、前記複数の磁性体層の積層方向を法線とする前記積層体の二つの側面に、外部電極が、前記内部導体と接続されてそれぞれ形成されていてもよい。   In the ceramic electronic component, the ceramic body is a laminated body including a plurality of magnetic layers, and external electrodes are provided on two side surfaces of the laminated body having a normal direction in the stacking direction of the plurality of magnetic layers. , And connected to the inner conductor, respectively.

本発明のセラミック電子部品の製造方法は、前記の課題を解決するために、上記の何れかに記載のセラミック電子部品を得るためのセラミック電子部品の製造方法であって、セラミック原料粉末を混合、仮焼、焼成する工程を含み、仮焼合成後の粉体中の残留カーボン量を550ppm〜1100ppm(重量比)の範囲とすることを特徴としている。   In order to solve the above problems, a method for producing a ceramic electronic component of the present invention is a method for producing a ceramic electronic component according to any one of the above, wherein ceramic raw material powder is mixed, It includes the steps of calcination and calcination, and is characterized in that the amount of residual carbon in the powder after calcination synthesis is in the range of 550 ppm to 1100 ppm (weight ratio).

本発明のセラミック電子部品は、以上のように、セラミック本体の内部の内部導体における幅方向の少なくとも一端に、内部導体の長手方向に沿った空隙を備えた構成である。   As described above, the ceramic electronic component of the present invention has a configuration in which a gap along the longitudinal direction of the internal conductor is provided at at least one end in the width direction of the internal conductor inside the ceramic body.

それゆえ、上記構成によれば、残存応力を生じ易い上記内部導体の幅方向の少なくとも一端における、内部導体とセラミック本体との間に空隙を設けたことにより、セラミック本体に生じる残存応力を低減できる。   Therefore, according to the above configuration, the residual stress generated in the ceramic body can be reduced by providing a gap between the internal conductor and the ceramic body at least at one end in the width direction of the internal conductor, which is likely to generate residual stress. .

その上、上記構成においては、内部導体とセラミック本体との間の接触面積を維持できるから、抗折強度を大きくできて、機械的強度を向上できる。   In addition, in the above configuration, the contact area between the inner conductor and the ceramic body can be maintained, so that the bending strength can be increased and the mechanical strength can be improved.

また、空隙が内部導体形成部に対して占める断面積比の平均値を、面積比で2%〜12%とすることで、大きな抗折強度を確保できる。   Moreover, a big bending strength is securable by making the average value of the cross-sectional area ratio which a space | gap occupies with respect to an internal conductor formation part into 2 to 12% by area ratio.

さらに、複数の磁性体層からなる積層体である前記セラミック本体における複数の磁性体層の積層方向を法線とする前記積層体の二つの側面に、外部電極を前記内部導体と接続して形成した構成では、積層体であるセラミック本体の積層方向を実装面に対して平行とする構成において顕著な問題となる実装時の衝撃による破損や損傷を軽減できる。   Further, external electrodes are connected to the internal conductors on two side surfaces of the multilayer body, the normal direction being the lamination direction of the plurality of magnetic layers in the ceramic body, which is a multilayer body composed of a plurality of magnetic layers. With this configuration, it is possible to reduce breakage and damage due to impact during mounting, which becomes a significant problem in the configuration in which the stacking direction of the ceramic main body that is a stacked body is parallel to the mounting surface.

本発明の製造方法は、以上のように、仮焼合成後の粉体中の残留カーボン量を550ppm〜1100ppm(重量比)の範囲とする方法である。   As described above, the production method of the present invention is a method in which the amount of residual carbon in the powder after calcining synthesis is in the range of 550 ppm to 1100 ppm (weight ratio).

それゆえ、上記方法によれば、残留カーボン量を550ppm〜1100ppm(重量比)の範囲とすることで、焼成時での、内部導体とセラミック本体と間の接合強度を調節して、内部導体の幅方向の少なくとも一端に空隙を形成できるから、残存応力を軽減しながら、機械的強度を向上できるセラミック電子部品を製造できる。   Therefore, according to the above method, by adjusting the residual carbon content in the range of 550 ppm to 1100 ppm (weight ratio), the bonding strength between the inner conductor and the ceramic body at the time of firing is adjusted, Since a gap can be formed at at least one end in the width direction, a ceramic electronic component that can improve mechanical strength while reducing residual stress can be manufactured.

本発明の実施の各形態について図1ないし図11に基づいて説明すれば、以下の通りである。   Each embodiment of the present invention will be described with reference to FIGS. 1 to 11 as follows.

本発明に係るセラミック電子部品としての積層インダクタは、図2に示すように、フェライト等の複数の磁性体層からなる、略直方体形状や、略円柱形状の磁性セラミック本体(セラミック本体)11と、磁性セラミック本体11内に複数それぞれ形成された帯状のコイル導体(内部導体)1とを有している。   As shown in FIG. 2, the multilayer inductor as a ceramic electronic component according to the present invention has a substantially rectangular parallelepiped shape or a substantially cylindrical magnetic ceramic body (ceramic body) 11 composed of a plurality of magnetic layers such as ferrite, A plurality of strip-shaped coil conductors (inner conductors) 1 are formed in the magnetic ceramic body 11.

また、コイル導体1は、磁性セラミック本体11内において、導電体が充填された貫通孔(ビアホール)によってそれぞれ連結されることにより、コイルとして機能するものである。このコイルは、その巻軸の方向が実装面と略平行となるように配置されている。   Moreover, the coil conductor 1 functions as a coil by being connected to each other by a through hole (via hole) filled with a conductor in the magnetic ceramic body 11. This coil is arranged so that the direction of its winding axis is substantially parallel to the mounting surface.

また、磁性セラミック本体11内には、各コイル導体1における、その巻軸と同軸上の両端にある各コイル導体1と、外部とを電気的に接続するための、磁性セラミック本体11内に形成された貫通孔(ビアホール)に導電体が充填されて形成された取り出し導体12がその一端部が磁性セラミック本体11の両端面に露出するようにそれぞれ形成されている。さらに、上記両端面上には、端子電極14がそれぞれ設けられている。   Further, in the magnetic ceramic body 11, each coil conductor 1 is formed in the magnetic ceramic body 11 for electrically connecting the coil conductors 1 at both ends coaxial with the winding axis and the outside. The lead-out conductor 12 formed by filling the through hole (via hole) with a conductor is formed so that one end thereof is exposed at both end faces of the magnetic ceramic body 11. Further, terminal electrodes 14 are respectively provided on the both end faces.

そして、図1に示すように、磁性セラミック本体11は、磁性セラミック本体11内部のコイル導体1における、コイル導体1の幅方向の少なくとも一端に、より好ましくは両端のそれぞれにコイル導体1の長手方向に沿った空隙2を備えている。   As shown in FIG. 1, the magnetic ceramic body 11 includes at least one end in the width direction of the coil conductor 1 in the coil conductor 1 inside the magnetic ceramic body 11, and more preferably the longitudinal direction of the coil conductor 1 at each of both ends. A gap 2 is provided along the line.

次に、上記積層インダクタの製造方法について説明する。まず、Fe23、NiO、ZnO、およびCuOを主成分とする、フェライトの原料粉末と、水、ポリカルボン酸アンモニウム系分散剤、分散助剤としてポリビニルアルコール(PVA)をボールミルで湿式混合・分散・乾燥させた後、600℃〜700℃で仮焼合成して仮焼合成粉末を得た。 Next, a method for manufacturing the multilayer inductor will be described. First, a raw material powder of ferrite mainly composed of Fe 2 O 3 , NiO, ZnO, and CuO, water, ammonium polycarboxylate-based dispersant, and polyvinyl alcohol (PVA) as a dispersion aid are wet mixed by a ball mill. After dispersing and drying, calcined synthesis was performed at 600 ° C to 700 ° C to obtain a calcined synthesized powder.

仮焼合成後のフェライト粉末(Ni−Zn−Cu系)中のカーボン量は、仮焼合成温度、あるいは、PVA添加量によって制御する。本実施の形態では、仮焼合成温度を650℃に固定し、PVA添加量を変化させて、残留カーボン量が、7水準の各試料1〜7をそれぞれ作製した。   The amount of carbon in the ferrite powder (Ni—Zn—Cu system) after calcining synthesis is controlled by the calcining synthesis temperature or the amount of PVA added. In the present embodiment, the calcining synthesis temperature was fixed at 650 ° C., the amount of PVA added was changed, and samples 1 to 7 having a residual carbon amount of 7 levels were produced.

続いて、仮焼合成粉末と、水系アクリルバインダ、分散剤、可塑剤等を混練したスラリーを得、ドクターブレード法によりキャリアフィルムに支持された磁性体グリーンシートを作製する。   Subsequently, a slurry obtained by kneading the calcined synthetic powder, an aqueous acrylic binder, a dispersant, a plasticizer and the like is obtained, and a magnetic green sheet supported by a carrier film is produced by a doctor blade method.

図3に示すように、上記のように作製された磁性体グリーンシート21に対して、その厚さ方向に貫通する貫通孔であるビアホール21aを必要な箇所に形成し、各磁性体グリーンシート21上に、帯状のコの字状の導体パターン21bを、その一端がビアホール21aに面するように導電体ペーストの印刷によりそれぞれ形成する。このとき、ビアホール21a内にも導電体ペーストを充填しておく。   As shown in FIG. 3, via holes 21 a that are through-holes penetrating in the thickness direction are formed in necessary positions on the magnetic green sheets 21 produced as described above, and each magnetic green sheet 21 is formed. On top of this, a belt-like U-shaped conductor pattern 21b is formed by printing a conductor paste so that one end thereof faces the via hole 21a. At this time, the conductor paste is also filled in the via hole 21a.

導電体ペーストとしては、Ag、Ag−Pd、Au、Pt等を主成分とする内部導体用ペーストであればよい。今回使用したペースト種はAgを主成分とする内部導体用ペーストである。なお、導体パターン21aの形状は任意に設定される。   The conductor paste may be an internal conductor paste mainly composed of Ag, Ag-Pd, Au, Pt or the like. The paste type used this time is a paste for internal conductors mainly composed of Ag. The shape of the conductor pattern 21a is arbitrarily set.

その後、導電体ペーストを充填したビアホール21aのみが形成された磁性体グリーンシート21、さらに導体パターン21bが形成された磁性体グリーンシート21を、互いに厚さ方向に積層・圧着して、積層体を得た。   Thereafter, the magnetic green sheet 21 in which only the via hole 21a filled with the conductive paste is formed, and the magnetic green sheet 21 in which the conductor pattern 21b is further formed are laminated and pressure-bonded in the thickness direction. Obtained.

上記積層体では、各磁性体グリーンシート21を互いに積層したとき、帯状の導体パターン21bは、その幅方向の両端部が、それぞれツブレ、幅方向の外方向に向かって高さが順次小さくなるテーパー形状となっている。   In the laminated body, when the magnetic green sheets 21 are laminated with each other, the strip-shaped conductor pattern 21b is tapered at both ends in the width direction and gradually decreases in the outward direction in the width direction. It has a shape.

続いて、上記積層体を焼成して焼成体を得た。このとき焼成体内では、導体パターン21bから得られたコイル導体の形状は、その幅方向断面にて略楕円形状となっている。その後、上記焼結体における、積層方向両端部にそれぞれ端子電極14を形成し、さらにNi−Snメッキ加工を施して、図2に示す、1.0mm×0.5mm×0.5mmのチップサイズの、前述した7水準の積層インダクタである各試料1〜7をそれぞれ作製した。   Subsequently, the laminate was fired to obtain a fired body. At this time, the shape of the coil conductor obtained from the conductor pattern 21b in the fired body is substantially elliptical in cross section in the width direction. Thereafter, terminal electrodes 14 are respectively formed at both ends in the stacking direction of the sintered body, and further Ni-Sn plating is performed, whereby a chip size of 1.0 mm × 0.5 mm × 0.5 mm shown in FIG. Samples 1 to 7 which are the above-described seven-level multilayer inductors were prepared.

各試料1〜7について、フェライト粉末中のカーボン量(ppm)、間隙両端の空間面積比の平均値(%)、接触率(%)、100MHzでの|Z|(Ω)、実装試験、抗折強度の最小値(N)をそれぞれ測定した。それらの結果を表1に示す。   For each sample 1-7, the amount of carbon in the ferrite powder (ppm), the average value of the space area ratio at both ends of the gap (%), the contact rate (%), | Z | (Ω) at 100 MHz, mounting test, The minimum value (N) of the bending strength was measured. The results are shown in Table 1.

フェライト粉末中のカーボン量(ppm)は、試料を空気中で加熱・燃焼させ、発生するCOあるいはCO2を赤外線吸収分光(FT−IR)法を用いて測定した。空隙両端の空間面積比の平均値(%)は、チップ状の試料におけるコイル導体1の幅方向に沿った破断面を走査型電子顕微鏡で観察し(図4参照)、その画像から画像処理により定量した(個体数は20個)。 The amount of carbon (ppm) in the ferrite powder was measured by heating and burning the sample in air, and measuring the generated CO or CO 2 using infrared absorption spectroscopy (FT-IR). The average value (%) of the space area ratio at both ends of the gap is determined by observing the fractured surface along the width direction of the coil conductor 1 in the chip-like sample with a scanning electron microscope (see FIG. 4) and performing image processing from the image. Quantified (20 individuals).

接触率(%)は、チップ状の試料の破断面の走査型電子顕微鏡での観察画像(図4参照)から、空隙2の周囲長と、コイル導体1および磁性セラミック本体11間の接触長さとの間での比率を算出した(個体数は20個)。   The contact rate (%) is determined based on the peripheral length of the air gap 2 and the contact length between the coil conductor 1 and the magnetic ceramic body 11 from the observation image (see FIG. 4) of the fracture surface of the chip-like sample. (The number of individuals was 20).

100MHzでの|Z|(Ω)は、インピーダンスアナライザー(ヒューレットパッカード社製、HP4219A)+フィクスチャー(ヒューレットパッカード社製、HP16192A)を用いて測定した。実装試験については、衝撃を印加し、その印加結果に基づく耐衝撃性の有無により評価した。実装試験に用いた装置は、日立ハイテクノロジーズTCM-3100J(ノズル径:外径0.6mm、内径0.4mm、衝撃力:10N)である。   | Z | (Ω) at 100 MHz was measured using an impedance analyzer (HP4219A, manufactured by Hewlett-Packard Company) + fixture (HP16192A, manufactured by Hewlett-Packard Company). With respect to the mounting test, an impact was applied, and evaluation was made based on the presence or absence of impact resistance based on the application result. The apparatus used for the mounting test is Hitachi High-Technologies TCM-3100J (nozzle diameter: outer diameter 0.6 mm, inner diameter 0.4 mm, impact force: 10 N).

抗折強度の最小値(N)に関しては、チップ状の試料を、平板上に載置し、3点曲げ試験の破断応力を測定した。用いた測定装置としては、変位原にMODEL-1323N (AIKOH ENGINEERING)を用い、アンプにMODEL-0218B (AIKOH ENGINEERING)を、アナライジングレコーダにDL708 (YOKOGAWA)を用いた。   Regarding the minimum value (N) of the bending strength, a chip-like sample was placed on a flat plate, and the breaking stress of a three-point bending test was measured. As the measuring device used, MODEL-1323N (AIKOH ENGINEERING) was used as the displacement source, MODEL-0218B (AIKOH ENGINEERING) was used as the amplifier, and DL708 (YOKOGAWA) was used as the analyzing recorder.

次に、比較例として、特許文献1に記載された方法で、コイル導体の厚み方向に空隙を設けた積層インダクタを作製し、接触率、100MHzでのインピーダンスの絶対値、実装試験、抗折強度の最小値をそれぞれ測定した。それらの結果を以下の表2に示した。   Next, as a comparative example, a multilayer inductor having a gap in the thickness direction of the coil conductor was manufactured by the method described in Patent Document 1, and the contact ratio, the absolute value of impedance at 100 MHz, the mounting test, the bending strength. The minimum value of each was measured. The results are shown in Table 2 below.

比較例と本発明品(試料3〜6)を比較すると、|Z|はほぼ同等であり、応力緩和効果は等しく得られていることがわかるが、実装試験および抗折強度の最小値の結果から、本発明品の方が機械的ストレスに強いことがわかる。   Comparing the comparative example and the products of the present invention (samples 3 to 6), it can be seen that | Z | is almost equal and the stress relaxation effect is obtained equally, but the result of the minimum value of the mounting test and the bending strength Thus, it can be seen that the product of the present invention is more resistant to mechanical stress.

以下に、本発明の作用・効果について説明する。仮焼合成後に残存するカーボンは、その後の焼成過程において、800℃以上の高温域で、フェライトである磁性セラミック本体11中、磁性セラミック本体11とAgからなるコイル導体1との接合界面の酸素の一部を奪ってCOあるいはCO2として脱離する。このような磁性セラミック本体11と、Agからなるコイル導体1との接合界面の接合強度は、奪われた酸素量に応じて小さくなる。 Hereinafter, the operation and effect of the present invention will be described. In the subsequent firing process, the carbon remaining after the calcination synthesis is oxygen in the bonding interface between the magnetic ceramic body 11 and the coil conductor 1 made of Ag in the magnetic ceramic body 11 that is ferrite in a high temperature range of 800 ° C. or higher. Part is taken away and desorbed as CO or CO 2 . The bonding strength at the bonding interface between the magnetic ceramic main body 11 and the coil conductor 1 made of Ag is reduced according to the amount of oxygen taken.

一方、Agからなるコイル導体1は、焼成時に、扁平な略楕円形状から、表面積が小さくなる方向に(円形に近づくように)焼結しようとする。   On the other hand, the coil conductor 1 made of Ag tends to be sintered from a flat, substantially elliptical shape in a direction in which the surface area becomes smaller (approaching a circle) during firing.

このとき、前述したように接合界面の接合強度を弱めることにより、磁性セラミック本体11内部のコイル導体1における、コイル導体1の幅方向の少なくとも一端に、より好ましくは両端のそれぞれに、コイル導体1の長手方向に沿った空隙2が、選択的に形成されたような状態となる。なお、この際、図1に示すように、コイル導体1中に空孔(ポア)3が形成されていてもよい。また、空隙2は、コイル導体1の長手方向全域に実質的に形成されていればよいものであり、必ずしも、連続して形成されていなくともよく、一部、不連続となる部分があってもよい。   At this time, as described above, by reducing the bonding strength of the bonding interface, the coil conductor 1 in the coil conductor 1 inside the magnetic ceramic body 11 is arranged at least at one end in the width direction of the coil conductor 1, more preferably at both ends. The gap 2 along the longitudinal direction is formed selectively. At this time, as shown in FIG. 1, air holes (pores) 3 may be formed in the coil conductor 1. Moreover, the space | gap 2 should just be substantially formed in the longitudinal direction whole region of the coil conductor 1, and does not necessarily need to be formed continuously, and there exists a part which becomes discontinuous. Also good.

比較のために、図5に示すように、磁性セラミック本体11とコイル導体31とを焼成一体化した比較例のモデルにおいては、応力分布解析を行った結果、コイル導体31の幅方向の両端部に面した各位置5の磁性セラミック本体11に最も応力がかかっており、図1に示す本発明の空隙2の形成により、上記応力を十分に緩和できることが分かった。   For comparison, as shown in FIG. 5, in the model of the comparative example in which the magnetic ceramic body 11 and the coil conductor 31 are integrated by firing, both ends of the coil conductor 31 in the width direction are obtained as a result of the stress distribution analysis. It was found that the most stress was applied to the magnetic ceramic body 11 at each position 5 facing the surface, and the stress could be sufficiently relaxed by forming the void 2 of the present invention shown in FIG.

次に、各試料2、3、6のインピーダンス−周波数特性をそれぞれ比較のために示したグラフを図6に示す。試料1、2は、カーボン量が少ないことにより、図5に近い状態で、殆ど空隙2が無く、磁性セラミック本体11内に各コイル導体31が密に存在する。このため、磁性セラミック本体11とコイル導体31との熱膨張係数の差から、各コイル導体31間に挟まれた位置の磁性セラミック本体11にマイクロクラック4も発生し易く、機械的強度が低下していることが分かった。   Next, a graph showing the impedance-frequency characteristics of the samples 2, 3, and 6 for comparison is shown in FIG. Since Samples 1 and 2 have a small amount of carbon, there are almost no gaps 2 in the state close to FIG. 5, and the coil conductors 31 are densely present in the magnetic ceramic body 11. For this reason, due to the difference in thermal expansion coefficient between the magnetic ceramic body 11 and the coil conductor 31, microcracks 4 are also likely to occur in the magnetic ceramic body 11 located between the coil conductors 31, and the mechanical strength is reduced. I found out.

通常、実装時の衝撃力は1kgf=9.8N程度であり、各試料3、4、5、6の本発明に係る積層インダクタは、十分に実用に耐えるユニット強度を備えたものであることが分かる。   Usually, the impact force at the time of mounting is about 1 kgf = 9.8 N, and the multilayer inductors according to the present invention for each of the samples 3, 4, 5, and 6 have sufficient unit strength to withstand practical use. I understand.

一方、試料7のように、カーボン量が多いことで、空隙の面積が大きくなりすぎると、同時にコイル導体と磁性セラミック本体との接触率が低下し、図12と同様に、機械的強度は低下傾向となる。   On the other hand, when the area of the air gap becomes too large due to the large amount of carbon as in Sample 7, the contact ratio between the coil conductor and the magnetic ceramic body is decreased at the same time, and the mechanical strength is decreased as in FIG. It becomes a trend.

これらの結果から、空隙両端の空間面積比の平均値(%)は、2%〜12%の範囲内、より好ましくは2.5%〜12%の範囲内であることが分かる。また、仮焼合成後のフェライト粉体中の残留カーボン量は550ppm〜1100ppm(重量比)の範囲内、より望ましくは670ppm〜1100ppm(重量比)の範囲内であることが分かる。   From these results, it can be seen that the average value (%) of the space area ratio at both ends of the gap is in the range of 2% to 12%, more preferably in the range of 2.5% to 12%. It can also be seen that the amount of residual carbon in the ferrite powder after calcining synthesis is in the range of 550 ppm to 1100 ppm (weight ratio), more preferably in the range of 670 ppm to 1100 ppm (weight ratio).

本発明の構成とすることにより、磁性セラミック本体と各コイル導体とを焼結一体化して上記各コイル導体を密に内蔵する場合(図5)に問題となる残留応力を緩和できて電気特性を向上でき、また、図12に示すように、磁性セラミック本体11と導電体層41とが層状に剥離して空隙43を形成している従来とは異なり、特に図2に示すような、本発明の構造は、ユニット強度確保において格段の効果が得られる。   By adopting the configuration of the present invention, when the magnetic ceramic body and each coil conductor are integrated with each other by sintering and the coil conductors are densely incorporated (FIG. 5), the residual stress, which is a problem, can be alleviated and the electrical characteristics can be reduced. In addition, as shown in FIG. 12, the magnetic ceramic main body 11 and the conductor layer 41 are separated in layers to form the gap 43, and the present invention as shown in FIG. This structure can provide a remarkable effect in securing unit strength.

なお、上記実施の形態では、セラミック電子部品として積層インダクタの例を挙げたが、上記の例のみに限定されるものではなく、図7に示す、他の積層インダクタにおいても、応力緩和による電気特性向上を図ることができる。この積層インダクタは、積層方向が実装面に対して略垂直となる例である。   In the above embodiment, an example of a multilayer inductor is given as an example of a ceramic electronic component. However, the present invention is not limited to the above example, and other multilayer inductors shown in FIG. Improvements can be made. This multilayer inductor is an example in which the lamination direction is substantially perpendicular to the mounting surface.

上記の積層インダクタには、帯状のコイル導体34が、導電体が充填された貫通孔(ビアホール)によってそれぞれ連結されて、コイルを形成するように磁性セラミック本体11内に配置されている。さらに、上記積層インダクタでは、各端子電極14、および、各端子電極14と各コイル導体34と接続する取り出し導体32が設けられている。   In the above-described multilayer inductor, strip-shaped coil conductors 34 are respectively connected by through holes (via holes) filled with a conductor, and are arranged in the magnetic ceramic body 11 so as to form a coil. Further, in the multilayer inductor, each terminal electrode 14 and a lead conductor 32 connected to each terminal electrode 14 and each coil conductor 34 are provided.

他の変形例としては、図8に示すチップインダクタが挙げられる。このチップインダクタ50は、磁性体セラミックからなるインダクタ素体51と、インダクタ素体51の内部に設けられた、帯状で直線状の内部導体52と、インダクタ素体51の端部に対しそれぞれに設けられて内部導体52の各々と導通する外部電極53とから構成されている。   Another modification is a chip inductor shown in FIG. The chip inductor 50 is provided for each of an inductor body 51 made of a magnetic ceramic, a strip-like linear inner conductor 52 provided inside the inductor body 51, and an end of the inductor body 51. The external electrode 53 is electrically connected to each of the internal conductors 52.

このようなチップインダクタ50においても、前記と同様な本発明の方法を用いることで、内部導体52の幅方向の少なくとも一端に、図1と同様な、空隙2を形成することで、残存応力を軽減できるものとなっている。   Also in such a chip inductor 50, by using the same method of the present invention as described above, the gap 2 is formed in at least one end in the width direction of the internal conductor 52, as in FIG. It can be reduced.

また、さらに他の変形例としては、図9の分解斜視図に示すように、インダクタンス素子Lおよびコンデンサ素子Cを有するLC複合部品であるノイズフィルタ61が挙げられる。   Still another modification is a noise filter 61 that is an LC composite component having an inductance element L and a capacitor element C, as shown in an exploded perspective view of FIG.

このノイズフィルタ61は、コイル導体63a〜63c、65a〜65cをそれぞれ表面に設けた磁性体層62と、リング状のグランド用内部導体64および上記リング状内の導電体が充填されたビアホール68fを設けた誘電体層62と、導電体が充填されたビアホール68a、68e、68g、68kをそれぞれ設けた磁性体層22とが積層一体化されて構成されるものである。ビアホール68f内の導電体と、グランド用内部導体64の開口端部64aとの間に静電容量が形成されてC部が構成され、コイル導体63a〜63c、65a〜65cがそれぞれ直列に接続されて、コイルが形成されてL部が構成されている。   The noise filter 61 includes a magnetic layer 62 having coil conductors 63a to 63c and 65a to 65c provided on the surface thereof, a ring-shaped ground inner conductor 64, and a via hole 68f filled with the conductor in the ring shape. The provided dielectric layer 62 and the magnetic layer 22 provided with via holes 68a, 68e, 68g, and 68k filled with a conductor are laminated and integrated. Capacitance is formed between the conductor in the via hole 68f and the opening end portion 64a of the ground internal conductor 64 to form a C portion, and the coil conductors 63a to 63c and 65a to 65c are connected in series, respectively. Thus, a coil is formed to constitute the L portion.

積層体の上面部および下面部には、ビアホール68aおよびビアホール68kとそれぞれ導通するように、入出力用の外部電極(図示せず)がそれぞれ形成されている。また、コイル導体63a〜63c、65a〜65cの巻軸方向に対する各側面部の内、グランド用内部導体64が露出した互いに対向する各側面部64b、64cにそれぞれグランド用内部導体64と導通するグランド外部電極(図示せず)が形成されている。   Input / output external electrodes (not shown) are formed on the upper surface portion and the lower surface portion of the multilayer body so as to be electrically connected to the via hole 68a and the via hole 68k, respectively. Further, of the side surfaces of the coil conductors 63a to 63c and 65a to 65c in the winding axis direction, the grounds that are electrically connected to the ground inner conductor 64 are connected to the side surfaces 64b and 64c facing each other where the ground inner conductor 64 is exposed. External electrodes (not shown) are formed.

このようなノイズフィルタ61においても、L部に前述の本発明の方法を用いることで、図1と同様な空隙2を備えることができ、残存応力を軽減することができる。また、ノイズフィルタ61は、積層方向が実装面に対して略平行にできる構成のため、機械的強度も向上できるものとなっている。   Also in such a noise filter 61, by using the above-described method of the present invention in the L portion, it is possible to provide the gap 2 similar to that in FIG. 1, and to reduce the residual stress. Further, since the noise filter 61 has a configuration in which the stacking direction can be substantially parallel to the mounting surface, the mechanical strength can be improved.

さらに他の変形例としては、図10および図11に示す、ノイズフィルタとして好適なインダクタアレイ80が挙げられる。   Still another modification is an inductor array 80 suitable for a noise filter shown in FIGS. 10 and 11.

このインダクタアレイ80では、1つの磁性体部分82aの内部に、2つのインダクタ用電極96aおよび96bなどで、1つのインダクタが形成される。同様に、他の3つの磁性体部分82b〜82dの内部に、3つのインダクタがそれぞれ形成される。したがって、このインダクタアレイ80は、外部電極86a〜86dと外部電極88a〜88dとの間に、4つのインダクタンスをアレイ状に有するものとなっている。   In this inductor array 80, one inductor is formed by two inductor electrodes 96a and 96b in one magnetic body portion 82a. Similarly, three inductors are formed in the other three magnetic parts 82b to 82d, respectively. Therefore, the inductor array 80 has four inductances in an array between the external electrodes 86a to 86d and the external electrodes 88a to 88d.

このようなインダクタアレイ80においても、磁性体部分82a〜82dの内部に挟まれたインダクタ用電極96a、96bの形成に、前記の本発明に係る方法を用いることによって、インダクタ用電極96a、96bの幅方向の少なくとも一端に沿った、図1と同様な、空隙2を備えることができて、残存応力を軽減できるものとなっている。   Also in such an inductor array 80, by using the method according to the present invention to form the inductor electrodes 96a and 96b sandwiched between the magnetic portions 82a to 82d, the inductor electrodes 96a and 96b A gap 2 similar to that in FIG. 1 along at least one end in the width direction can be provided, and the residual stress can be reduced.

本発明のセラミック電子部品およびその製造方法は、機械的強度を少なくとも維持しながら、残存応力を軽減できるので、耐久性に優れた積層インダクタ、トランス、インダクタアレイ、LC複合部品といったセラミック電子部品およびその製造方法の分野に好適に利用できる。   The ceramic electronic component and the manufacturing method thereof according to the present invention can reduce residual stress while maintaining at least mechanical strength. Therefore, ceramic electronic components such as multilayer inductors, transformers, inductor arrays, and LC composite components having excellent durability and their It can be suitably used in the field of manufacturing methods.

本発明のセラミック電子部品としての積層インダクタの要部断面図である。It is principal part sectional drawing of the multilayer inductor as a ceramic electronic component of this invention. 上記積層インダクタの概略断面図である。It is a schematic sectional drawing of the said multilayer inductor. 上記積層インダクタにおける、その製造方法を示す分解斜視図である。It is a disassembled perspective view which shows the manufacturing method in the said multilayer inductor. 上記積層インダクタの要部断面を、電子顕微鏡により観察した観察画像の図である。It is the figure of the observation image which observed the principal part cross section of the said multilayer inductor with the electron microscope. 比較例の積層インダクタの要部断面図である。It is principal part sectional drawing of the multilayer inductor of a comparative example. カーボン量を変えた、各試料2、3、6における、周波数−インピーダンス特性をそれぞれ示すグラフである。It is a graph which shows the frequency-impedance characteristic in each sample 2, 3, 6 which changed carbon amount, respectively. 本発明のセラミック電子部品としての他の積層インダクタの概略断面図である。It is a schematic sectional drawing of the other multilayer inductor as a ceramic electronic component of this invention. 本発明のセラミック電子部品としてのチップインダクタの一部破断斜視図である。It is a partially broken perspective view of a chip inductor as a ceramic electronic component of the present invention. 本発明に係るセラミック電子部品としてのLC複合部品の分解斜視図である。It is a disassembled perspective view of LC composite component as a ceramic electronic component which concerns on this invention. 本発明のセラミック電子部品としてのインダクタアレイの斜視図である。It is a perspective view of an inductor array as a ceramic electronic component of the present invention. 上記インダクタアレイの一部である磁性体部分の分解斜視図である。It is a disassembled perspective view of the magnetic body part which is a part of the said inductor array. 従来のセラミック電子部品の要部断面図である。It is principal part sectional drawing of the conventional ceramic electronic component.

符号の説明Explanation of symbols

1:コイル導体(内部導体)
2:空隙
3:空孔(ポア)
11:磁性セラミック本体(セラミック本体)
1: Coil conductor (inner conductor)
2: Air gap 3: Hole (pore)
11: Magnetic ceramic body (ceramic body)

Claims (1)

セラミック原料粉末を混合、仮焼、焼成する工程を含むセラミック電子部品の製造方法であって、
残留カーボン量が550ppm〜1100ppm(重量比)の範囲である、仮焼合成後のフェライト粉体を原料として、帯状の導体パターンを有する磁性体グリーンシートを作成し、
上記磁性体グリーンシートを、互いに厚さ方向に積層・圧着して、上記導体パターンの幅方向の端部がツブレ、幅方向の外方向に向かって高さが順次小さくなるテーパー形状となる、テーパー形状導体パターンを備えた積層体を得、
上記積層体を焼成して焼成体を得たことを特徴とする、セラミック電子部品の製造方法
A method for producing a ceramic electronic component comprising a step of mixing, calcining and firing ceramic raw material powder,
Using a ferrite powder after calcining synthesis with a residual carbon content in the range of 550 ppm to 1100 ppm (weight ratio) as a raw material, a magnetic green sheet having a strip-shaped conductor pattern is created,
The magnetic green sheets are laminated and pressure-bonded in the thickness direction, and the end portions in the width direction of the conductor pattern are staggered, and the taper shape is gradually reduced in height toward the outside in the width direction. Obtain a laminate with a shaped conductor pattern,
A method for producing a ceramic electronic component , wherein the laminate is fired to obtain a fired body .
JP2004249602A 2003-10-31 2004-08-30 Manufacturing method of ceramic electronic component Expired - Lifetime JP4747533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249602A JP4747533B2 (en) 2003-10-31 2004-08-30 Manufacturing method of ceramic electronic component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003371466 2003-10-31
JP2003371466 2003-10-31
JP2004249602A JP4747533B2 (en) 2003-10-31 2004-08-30 Manufacturing method of ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2005159301A JP2005159301A (en) 2005-06-16
JP4747533B2 true JP4747533B2 (en) 2011-08-17

Family

ID=34741234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249602A Expired - Lifetime JP4747533B2 (en) 2003-10-31 2004-08-30 Manufacturing method of ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4747533B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664092B2 (en) * 2010-10-01 2015-02-04 株式会社村田製作所 Method for manufacturing ferrite laminated electronic component
KR101214731B1 (en) * 2011-07-29 2012-12-21 삼성전기주식회사 Multilayer inductor and method of manifacturing the same
JP6036007B2 (en) * 2012-08-27 2016-11-30 Tdk株式会社 Multilayer coil parts
KR20150080738A (en) * 2014-01-02 2015-07-10 삼성전기주식회사 Method for manufacturing laminated inductor
KR20150139268A (en) * 2014-06-03 2015-12-11 삼성전기주식회사 Method for manufacturing laminated inductor
JP6524980B2 (en) * 2016-07-15 2019-06-05 株式会社村田製作所 Laminated coil component and method of manufacturing the same
JP2018060904A (en) * 2016-10-05 2018-04-12 株式会社村田製作所 Substrate with built-in coil and module
JP6658681B2 (en) * 2017-06-22 2020-03-04 株式会社村田製作所 Manufacturing method of multilayer inductor and multilayer inductor
JP7210610B2 (en) * 2018-11-28 2023-01-23 京セラ株式会社 Planar coils and transformers equipped with them, wireless power transmitters, electromagnets
WO2021049270A1 (en) * 2019-09-10 2021-03-18 京セラ株式会社 Planar coil, and transformer, wireless transmitter, and electromagnet provided with planar coil
WO2021153697A1 (en) * 2020-01-28 2021-08-05 京セラ株式会社 Planar coil, and device for manufacturing semiconductor comprising same
JP7230837B2 (en) * 2020-02-06 2023-03-01 株式会社村田製作所 Laminated coil parts
JP7464029B2 (en) 2021-09-17 2024-04-09 株式会社村田製作所 Inductor Components

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987176B2 (en) * 1990-07-06 1999-12-06 ティーディーケイ株式会社 Multilayer inductor and manufacturing method of multilayer inductor
JPH06333722A (en) * 1993-05-24 1994-12-02 Tdk Corp Manufacture of magnetic ferrite, magnetic ferrite, laminated type inductor part and composite laminated part
JP3978689B2 (en) * 1995-05-31 2007-09-19 日立金属株式会社 Low-temperature fired porcelain composition and microwave component using the same
JPH1145809A (en) * 1997-07-24 1999-02-16 Taiyo Yuden Co Ltd Laminated inductance element and manufacture therefor
JPH11219821A (en) * 1998-01-30 1999-08-10 Tokin Corp Integrated inductor and manufacture of the same
JP2000091152A (en) * 1998-09-09 2000-03-31 Taiyo Yuden Co Ltd Stacked electronic part, and its manufacture
JP2001060518A (en) * 1999-08-20 2001-03-06 Taiyo Yuden Co Ltd Laminated electronic component
JP3551876B2 (en) * 2000-01-12 2004-08-11 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP2003100516A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Laminated inductor and its manufacturing method

Also Published As

Publication number Publication date
JP2005159301A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP5446262B2 (en) Laminated parts
JP4747533B2 (en) Manufacturing method of ceramic electronic component
WO2009087928A1 (en) Open magnetic circuit stacked coil component and process for producing the open magnetic circuit stacked coil component
JP2005306696A (en) Magnetic ferrite, and common mode noise filter and chip transformer using the same
JP5761609B2 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP2013232627A (en) Multilayer ceramic capacitor and method for manufacturing the same
JP6065439B2 (en) Multilayer coil component and manufacturing method thereof
CN212659379U (en) Laminated coil component
KR100820025B1 (en) Laminated coil component
CN213042743U (en) Laminated coil component
CN111986876A (en) Laminated coil component
JP6149392B2 (en) Multilayer board
JP2020061522A (en) Multilayer coil component
JP2007134568A (en) Stacked coil component, and method of manufacturing same
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JP2023082190A (en) Laminated coil component
JP2020194808A (en) Laminated coil component
JP2013053040A (en) Ferrite porcelain composition, ceramic electronic component, and manufacturing method for ceramic electronic component
JP4655571B2 (en) Multilayer coil component and manufacturing method thereof
JP5471672B2 (en) Multilayer electronic component and manufacturing method thereof
WO2023090156A1 (en) Layered coil component
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP7489515B2 (en) Ceramic-inorganic material composite and multilayer inductor
WO2023090158A1 (en) Stacked coil component
JP3363054B2 (en) Multilayer composite electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3