JP4743431B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP4743431B2
JP4743431B2 JP2006291156A JP2006291156A JP4743431B2 JP 4743431 B2 JP4743431 B2 JP 4743431B2 JP 2006291156 A JP2006291156 A JP 2006291156A JP 2006291156 A JP2006291156 A JP 2006291156A JP 4743431 B2 JP4743431 B2 JP 4743431B2
Authority
JP
Japan
Prior art keywords
fuel cut
exhaust
fuel
cylinder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006291156A
Other languages
English (en)
Other versions
JP2008106696A (ja
Inventor
浩 棚田
圭介 田代
公二郎 岡田
光高 小島
浩一 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006291156A priority Critical patent/JP4743431B2/ja
Publication of JP2008106696A publication Critical patent/JP2008106696A/ja
Application granted granted Critical
Publication of JP4743431B2 publication Critical patent/JP4743431B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、HC吸着材におけるHCの浄化効率の向上を図る技術に関する。
一般に、エンジン(内燃機関)の排気通路には、排気中の有害物質(HC、CO、NOx等)を浄化するよう三元触媒等の触媒コンバータが配設されている。
ところで、三元触媒は活性温度に達するまでは浄化性能を十分に発揮できず、三元触媒をエンジン本体に近接配置して早期活性化を図るとしても、エンジンの冷態始動時に特に多く排出されるHCを十分に浄化できないという問題があり、この問題を解決するため、HCの吸着に有効なHC吸着材を備えたHC吸着触媒が提案されている。
しかしながら、かかるHC吸着触媒は、一般に一定温度(約150℃)に達するとHC吸着材に吸着したHCを脱離する特性を有し、この一定温度は三元触媒の活性温度(約250℃〜350℃)よりも低いため、HC吸着触媒中或いはHC吸着触媒の下流側に三元触媒を備えていても、当該三元触媒が活性温度に達する前にHC吸着触媒から脱離したHCが浄化されずに排出されてしまうという欠点を有している。
このようなことから、三元触媒の温度が活性温度に達していないような場合において、エンジンの空燃比をリーン空燃比にしたり或いはエンジンへの燃料供給を停止(燃料カット)したりして排気中の酸素量を増大させることで、例えば触媒中の酸素吸蔵剤(OSC)に酸素を吸蔵させ、酸素を活性化させ、できるだけ早期に脱離したHCを酸化除去する構成の装置が開発されている。
また、エンジンの冷態始動時に燃料カットを行うと、特に流体継手を介してエンジンに連結された自動変速機(A/T)を搭載した車両において、車両のドライバビリティが悪化することから、一部気筒(例えば、気筒数の半分)のみ燃料カットを行うようにして残部の気筒には燃料を供給するようにし(パーシャル燃料カット)、エンジンの出力低下を防止しながらHC吸着触媒から脱離したHCをHC吸着触媒の酸化機能によって酸化除去可能な装置も開発されている。
WO2005/124130号公報
上記のようにHC吸着触媒のHC吸着材からHCが脱離しているときに排気空燃比がリーン空燃比になるようにエンジンの吸入混合気を制御する構成の場合には、脱離したHCを排気中の酸素と反応させて浄化することができる。
しかしながら、燃料カットは燃料の供給を止めて燃焼を停止させる操作であるため、燃料カットを実施している期間は燃焼熱を排出できず、排気温度が低下するために排気中の反応成分の活性度合いが低下し、或いはHC吸着触媒や下流側の三元触媒が冷却されてHC吸着触媒や三元触媒の酸化機能が低下するという問題がある。このようにHC吸着触媒や下流側の三元触媒の酸化機能が低下する場合、その低下の度合いが大きいと、HC吸着材から脱離するHCを十分に酸化除去できなくなるおそれがあり好ましいことではない。
この点、パーシャル燃料カットを行う場合には残部の気筒で燃焼を行うため、完全に全気筒で燃料カットを行う場合に比べて排気温度の低下度合いが低く、HC吸着触媒や下流側の三元触媒の冷却度合いも小さいといえるが、一部気筒で燃焼を停止する以上、やはり上記問題を完全には回避することはできない。
一方で、HC吸着触媒の昇温が速く、HC吸着材がHCを脱離する一定温度(約150℃)にまで早期に達するような状況下では、HC吸着触媒や下流側の三元触媒が未だ十分に活性していないにも拘わらずHC吸着材からHCが脱離を開始するという問題があり、この場合にも、HC吸着材から脱離するHCを十分に酸化除去できなくなるおそれがあり好ましいことではない。この場合、いかに効果的にHC吸着材の昇温を抑えてHC吸着触媒や下流側の三元触媒が活性温度に達するまでの時間を稼ぐかが課題となる。
また、排気再循環システム(EGRシステム)を有したエンジンにおいては、燃料カット開始時にEGRガスが筒内に導入されていると、排出される酸素量が低減し、触媒への酸素供給が遅れ、やはり上記同様、HC吸着材から脱離するHCを十分に酸化除去できなくなるおそれがあり好ましいことではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、燃料カットにより排出される酸素によって触媒中に酸素を供給しHC吸着材から脱離するHCを酸化除去する場合において、当該HC吸着材から脱離するHCを効率よく十分に酸化除去可能な内燃機関の排気浄化装置を提供することにある。
上記した目的を達成するために、請求項1の内燃機関の排気浄化装置は、多気筒からなる内燃機関の複数の気筒群にそれぞれ対応して設けられ少なくとも2種類の異なる長さの複数の分岐排気通路と、これら複数の分岐排気通路を排気下流側で合流して延びる主排気通路と、該主排気通路に介装され、所定の低温域にあるときに排気中のHCを吸着する一方、前記所定の低温域を越えると前記吸着したHCを脱離するHC吸着材と、該HC吸着材の温度を推定もしくは実測する温度検出手段と、該HC吸着材の同位置或いは排気下流側に位置して設けられた酸化触媒と、内燃機関の各気筒への燃料供給を制御する燃料制御手段と、前記温度検出手段からの情報に基づき前記HC吸着材の温度変化率を算出する温度変化率算出手段とを備え、前記燃料制御手段は、燃料カット条件が成立すると内燃機関への燃料供給を停止して燃料カットを行うとともに燃料カット復帰条件が成立すると該燃料カットを終了して内燃機関への燃料供給を復帰する燃料カット手段を含み、前記温度検出手段により前記HC吸着材の温度が前記所定の低温域を越えたことが検出されると、該燃料カット手段により前記複数の気筒群のうち少なくとも前記複数の分岐排気通路中の短い分岐排気通路に対応する一の気筒群について燃料カットを行い、少なくとも長い分岐排気通路に対応する他の気筒群については燃料カットを行わずに燃料供給を行い、前記温度検出手段により前記HC吸着材の温度が前記所定の低温域にあることが検出され、且つ、前記温度変化率算出手段により算出された前記HC吸着材の温度変化速度が所定速度以上であるとき、前記燃料カット手段により前記複数の気筒群のうち前記他の気筒群について燃料カットを行い、前記一の気筒群については燃料カットを行わずに燃料供給を行うことを特徴とする。
請求項2の内燃機関の排気浄化装置では、請求項1において、前記複数の気筒群にそれぞれ対応して設けられた複数の分岐吸気通路と、前記複数の分岐排気通路から前記複数の分岐吸気通路に気筒群毎にそれぞれ排気の一部をEGRガスとして環流させるEGR手段とを備え、前記EGR手段は、前記燃料カット手段により前記一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、該一の気筒群に対応する分岐吸気通路へのEGRガスの環流量を制限することを特徴とする。
請求項3の内燃機関の排気浄化装置では、請求項2において、前記EGR手段は、前記燃料カット手段により前記一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、該一の気筒群に対応する分岐吸気通路へのEGRガスの環流を中止することを特徴とする。
請求項4の内燃機関の排気浄化装置では、請求項1において、前記複数の気筒群にそれぞれ対応して設けられた複数の分岐吸気通路と、前記複数の分岐排気通路のうち前記他の気筒群に対応する分岐排気通路から前記複数の分岐吸気通路のうち前記他の気筒群に対応する分岐吸気通路に排気の一部をEGRガスとして環流させるEGR手段とを備えたことを特徴とする。
請求項1の内燃機関の排気浄化装置によれば、HC吸着材の温度が所定の低温域を越えたことが検出されると、複数の気筒群のうち複数の分岐排気通路中の短い分岐排気通路に対応する一の気筒群について燃料カットを行い、少なくとも長い分岐排気通路に対応する他の気筒群については燃料カットを行わずに燃料供給を行うようにしたので、HC吸着材にHCが吸着されると、当該HCは排気熱によるHC吸着材の温度上昇に伴ってHC吸着材から脱離され始め、HC吸着材の同位置或いは排気下流側に設けられた酸化触媒が活性され始めるが、これに合わせて複数の気筒群のうち複数の分岐排気通路中の短い分岐排気通路に対応する一の気筒群について燃料カット(パーシャル燃料カット)が行われ、他の気筒群への燃料供給は継続され、上記酸化触媒が酸素を十分に捕捉していない場合であっても、他の気筒群の燃焼によりエンジンの出力を安定させて車両のドライバビリティの悪化を防止しながら、一の気筒群から空気のみを排出させ、当該空気中の酸素、即ち余剰酸素によって上記脱離されたHCを上記酸化触媒上で酸化除去することができる。
そして、この際、一の気筒群に対応する分岐排気通路にはパーシャル燃料カットにより燃焼熱が排出されないため、当該分岐排気通路が長いと例えば外気に長時間冷やされて排気温度が大きく低下し、排気中の反応成分の活性度合いが低下したり或いは上記酸化触媒が冷却されて当該酸化触媒の酸化機能が低下する傾向にあるのであるが、対応する分岐排気通路が短い一の気筒群について燃料カットを行うことにより、排気温度の低下を抑えて酸素の活性度合いの低下や酸化触媒の酸化機能の低下を極力防止でき、上記脱離されたHCを上記酸化触媒上で効率よく良好に酸化除去することができる。
また、HC吸着材の温度が所定の低温域にあり、且つ、HC吸着材の温度変化速度が所定速度以上であるとき、他の気筒群について燃料カットを行い、一の気筒群については燃料カットを行わずに燃料供給を行うので、他の気筒群に対応する分岐排気通路は比較的長いことから、外気に長時間冷やされて排気温度が大きく低下することになり、車両のドライバビリティの悪化を防止しながら、HC吸着材の温度上昇を抑制しつつ上記酸化触媒が活性温度に達するまでの時間を効果的に稼ぐようにできる。
これにより、以降、HC吸着材が所定の低温域を越えたときには、一の気筒群について燃料カットを行うことにより、上記脱離されたHCを十分に活性した上記酸化触媒上で酸化除去することができ、HCの浄化効率のさらなる向上を図ることができる。
請求項2の内燃機関の排気浄化装置によれば、一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、当該一の気筒群に対応する分岐吸気通路へのEGRガスの環流量を制限するので、パーシャル燃料カットを開始した後において、一の気筒群からはEGRガスの排出を抑えて多くの空気(新気)を排出するようにでき、故に排気中に十分な量の余剰酸素を確保でき、上記脱離されたHCを上記酸化触媒上でより効率よく酸化除去することができる。
請求項3の内燃機関の排気浄化装置によれば、一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、当該一の気筒群に対応する分岐吸気通路へのEGRガスの環流を中止するので、パーシャル燃料カットを開始した後において、一の気筒群からはEGRガスを排出しないようにして空気(新気)のみを排出するようにでき、排気中に十分な量の余剰酸素を確保でき、上記脱離されたHCを上記酸化触媒上でより効率よく酸化除去することができる。
請求項4の内燃機関の排気浄化装置によれば、他の気筒群に対応する分岐排気通路から他の気筒群に対応する分岐吸気通路に排気の一部をEGRガスとして環流させるので、EGRガスを他の気筒群にのみ環流させ、燃料カットを行う一の気筒群には一切環流させないようにでき、パーシャル燃料カットの実施時において、一の気筒群からは常に確実に空気のみを排出するようにでき、排気中に十分な量の余剰酸素を確保でき、上記脱離されたHCを上記酸化触媒上でより効率よく酸化除去することができる。
以下、本発明の実施形態を添付図面に基づき説明する。
図1、図2を参照すると、車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成図が正面図及び側面図としてそれぞれ示されており、以下当該排気浄化装置の構成を説明する。
エンジン本体(内燃機関であって、以下、単にエンジンという)1の駆動軸2には流体継手4を介して自動変速機(A/T)10が接続されており、A/T10には、図示しないがデファレンシャルギヤユニット、車軸を介して一対の車輪が接続されている。なお、A/T10に変えて無段変速機(CVT)を用いるようにしてもよい。
エンジン1としては、例えば吸気管噴射型V型6気筒ガソリンエンジンが採用され、エンジン1の一対のバンク(複数の気筒群)を構成するシリンダヘッド20、21には、各気筒(#1、#2、#3、及び#4、#5、#6)の吸気ポートとそれぞれ分岐通路を連通するようにして吸気マニホールド(複数の分岐吸気通路)22、23がそれぞれ接続されており、吸気マニホールド22、23の吸気上流側には吸気管24が接続されている。吸気管24には、吸入空気量を調節するスロットルバルブ26及び吸気圧を検出する吸気圧センサ27が設けられている。
吸気マニホールド22の各分岐通路部には、それぞれ電磁式の燃料噴射弁28が設けられており、燃料噴射弁28には、燃料パイプ29を介して燃料供給ユニット(図示せず)が接続されており、当該燃料パイプ29を介して燃料が供給される。
また、シリンダヘッド20、21には、各気筒(#1、#2、#3、及び#4、#5、#6)の排気ポートとそれぞれ分岐通路を連通するようにして排気マニホールド30、31がそれぞれ接続されており、排気マニホールド30、31の排気下流側には各々排気管(複数の分岐排気通路)32、33が接続されている。詳しくは、エンジン1のレイアウト等の種々の理由から、排気管32、33は、図1に示すように、排気管32の長さL1の方が排気管33の長さL2よりも短くなるよう構成されている(L1<L2)。
さらに、シリンダヘッド20、21には、気筒毎に燃焼室に臨んで点火プラグ39がそれぞれ配設されており、各点火プラグ39は点火コイル38を介してバッテリ(図示せず)に接続されている。
そして、排気マニホールド30、31と吸気マニホールド22、23間には排気の一部をEGRガスとして吸気側に環流させるEGR通路14、15がそれぞれ設けられており、EGR通路14、15にはEGRガスの流量を調節するEGR弁16、17がそれぞれ介装されている(EGR手段)。
排気管32、33には、早期活性化を図るべくエンジン1に近接して三元触媒34、35がそれぞれ介装されており、排気管32、33は当該三元触媒34、35よりも排気下流側で合流して排気管(主排気通路)36にまとめられ、当該排気管36には排気上流側から順にHCトラップ触媒40、三元触媒(酸化触媒)42が介装されている。
三元触媒34、35は、貴金属として白金(Pt)、ロジウム(Rh)等を含んでいる。当該貴金属は排気空燃比(排気A/F)がリーン空燃比(リーンA/F)である酸化雰囲気下で酸素(O)を吸蔵するとともに排気A/Fがリッチ空燃比(リッチA/F)となる還元雰囲気下で当該吸蔵した酸素(ストレージO)を放出する酸素吸蔵機能(Oストレージ機能)を有している。これより、三元触媒34、35は、触媒温度が所定温度(約250℃〜350℃)以上の活性状態では、排気A/Fをストイキオ(理論空燃比)近傍で変動させると、酸素の吸蔵と放出とを繰り返しながら、HC、COを酸化除去するとともにNOxを良好に還元除去可能である。
なお、三元触媒42についても三元触媒34、35と同様の構成を有しており、HC、COとNOxを除去する機能を備えている。
HCトラップ触媒40は、例えばゼオライト(β型ゼオライト等)を主成分とするHC吸着材を含み、所定の低温域(例えば、150℃の領域)で排気中のHCを吸着するとともに、触媒温度が上昇して所定温度(例えば、150℃)以上になると吸着したHCを放出する特性を有している。つまり、HCトラップ触媒40は、エンジン1が冷態にあってHCの排出量が多く、且つ三元触媒34、35が未だ活性状態にないような場合において、排気中のHCを吸着してHCの大気中への排出量を低減する役割を有している。
そして、上記三元触媒42は、主としてこのようにHCトラップ触媒40から放出されるHCを酸化除去して浄化する役割を有している。
なお、HCトラップ触媒40も三元触媒34、35と同様、貴金属や酸素吸蔵材を有している。具体的には、HCトラップ触媒40は、担体の表面にHC吸着材を塗布して下層を形成し、その上層に貴金属や酸素吸蔵材からなる三元触媒層を形成して構成されている。これにより、HCトラップ触媒40は、HCトラップ触媒40自身においてもHC吸着材から放出されるHCを酸化除去することが可能である。
流体継手4は、トルクコンバータとして公知のものであり、ポンプ4aとタービン4b及び図示しないステータとから構成されている。また、流体継手4は、ポンプ4aとタービン4bとの断接を行うロックアップクラッチ(直結クラッチ)6とロックアップクラッチ6の断接制御を行う油圧ユニット8を有しており、これにより車両或いはエンジン1の運転状況に応じて直結(ロックアップ)と非直結(スリップ状態、切り離し状態)との切換えが可能である。
また、エンジン1には、クランクシャフトの回転を監視することでクランク角を検出するクランク角センサ50が設けられており、当該クランク角センサ50によりエンジン回転速度Neが検出される。
また、エンジン1には、アクセルペダル51の操作量(アクセル開度)を検出するアクセルポジションセンサ(APS)52、冷却水温度、即ちエンジン水温を検出することでエンジン1の暖機状態を検出する水温センサ53が設けられている。
また、三元触媒34、35の排気上流側にはOセンサ54、55が設けられている。さらに、HCトラップ触媒40にはHCトラップ触媒40の温度を検出する温度センサ(温度検出手段)46が設けられている。
電子コントロールユニット(ECU)60は、中央処理装置(CPU)等からなるエンジン1の制御を含む車両の各種制御を司る主制御装置であり、その入力側には、上述の温度センサ46、クランク角センサ50、APS52、水温センサ53、Oセンサ54、55の他、各種センサ類が接続されている。
一方、ECU60の出力側には、上述の油圧ユニット8、EGR弁16、17、スロットルバルブ26、燃料噴射弁28、点火コイル38の他、各種デバイス類が接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期等がそれぞれ出力される。詳しくは、各種センサ類からの検出情報に基づき燃焼空燃比(燃焼A/F)が適正な目標空燃比(目標A/F)に設定され、通常はOセンサ54、55からの情報に基づき目標A/Fがストイキオまたはその近傍にフィードバック(A/F−F/B)制御されて当該目標A/Fに応じた量の燃料(基本燃料量)が適正なタイミングで燃料噴射弁28から噴射され(燃料制御手段)、またスロットルバルブ26やEGR弁16、17が適正な開度に調整され、点火プラグ39により適正なタイミングで火花点火が実施される。さらに、油圧ユニット8からの制御指令に基づいてロックアップクラッチ6の断接が行われる。
そして、当該エンジン1は、ECU60からの情報に基づき、燃料噴射弁28からの燃料供給を一時的に停止(休筒)する所謂燃料カット制御を実施可能に構成されている。特に、本発明に係る内燃機関の排気浄化装置では、エンジン1は、全気筒について休筒する燃料カット(全気筒燃料カット)と、一部気筒についてのみ休筒し残気筒には燃料を供給する一部燃料カット(以下、パーシャル燃料カット)とを選択的に実施可能に構成されている。
以下、上記のように構成された本発明に係る内燃機関の排気浄化装置における燃料カット制御について説明する。
図3を参照すると、ECU60が実行する燃料カット判定の判定ルーチンがフローチャートで示されており、図4を参照すると、燃料カット制御の制御ルーチンがフローチャートで示されており、以下これらフローチャートに沿い説明する。
ここでは、先ず、図3の燃料カット判定の判定ルーチンに基づき、燃料カットとしてパーシャル燃料カットを実施するかの判定を行う。
ステップS10では、燃料カット判定を行うべく各種センサ類から各種データを読込む。
ステップS12では、水温センサ44からの冷却水温度情報に基づき、エンジン水温が所定温度Tw1未満であるか否かを判別する。判別結果が偽(No)で、エンジン水温が所定温度Tw1以上であってエンジン1が暖機状態にあると判定された場合には、ステップS24に進み、パーシャル燃料カットフラグをOFFに設定する。即ち、エンジン1が暖機状態にあるような場合には、冷態時に比べてHCの排出量が少なく、また排気熱によって三元触媒34やHCトラップ触媒40は活性状態にあると判断でき、全気筒についての燃料カットを許容するべく、パーシャル燃料カットフラグをOFF設定としてパーシャル燃料カットについては行わないようにする。
一方、ステップS12の判別結果が真(Yes)で、エンジン水温が所定温度Tw1未満であってエンジン1が冷態にあると判定された場合には、HCの排出量が多く、HCトラップ触媒40には多くのHCが吸着され、当該吸着されたHCがHCトラップ触媒40の温度上昇に伴い脱離される可能性が高いと判断でき、ステップS14に進む。
ステップS14では、アイドルSW42がONでエンジン1がアイドル運転状態にあるか否かを判別する。詳しくは、ここでは、車両が停止してエンジン1がアイドル運転状態にある場合のみならず、車両が減速中であってエンジン1がアイドル運転状態にあるか否かを判別する。判別結果が偽(No)の場合にはステップS24に進む。一方、判別結果が真(Yes)でアイドルSW42がON、即ち車両が減速中であって大きなエンジン出力を特に必要とせず、パーシャル燃料カットを実施しても問題ないような状況と判定された場合には、ステップS16に進む。
ステップS16では、温度センサ46からの情報に基づき、HCトラップ触媒40の温度がHCトラップ触媒40からHCが脱離を開始する所定の低温Tl(例えば、150℃)より大であるか否かを判別する。判別結果が偽(No)でHCトラップ触媒40の温度が未だ所定の低温Tl以下であると判定された場合には、HCトラップ触媒40にはHCが良好に吸着される一方、HCトラップ触媒40からHCは脱離しないため、パーシャル燃料カットは必要なく、ステップS17に進む。
ステップS17では、温度センサ46からの情報に基づき温度勾配(温度変化速度)dT/dtを算出し(温度変化率算出手段)、当該温度勾配dT/dtが所定値ΔT1(所定速度)より大きいか否かを判別する。判別結果が真(Yes)で温度勾配dT/dtが所定値ΔT1より大きい場合には、排気昇温が速く、HCトラップ触媒40の三元触媒層や三元触媒42が活性状態になる前にHCトラップ触媒40からHCが早期に脱離してしまうおそれがある状況と判断できる。従って、判別結果が偽(No)の場合には、ステップS24に進む一方、判別結果が真(Yes)の場合にはステップS19に進む。
ステップS19では、エンジン1の一方のバンク(一の気筒群)である全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)については燃料噴射弁28から燃料噴射を継続して行い、他方のバンク(他の気筒群)である全長の比較的長い排気管33の接続されたシリンダヘッド21側の各気筒(例えば、#4、#5、#6)については燃料噴射弁28からの燃料噴射を停止して燃料カットを行うべく、全長の比較的長い排気管33側についてのパーシャル燃料カットフラグ(長側パーシャル燃料カットフラグ)をON設定とする。
一方、ステップS16の判別結果が真(Yes)でHCトラップ触媒40の温度が所定の低温Tlより大と判定された場合には、ステップS18に進む。
ステップS18では、HCトラップ触媒40の温度がHCトラップ触媒40からHCが脱離しなくなる所定の高温Th(例えば、Tl+150℃以上)より小であるか否かを判別する。判別結果が偽(No)でHCトラップ触媒40の温度が所定の高温Th以上であると判定された場合には、不要なパーシャル燃料カットの実施を防止すべく、ステップS24に進む。一方、判別結果が真(Yes)でHCトラップ触媒40の温度が所定の高温Thより小と判定された場合には、ステップS20に進む。
ステップS20では、全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてのみ燃料噴射弁28からの燃料噴射を停止して燃料カットを行い、全長の比較的長い排気管33の接続されたシリンダヘッド21側の各気筒(例えば、#4、#5、#6)について燃料噴射弁28から燃料噴射を行うべく、全長の短い排気管32側についてのパーシャル燃料カットフラグ(短側パーシャル燃料カットフラグ)をON設定とする。つまり、エンジン水温が所定温度Tw1未満であって、アイドルSWがONで車両が減速状態にあり、HCトラップ触媒40の温度が所定の低温Tlと所定の高温Thの間にあるような場合には、短側パーシャル燃料カットフラグをON設定として全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてのパーシャル燃料カットの実施を許容する。
このように燃料カット判定が実施されたら、次に図4の燃料カット制御ルーチンを実行する。
ステップS30では、上記燃料カット判定において設定された短側パーシャル燃料カットフラグがONであるか否かを判定する。判別結果が真(Yes)で、短側パーシャル燃料カットフラグがONである場合には、ステップS31に進む。
ステップS31では、EGR弁16を絞り制御し、シリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてはEGRガスの環流量を少なく制限する。つまり、以降、シリンダヘッド20側の各気筒(例えば、#1、#2、#3)については燃料カットを行うことになるのであるが、当該燃料カットを行う直前から燃料カット終了までの間に亘り、EGRガスの環流量を制限する。好ましくは、EGR弁16を閉弁制御し、EGRガスの環流を中止するのがよい。
ステップS32では、全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてのみ燃料カットを行い、全長の比較的長い排気管33の接続されたシリンダヘッド21側の各気筒(例えば、#4、#5、#6)については通常通り燃料供給を実施するようにしてパーシャル燃料カット制御を実施する。なお、燃料供給を行うシリンダヘッド21側については、一般にはオープンループ制御が行われるが、ストイキオフィードバック制御を実施することも可能である。
このようにして全長の短い排気管32の接続されたシリンダヘッド20側のみ燃料カットを行うパーシャル燃料カット制御を実施すると、全長の比較的長い排気管33に比べて排気管32が外気により冷却される期間が短くなり、排気温度の低下を極力防止し、HCトラップ触媒40や三元触媒42の温度低下を抑制することができ、HCトラップ触媒40の三元触媒層や三元触媒42を良好に活性状態に維持することができる。
これにより、HCトラップ触媒40の温度が所定の低温Tlと所定の高温Thの間(所定の範囲内)にある時期、即ちHCがHCトラップ触媒40から脱離している時期に合わせてパーシャル燃料カットを容易にして効率よく実施でき、燃料カットにより排出される空気中の酸素を余剰酸素として、触媒中に酸素を供給しHC吸着材から脱離されるHCをHCトラップ触媒40の三元触媒層や三元触媒42により良好に酸化除去することができることになるが、特に、三元触媒層や三元触媒42が活性状態に維持されることにより、HCを十分に酸化除去できることとなる。
図5を参照すると、上記パーシャル燃料カット制御を実施した場合の三元触媒34、35の温度とHCトラップ触媒40の温度との時間変化(実線)がタイムチャートで示され、全長の比較的長い排気管33の接続されたシリンダヘッド21側の各気筒(例えば、#4、#5、#6)についてのみ燃料カットを実施した場合の時間変化(破線)が比較して示されているが、同図に示すように、全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてのみ燃料カットを実施することにより、排気温度の低下を防止してHCトラップ触媒40ひいては三元触媒42の温度低下を抑止でき、HCトラップ触媒40の三元触媒層や三元触媒42を良好に活性状態に維持でき、HCを良好に酸化除去可能である。
また、ここでは全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)については、燃料カットを行う直前から燃料カットの終了までの間に亘りEGRガスの環流量を少なく制限し或いはEGRガスの環流を中止しているので、燃料カット中において排気中にEGRガスを含まないように図り、極力空気のみを排気管32に排出するようにでき、十分な量の余剰酸素を確保するようにして効率よく触媒中に酸素を供給でき、HC吸着材から脱離されるHCを良好に酸化除去することができる。
なお、全気筒について燃料カットを行った場合、燃料カットによるエンジン回転速度Neの急落から即座に燃料復帰に至ると、エンジン出力やエンジン回転速度Neのハンチングが生じ、車両のドライバビリティが悪化するという問題があるのであるが、パーシャル燃料カット制御においてはこのようなエンジン出力やエンジン回転速度Neのハンチングが生じることがないため、車両のドライバビリティの悪化も併せて防止できる。
また、燃料供給を行うシリンダヘッド21側において空燃比がストイキオとなるように燃料噴射を行うことにより、燃焼によるNOxの発生が抑制され、HC吸着材から脱離されたHCを良好に酸化させながら、NOxの発生をも良好に抑制することができる。
ステップS34では、パーシャル燃料カット制御を開始してから所定時間が経過したか否かを判別する。ここに、所定時間としては、例えばHC吸着材からHCが脱離し終わるまでの時間を実験等により予め求めておき、当該時間が設定される。判別結果が偽(No)の場合には、パーシャル燃料カット制御が継続実施される。一方、判別結果が真(Yes)で所定時間が経過したと判定された場合には、ステップS36に進み、燃料カットを終了して燃料供給を復帰し、全気筒について燃料噴射を行い、通常運転を実施する。
一方、上記ステップS30の判別結果が偽(No)で、短側パーシャル燃料カットフラグがONでない場合には、ステップS38に進む。
ステップS38では、全気筒燃料カットの実施条件が成立したか否かを判別する。全気筒燃料カットの実施条件としては、例えばアイドルSWがONであって車両が減速状態にあり、且つ、ロックアップクラッチ6がON、即ち直結状態であるか否かが適用される。判別結果が真(Yes)で全気筒燃料カットの実施条件が成立したと判定された場合には、ステップS40に進み、全気筒燃料カットを実施する。
ステップS42では、エンジン回転速度Neが燃料復帰回転速度未満になったか否かを判別する。ここに、燃料復帰回転速度は、エンジン水温に応じ、エンジン水温が低いほど高めに設定されている。判別結果が偽(No)の場合には全気筒について燃料カット制御が継続実施される。一方、判別結果が真(Yes)でエンジン回転速度Neが燃料復帰回転速度未満になったような場合には、ステップS36に進み、燃料カットを終了して燃料供給を復帰し、全気筒について燃料噴射を行い、通常運転を実施する。
一方、ステップS38の判別結果が偽(No)で全気筒燃料カットの実施条件が成立していない場合には、ステップS44に進み、上記長側パーシャル燃料カットフラグがONであるか否かを判別する。判別結果が偽(No)の場合には、ステップS36進み、全気筒について燃料噴射を行う一方、判別結果が真(Yes)で長側パーシャル燃料カットフラグがONと判定された場合には、ステップS46に進む。
ステップS46では、長側パーシャル燃料カットフラグがONであることを受けて、全長の比較的長い排気管33の接続されたシリンダヘッド21側の各気筒(例えば、#4、#5、#6)についてのみ燃料カットを実施する。
このようにすると、排気管33は全長が比較的長いため、排気管33が外気に冷却される期間が長くなり、急激な排気昇温を防止でき、HCトラップ触媒40からHCが早期に脱離してしまわないようにしつつ、HCトラップ触媒40の三元触媒層や三元触媒42が活性状態になるまでの時間を稼ぐことができる。これにより、以降、HCトラップ触媒40の温度が所定の低温Tlを越え、パーシャル燃料カット制御が開始されたときにおいて、HCトラップ触媒40の三元触媒層や三元触媒42を確実に活性状態に維持してHCを酸化除去でき、HCの浄化効率のさらなる向上を図ることができる。
以上で本発明に係る内燃機関の排気浄化装置の実施形態の説明を終えるが、実施形態は上記に限られるものではない。
例えば、上記実施形態では、エンジン1を吸気管噴射型V型6気筒ガソリンエンジンとし、バンク毎に燃料カットを行うことでパーシャル燃料カット制御を実施するようにしたが、これに限られず、複数の排気マニホールドが気筒群毎に設けられて各排気マニホールドから延びる複数の排気管(複数の分岐排気通路)の長さが異なる構成であって、気筒群毎に燃料カット可能であれば、エンジン1は如何なるエンジンであってもよく、V型に代えて直列エンジン(例えば、4気筒ガソリンエンジン)であってもよいし、吸気管噴射型に代えて筒内噴射型エンジン等であってもよい。この場合、HC吸着材から脱離するHCの除去のためには複数の排気管のうち最も短い排気管に対応する気筒群についてのみ燃料カットを行い、HC吸着材の昇温を抑制するためには当該最も短い排気管以外の排気管に対応する気筒群についてのみ燃料カットを行えばよい。
また、上記実施形態では、バンク毎に三元触媒34と三元触媒35とをそれぞれ配設するようにしたが、三元触媒34、35については必ずしも設けなくてもよく、三元触媒34、35のいずれか一方だけ設けるようにしてもよい。
また、上記実施形態では、HCトラップ触媒40の排気下流側に三元触媒42を設けるようにしたが、上記のようにHCトラップ触媒40が三元触媒層を有している場合には三元触媒42を省略することも可能である。
また、上記実施形態では、バンク毎にEGR通路14、15を設け、全長の短い排気管32の接続されたシリンダヘッド20側の各気筒(例えば、#1、#2、#3)についてはEGRガスの環流量を少なく制限するようにしたが、シリンダヘッド20側のEGR通路14については最初から設けず、シリンダヘッド21側にEGR通路15のみ設けるようにしてもよい。このようにすれば、排気管32には一切EGRガスを排出せず常に確実に空気のみを排出するようにでき、排気中に十分な量の余剰酸素を確保するようにしてHC吸着材から脱離されるHCをより一層良好に酸化除去することができる。
また、上記実施形態では、温度検出手段としてHCトラップ触媒40を実測する温度センサ46を用いたが、エンジンの運転状態、エンジン水温、排気温度によりHCトラップ触媒40の温度を推定してもよい。
車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成を示す正面図である。 車両に搭載された本発明に係る内燃機関の排気浄化装置の概略構成を示す側面図である。 本発明に係る燃料カット判定の判定ルーチンを示すフローチャートである。 本発明に係る燃料カット制御の制御ルーチンを示すフローチャートである。 本発明に係る燃料カット制御を実施した場合の触媒温度の時間変化を示すタイムチャートである。
符号の説明
1 エンジン本体
14、15 EGR通路
16、17 EGR弁
28 燃料噴射弁
32、33 排気管(複数の分岐排気通路)
36 排気管(主排気通路)
39 点火プラグ
40 HCトラップ触媒(HC吸着材)
42 三元触媒(酸化触媒)
46 温度センサ(温度検出手段)
60 ECU(電子コントロールユニット)

Claims (4)

  1. 多気筒からなる内燃機関の複数の気筒群にそれぞれ対応して設けられ少なくとも2種類の異なる長さの複数の分岐排気通路と、
    これら複数の分岐排気通路を排気下流側で合流して延びる主排気通路と、
    該主排気通路に介装され、所定の低温域にあるときに排気中のHCを吸着する一方、前記所定の低温域を越えると前記吸着したHCを脱離するHC吸着材と、
    該HC吸着材の温度を推定もしくは実測する温度検出手段と、
    該HC吸着材の同位置或いは排気下流側に位置して設けられた酸化触媒と、
    内燃機関の各気筒への燃料供給を制御する燃料制御手段と
    前記温度検出手段からの情報に基づき前記HC吸着材の温度変化率を算出する温度変化率算出手段とを備え、
    前記燃料制御手段は、燃料カット条件が成立すると内燃機関への燃料供給を停止して燃料カットを行うとともに燃料カット復帰条件が成立すると該燃料カットを終了して内燃機関への燃料供給を復帰する燃料カット手段を含み、
    記温度検出手段により前記HC吸着材の温度が前記所定の低温域を越えたことが検出されると、該燃料カット手段により前記複数の気筒群のうち少なくとも前記複数の分岐排気通路中の短い分岐排気通路に対応する一の気筒群について燃料カットを行い、少なくとも長い分岐排気通路に対応する他の気筒群については燃料カットを行わずに燃料供給を行い、
    前記温度検出手段により前記HC吸着材の温度が前記所定の低温域にあることが検出され、且つ、前記温度変化率算出手段により算出された前記HC吸着材の温度変化速度が所定速度以上であるとき、前記燃料カット手段により前記複数の気筒群のうち前記他の気筒群について燃料カットを行い、前記一の気筒群については燃料カットを行わずに燃料供給を行うことを特徴とする内燃機関の排気浄化装置。
  2. 前記複数の気筒群にそれぞれ対応して設けられた複数の分岐吸気通路と、
    前記複数の分岐排気通路から前記複数の分岐吸気通路に気筒群毎にそれぞれ排気の一部をEGRガスとして環流させるEGR手段とを備え、
    前記EGR手段は、前記燃料カット手段により前記一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、該一の気筒群に対応する分岐吸気通路へのEGRガスの環流量を制限することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
  3. 前記EGR手段は、前記燃料カット手段により前記一の気筒群について少なくとも燃料カットを開始する直前から終了するまでの間、該一の気筒群に対応する分岐吸気通路へのEGRガスの環流を中止することを特徴とする、請求項2記載の内燃機関の排気浄化装置。
  4. 前記複数の気筒群にそれぞれ対応して設けられた複数の分岐吸気通路と、
    前記複数の分岐排気通路のうち前記他の気筒群に対応する分岐排気通路から前記複数の分岐吸気通路のうち前記他の気筒群に対応する分岐吸気通路に排気の一部をEGRガスとして環流させるEGR手段とを備えたことを特徴とする、請求項1記載の内燃機関の排気浄化装置。
JP2006291156A 2006-10-26 2006-10-26 内燃機関の排気浄化装置 Expired - Fee Related JP4743431B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291156A JP4743431B2 (ja) 2006-10-26 2006-10-26 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291156A JP4743431B2 (ja) 2006-10-26 2006-10-26 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2008106696A JP2008106696A (ja) 2008-05-08
JP4743431B2 true JP4743431B2 (ja) 2011-08-10

Family

ID=39440270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291156A Expired - Fee Related JP4743431B2 (ja) 2006-10-26 2006-10-26 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4743431B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074543B2 (en) * 2012-08-07 2015-07-07 Ford Global Technologies, Llc Method and system for engine unburned hydrocarbon control
JP6268524B2 (ja) * 2014-02-28 2018-01-31 スズキ株式会社 触媒温度推定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133716A (ja) * 1993-11-10 1995-05-23 Toyota Motor Corp 可変気筒エンジンの排気浄化装置
JP3901593B2 (ja) * 2002-06-26 2007-04-04 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP4392689B2 (ja) * 2004-05-25 2010-01-06 明男 石田 気筒群個別制御エンジン
JP4525938B2 (ja) * 2004-06-21 2010-08-18 三菱自動車工業株式会社 車両用内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2008106696A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
US9869242B2 (en) Engine control for catalyst regeneration
US9518287B2 (en) NOx control during engine idle-stop operations
US9222420B2 (en) NOx control during cylinder deactivation
JP4344953B2 (ja) 内燃機関の排気浄化装置
JP4525938B2 (ja) 車両用内燃機関の排気浄化装置
JP4314135B2 (ja) 車載内燃機関の排気浄化装置
US8020373B2 (en) Engine system and method for purge gas regeneration of an exhaust gas treatment device in such a system
EP1936158B1 (en) Exhaust gas treatment device regeneration inhibiting fuel combustion in engine cylinder
JP2004052611A (ja) 内燃機関の排気浄化装置
JP4743431B2 (ja) 内燃機関の排気浄化装置
JP2010242522A (ja) 内燃機関の排気浄化装置
JP2004143990A (ja) エンジンの制御装置
EP1936160B1 (en) Exhaust gas treatment device regeneration inhibiting fuel combustion in an engine cylinder
JP4331972B2 (ja) 内燃機関の排気浄化装置
JP2007255304A (ja) 排気浄化装置
JP4161429B2 (ja) 希薄燃焼内燃機関
JP2005330886A (ja) エンジンのアイドル停止制御装置
JP2009036153A (ja) 内燃機関の排気浄化装置
JP2002317670A (ja) 内燃機関の制御装置
JP3956107B2 (ja) 多気筒内燃機関の排気浄化装置
EP1936162B1 (en) An engine system and a method for a purge gas regeneration of an exhaust gas treatment device in a such a system
JP5811319B2 (ja) エンジンの排気浄化装置
JPH11311118A (ja) ターボチャージャ付エンジンの排気ガス浄化装置、及びその制御方法
JP2001214731A (ja) エンジンの制御装置
JP2000179330A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees