JP2010286330A - Method for inspecting thickness reduction of pipe, and inspection device used in the same - Google Patents

Method for inspecting thickness reduction of pipe, and inspection device used in the same Download PDF

Info

Publication number
JP2010286330A
JP2010286330A JP2009139767A JP2009139767A JP2010286330A JP 2010286330 A JP2010286330 A JP 2010286330A JP 2009139767 A JP2009139767 A JP 2009139767A JP 2009139767 A JP2009139767 A JP 2009139767A JP 2010286330 A JP2010286330 A JP 2010286330A
Authority
JP
Japan
Prior art keywords
pipe
sound wave
steam
bent portion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009139767A
Other languages
Japanese (ja)
Inventor
Akinori Tamura
明紀 田村
Keita Okuyama
圭太 奥山
Shiro Takahashi
志郎 高橋
Koji Nishida
浩二 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009139767A priority Critical patent/JP2010286330A/en
Publication of JP2010286330A publication Critical patent/JP2010286330A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To specify a thickness-reduced section of a pipe due to liquid drop collision erosion, produced at a curved part of a pipe through which steam flows. <P>SOLUTION: A method for inspecting reduction in the thickness of a pipe A due to liquid drop collision erosion 11 produced at a curved part 2 of the pipe 1, through which steam flows by collision of liquid drops in the steam to the inner surface of the pipe includes measuring of pressure fluctuation, based on propagation of sound waves generated by the liquid drop collision erosion 11 in the steam, by using sensors 3, 4, 5, 6 provided at positions upstream and downstream of the curving part 2 of the pipe 1 with intervals; determining the propagation rates of the sound waves propagating in the steam upstream and downstream separately by using the measured results of these; and specifying the production location of the liquid drop collision erosion 11 by the sonar principle, by using the determined propagation rates of the sound wave upstream and downstream and the time difference between the time of the sound waves that has reached the sensor upstream of the curved part 2 and the time of the sound waves that has reached the sensor downstream. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種プラントに使用される配管の減肉検査方法と、その方法に用いる検査装置に関する。   The present invention relates to a pipe thinning inspection method used in various plants and an inspection apparatus used in the method.

各種プラントに設置される、水蒸気が流れる配管の屈曲部において、液滴衝突エロージョンによる配管の管壁の肉厚が減肉することがある。そのため、その減肉部位を検査して発見することが機器保全上必要である。   In a bent portion of a pipe through which water vapor flows installed in various plants, the wall thickness of the pipe due to droplet collision erosion may be reduced. Therefore, it is necessary for equipment maintenance to inspect and find the thinned portion.

従来、配管の減肉部位を検査する場合は、下記の特許文献1に開示されているように、配管外部より超音波パルスを入射した後、一定時間経過後に反射パルスを受信し、配管減肉を測定する。または、下記の特許文献2に開示されているように、配管外部より、配管内部の流体の流れにより生じる超音波を測定し、測定した超音波に基づいて、配管減肉を測定する。   Conventionally, when inspecting a thinned portion of a pipe, as disclosed in Patent Document 1 below, after receiving an ultrasonic pulse from the outside of the pipe, a reflected pulse is received after a lapse of a certain time, and pipe thinning is performed. Measure. Alternatively, as disclosed in Patent Document 2 below, an ultrasonic wave generated by the flow of fluid inside the pipe is measured from the outside of the pipe, and pipe thinning is measured based on the measured ultrasonic wave.

しかしながら、配管等には保温材が巻かれていることが多いため、上記の測定方法では、検査する部位の保温材を全て剥がす必要があり、作業効率が悪い。全ての保温材を剥がすことなく配管等の検査する方法としては、例えば、下記の特許文献3では、アコースティックエミッション法による方法が示されている。   However, since a heat insulating material is often wound around a pipe or the like, it is necessary to remove all of the heat insulating material at the site to be inspected in the above measurement method, and the work efficiency is poor. As a method for inspecting piping and the like without removing all the heat insulating materials, for example, Patent Document 3 below discloses a method by an acoustic emission method.

特開平7−198362号公報JP-A-7-198362 特開2007−170968号公報JP 2007-170968 A 特開2003−232782号公報Japanese Patent Application Laid-Open No. 2003-232728

配管の管壁と液滴が干渉することで発生する音は、縦波と横波が干渉し、ラム波として壁面中を伝播する。そのラム波を利用するようにアコースティックエミッション法を採用したい場合には、配管の複数の位置にセンサを設け、各センサで測定したラム波の位相差とラム波の伝播速度から、音源となる配管欠陥部位までの距離を算出し、ソナーの原理により、配管の欠陥部位を特定することが考えられる。
しかしながら、アコースティックエミッション法で利用しようとするラム波は乱雑な波形を持つノイズであると同時に、伝播速度は周波数依存性を持っているため、配管の欠陥部位を特定するためには、時間軸の情報を失わないような複雑な周波数解析が必要となる。
The sound generated by the interference between the pipe wall of the pipe and the droplets propagates through the wall surface as a Lamb wave due to interference between the longitudinal wave and the transverse wave. If you want to use the acoustic emission method to use the Lamb wave, install a sensor at multiple locations on the pipe, and use the Lamb wave phase difference measured by each sensor and the Lamb wave propagation speed as a sound source pipe. It is conceivable to calculate the distance to the defective part and identify the defective part of the pipe by the principle of sonar.
However, the Lamb wave to be used in the acoustic emission method is a noise with a messy waveform, and at the same time, the propagation speed has frequency dependence. A complex frequency analysis that does not lose information is required.

一方、配管の中を流れる配管内の流体を伝播する音波は、ラム波のような伝播速度の周波数依存性が無いため、時間軸の情報を失わないような複雑な周波数解析を用いることなく、より簡単に、複数のセンサを用いたソナーの原理による配管欠陥部位の特定が可能であることを知り得た。   On the other hand, the sound wave propagating through the fluid in the pipe flowing through the pipe has no frequency dependence of the propagation velocity like Lamb wave, so without using complicated frequency analysis that does not lose time axis information, It has been found that it is possible to easily identify a piping defect site by the sonar principle using a plurality of sensors.

例えば、音源となる配管の欠陥部位である減肉部位から、L1離れた上流側に第1のセンサを、L2離れた下流側に第2のセンサを設け、配管内の流体を伝播する音波を第1,第2の各センサで測定する。各センサで検出される音波の時間軸波形から、各センサにおける音波の時間差Δtが分かれば、音波の伝播速度cから、音源から各センサまでの距離の差ΔL=L1−L2がΔL=cΔtにより計算できる。 For example, a first sensor is provided on the upstream side away from L 1 and a second sensor is provided on the downstream side away from L 2 from a thinned part that is a defective part of a pipe serving as a sound source, and the fluid in the pipe is propagated. Sound waves are measured by the first and second sensors. If the time difference Δt of the sound wave at each sensor is known from the time axis waveform of the sound wave detected by each sensor, the difference ΔL = L 1 −L 2 between the sound source and each sensor from the sound wave propagation velocity c is ΔL = It can be calculated by cΔt.

各センサ間の距離L=L1+L2は測定可能であるため、各センサ間の距離Lから、音源から各センサまでの距離の差ΔLを引くことで、各センサから音源までの距離、L1およびL2が算出でき、音源となる配管の欠陥部位を特定できる。 Since the distance L = L 1 + L 2 between the sensors can be measured, by subtracting the distance difference ΔL from the sound source to each sensor from the distance L between the sensors, the distance from each sensor to the sound source, L 1 and L 2 can be calculated, and the defective portion of the pipe serving as the sound source can be specified.

しかしながら、配管内を流れる流体が蒸気であって、その蒸気が流れ方向を変化させられる検査部位、例えば流路の曲がり部、ではその蒸気中に含まれる液滴が配管壁面に衝突する。このような衝突が生じると、配管の減肉を助長させる液滴衝突エロージョンが生じる。   However, the fluid flowing in the pipe is steam, and the droplet contained in the steam collides with the pipe wall surface at the inspection site where the steam can change the flow direction, for example, the bent portion of the flow path. When such a collision occurs, droplet collision erosion that promotes thinning of the pipe occurs.

その液滴衝突エロージョンが生じると、液滴衝突によって蒸気中の液滴量が液滴衝突後の蒸気中から減少するため、液滴衝突エロージョン発生箇所の上流側と下流側とで流体の物性が変化し、上流側と下流側で配管内の流体を伝播する音波の音速cが異なる。   When the droplet collision erosion occurs, the amount of droplets in the steam decreases from the vapor after the droplet collision due to the droplet collision, so that the physical properties of the fluid on the upstream and downstream sides of the droplet collision erosion occurrence point The sound velocity c of the sound wave that changes and propagates the fluid in the pipe is different between the upstream side and the downstream side.

このため、ソナーの原理による方法を液滴衝突エロージョンにより生じる配管減肉部位の特定のための評価に適用できない問題があった。   For this reason, there has been a problem that the method based on the principle of sonar cannot be applied to the evaluation for specifying the pipe thinning portion caused by the droplet collision erosion.

従って、本発明の目的は、検査部の前後で音波の伝播速度が変化する状況下での液滴衝突エロージョンの発生部位を特定する検査方法と、その検査方法に用いる検査装置を提供することである。   Accordingly, an object of the present invention is to provide an inspection method for identifying a site where droplet collision erosion occurs under a situation where the propagation speed of a sound wave changes before and after an inspection unit, and an inspection apparatus used for the inspection method. is there.

上記本発明の目的を達成するための検査方法は、屈曲部を有する管路内を蒸気が流れた際に生じる液滴と前記管路内壁面との衝突により生じた音波の前記屈曲部の前記流れの上流側と下流側ごとに前記蒸気中の伝播速度を求め、前記屈曲部の前記流れの上流側と下流側とで検出した前記音波の検出時間の差を求め、前記音波の検出時間の差と前記音波の伝播速度に基づいて前記音波の音源の部位を特定する配管減肉の検査方法である。   The inspection method for achieving the object of the present invention is characterized in that the bent portion of the sound wave generated by the collision between the droplet generated when the steam flows in the pipeline having the bent portion and the inner wall surface of the pipeline. The propagation velocity in the steam is determined for each of the upstream side and the downstream side of the flow, the difference between the detection times of the sound waves detected on the upstream side and the downstream side of the flow of the bent portion is determined, and the detection time of the sound waves is calculated. This is a pipe thinning inspection method that identifies the sound source part of the sound wave based on the difference and the propagation speed of the sound wave.

好ましくは、前記音波の伝播速度は、前記流れの方向に間隔を置いて設定した複数の検出位置で前記音波による振動を受信した時間の差と、前記複数の検出位置間の距離とから算出して求めることを特徴とする。   Preferably, the propagation speed of the sound wave is calculated from a difference in time when vibrations due to the sound wave are received at a plurality of detection positions set at intervals in the flow direction, and a distance between the plurality of detection positions. It is characterized by seeking.

更に好ましくは、前記屈曲部の前記流れの上流側と下流側とで検出した前記音波の検出時間の差は、前記屈曲部の前記流れの上流側において検出した前記音波の時間軸波形と、前記屈曲部の前記流れの下流側において検出した前記音波の時間軸波形との比較によって求めることを特徴とする。   More preferably, the difference between the detection times of the sound waves detected on the upstream side and the downstream side of the flow of the bent portion is the time axis waveform of the sound waves detected on the upstream side of the flow of the bent portion, and It is obtained by comparing with a time axis waveform of the sound wave detected on the downstream side of the flow of the bent portion.

上記本発明の目的を達成するための検査装置は、蒸気が流される管路の屈曲部を境にして、前記蒸気の流れの上流側に位置する前記管路の部位に前記蒸気の流れ方向に間隔をつけて設置され、前記管路内の圧力変動を電気信号に変換する複数のセンサと、蒸気が流される管路の屈曲部を境にして、前記蒸気の流れの下流側に位置する前記管路の部位に前記蒸気の流れ方向に間隔をつけて設置され、前記管路内の圧力変動を電気信号に変換する複数のセンサと、前記各センサに電気的に接続されて、前記センサから送られてきた電気信号を圧力変動データへ変換する情報変換器と、前記情報変換器で生成した圧力変動データを時間軸波形として表示する表示装置とを備えた配管減肉の検査装置である。   The inspection apparatus for achieving the object of the present invention is characterized in that the steam flows in the direction of the steam in a portion of the pipe located upstream of the steam flow, with the bend of the pipe flowing the steam as a boundary. A plurality of sensors that are installed at intervals and convert pressure fluctuations in the pipeline into electrical signals, and the bent portion of the pipeline through which the steam flows are the boundary, and are located downstream of the steam flow. A plurality of sensors that are installed at intervals in the direction of the flow of the steam at the site of the pipeline, and that convert pressure fluctuations in the pipeline into electrical signals; electrically connected to each of the sensors; An inspection apparatus for pipe thinning comprising an information converter for converting a sent electric signal into pressure fluctuation data and a display device for displaying the pressure fluctuation data generated by the information converter as a time axis waveform.

好ましくは、さらに、前記情報変換器で生成した圧力変動データを記録する記録装置を備えたことを特徴とする配管減肉の検査装置である。   Preferably, the pipe thinning inspection apparatus further includes a recording device for recording the pressure fluctuation data generated by the information converter.

本発明による配管減肉の検査方法では、蒸気管路の屈曲部を検査部とした際に、その検査部で発した音波に関して、その検査部の上流側と下流側とでの流体中の音波の伝播速度を個々に求めて、その検査部の上流側と下流側とで音波の伝播速度が変化する状況下でも、その音波の発生箇所を液滴衝突エロージョンの発生部位として特定できる。   In the pipe thinning inspection method according to the present invention, when the bent part of the steam pipe is used as the inspection part, the sound wave in the fluid on the upstream side and the downstream side of the inspection part with respect to the sound wave emitted from the inspection part. The sound wave generation location can be identified as the droplet collision erosion generation site even under the situation where the sound wave propagation velocity changes between the upstream side and the downstream side of the inspection section.

また、管路内の流体を伝播する音波の音速や検出時間を検知して液滴衝突エロージョンの発生部位として特定するので、その検知箇所以外に巻かれている保温材を全て剥がす必要はなく、検査作業効率が良い。   In addition, since the sound velocity and detection time of the sound wave propagating through the fluid in the pipe line is detected and specified as the occurrence site of the droplet collision erosion, it is not necessary to remove all the heat insulating material wound around the detection location, Inspection work efficiency is good.

本発明による配管減肉の検査装置では、上述の検査部の上流側と下流側とで音波の伝播速度が変化する状況下でも、その音波の発生箇所を液滴衝突エロージョンの発生部位として特定でき、かつ検査作業効率も良くなる配管減肉の検査方法を実施するに好適な検査装置が提供できる。   In the pipe thinning inspection apparatus according to the present invention, the generation location of the sound wave can be identified as the generation site of the droplet collision erosion even under the situation where the propagation speed of the sound wave changes between the upstream side and the downstream side of the inspection unit. In addition, it is possible to provide an inspection apparatus suitable for carrying out the pipe thinning inspection method that improves the inspection work efficiency.

本発明の一実施形態に係わる配管の検査方法を説明するための概略図である。It is the schematic for demonstrating the inspection method of piping concerning one Embodiment of this invention. 本発明の一実施形態に係わる配管の検査方法を示すフロー図である。It is a flowchart which shows the inspection method of piping concerning one Embodiment of this invention. 本発明の一実施形態における検査部から上流側および下流側の音波の伝播速度を計算する工程を説明するための図である。It is a figure for demonstrating the process of calculating the propagation speed of the sound wave of the upstream and downstream from the test | inspection part in one Embodiment of this invention. 本発明の一実施形態における検査部から上流側および下流側の音波の時間差から液滴衝突エロージョンの発生部位を特定する工程を説明するための図である。It is a figure for demonstrating the process of specifying the generation | occurrence | production site | part of a droplet collision erosion from the time difference of the sound wave of the upstream and downstream from the test | inspection part in one Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

各種プラントには、図1のように、流体として蒸気が流される配管1による管路が存在する。その管路は配管1の配置計画上屈曲部2を有する。その屈曲部2は配管1を曲げて構成されること、あるいは屈曲部に採用されたエルボに直管を接続して構成される。本実施例では、図1のように、配管1を曲げて屈曲部2を構成しているが、記述のようにエルボを用いて屈曲部を構成しても以下の説明は同等である。   In various plants, as shown in FIG. 1, there is a pipe line by a pipe 1 through which steam flows as a fluid. The pipe line has a bent portion 2 due to the arrangement plan of the pipe 1. The bent portion 2 is configured by bending the pipe 1 or by connecting a straight pipe to an elbow employed in the bent portion. In the present embodiment, the bent portion 2 is formed by bending the pipe 1 as shown in FIG. 1, but the following description is the same even if the bent portion is formed using an elbow as described.

本実施例の配管検査装置は、配管1の屈曲部2の前後、即ち蒸気の流れの屈曲部2から見て上流側と下流側との各部位に各部位ごとに蒸気の流れる方向に沿って間隔をあけて2つ設置されたセンサ3,4,5,6を有する。センサ3,4,5,6は、配管1内の圧力変動を電気信号として測定するセンサである。それらのセンサ3,4,5,6より送られてきた電気信号を圧力変動データへ変換する情報変換器7と、そのデータを記録する記録装置8と、圧力変動データを表示する表示装置9とが電気的に接続されて配管検査装置が構成される。   The pipe inspection apparatus according to the present embodiment is arranged along the direction in which the steam flows for each part before and after the bent part 2 of the pipe 1, that is, the upstream and downstream parts as viewed from the bent part 2 of the steam flow. Two sensors 3, 4, 5, and 6 are provided at intervals. Sensors 3, 4, 5, and 6 are sensors that measure pressure fluctuations in the pipe 1 as electrical signals. An information converter 7 that converts electrical signals sent from the sensors 3, 4, 5, and 6 into pressure fluctuation data, a recording device 8 that records the data, and a display device 9 that displays the pressure fluctuation data. Are electrically connected to form a pipe inspection apparatus.

その表示装置9は、センサ3,4,5,6で得られた圧力変動データを、図3や図4の音波の時間軸波形として表示できる機能を有する。また、記録装置8も、センサ3,4,5,6で得られた圧力変動データを時間ごとに記録して、図3や図4の音波の時間軸波形を生成するために必要なデータを記録できる機能を備えている。表示装置9は、一旦記録した記録装置内のデータを用いて図3や図4の音波の時間軸波形を表示する機能を持たせるようにしても良い。   The display device 9 has a function of displaying the pressure fluctuation data obtained by the sensors 3, 4, 5, 6 as the time axis waveform of the sound wave of FIGS. 3 and 4. The recording device 8 also records the pressure fluctuation data obtained by the sensors 3, 4, 5, 6 for each time, and generates data necessary for generating the time axis waveform of the sound wave of FIGS. 3 and 4. Has a function to record. The display device 9 may have a function of displaying the time axis waveform of the sound wave shown in FIGS. 3 and 4 using the data in the recording device once recorded.

本実施例では、配管1の屈曲部2付近が検査部位であり、その屈曲部2付近で生じる液滴衝突エロージョンにより発生した音波は、配管1内を流れる流体を伝播して、センサ3,4,5,6で測定される。センサ3,4,5,6としては、配管1内の流れの圧力変動を測定するために、圧力センサ、ひずみ速度センサ等が用いられる。   In the present embodiment, the vicinity of the bent portion 2 of the pipe 1 is an inspection site, and the sound wave generated by the droplet collision erosion generated in the vicinity of the bent portion 2 propagates the fluid flowing in the pipe 1 and the sensors 3 and 4. , 5 and 6. As the sensors 3, 4, 5, and 6, a pressure sensor, a strain rate sensor, or the like is used to measure the pressure fluctuation of the flow in the pipe 1.

図2は本実施例の配管検査方法のフロー図である。本実施例の配管検査では、まず、液滴衝突エロージョンの発生が想定される配管1の屈曲部2の上流側にセンサ3,4を間隔dで、配管の屈曲部2の下流側にセンサ5,6を間隔dで設置する。この際に、配管1に保温材が施されている場合には、センサを取り付ける配管部分が露出するように一部分の保温材を外してセンサの設置作業を行う。検査後には外した保温材は元の位置に設置し直す。   FIG. 2 is a flowchart of the pipe inspection method of this embodiment. In the pipe inspection according to the present embodiment, first, sensors 3 and 4 are arranged at an interval d on the upstream side of the bent portion 2 of the pipe 1 where occurrence of droplet collision erosion is assumed, and the sensor 5 is provided on the downstream side of the bent portion 2 of the pipe. , 6 are installed at intervals d. At this time, if a heat insulating material is applied to the pipe 1, a part of the heat insulating material is removed so that a pipe portion to which the sensor is attached is exposed, and the sensor is installed. After the inspection, remove the heat insulating material that has been removed.

次に上流側のセンサ3,4より、上流側へ伝播する音波の伝播速度を計算し、下流側のセンサ5,6より、下流側へ伝播する音波の伝播速度を計算する。本工程について、図3で詳細に説明する。図3(A)は配管屈曲部上流側の断面図である。配管1の屈曲部2付近での液滴衝突エロージョン11により発生した音波は、図4のように、配管1の屈曲部2の上流側及び下流側へ伝播する。   Next, the propagation velocity of the sound wave propagating upstream is calculated from the upstream sensors 3 and 4, and the propagation velocity of the sound wave propagating downstream is calculated from the downstream sensors 5 and 6. This step will be described in detail with reference to FIG. FIG. 3A is a cross-sectional view of the upstream side of the pipe bending portion. Sound waves generated by the droplet collision erosion 11 near the bent portion 2 of the pipe 1 propagate to the upstream side and the downstream side of the bent portion 2 of the pipe 1 as shown in FIG.

図3(A)のように、配管1の屈曲部2の上流側へ速度c1で伝播する音波10がセンサ3,4の設置位置に到達すると、その音波10がセンサ3,4で検出される。図3(B)はセンサ3で検出される音波の時間軸波形の一例、図3(C)はセンサ4で検出される音波の時間軸波形の一例である。センサ3,4は間隔dで設置されているため、音波10の時間軸波形はある時間差Δt1で検出される。同じ振幅の音波に着目すれば、時間軸波形データより、音波10の時間差Δt1が検出可能である。 As shown in FIG. 3A, when the sound wave 10 propagating to the upstream side of the bent portion 2 of the pipe 1 at the speed c 1 reaches the installation position of the sensors 3 and 4, the sound wave 10 is detected by the sensors 3 and 4. The FIG. 3B is an example of a time axis waveform of a sound wave detected by the sensor 3, and FIG. 3C is an example of a time axis waveform of a sound wave detected by the sensor 4. Since the sensors 3 and 4 are installed at the interval d, the time axis waveform of the sound wave 10 is detected with a certain time difference Δt 1 . If attention is paid to sound waves having the same amplitude, the time difference Δt 1 of the sound waves 10 can be detected from the time-axis waveform data.

検出された時間差Δt1及びセンサ3,4の間隔dより、配管上流側へ伝播する音波10の伝播速度c1がc1=d/Δt1により計算できる。同様に、配管下流側へ伝播する音波の伝播速度c2についても、センサ5,6で検出された音波の時間軸波形の時間差Δt2及びセンサ5,6の間隔dよりc2=d/Δt2で計算できる。 From the detected time difference Δt 1 and the distance d between the sensors 3 and 4, the propagation velocity c 1 of the sound wave 10 propagating upstream of the pipe can be calculated by c 1 = d / Δt 1 . Similarly, regarding the propagation velocity c 2 of the sound wave propagating downstream of the pipe, c 2 = d / Δt from the time difference Δt 2 of the time axis waveform of the sound wave detected by the sensors 5 and 6 and the interval d between the sensors 5 and 6. 2 can be calculated.

本実施例の配管検査では、次に、屈曲部2の上流側に設置したセンサと下流側に設置したセンサで検出される音波の時間差と、上流側での音波の伝播速度、下流側での音波の伝播速度から液滴衝突エロージョン11の発生部位を特定する。本工程について図4で詳細に説明する。   In the pipe inspection of the present embodiment, next, the time difference between the sound waves detected by the sensor installed on the upstream side of the bent portion 2 and the sensor installed on the downstream side, the propagation speed of the sound wave on the upstream side, The generation site of the droplet collision erosion 11 is specified from the propagation speed of the sound wave. This step will be described in detail with reference to FIG.

図4(A)は配管1の屈曲部2を含む断面図である。配管1の屈曲部2付近での液滴衝突エロージョン11により発生した音波は、速度c1で上流側へ、速度c2で下流側へ伝播する。上流側へ伝播した音波はセンサ4で検出され、下流側へ伝播した音波はセンサ5で検出される。 FIG. 4A is a cross-sectional view including the bent portion 2 of the pipe 1. The sound wave generated by the droplet collision erosion 11 near the bent portion 2 of the pipe 1 propagates upstream at the velocity c 1 and downstream at the velocity c 2 . The sound wave propagated upstream is detected by the sensor 4, and the sound wave propagated downstream is detected by the sensor 5.

図4(B)はセンサ4で検出される音波の時間軸波形の一例であり、図4(C)はセンサ5で検出される音波の時間軸波形の一例である。センサ4,5で検出される音波の時間軸波形は、液滴衝突エロージョン11の音源からセンサ4までの距離と同一音源からセンサ5までの距離が異なること、配管1の屈曲部2の上流側と下流側で音波の伝播速度が異なることから、ある時間差Δtで検出される。   4B is an example of a time axis waveform of a sound wave detected by the sensor 4, and FIG. 4C is an example of a time axis waveform of a sound wave detected by the sensor 5. The time axis waveform of the sound wave detected by the sensors 4 and 5 is that the distance from the sound source of the droplet collision erosion 11 to the sensor 4 is different from the distance from the same sound source to the sensor 5, and the upstream side of the bent portion 2 of the pipe 1. Is detected at a certain time difference Δt.

図4(B),図4(C)の音波の時間軸波形において、同じ振幅の音波に着目すれば、時間軸波形データより、センサ4とセンサ5で検出される音波の時間差Δtが検出可能である。   If attention is paid to sound waves having the same amplitude in the time axis waveforms of the sound waves in FIGS. 4B and 4C, the time difference Δt between the sound waves detected by the sensor 4 and the sensor 5 can be detected from the time axis waveform data. It is.

音源となる液滴衝突エロージョン11からセンサ4までの距離L1とセンサ5までの距離L2、上流側への音波の伝播速度c1と下流側への音波の伝播速度c2、センサ4とセンサ5で検出される音波の時間差Δtの間にはΔt=L1/c1−L2/c2の関係が成り立つ。センサ4とセンサ5間の距離L1+L2は測定が可能であるため、音源となる液滴衝突エロージョン11からセンサ4までの距離L1はL1=c1(L1+L2)/(c1+c2)+c12Δt/(c1+c2)により計算可能であり、液滴衝突エロージョン11からセンサ5までの距離L2はL2=c2(L1+L2)/(c1+c2)−c12Δt/(c1+c2)により計算可能である。 The distance L 1 from the droplet collision erosion 11 serving as the sound source to the sensor 4, the distance L 2 from the sensor 5, the propagation velocity c 1 of the sound wave to the upstream side, the propagation velocity c 2 of the sound wave to the downstream side, A relationship of Δt = L 1 / c 1 −L 2 / c 2 is established between the time differences Δt of the sound waves detected by the sensor 5. Since the distance L 1 + L 2 between the sensor 4 and the sensor 5 can be measured, the distance L 1 from the droplet collision erosion 11 serving as the sound source to the sensor 4 is L 1 = c 1 (L 1 + L 2 ) / ( c 1 + c 2 ) + c 1 c 2 Δt / (c 1 + c 2 ), and the distance L 2 from the droplet collision erosion 11 to the sensor 5 is L 2 = c 2 (L 1 + L 2 ) / ( c 1 + c 2 ) −c 1 c 2 Δt / (c 1 + c 2 ).

このように計算したL1もしくはL2とセンサ4,5の設置位置から液滴衝突エロージョン11の発生箇所を特定できる。そして、その液滴衝突エロージョン11の発生箇所を、液滴衝突エロージョン11による配管減肉発生部位ないしは配管減肉発生候補部位と評価する。 The occurrence location of the droplet collision erosion 11 can be specified from the calculated L 1 or L 2 and the installation position of the sensors 4 and 5. Then, the occurrence location of the droplet collision erosion 11 is evaluated as a pipe thinning occurrence site or a pipe thinning occurrence candidate site due to the droplet collision erosion 11.

このように本実施例では、液滴を含む蒸気流体が流れる屈曲部2を有する配管1で生じる液滴衝突エロージョン11による配管減肉の検査方法において、配管1の屈曲部2の前後(上流側と下流側)で前記配管1内の蒸気流体を液滴衝突エロージョン11の発生部位から伝播する音波の伝播速度を求め、求めた音波伝播速度と、配管1の屈曲部2の前後での音波の時間差からソナーの原理により液滴衝突エロージョン11の発生部位を特定することを特徴としている。   As described above, in this embodiment, in the pipe thinning inspection method by the droplet collision erosion 11 generated in the pipe 1 having the bent portion 2 through which the vapor fluid containing droplets flows, before and after the upstream portion (upstream side) of the bent portion 2 of the pipe 1. And the downstream side), the propagation speed of the sound wave propagating the vapor fluid in the pipe 1 from the generation site of the droplet collision erosion 11 is obtained, and the obtained sound wave propagation speed and the sound wave before and after the bent portion 2 of the pipe 1 are obtained. It is characterized in that the generation site of the droplet collision erosion 11 is specified by the sonar principle from the time difference.

この場合において、本実施例では、前記音波の伝播速度は、配管1の屈曲部2の前後の各々の箇所で、一箇所につき2つ設置したそれら2つのセンサ3,4間及び2つのセンサ5,6間の音波の時間差Δt1と、同じく2つのセンサ間の距離dから算出することを特徴としている。 In this case, in this embodiment, the propagation speed of the sound wave is determined between the two sensors 3 and 4 and two sensors 5 provided at two positions at the front and rear of the bent portion 2 of the pipe 1. , and the time difference Delta] t 1 of the acoustic waves between 6, and calculates also the distance d between the two sensors.

更に、配管1の屈曲部2の前後での音波の時間差Δtは、配管1の屈曲部2の前後に設置した両センサ4,5により検出した音波の時間軸波形から検出することを特徴としている。   Further, the time difference Δt between the sound waves before and after the bent portion 2 of the pipe 1 is detected from the time axis waveform of the sound waves detected by both sensors 4 and 5 installed before and after the bent portion 2 of the pipe 1. .

このような本実施例によれば、配管1の屈曲部2の上流側と下流側で局所的な音波の伝播速度を測定し、液滴衝突エロージョン11による音源から各センサまでの音波の伝播時間を補正する方法を採用しているため、屈曲部2の前後で音波の伝播速度が変化する、液滴衝突エロージョン11の発生部位をソナーの原理により特定できる効果がある。   According to such a present Example, the propagation speed of the local sound wave is measured in the upstream and downstream of the bending part 2 of the piping 1, and the propagation time of the sound wave from the sound source to each sensor by the droplet collision erosion 11 is measured. Therefore, the generation site of the droplet collision erosion 11 in which the propagation speed of the sound wave changes before and after the bent portion 2 can be specified by the sonar principle.

また、ソナーの原理により、液滴衝突エロージョン11の発生部位を特定する方法を採用しているため、配管1に巻かれている保温材を全て剥がす必要はなく、センサ3,4,5,6を取り付ける部位のみ、保温材を除去すればよいので、作業効率が良い。   In addition, since the method of specifying the generation site of the droplet collision erosion 11 is adopted based on the principle of sonar, it is not necessary to remove all the heat insulating material wound around the pipe 1, and the sensors 3, 4, 5, 6 Since it is only necessary to remove the heat insulating material only at the site to which the is attached, the work efficiency is good.

また、ソナーの原理により、液滴衝突エロージョン11の発生箇所を特定する方法を採用しているため、動的機器によるスキャニングなしに配管全面を検査できる。   Further, since the method of specifying the location where the droplet collision erosion 11 occurs is adopted based on the principle of sonar, the entire surface of the pipe can be inspected without scanning by a dynamic device.

本発明は、蒸気が流される管路で生じる液滴衝突エロージョンの発生部位を特定する検査装置に利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention can be used for an inspection apparatus that identifies a site where droplet collision erosion that occurs in a pipeline through which steam flows is generated.

1 配管
2 屈曲部
3,4,5,6 センサ
7 情報変換器
8 記録装置
9 表示装置
10 音波
11 液滴衝突エロージョン
DESCRIPTION OF SYMBOLS 1 Piping 2 Bending part 3, 4, 5, 6 Sensor 7 Information converter 8 Recording apparatus 9 Display apparatus 10 Sound wave 11 Droplet collision erosion

Claims (5)

屈曲部を有する管路内を蒸気が流れた際に生じる液滴と前記管路内壁面との衝突により生じた音波の前記屈曲部の前記流れの上流側と下流側ごとに前記蒸気中の伝播速度を求め、
前記屈曲部の前記流れの上流側と下流側とで検出した前記音波の検出時間の差を求め、
前記音波の検出時間の差と前記音波の伝播速度に基づいて前記音波の音源の部位を特定する配管減肉の検査方法。
Propagation in the steam for each of the upstream side and the downstream side of the flow of the bent portion of the flow of the sound wave generated by the collision between the droplet generated when the steam flows in the pipeline having the bent portion and the inner wall surface of the pipeline. Seeking speed,
Find the difference in detection time of the sound waves detected on the upstream side and downstream side of the flow of the bent portion,
A pipe thinning inspection method for identifying a portion of the sound source of the sound wave based on a difference in detection time of the sound wave and a propagation speed of the sound wave.
請求項1において、前記音波の伝播速度は、前記流れの方向に間隔を置いて設定した複数の検出位置で前記音波による振動を受信した時間の差と、前記複数の検出位置間の距離とから算出して求めることを特徴とする配管減肉の検査方法。   2. The propagation speed of the sound wave according to claim 1, wherein the propagation speed of the sound wave is calculated from a difference in time at which the vibration due to the sound wave is received at a plurality of detection positions set at intervals in the flow direction and a distance between the plurality of detection positions. An inspection method for pipe thinning characterized by calculating and obtaining. 請求項2において、前記屈曲部の前記流れの上流側と下流側とで検出した前記音波の検出時間の差は、前記屈曲部の前記流れの上流側において検出した前記音波の時間軸波形と、前記屈曲部の前記流れの下流側において検出した前記音波の時間軸波形との比較によって求めることを特徴とする配管減肉の検査方法。   The difference in detection time of the sound wave detected between the upstream side and the downstream side of the flow of the bent portion according to claim 2, wherein the time axis waveform of the sound wave detected on the upstream side of the flow of the bent portion, A pipe thinning inspection method, characterized in that it is obtained by comparison with a time axis waveform of the sound wave detected on the downstream side of the flow of the bent portion. 蒸気が流される管路の屈曲部を境にして、前記蒸気の流れの上流側に位置する前記管路の部位に前記蒸気の流れ方向に間隔をつけて設置され、前記管路内の圧力変動を電気信号に変換する複数のセンサと、
蒸気が流される管路の屈曲部を境にして、前記蒸気の流れの下流側に位置する前記管路の部位に前記蒸気の流れ方向に間隔をつけて設置され、前記管路内の圧力変動を電気信号に変換する複数のセンサと、
前記各センサに電気的に接続されて、前記センサから送られてきた電気信号を圧力変動データへ変換する情報変換器と、
前記情報変換器で生成した圧力変動データを時間軸波形として表示する表示装置と、
を備えた配管減肉の検査装置。
Pressure fluctuations in the pipes are installed at intervals in the steam flow direction at portions of the pipes located on the upstream side of the steam flow with a bend of the pipes through which the steam flows. A plurality of sensors that convert electrical signals into electrical signals;
Pressure fluctuations in the pipe line are installed at intervals in the steam flow direction at a part of the pipe line located downstream of the steam flow with a bend of the pipe line through which the steam flows. A plurality of sensors that convert electrical signals into electrical signals;
An information converter electrically connected to each of the sensors and converting an electrical signal sent from the sensor into pressure fluctuation data;
A display device for displaying the pressure fluctuation data generated by the information converter as a time axis waveform;
Pipe thinning inspection device equipped with.
請求項4において、前記情報変換器で生成した圧力変動データを記録する記録装置を備えたことを特徴とする配管減肉の検査装置。   5. The pipe thinning inspection apparatus according to claim 4, further comprising a recording device that records pressure fluctuation data generated by the information converter.
JP2009139767A 2009-06-11 2009-06-11 Method for inspecting thickness reduction of pipe, and inspection device used in the same Pending JP2010286330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139767A JP2010286330A (en) 2009-06-11 2009-06-11 Method for inspecting thickness reduction of pipe, and inspection device used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139767A JP2010286330A (en) 2009-06-11 2009-06-11 Method for inspecting thickness reduction of pipe, and inspection device used in the same

Publications (1)

Publication Number Publication Date
JP2010286330A true JP2010286330A (en) 2010-12-24

Family

ID=43542138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139767A Pending JP2010286330A (en) 2009-06-11 2009-06-11 Method for inspecting thickness reduction of pipe, and inspection device used in the same

Country Status (1)

Country Link
JP (1) JP2010286330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472135A (en) * 2013-07-10 2013-12-25 广东电网公司电力科学研究院 Identification method of high temperature engineering structure defects
CN108593772A (en) * 2018-05-16 2018-09-28 中国科学院声学研究所 A kind of supersonic detection method and its system of low high acoustic impedance bonding interface
JPWO2017199839A1 (en) * 2016-05-17 2019-04-04 日本電気株式会社 Analysis device, analysis method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472135A (en) * 2013-07-10 2013-12-25 广东电网公司电力科学研究院 Identification method of high temperature engineering structure defects
CN103472135B (en) * 2013-07-10 2015-03-04 广东电网有限责任公司电力科学研究院 Identification method of high temperature engineering structure defects
JPWO2017199839A1 (en) * 2016-05-17 2019-04-04 日本電気株式会社 Analysis device, analysis method, and program
CN108593772A (en) * 2018-05-16 2018-09-28 中国科学院声学研究所 A kind of supersonic detection method and its system of low high acoustic impedance bonding interface

Similar Documents

Publication Publication Date Title
JP6788163B2 (en) Detection and monitoring of changes in metal structures using multimode acoustic signals
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
US8966979B2 (en) Method and device for measuring the thickness of any deposit of material on an inner wall of a structure
JP2017525948A (en) Signal propagation time difference type flow meter
JP5922558B2 (en) Ultrasonic thickness measurement method and apparatus
JP2008064540A (en) Piping inspection method using guide wave and piping inspection device
JP6582855B2 (en) Flow rate measuring device and flow rate measuring method
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP6806816B2 (en) Distance difference-Piping leak detectors and methods using frequency analysis
JP2010286330A (en) Method for inspecting thickness reduction of pipe, and inspection device used in the same
JP2007064904A (en) Thickness measuring method by ultrasonic wave, and instrument therefor
JP5313117B2 (en) Corrosion inspection system, corrosion inspection apparatus, and corrosion inspection method
JP2011080937A (en) Inspection method of corrosion under heat insulating material
JP2007271407A (en) Method and device for measuring crack depth
JP2009288164A (en) Vibration monitoring device and monitoring method
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
WO2016017168A1 (en) Diagnostic device, diagnostic system, diagnostic method, and computer-readable recording medium
JP5143111B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2008070388A (en) Liquid level detection method by means of sound and its device
JP2013185891A (en) Device and method for ultrasonic flow metering
JPH11201812A (en) Method for measuring sound velocity in fluid piping
JP2006250595A (en) Ultrasonic measuring method and device
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
CN106841385B (en) Detection method based on sound-ultrasound polypropylene production pipeline powder coherent condition
RU2451932C1 (en) Method of measuring corrosion of main pipelines