JP4742675B2 - Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body - Google Patents
Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body Download PDFInfo
- Publication number
- JP4742675B2 JP4742675B2 JP2005148601A JP2005148601A JP4742675B2 JP 4742675 B2 JP4742675 B2 JP 4742675B2 JP 2005148601 A JP2005148601 A JP 2005148601A JP 2005148601 A JP2005148601 A JP 2005148601A JP 4742675 B2 JP4742675 B2 JP 4742675B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical body
- adhesion layer
- wave
- frequency
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
この発明は、化学プラント等における管、タンク、反応器、ドラム等の筒状体の内側に付着した汚れ等の付着層厚を筒状体の外部から測定する筒状体内面付着層の厚さ測定方法に関する。 The present invention relates to the thickness of an inner surface adhesion layer of a cylindrical body for measuring the thickness of an adhesion layer such as dirt adhered to the inside of a cylindrical body such as a pipe, tank, reactor, drum, etc. It relates to a measurement method.
一般に、化学プラントその他の工業用施設には、熱交換器や蒸留塔等に接続されるような配管等の筒状体が多数設置されており、これら筒状体の内側には使用時に通過する物質により様々な汚れが付着する。 In general, chemical plants and other industrial facilities are provided with a large number of tubular bodies such as pipes that are connected to heat exchangers, distillation towers, etc., and these tubular bodies pass inside when used. Depending on the substance, various stains adhere.
上記配管等の筒状体内に原料の流体が結晶化等で固体化して積層状態になるまで付着すると、流通抵抗が大きくなって製造効率が低下したり、筒状体内圧力の上昇による安全性の問題や製品純度の低下等の、種々の問題を起こす懸念がある。 If the raw material fluid adheres to a cylindrical body such as the above-mentioned pipe until it is solidified by crystallization or the like to form a laminated state, the flow resistance increases and the production efficiency decreases, or safety due to an increase in the pressure in the cylindrical body There is a concern of causing various problems such as problems and a decrease in product purity.
このような問題を起こさないため、定期的に上記筒状体内の洗浄が行われる。しかし、この洗浄作業は、製造工程の一時的な停止状態を要する作業であり、作業で製造時間も遅延し、経済的な損失も大きい。また、汚れがあまりなく、洗浄の必要がない場合であっても、洗浄作業を行っていることもある。 In order not to cause such a problem, the cylindrical body is periodically cleaned. However, this cleaning operation requires a temporary stop of the manufacturing process, and the manufacturing time is delayed by the operation, and the economic loss is great. Even if there is not much dirt and there is no need for cleaning, a cleaning operation may be performed.
ところで、上記筒状体の内部の汚れの状態を確認する方法としては、配管を外して内部を目視で確認する方法、反応器やドラム等の蓋をあけて内部を目視で確認する方法等、筒状体の内部を目視で確認する方法があげられる。しかし、この方法は、配管の取り外し、蓋の開放等の操作が必要となり、さらに、死角等があるため、必ずしも完全に目視による確認を行い難い。このため、筒状体の内面の汚れの程度を把握することは難しく、また汚れの付着程度を広い範囲で確実に調べることは困難であった。 By the way, as a method of confirming the state of dirt inside the cylindrical body, a method of visually confirming the inside by removing the piping, a method of visually confirming the interior by opening the lid of the reactor, drum, etc. A method for visually confirming the inside of the cylindrical body is mentioned. However, this method requires operations such as removal of the pipe and opening of the lid, and furthermore, since there are blind spots, it is not always possible to completely check visually. For this reason, it is difficult to grasp the degree of dirt on the inner surface of the cylindrical body, and it is difficult to reliably check the degree of dirt adhesion in a wide range.
これに対し、上記筒状体の内部の汚れの付着量を測定する他の方法として、筒状体外部から外周面に垂直に超音波を入射させ、付着層表面の反射波から内部の付着層の厚さを計測する、いわゆる垂直法が知られている。 On the other hand, as another method for measuring the amount of dirt adhered inside the cylindrical body, an ultrasonic wave is vertically incident on the outer peripheral surface from the outside of the cylindrical body, and the internal adhesion layer is reflected from the reflected wave on the surface of the adhesion layer. A so-called vertical method for measuring the thickness of the film is known.
また、溶接部を有する鋼板のような板厚変化のある薄板の超音波探傷方法として、超音波による板波を用いた透過法(特許文献1参照。)が知られている。 Further, as an ultrasonic flaw detection method for a thin plate having a plate thickness change such as a steel plate having a welded portion, a transmission method using a plate wave by ultrasonic waves (see Patent Document 1) is known.
しかしながら、上記の垂直法による筒状体内付着層の厚さ測定方法では、特に筒状体が薄肉で、付着層の厚みも薄い場合、両者の反射波の分離が困難となりやすい。また、付着層の厚みが厚い場合、付着層による反射波の減衰が大きく、厚みの測定が困難となる場合がある。 However, in the method for measuring the thickness of the adhering layer in the cylindrical body by the above vertical method, particularly when the cylindrical body is thin and the thickness of the adhering layer is thin, it is difficult to separate the reflected waves from both. In addition, when the thickness of the adhesion layer is large, attenuation of the reflected wave by the adhesion layer is large, and it may be difficult to measure the thickness.
さらに、筒状体内部に均一に汚れの付着層が形成されているとは限らないので、垂直法によって検査対象の筒状体の一部のみを測定しても、筒状体全体の汚れの付着程度を把握できず、筒状体内付着層の形成程度を広範囲について把握できる筒状体内面付着層の厚さ測定方法が求められている。 Furthermore, since a dirt adhesion layer is not always uniformly formed inside the cylindrical body, even if only a part of the cylindrical body to be inspected is measured by the vertical method, There is a need for a method for measuring the thickness of a cylindrical body inner surface adhesion layer that cannot grasp the degree of adhesion and can grasp the degree of formation of the cylindrical body adhesion layer over a wide range.
一方、上記の超音波探傷方法は、筒状体内の汚れの付着量を測定する方法としては採用された例がない。また、この方法は、超音波による板厚の変化を知ることができるが、縦波を用いているため、これを実際の管やタンク等に応用すると、液体部分と固体部分の成分が同じであるので、密度に明瞭な境界が存在せず、また付着層の上に液体がない場合でも、付着層の表面からの反射波は減衰して振幅が小さくなる傾向があるため、実際上、筒状体では反射波は得難い傾向がある。 On the other hand, the ultrasonic flaw detection method described above has not been adopted as a method for measuring the amount of dirt adhered in the cylindrical body. In addition, this method can detect changes in plate thickness due to ultrasonic waves, but since longitudinal waves are used, the components of the liquid part and the solid part are the same when applied to an actual pipe or tank. Therefore, even if there is no clear boundary in density, and there is no liquid on the adhesion layer, the reflected wave from the surface of the adhesion layer tends to attenuate and decrease in amplitude. There is a tendency that it is difficult to obtain a reflected wave in the shape.
そこで、この発明は、筒状体を伝播される超音波として、板波、特にラム波を用いることにより、筒状体内部に付着した付着層の厚みを測定することを目的とする。 Accordingly, an object of the present invention is to measure the thickness of an adhesion layer attached to the inside of a cylindrical body by using a plate wave, particularly a Lamb wave, as an ultrasonic wave propagated through the cylindrical body.
この発明は、一対の探触子のうち一方の探触子を検査対象の筒状体外面に固定すると共に、他方の探触子が検査対象の筒状体外面上を移動自在となるように設置し、上記の他方の探触子を移動させながら、上記両探触子間に超音波、特にバースト波を送受信させることにより、筒状体にラム波を伝播させ、送信された周波数について上記探触子に受信される超音波の伝播時間及び振幅を測定し、上記の伝播距離、振幅、周波数及び伝播時間から選ばれる少なくとも3つの関係から、上記筒状体内面に付着した付着層の厚さの推定値を求める筒状体内面付着層の厚さ測定方法を用いることにより、上記課題を解決したのである。 According to the present invention, one of the pair of probes is fixed to the outer surface of the cylindrical body to be inspected, and the other probe is movable on the outer surface of the cylindrical body to be inspected. Install and move the other probe while transmitting and receiving ultrasonic waves, particularly burst waves, between the two probes to propagate Lamb waves to the cylindrical body, The propagation time and amplitude of the ultrasonic wave received by the probe are measured, and the thickness of the adhesion layer adhered to the inner surface of the cylindrical body from at least three relationships selected from the propagation distance, amplitude, frequency and propagation time. The above-mentioned problem has been solved by using the method for measuring the thickness of the inner surface adhesion layer of the cylindrical body for obtaining the estimated value of the thickness.
検査対象の筒状体の構成部材に、所定の角度を設けて超音波を入射すると、この超音波のうち表面波の一種である板波が筒状体の構成部材内を伝播する。この板波のうちラム波は、筒状体構成部材の外表面や、内表面、内表面に付着した付着物によって構成される層の表面で反射するが、この反射の際にモード変換、縦波及び横波の発生する現象が生じる。このため、ラム波の伝播が進むにつれ、多くのモードが混在した状態となる。 When an ultrasonic wave is incident on the constituent member of the cylindrical body to be inspected, a plate wave, which is a kind of surface wave among the ultrasonic waves, propagates in the constituent member of the cylindrical body. Of these plate waves, Lamb waves are reflected on the outer surface of the cylindrical member, the inner surface, and the surface of the layer composed of deposits adhering to the inner surface. A phenomenon in which waves and shear waves are generated occurs. For this reason, as the propagation of Lamb waves progresses, many modes are mixed.
この発明においては、他方の探触子を筒状体外面上を移動自在に設置するので、一方の探触子と他方の探触子との間、すなわち、伝播距離を変えることができる。この伝播距離により、ラム波のモード数が異なり、受信側の探触子におけるラム波の伝播時間や振幅に変化が生じる。 In the present invention, since the other probe is movably installed on the outer surface of the cylindrical body, the propagation distance can be changed between one probe and the other probe. The number of Lamb wave modes varies depending on the propagation distance, and the propagation time and amplitude of the Lamb wave in the receiving probe change.
このため、伝播距離を変えながら伝播時間や振幅を測定し、さらに加えて、超音波の周波数を変化させて同様にデータをとることにより、伝播距離、伝播時間、周波数及び振幅の4つのファクターを変化させたデータをとることができ、これらから、少なくとも3つの関係から、三次元図等の関係を示す関係データが得られる。例えば、所定の周波数に注目することにより、伝播距離、振幅及び伝播時間の三次元図等の関係データが得られる。また、所定の伝播時間に注目することにより、伝播距離、振幅及び周波数の三次元図等の関係データが得られる。さらに、伝播距離と伝播時間から伝播速度が導き出せるので、上記の各データから伝播速度、周波数及び振幅の三次元図等の関係データが得られる。 Therefore, by measuring the propagation time and amplitude while changing the propagation distance, and further taking the data by changing the frequency of the ultrasonic wave, the four factors of propagation distance, propagation time, frequency and amplitude can be obtained. Changed data can be taken, and from these, relational data indicating a relation such as a three-dimensional diagram can be obtained from at least three relations. For example, by paying attention to a predetermined frequency, relational data such as a three-dimensional diagram of propagation distance, amplitude, and propagation time can be obtained. Further, by paying attention to a predetermined propagation time, relational data such as a three-dimensional diagram of propagation distance, amplitude and frequency can be obtained. Furthermore, since the propagation speed can be derived from the propagation distance and propagation time, relational data such as a three-dimensional diagram of propagation speed, frequency and amplitude can be obtained from each of the above data.
これらの三次元図等の関係データを、検査対象の筒状体の内周面に特定の厚さの付着物を付着させて、同様の方法で得られた三次元図と比較することにより、付着層の厚さを推定することができる。 By comparing the relational data such as these three-dimensional diagrams with a three-dimensional diagram obtained by the same method by attaching a deposit of a specific thickness to the inner peripheral surface of the cylindrical body to be inspected, The thickness of the adhesion layer can be estimated.
この発明に係る筒状体内面付着層の厚さ測定方法は、一対の探触子を検査対象の筒状体の外面に設置し、このうち一方の探触子を固定すると共に、他方の探触子を移動自在とし、この一対の探触子で超音波を送受信させることにより、筒状体内面に付着している付着層の厚さを測定する方法である。 According to the method for measuring the thickness of the cylindrical body inner surface adhesion layer according to the present invention, a pair of probes are installed on the outer surface of a cylindrical body to be inspected, and one of the probes is fixed and the other probe is fixed. In this method, the thickness of the adhesion layer adhering to the inner surface of the cylindrical body is measured by allowing the probe to move and transmitting and receiving ultrasonic waves with the pair of probes.
すなわち、図1に示すように、検査対象の筒状体(図は筒状体の一部の断面を示す。)1の外表面に、一対の送信側探触子2及び受信側探触子3を設置し、両探触子2,3間に超音波を送受信することにより、筒状体1に板波4を伝播させる方法である。そして、送信側探触子2及び受信側探触子3のいずれか一方を、上記筒状体1外面に固定すると共に、他方を上記筒状体1外面に移動自在となるよう設置する。なお、本明細書においては、送信側探触子2を固定した探触子とし、受信側探触子3を移動可能な探触子として記載するが、受信側探触子3を固定した探触子とし、送信側探触子2を移動可能な探触子としても、全く同様の作用効果が得られるので、そのようにしてもよい。 That is, as shown in FIG. 1, a pair of transmitting probe 2 and receiving probe are formed on the outer surface of a cylindrical body 1 to be inspected (the figure shows a partial cross section of the cylindrical body). 3, and transmitting and receiving ultrasonic waves between the probes 2 and 3, the plate wave 4 is propagated through the tubular body 1. Then, either one of the transmission side probe 2 and the reception side probe 3 is fixed to the outer surface of the cylindrical body 1, and the other is installed so as to be movable on the outer surface of the cylindrical body 1. In this specification, the transmitter probe 2 is described as a fixed probe and the receiver probe 3 is described as a movable probe. However, a probe with the receiver probe 3 fixed is described. Even if the probe is a probe and the transmitter probe 2 is a movable probe, the same operation and effect can be obtained.
上記の送信側探触子2を固定し、かつ、受信側探触子3を移動自在とした装置としては、図2に示すように、ガイド6に送信側探触子2を、固定部材7を介して固定すると共に、ガイド6に設けたレール5に沿って移動可能なスライド部材8に受信側探触子3を取り付けた装置をあげることができる。この装置を用いると、受信側探触子3はレール5に沿った方向に移動が自在となる。また、この装置を用いた場合、検査対象の上記筒状体1の軸方向にガイド6を設置することにより、受信側探触子3を上記筒状体1の軸方向に直線状に移動させることが可能となる。 As an apparatus for fixing the transmitting probe 2 and making the receiving probe 3 movable, as shown in FIG. 2, the transmitting probe 2 is fixed to a guide 6 and a fixing member 7 is used. And a device in which the receiving probe 3 is attached to a slide member 8 that is movable along the rail 5 provided on the guide 6. When this apparatus is used, the receiving side probe 3 can move in the direction along the rail 5. When this apparatus is used, the receiving side probe 3 is moved linearly in the axial direction of the cylindrical body 1 by installing the guide 6 in the axial direction of the cylindrical body 1 to be inspected. It becomes possible.
上記の装置は、ガイドの両端部の接続部材9,10を用いて、筒状体1に接続される。このとき、上記筒状体1が鋼鉄等、磁石につく素材が用いられる場合、この接続部材9,10として磁石を用いると、この装置の筒状体1への脱着が容易となり、好ましい。 Said apparatus is connected to the cylindrical body 1 using the connection members 9 and 10 of the both ends of a guide. At this time, when the cylindrical body 1 is made of a material attached to a magnet such as steel, it is preferable to use a magnet as the connecting members 9 and 10 because the apparatus can be easily attached to and detached from the cylindrical body 1.
上記の筒状体1は、管、タンク、反応器、ドラム等であって、内部に物質を貯留又は通過させ得るように主要部が筒状に形成されている装置や設備の一部又はその全体をいい、特に限定された形態のみをいうものではない。 The cylindrical body 1 is a pipe, a tank, a reactor, a drum, or the like, and a part of an apparatus or facility in which a main part is formed in a cylindrical shape so that a substance can be stored or passed inside or a part thereof. It refers to the whole and does not mean only a particularly limited form.
また、この発明における付着物は、この筒状体1の内部に貯留又は通過される物質又はその物質由来からなる物であり、一般には固形状又はゲル状である。 Moreover, the deposit | attachment in this invention is a substance which consists of the substance stored or passed inside this cylindrical body 1, or that substance origin, and is generally solid form or a gel form.
次に、送信側探触子2から発信される超音波は、所定範囲の周波数を有し、図3に示すように、所定の入射角θで筒状体1の構成部材に入射される。入射される超音波のうち、板波が筒状体1の構成部材内を伝播する。この板波とは、理想条件において厚さが有限で広さが無限な板に沿って伝搬する弾性波をいう。この板波は、ラム(Lamb)波とSH波の2モードに分けられ、このうちSH波は、媒質中の粒子が、超音波の入射した平面に平行で、かつ伝搬方向に対して垂直な方向に振動して伝わる波をいう。また、ラム(Lamb)波は、厚さに対して充分な広さをもつ固体板中を縦波と横波が混在一体となって伝搬する波である。この横波は、SV波と呼ばれるものであり、SV波は媒質中の粒子が、超音波の入射した平面に垂直で、かつ波の伝搬方向に対して垂直な方向に振動して伝わる波をいう。 Next, the ultrasonic wave transmitted from the transmission side probe 2 has a frequency within a predetermined range, and is incident on the constituent member of the cylindrical body 1 at a predetermined incident angle θ as shown in FIG. Among the incident ultrasonic waves, a plate wave propagates in the constituent members of the cylindrical body 1. The plate wave is an elastic wave that propagates along a plate having a finite thickness and an infinite width under ideal conditions. This plate wave is divided into two modes, a Lamb wave and an SH wave. Of these, the SH wave has particles in the medium parallel to the plane on which the ultrasonic wave is incident and perpendicular to the propagation direction. A wave that vibrates in a direction. The Lamb wave is a wave that propagates in a solid plate having a sufficient width with respect to the thickness in which a longitudinal wave and a transverse wave are mixed and integrated. This transverse wave is called an SV wave. The SV wave is a wave transmitted by particles in a medium oscillating in a direction perpendicular to the plane on which the ultrasonic wave is incident and perpendicular to the wave propagation direction. .
そして、筒状体1の構成部材に斜めから超音波を入射すると、図3に示すように、この超音波の板波のうち、横波(図3の点線の矢印)及び縦波(図3の実線の矢印)を有するラム波は、筒状体1の構成部材の内面で反射すると共に、反射の際に縦波や横波が生じる。次に、これらの横波や縦波は、筒状体1の構成部材の外面で反射すると共に、さらに縦波や横波が発生する。このような現象をモード変換という。ラム波は無限にモード変換を繰り返すので、伝播距離が長くなると、複数のモードの縦波及び横波が混在一体となって伝搬する波となっていく。 When ultrasonic waves are incident on the constituent members of the cylindrical body 1 obliquely, as shown in FIG. 3, among the ultrasonic plate waves, a transverse wave (dotted arrow in FIG. 3) and a longitudinal wave (in FIG. 3). A Lamb wave having a solid line arrow) is reflected by the inner surface of the constituent member of the cylindrical body 1, and a longitudinal wave and a transverse wave are generated upon reflection. Next, these transverse waves and longitudinal waves are reflected by the outer surface of the constituent member of the cylindrical body 1, and further longitudinal waves and transverse waves are generated. Such a phenomenon is called mode conversion. Since the Lamb wave repeats mode conversion indefinitely, when the propagation distance becomes longer, a longitudinal wave and a transverse wave of a plurality of modes are mixed and integrated into a wave that propagates.
ところで、このラム波の振動は、筒状体1の構成部材の一点を見た場合、この筒状体1の構成部材の内面と外面との間の振動となって表れるが、この振動は、図4に示すように、その内面と外面との位相が同じであるAモード(非対称モード、図4(a)参照)と、その内面と外面との位相が反対であるSモード(対称モード、図4(b)参照)がある。この場合、その内面と外面との中間の中間面でみると、Aモードでは、中間面でも振動を生じるが、Sモードでは、中間面で振動が発生しなくなる。 By the way, the vibration of the Lamb wave appears as vibration between the inner surface and the outer surface of the constituent member of the cylindrical body 1 when one point of the constituent member of the cylindrical body 1 is viewed. As shown in FIG. 4, the A mode (asymmetric mode, see FIG. 4A) in which the phases of the inner surface and the outer surface are the same, and the S mode (symmetric mode, in which the phases of the inner surface and the outer surface are opposite to each other. 4 (b)). In this case, when viewed from an intermediate surface between the inner surface and the outer surface, in the A mode, vibration is also generated in the intermediate surface, but in the S mode, vibration is not generated in the intermediate surface.
一般的に、超音波を上記筒状体1の構成部材等の板材の片側から入射するとAモードの方が発生しやすくなり、一方、上記板材の両面から同時に入射すると、Sモードを発生させやすくなる。この発明の測定においては、外面のみから超音波を入射するため、ラム波のうち非対称のAモードの方が優先的に発生しやすく、Aモードを用いることが望ましい。なお、所定の波が、AモードかSモードかであることの判断は、付着層がない場合は受信した板波の周波数×板厚と位相速度の関係が文献に載っており、どのモードかを判断することが可能である。 In general, when an ultrasonic wave is incident from one side of a plate member such as the constituent member of the cylindrical body 1, the A mode is more likely to be generated. On the other hand, if the ultrasonic wave is simultaneously incident from both sides of the plate member, the S mode is likely to be generated. Become. In the measurement of the present invention, since ultrasonic waves are incident only from the outer surface, an asymmetric A mode is more likely to occur preferentially among Lamb waves, and it is desirable to use the A mode. It should be noted that the judgment of whether the predetermined wave is the A mode or the S mode is based on the relationship between the frequency of the received plate wave × the plate thickness and the phase velocity when there is no adhesion layer. Can be determined.
上記付着物が筒状体1の内面に付着すると、図1に示すように、筒状体1の構成部材の内部を伝播するラム波の一部は、付着層aの表面、すなわち、付着層aと筒状体1内部の内部物質bとの境界面で反射及びモード変換を生ずる(図1には、反射した波のみを記載。)。このため、筒状体1の構成部材内部を伝播するラム波と付着層aの表面で反射及びモード変化するラム波が共存することとなる。これらのラム波は、位相が相違し、この相違は、付着層aの種類、厚さ等で変化する。 When the deposit adheres to the inner surface of the cylindrical body 1, as shown in FIG. 1, a part of the Lamb wave propagating inside the constituent member of the cylindrical body 1 is the surface of the adhesion layer a, that is, the adhesion layer. Reflection and mode conversion occur at the interface between a and the internal substance b inside the cylindrical body 1 (only reflected waves are shown in FIG. 1). For this reason, the Lamb wave which propagates the inside of the structural member of the cylindrical body 1 and the Lamb wave which reflects and changes its mode on the surface of the adhesion layer a coexist. These Lamb waves are different in phase, and this difference varies depending on the type and thickness of the adhesion layer a.
上記の板波、特にラム波を発生させる代表的な方法としては、超音波の筒状体1の構成部材への入射角θを所定範囲内に選定する方法である。媒質(水)の縦波伝搬速度をVw、媒質(例えば鋼)における位相速度をVp、入射角をθとすれば、下記式の関係が成立するとき、位相速度Vpをもつ板波モードを強勢に発生させることができる。
Vp=Vw/sinθ
As a typical method for generating the above plate wave, in particular, the Lamb wave, there is a method of selecting the incident angle θ of the ultrasonic wave to the constituent member of the cylindrical body 1 within a predetermined range. Assuming that the longitudinal wave propagation velocity of the medium (water) is Vw, the phase velocity in the medium (for example, steel) is Vp, and the incident angle is θ, the plate wave mode having the phase velocity Vp is stressed when the following equation is satisfied. Can be generated.
Vp = Vw / sinθ
上記の入射角θとしては、板波を明瞭に確認するため、10〜60度がよく、20〜40度が好ましい。 As said incident angle (theta), in order to confirm a plate wave clearly, 10-60 degrees is good and 20-40 degrees is preferable.
板波を発生させる場合は、媒質中に存在するモードが周波数と板厚の積をパラメータとして変化するが、多くの波は単一の周波数のみをもったものではないため、付着層aの種類や厚みが同一であっても、超音波の発生源の種類により、受信側探触子3で受信される波が異なる場合が生じる。そこで、印加波形にほぼ単一な周波数をもつバースト波を用いることにより、角度のみの調整で特定のモードを発生させられる。このバースト波の周波数をより単一に近づけるためには、バースト波に用いるsin波の波数を適当に増やし、継続時間を長くすればよい。 When a plate wave is generated, the mode existing in the medium changes with the product of the frequency and the plate thickness as a parameter, but since many waves do not have only a single frequency, the type of the adhesion layer a Even if the thickness is the same, the wave received by the receiving probe 3 may differ depending on the type of ultrasonic wave generation source. Therefore, by using a burst wave having a substantially single frequency as the applied waveform, a specific mode can be generated by adjusting only the angle. In order to make the frequency of the burst wave closer to a single wave, the number of sin waves used for the burst wave may be increased appropriately to increase the duration.
上記バースト波(a)は、図5に示すようにガウス関数(b)と連続的に続くsin関数(c)を掛け合わせることによって作成できる。これにより、バースト波の立ち上がりと立ち下りの振幅が小さくなり、単一の周波数成分の波が得やすくなる。 The burst wave (a) can be created by multiplying a Gaussian function (b) and a continuous sin function (c) as shown in FIG. As a result, the rising and falling amplitudes of the burst wave are reduced, and a single frequency component wave is easily obtained.
このバースト波の周波数としては、発生するモード数があまり多くならない周波数帯にするため、0.1〜1MHzが好ましく、0.2〜0.7MHzがより好ましい。 The frequency of the burst wave is preferably 0.1 to 1 MHz, and more preferably 0.2 to 0.7 MHz, in order to make the frequency band in which the number of generated modes does not increase so much.
次に、この発明にかかる筒状体内面付着層の厚さの測定方法の手順について説明する。
まず、図2に示す装置を検査対象の筒状体1の外面に取り付ける。次いで、送信側探触子2を取り付けた水溜部材12を上記筒状体1の外面に固定することにより、送信側探触子2を固定する。一方、受信側探触子3を取り付けた水溜部材11を、上記送信側探触子2から所定距離離れた位置に設置することにより、受信側探触子3を所定位置に設置する。上記の水溜部材11,12の内部には、水が入れられ、発信される超音波の減衰を抑制できる。
Next, the procedure of the method for measuring the thickness of the cylindrical body inner surface adhesion layer according to the present invention will be described.
First, the apparatus shown in FIG. 2 is attached to the outer surface of the cylindrical body 1 to be inspected. Next, the transmission side probe 2 is fixed by fixing the water reservoir member 12 to which the transmission side probe 2 is attached to the outer surface of the cylindrical body 1. On the other hand, by installing the water reservoir member 11 to which the receiving side probe 3 is attached at a position away from the transmitting side probe 2 by a predetermined distance, the receiving side probe 3 is set at a predetermined position. Water is put in the water reservoir members 11 and 12 and attenuation of the transmitted ultrasonic waves can be suppressed.
図2には記載されていないが、図6に示すように、送信側探触子2には、任意波形発生装置で発生させてパワーアンプで増強したバースト波が送られ、筒状体1の構成部材の内部をラム波が伝播し、受信側探触子3で受信される。そして、この受信波を、パルサレシーバーを経由してオシロスコープで、その波形を確認すると共に、振幅及び伝播時間を測定する。 Although not shown in FIG. 2, as shown in FIG. 6, a burst wave generated by an arbitrary waveform generator and enhanced by a power amplifier is sent to the transmission-side probe 2. Lamb waves propagate through the components and are received by the receiving probe 3. The received wave is checked with an oscilloscope via a pulsar receiver, and the amplitude and propagation time are measured.
次に、受信側探触子3を移動して、送信側探触子2と受信側探触子3の間の距離、すなわち、伝播距離を変え、同様に振幅及び伝播時間を測定する。これにより、伝播距離、振幅及び伝播時間との関係の測定データが得られる。 Next, the reception-side probe 3 is moved, the distance between the transmission-side probe 2 and the reception-side probe 3, that is, the propagation distance is changed, and the amplitude and propagation time are similarly measured. Thereby, measurement data on the relationship between the propagation distance, the amplitude, and the propagation time is obtained.
また、必要に応じて、上記伝播距離の変更による測定の前又は後に、バースト波等の超音波の周波数を変え、同様に振幅及び伝播時間を測定してもよい。これにより、周波数、振幅及び伝播時間との関係の測定データが得られ、その結果、伝播距離、振幅、及び伝播時間の関係に加えて、伝播時間、振幅、及び周波数の関係のデータを得ることができる。 If necessary, the amplitude and propagation time may be measured in the same manner by changing the frequency of ultrasonic waves such as burst waves before or after the measurement by changing the propagation distance. As a result, measurement data on the relationship between frequency, amplitude, and propagation time is obtained. As a result, in addition to the relationship between propagation distance, amplitude, and propagation time, data on the relationship between propagation time, amplitude, and frequency is obtained. Can do.
上記の受信側探触子3で受信される波は、上記の通り、複数のモードの波が一体化したものとなるが、この中には、上記の通り、筒状体1の構成部材内部を伝播した波と、筒状体1の内面に付着した付着層aの表面で反射、モード変換した波とを含む。付着層aの種類や厚さによって、付着層aの表面で反射、モード変換した波の位相や強度が変わるため、上記の受信側探触子3で受信される波は、付着層aの種類や厚さによって変化する。このため、得られる上記測定データは、付着層aの種類や厚さによって異なったものとなる。 As described above, the waves received by the receiving probe 3 are integrated with a plurality of mode waves. As described above, the waves inside the constituent members of the cylindrical body 1 are included. And the wave reflected and mode-converted by the surface of the adhesion layer a adhering to the inner surface of the cylindrical body 1. Depending on the type and thickness of the adhesion layer a, the phase and intensity of the wave reflected and mode-converted on the surface of the adhesion layer a change, so that the wave received by the receiving probe 3 is the type of the adhesion layer a. Varies with thickness. Therefore, the obtained measurement data varies depending on the type and thickness of the adhesion layer a.
この測定データを、上記付着層aを構成する付着物と同様の付着物を用いて、検査対象の筒状体の内周面に付着させて、特定の厚さの付着層を形成させ、これを用いて上記と同様の方法で測定して得られる対照データと対比する。付着層aの厚みが同じ場合、同様のデータが得られるので、これにより、付着層aの厚さを推定することができる。 This measurement data is attached to the inner peripheral surface of the cylindrical body to be inspected using the same attachment as that constituting the adhesion layer a, thereby forming an adhesion layer having a specific thickness. Is compared with the control data obtained by measuring in the same manner as described above. Since the same data is obtained when the thickness of the adhesion layer a is the same, it is possible to estimate the thickness of the adhesion layer a.
具体的には、上記の通り、伝播距離及び周波数の2つのファクターを変化させることにより、伝播距離、周波数、振幅及び伝播時間の4つのファクターからなる関係のデータが得られる。これらから、少なくとも3つの関係を選ぶことができ、この3つの関係から、三次元図等の関係を示す関係データが得られる。例えば、所定の周波数に注目することにより、伝播距離、振幅及び伝播時間の三次元図等の関係データが得られる。また、所定の伝播時間に注目することにより、伝播距離、振幅及び周波数の三次元図等の関係データが得られる。さらに、伝播距離と伝播時間から伝播速度が導き出せるので、上記の各データから伝播速度、周波数及び振幅の三次元図等の関係データが得られる。さらにまた、上記の振幅のうち最大振幅をピックアップすることにより、最大振幅−伝播距離−周波数等の三次元図等の関係データが得られる。 Specifically, as described above, by changing the two factors of the propagation distance and the frequency, the relational data including the four factors of the propagation distance, the frequency, the amplitude, and the propagation time can be obtained. From these, at least three relationships can be selected, and from these three relationships, relationship data indicating a relationship such as a three-dimensional diagram can be obtained. For example, by paying attention to a predetermined frequency, relational data such as a three-dimensional diagram of propagation distance, amplitude, and propagation time can be obtained. Further, by paying attention to a predetermined propagation time, relational data such as a three-dimensional diagram of propagation distance, amplitude and frequency can be obtained. Furthermore, since the propagation speed can be derived from the propagation distance and propagation time, relational data such as a three-dimensional diagram of propagation speed, frequency and amplitude can be obtained from each of the above data. Furthermore, by picking up the maximum amplitude among the above amplitudes, relational data such as a three-dimensional diagram such as maximum amplitude−propagation distance−frequency can be obtained.
また、伝播距離を変化させたときの伝播時間の変化は、波の位相速度に相当するので、上記4つのファクターからなる関係のデータから、周波数、振幅、及び位相速度の3つのファクターからなる関係データが得られる。 In addition, since the change in propagation time when the propagation distance is changed corresponds to the phase velocity of the wave, the relationship consisting of the three factors of frequency, amplitude, and phase velocity is obtained from the relationship data consisting of the above four factors. Data is obtained.
これらの三次元図等の関係データを、検査対象の筒状体の内周面に特定の厚さの付着層を形成させて、同様の方法で得られた三次元図等の関係データと比較することにより、付着層の厚さを推定することができる。なお、上記の4つのファクターのうち、振幅を必須のファクターとして関係データを組み立てると、対比が容易になるので好ましい。 Compare these relationship data such as 3D diagrams with the relationship data such as 3D diagrams obtained in the same way by forming an adhesion layer with a specific thickness on the inner peripheral surface of the cylindrical body to be inspected. By doing so, the thickness of the adhesion layer can be estimated. Of the above four factors, it is preferable to assemble the relational data using the amplitude as an essential factor because the comparison becomes easy.
なお、上記付着層aを構成する付着物については、測定データと対比データとでは、同一のものを用いたが、これは、実際の筒状体の使用形態を考えた場合、その内部に貯留又は通過される物質が特定の物質に限定されるので、その結果、付着物の種類は特定の物質に限定されることとなり、その物質が何かであることは、測定する側は判断できると考えたためである。 In addition, about the deposit | attachment which comprises the said adhesion layer a, although the same thing was used by measurement data and contrast data, this is stored in the inside, when the usage form of an actual cylindrical body is considered. Alternatively, since the substance to be passed is limited to a specific substance, as a result, the kind of deposit is limited to the specific substance, and the measurement side can judge that the substance is something. This is because I thought.
また、上記付着層aを構成する付着物として、アルファオレフィン、アクリル系樹脂、石膏、水酸化アルミニウム等の場合、上記の測定方法で筒状体1の内面の付着層の厚さの推定値を求めることが可能である。 Further, in the case of alpha olefin, acrylic resin, gypsum, aluminum hydroxide or the like as the deposit constituting the adhesion layer a, the estimated value of the thickness of the adhesion layer on the inner surface of the cylindrical body 1 is obtained by the measurement method described above. It is possible to ask.
以下、この発明を、実施例を用いてより詳細に説明する。
(実施例1)
図2に示す装置を用い、検査対象の筒状体として、肉厚3.5mm、外径48.6mm、長さ300mmの鋼管を用いた。
まず、上記鋼管の内面に、アルファオレフィン(三菱化学(株)製:ダイアレン30、成分及び含有量:炭素数 30以上95%程度(炭素数28以下 5%程度含む)融点:75℃〜85℃、密度:0.78〜0.79g/cm3(90℃))を1mm又は2mmの厚さとなるように塗布し、付着層を形成した。
次いで、上記鋼管に図2に示す装置を磁石製接続部材9,10で接合した。そして、水溜部材11,12を鋼管上に設置した。上記装置の送信側探触子2及び受信側探触子3には、図6に示す装置が接続され、バースト波の発信、及び受信波の解析を行えるようにした。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A steel pipe having a thickness of 3.5 mm, an outer diameter of 48.6 mm, and a length of 300 mm was used as a cylindrical body to be inspected using the apparatus shown in FIG.
First, on the inner surface of the steel pipe, alpha olefin (manufactured by Mitsubishi Chemical Co., Ltd .: Dialene 30, component and content: carbon number 30 to 95% (including carbon number 28 or less 5%)) , Density: 0.78 to 0.79 g / cm 3 (90 ° C.) was applied to a thickness of 1 mm or 2 mm to form an adhesion layer.
Next, the apparatus shown in FIG. 2 was joined to the steel pipe with the connecting members 9 and 10 made of magnets. And the water reservoir members 11 and 12 were installed on the steel pipe. The apparatus shown in FIG. 6 is connected to the transmitting probe 2 and the receiving probe 3 of the above apparatus so that burst waves can be transmitted and received waves can be analyzed.
そして、送信側探触子2から入射される入射波として、10波のバースト波を用い、周波数を、0.25MHzから0.55MHzまで0.05MHzずつ変化させて、受信側探触子3で波を受信し、振幅(V)と伝播時間を測定した。この場合、受信する波は、Aモードの波であった。
次に、受信側探触子3の位置を少しずつ変えて伝播距離(mm)を変更し、上記と同様に測定した。
得られた結果について、伝播距離(mm)−伝播時間(s)−振幅(V)の関係の三次元図を図7〜図8に示す。また、振幅が最大のときの伝播距離(mm)−周波数(kHz)−最大振幅(V)の関係の3次元データを図9に示す。
Then, 10 burst waves are used as incident waves incident from the transmission side probe 2, and the frequency is changed by 0.05 MHz from 0.25 MHz to 0.55 MHz. Waves were received and amplitude (V) and propagation time were measured. In this case, the received wave was an A mode wave.
Next, the position of the receiving probe 3 was changed little by little to change the propagation distance (mm), and measurement was performed in the same manner as described above.
About the obtained result, the three-dimensional figure of the relationship of propagation distance (mm)-propagation time (s)-amplitude (V) is shown in FIGS. FIG. 9 shows three-dimensional data of the relationship of propagation distance (mm) −frequency (kHz) −maximum amplitude (V) when the amplitude is maximum.
(結果)
図7(a)〜(g)及び図8(a)〜(g)に、特定の厚さの付着層(アルファオレフィン)、及び所定の入射波の周波数の場合における、伝播距離−伝播時間−振幅の三次元図を示す。
図7(a)〜(g)や図8(a)〜(g)から明らかなように、入射波の周波数によって伝播距離−伝播時間−振幅の三次元図の形状は全く異なる。このため、付着物の種類等によって判断がより容易に行える入射波の周波数を選択することができる。
(result)
7 (a) to 7 (g) and FIGS. 8 (a) to 8 (g), the propagation distance-propagation time in the case of an adhesion layer (alpha olefin) having a specific thickness and a predetermined incident wave frequency- A three-dimensional diagram of the amplitude is shown.
As is apparent from FIGS. 7A to 7G and FIGS. 8A to 8G, the shape of the three-dimensional diagram of propagation distance-propagation time-amplitude is completely different depending on the frequency of the incident wave. For this reason, it is possible to select the frequency of the incident wave that can be more easily determined depending on the type of the deposit.
また、図7(a)〜(g)と図8(a)〜(g)との対比から明らかなように、同じ周波数の入射波を用いても、付着層の厚さによって、伝播距離−伝播時間−振幅の関係を示す三次元図の形状は全く異なる。このため、前もって、付着層の厚さを変えてデータをとることにより、実際の使用時の筒状体について測定することによって得られる伝播距離−伝播時間−振幅の三次元図の形状から、その付着層の厚さを容易に推定することが可能となる。 Further, as is clear from the comparison between FIGS. 7A to 7G and FIGS. 8A to 8G, even if incident waves with the same frequency are used, the propagation distance − The shape of the three-dimensional diagram showing the propagation time-amplitude relationship is completely different. For this reason, from the shape of the three-dimensional diagram of propagation distance-propagation time-amplitude obtained by measuring the cylindrical body in actual use by changing the thickness of the adhesion layer in advance, It is possible to easily estimate the thickness of the adhesion layer.
さらに、図9に伝播距離−周波数−最大振幅の関係の三次元図を示す。この図9は、最大振幅の伝播距離及び周波数による変化を表示しており、振幅の変化傾向、すなわち、干渉を把握することが可能となる。 Further, FIG. 9 shows a three-dimensional diagram of the relationship of propagation distance-frequency-maximum amplitude. FIG. 9 shows changes in propagation distance and frequency of the maximum amplitude, and it is possible to grasp the change tendency of the amplitude, that is, interference.
(実施例2)
アルファオレフィンのかわりに、石膏(和光純薬工業(株)製:焼きセッコウ、成分及び含有量:硫酸カルシウム(0.5水)97%以上 、2.96g/cm3(20℃)(無水和物として))を、0mm,1mm,1.5mm,2.5mm,3mm,4mmの厚みとなるように塗布し、付着層を形成した以外は、実施例1と同様にして、検査対象の筒状体を準備した。
(Example 2)
Instead of alpha-olefin, gypsum (Wako Pure Chemical Industries, Ltd .: baked gypsum, ingredients and content: calcium sulfate (0.5 water) 97% or more, 2.96 g / cm 3 (20 ° C.) (anhydrous As an example, except that an adhesive layer was formed by applying the material to a thickness of 0 mm, 1 mm, 1.5 mm, 2.5 mm, 3 mm, and 4 mm. A body was prepared.
板波測定は、上記実施例1と同様にして行った。なお、伝播距離は、100mmと150mmの2つの場合について行った。そして、伝播距離100mmの場合と150mmの場合との伝播時間差から位相速度を算出した。
なお、石膏の付着がない場合、受信する板波は、Aモードの波であった。また、伝播時間は、一波目のバースト波の立下り(振幅が正から負になっている部分)とした。
ところで、結果を比較する際、測定環境の違いによる影響を取り除くため、全ての振幅を基準となる振幅で正規化し相対振幅を求めた。すなわち、付着層がない場合において周波数が0.45MHzの波を入射した際に得られる応答波形の最大振幅(ピーク・ツー・ピーク値)を基準振幅とし、これを1とした。
得られた結果について、周波数(MHz)と位相速度(km/s)との関係図、及び周波数(MHz)と伝播距離150mmにおける相対振幅との関係図を図10(a)〜(f)に示す。
The plate wave measurement was performed in the same manner as in Example 1 above. Note that the propagation distance was two cases of 100 mm and 150 mm. The phase velocity was calculated from the propagation time difference between the propagation distance of 100 mm and 150 mm.
When there was no adhesion of gypsum, the received plate wave was an A mode wave. The propagation time was the fall of the first burst wave (the part where the amplitude is from positive to negative).
By the way, when comparing the results, in order to remove the influence due to the difference in the measurement environment, all amplitudes were normalized with reference amplitudes to obtain relative amplitudes. That is, the maximum amplitude (peak-to-peak value) of the response waveform obtained when a wave having a frequency of 0.45 MHz is incident when there is no adhesion layer, is set as 1.
Regarding the obtained results, the relationship diagram between the frequency (MHz) and the phase velocity (km / s) and the relationship diagram between the frequency (MHz) and the relative amplitude at the propagation distance of 150 mm are shown in FIGS. Show.
(結果)
図10(b),(c),(e),(f)において、付着層(石膏)が存在すると、特定の周波数で、急激な位相速度の変化が生じると共に、相対振幅が急激に減衰した(図10(b),(c),(e),(f)の矢印で示した箇所付近)。この位相速度の急激な変化は、測定に用いたA0モード以外のモードの板波が発生していることに由来するものである。他のモードが発生する周波数では、複数のモードが同時に受信されて、各モードの板波が干渉し合うので、そのときの振幅が大きく減衰するものと考えられる。このことから、振幅の周波数依存的な減衰から、他モードの板波が発生していることを判断することができる。
(result)
10 (b), (c), (e), and (f), when an adhesion layer (gypsum) is present, a sudden change in phase velocity occurs at a specific frequency, and the relative amplitude rapidly attenuates. (Near the location indicated by the arrows in FIGS. 10B, 10C, 10E, and 10F). This sudden change in the phase velocity is due to the generation of plate waves in modes other than the A0 mode used for measurement. At frequencies where other modes occur, a plurality of modes are received at the same time, and the plate waves of each mode interfere with each other, so the amplitude at that time is considered to be greatly attenuated. From this, it can be determined from the frequency-dependent attenuation of the amplitude that a plate wave of another mode is generated.
図10(a)〜(f)から明らかなように、急激に位相速度が変化する周波数は、付着層の厚みによって異なる。このことから、付着層の厚みの明らかな場合のデータを前もってとっておくことにより、位相速度が急激に変化し、振幅が極小となる周波数の値から付着層の厚みを予測することが可能となる。 As is clear from FIGS. 10A to 10F, the frequency at which the phase velocity changes suddenly varies depending on the thickness of the adhesion layer. From this, it is possible to predict the thickness of the adhesion layer from the value of the frequency at which the phase velocity changes suddenly and the amplitude becomes minimum by taking in advance data when the thickness of the adhesion layer is clear. Become.
なお、この高次モードの発生に伴う位相速度、及び振幅の変化は送受信子間距離によっては、必ずしも観測できない場合がある(図10(a),(d)等)ので、付着物の種類によって、伝播距離を少しずつ変えて、モードの発生が明確に把握できるような距離を見出しておくとよい。 Note that changes in phase velocity and amplitude associated with the generation of this higher-order mode may not always be observed depending on the distance between the transmitter and the receiver (FIGS. 10A, 10D, etc.). By changing the propagation distance little by little, it is good to find a distance that can clearly identify the occurrence of the mode.
ところで、図9の場合にも、最大振幅が落ち込んでいる周波数がある。この周波数値からも、この実施例2の場合と同様に、付着層の厚みの明らかな場合のデータを前もってとっておくことにより、付着層の厚みを予測することが可能となるものと考えられる。 Incidentally, even in the case of FIG. 9, there is a frequency at which the maximum amplitude falls. From this frequency value as well, in the same way as in the case of Example 2, it is considered that the thickness of the adhesion layer can be predicted by taking in advance data when the thickness of the adhesion layer is obvious. .
1 筒状体
2 送信側探触子
3 受信側探触子
4 板波
5 レール
6 ガイド
7 固定部材
8 スライド部材
9 接続部材
10 接続部材
11 水溜部材
12 水溜部材
a 付着層
b 内部物質
DESCRIPTION OF SYMBOLS 1 Cylindrical body 2 Transmission side probe 3 Reception side probe 4 Sheet wave 5 Rail 6 Guide 7 Fixing member 8 Slide member 9 Connection member 10 Connection member 11 Water reservoir member 12 Water reservoir member a Adhesion layer b Internal substance
Claims (3)
上記の他方の探触子を移動させながら、上記両探触子間に単一の周波数からなるバースト波の超音波を送受信させることにより、筒状体にラム波を伝播させ、
送信された周波数について上記探触子に受信される超音波の波形を確認すると共に伝播時間及び振幅を測定し、
伝播距離及び上記伝播時間から上記超音波の位相速度を求め、
この位相速度が急激に変化する周波数の値から、上記筒状体内面に付着した付着層の厚さの推定値を求める筒状体内面付着層の厚さ測定方法。 While fixing one probe of the pair of probes to the outer surface of the cylindrical body to be inspected, the other probe is installed so as to be movable on the outer surface of the cylindrical body to be inspected,
While moving the other probe, by transmitting and receiving burst wave ultrasonic waves having a single frequency between the two probes, Lamb waves are propagated to the cylindrical body,
Confirm the waveform of the ultrasonic wave received by the probe for the transmitted frequency and measure the propagation time and amplitude,
It obtains a phase velocity of the ultrasonic wave from the propagation distance and the propagation time,
A method for measuring the thickness of a cylindrical body inner surface adhesion layer that obtains an estimated value of the thickness of the adhesion layer adhered to the inner surface of the cylindrical body from the value of the frequency at which the phase velocity changes rapidly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005148601A JP4742675B2 (en) | 2005-05-20 | 2005-05-20 | Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005148601A JP4742675B2 (en) | 2005-05-20 | 2005-05-20 | Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010224521A Division JP2011002470A (en) | 2010-10-04 | 2010-10-04 | Method for measuring thickness of deposit layer on internal surface of tubular body |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006322902A JP2006322902A (en) | 2006-11-30 |
JP2006322902A5 JP2006322902A5 (en) | 2008-04-24 |
JP4742675B2 true JP4742675B2 (en) | 2011-08-10 |
Family
ID=37542680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005148601A Expired - Fee Related JP4742675B2 (en) | 2005-05-20 | 2005-05-20 | Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4742675B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11639701B1 (en) | 2022-06-01 | 2023-05-02 | Caterpillar Inc. | Gaseous fuel engine configuration and method using always-open fuel admission ports |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5391375B2 (en) * | 2009-01-28 | 2014-01-15 | 国立大学法人 名古屋工業大学 | Plate thickness measuring method and plate thickness measuring apparatus |
JP5083271B2 (en) * | 2009-04-28 | 2012-11-28 | 株式会社Ihi | Carburizing depth measuring method and carburizing depth measuring device |
JP5629481B2 (en) * | 2010-03-16 | 2014-11-19 | 富士重工業株式会社 | Damage diagnosis system |
JP2011002470A (en) * | 2010-10-04 | 2011-01-06 | Mitsubishi Chemicals Corp | Method for measuring thickness of deposit layer on internal surface of tubular body |
KR20140040692A (en) * | 2011-01-06 | 2014-04-03 | 더루우브리졸코오포레이션 | Ultrasonic measurement |
JP5904339B2 (en) * | 2013-03-08 | 2016-04-13 | 三菱電機株式会社 | Liquid detection method and liquid detection apparatus |
JP6235839B2 (en) * | 2013-09-11 | 2017-11-22 | 三菱重工業株式会社 | Method for inspecting micro crack on inner surface of tube and apparatus for inspecting micro crack on inner surface of tube |
JP6606342B2 (en) * | 2015-04-17 | 2019-11-13 | 三菱日立パワーシステムズ株式会社 | Ultrasonic measuring device |
JP6496181B2 (en) * | 2015-04-17 | 2019-04-03 | 三菱日立パワーシステムズ株式会社 | Ultrasonic measurement method and ultrasonic measurement apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004301540A (en) * | 2003-03-28 | 2004-10-28 | Cosmo Oil Co Ltd | Non-destructive inspection method and non-destructive inspection device |
JP2011002470A (en) * | 2010-10-04 | 2011-01-06 | Mitsubishi Chemicals Corp | Method for measuring thickness of deposit layer on internal surface of tubular body |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0635931B2 (en) * | 1990-11-30 | 1994-05-11 | 工業技術院長 | Single-mode ultrasonic wave generation method and object thickness measurement method using it |
JP3230552B2 (en) * | 1993-12-03 | 2001-11-19 | キヤノン株式会社 | Piezoelectric sensor and coordinate input device using the same |
JPH09196900A (en) * | 1996-01-19 | 1997-07-31 | Hitachi Ltd | Method and device for measuring surface layer characteristics |
JP3467208B2 (en) * | 1999-05-31 | 2003-11-17 | 財団法人鉄道総合技術研究所 | Surface wave phase velocity detection system and surface wave phase velocity detection method |
JP4257076B2 (en) * | 2002-06-26 | 2009-04-22 | 三菱化学株式会社 | Measuring method of pipe inner surface deposit |
JP2005134192A (en) * | 2003-10-29 | 2005-05-26 | Mitsubishi Chemicals Corp | Method for measuring thickness of layer attached to inner surface of tubular body |
JP2005241367A (en) * | 2004-02-25 | 2005-09-08 | Mitsubishi Chemicals Corp | Thickness measuring method for cylindrical inner surface deposition layer |
JP2006084447A (en) * | 2004-09-17 | 2006-03-30 | Toyota Motor Corp | Ultrasonic nondestructive measuring method and ultrasonic nondestructive measuring apparatus used therefor |
-
2005
- 2005-05-20 JP JP2005148601A patent/JP4742675B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004301540A (en) * | 2003-03-28 | 2004-10-28 | Cosmo Oil Co Ltd | Non-destructive inspection method and non-destructive inspection device |
JP2011002470A (en) * | 2010-10-04 | 2011-01-06 | Mitsubishi Chemicals Corp | Method for measuring thickness of deposit layer on internal surface of tubular body |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11639701B1 (en) | 2022-06-01 | 2023-05-02 | Caterpillar Inc. | Gaseous fuel engine configuration and method using always-open fuel admission ports |
Also Published As
Publication number | Publication date |
---|---|
JP2006322902A (en) | 2006-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4742675B2 (en) | Method for measuring the thickness of the inner surface adhesion layer of a cylindrical body | |
KR102417558B1 (en) | Detection and Monitoring of Changes in Metal Structures Using Multimode Acoustic Signals | |
Lowe et al. | Long range guided wave inspection usage–current commercial capabilities and research directions | |
US10458871B2 (en) | Apparatus and method for measuring the pressure inside a pipe or container | |
EP1960766B1 (en) | Detection of defects in welded structures | |
Alleyne et al. | The choice of torsional or longitudinal excitation in guided wave pipe inspection | |
US10996203B2 (en) | Detection, monitoring, and determination of location of changes in metallic structures using multimode acoustic signals | |
Alleyne et al. | The long range detection of corrosion in pipes using Lamb waves | |
Alleyne et al. | Rapid, long range inspection of chemical plant pipework using guided waves | |
NO327139B1 (en) | Method and system for determining loss of material thickness in a solid structure | |
US10585069B2 (en) | Detection, monitoring, and determination of location of changes in metallic structures using multimode acoustic signals | |
JP2005134192A (en) | Method for measuring thickness of layer attached to inner surface of tubular body | |
EP3785027B1 (en) | Detection, monitoring, and determination of location of changes in metallic structures using multimode acoustic signals | |
JP2011002470A (en) | Method for measuring thickness of deposit layer on internal surface of tubular body | |
JP4257076B2 (en) | Measuring method of pipe inner surface deposit | |
JP2006276032A (en) | Method and system for pipe testing | |
JP2018205185A5 (en) | ||
Furukawa et al. | Simulation and visualization of guided wave propagation by large-scale 3D FEM | |
JP2009092471A (en) | Flaw detection method and apparatus | |
JP2005241367A (en) | Thickness measuring method for cylindrical inner surface deposition layer | |
Gunarathna et al. | Challenges in Monitoring Metallic Pipeline Corrosion Using Ultrasonic Waves—A Review Article | |
JP2000321041A (en) | Method for detecting carburizing layer and method for its thickness | |
US9518959B2 (en) | Structural health monitoring system and method | |
JP2010286330A (en) | Method for inspecting thickness reduction of pipe, and inspection device used in the same | |
JP3841794B2 (en) | Inspection method for corrosion and thinning by the two-probe method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080311 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100616 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100706 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101004 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |