JP4742313B2 - Power converter protection system - Google Patents

Power converter protection system Download PDF

Info

Publication number
JP4742313B2
JP4742313B2 JP2006079111A JP2006079111A JP4742313B2 JP 4742313 B2 JP4742313 B2 JP 4742313B2 JP 2006079111 A JP2006079111 A JP 2006079111A JP 2006079111 A JP2006079111 A JP 2006079111A JP 4742313 B2 JP4742313 B2 JP 4742313B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
semiconductor element
driven semiconductor
gate drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006079111A
Other languages
Japanese (ja)
Other versions
JP2007259563A (en
Inventor
邦夫 松原
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006079111A priority Critical patent/JP4742313B2/en
Publication of JP2007259563A publication Critical patent/JP2007259563A/en
Application granted granted Critical
Publication of JP4742313B2 publication Critical patent/JP4742313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Description

この発明は、各アームに電圧駆動型半導体素子を複数個直列接続した電力変換装置の保護に関する。   The present invention relates to protection of a power converter in which a plurality of voltage-driven semiconductor elements are connected in series to each arm.

図6は、各アームに電圧駆動型半導体素子を複数個直列接続した電力変換装置の一般的な例を示す。
図6において、25は三相交流入力電源、26はダイオードブリッジ回路などの整流回路、27は平滑用コンデンサ、28〜33は複数個直列接続された電圧駆動型半導体素子、34はモータ等の負荷である。
FIG. 6 shows a general example of a power converter in which a plurality of voltage-driven semiconductor elements are connected in series to each arm.
In FIG. 6, 25 is a three-phase AC input power supply, 26 is a rectifier circuit such as a diode bridge circuit, 27 is a smoothing capacitor, 28 to 33 are voltage-driven semiconductor elements connected in series, and 34 is a load such as a motor. It is.

上記の構成において、アーム短絡などが発生した場合に、電圧駆動型半導体素子を過電流による破壊から保護する従来方式として、電流検出回路によって電圧駆動型半導体素子の過電流状態を検出し、電圧駆動型半導体素子を緩やかにオフさせることで破壊無く遮断する方法(ソフト遮断ともいう)が一般的である。このような保護方式は、例えば特許文献1,2に開示されている。   In the above configuration, when an arm short circuit occurs, the current detection circuit detects the overcurrent state of the voltage-driven semiconductor element using a current detection circuit as a conventional method for protecting the voltage-driven semiconductor element from destruction due to overcurrent. Generally, a method of shutting off the semiconductor element without breaking by gently turning off the type semiconductor element (also referred to as soft shut-off). Such a protection method is disclosed in Patent Documents 1 and 2, for example.

図7に保護方式の従来例を示す。これは、各アームに電圧駆動型半導体素子を複数個直列接続した電力変換装置の1アーム分を示す。また、電圧駆動型半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)素子を用い、IGBTを4直列接続した例である。
図7において、1〜4(Q1〜Q4)はダイオードが逆並列に接続されたIGBT、11〜14は過電流保護回路、15〜18はソフト遮断機能を有するゲート駆動回路、35〜38は電流検出器である。つまり、この回路では各IGBT1〜4にはそれぞれゲート駆動回路15〜18が接続され、各ゲート駆動回路15〜18には、過電流保護回路11〜14を介して電流検出器35〜38が接続されている。
FIG. 7 shows a conventional example of the protection method. This shows one arm of a power conversion device in which a plurality of voltage-driven semiconductor elements are connected in series to each arm. Further, an IGBT (insulated gate bipolar transistor) element is used as a voltage-driven semiconductor element, and four IGBTs are connected in series.
In FIG. 7, 1 to 4 (Q1 to Q4) are IGBTs having diodes connected in antiparallel, 11 to 14 are overcurrent protection circuits, 15 to 18 are gate drive circuits having a soft cutoff function, and 35 to 38 are currents. It is a detector. That is, in this circuit, gate drive circuits 15 to 18 are connected to the IGBTs 1 to 4, respectively, and current detectors 35 to 38 are connected to the gate drive circuits 15 to 18 via the overcurrent protection circuits 11 to 14. Has been.

その動作について、IGBTが2直列接続された図8の場合を参照して説明する。
図8において、アーム短絡などによりIGBT1,2に過電流が流れると、電流検出器35,36がそのことを検出し、過電流保護回路11,12に検出信号が入力される。過電流保護回路11,12に検出信号が入力されると、過電流保護回路11,12は過電流かどうかを判別し、過電流と判断すると保護信号をゲート駆動回路15,16に出力するので、ゲート駆動回路15,16はソフト遮断モードに切り替わり、これによってIGBT1,2は破壊すること無く遮断される。
The operation will be described with reference to the case of FIG. 8 in which two IGBTs are connected in series.
In FIG. 8, when an overcurrent flows through the IGBTs 1 and 2 due to an arm short circuit or the like, the current detectors 35 and 36 detect this, and a detection signal is input to the overcurrent protection circuits 11 and 12. When a detection signal is input to the overcurrent protection circuits 11 and 12, the overcurrent protection circuits 11 and 12 determine whether or not there is an overcurrent. If it is determined that the current is overcurrent, the protection signal is output to the gate drive circuits 15 and 16. The gate drive circuits 15 and 16 are switched to the soft shut-off mode, whereby the IGBTs 1 and 2 are shut off without being destroyed.

特開平04−079759号公報Japanese Patent Laid-Open No. 04-079759 特開平05−308717号公報JP 05-308717 A

上記のような方法によれば、アーム短絡などが発生した場合に直列接続された電圧駆動型半導体素子を、過電流による破壊から保護することができるが、各電流検出器のばらつきなどにより、ソフト遮断時の電圧分担が不平衡となる(図9のゲート電圧Q1,Q2参照)問題があり、最悪の場合には過電圧を印加された電圧駆動型半導体素子が破壊するというおそれがある。
したがって、この発明の課題は、電圧駆動型半導体素子の破壊を回避し得る保護方式を提供することにある。
According to the method as described above, the voltage-driven semiconductor elements connected in series when an arm short circuit or the like occurs can be protected from destruction due to overcurrent. There is a problem that the voltage sharing at the time of interruption becomes unbalanced (refer to the gate voltages Q1 and Q2 in FIG. 9), and in the worst case, the voltage-driven semiconductor element to which an overvoltage is applied may be destroyed.
Accordingly, an object of the present invention is to provide a protection system that can avoid the destruction of the voltage-driven semiconductor element.

このような課題を解決するため、請求項1の発明では、最も低圧側に接続された電圧駆動型半導体素子を1段目とし、最も高圧側に接続された電圧駆動型半導体素子をn段目(nは整数)として、各アームに電圧駆動型半導体素子がn個直列接続された電力変換装置に対し、
各電圧駆動型半導体素子には過電流検出時に電圧駆動型半導体素子を緩やかにオフさせる機能を有するゲート駆動回路をそれぞれ設け、電圧駆動型半導体素子とゲート駆動回路を接続するゲート線をそれぞれ互いに磁気結合回路により接続し、m(m=1〜n)段目のゲート駆動回路には、m段目の電圧駆動型半導体素子に流れる電流を検出する電流検出器と、この電流検出器の検出結果に応じて保護信号を出力する過電流保護回路とを接続し、m段目以外のゲート駆動回路には、前記磁気結合回路に基づいて発生する電圧を検出する電圧検出回路と、この電圧検出回路の検出結果に応じて保護信号を出力する過電流保護回路とをそれぞれ接続したことを特徴とする。
In order to solve such a problem, in the invention of claim 1, the voltage driven semiconductor element connected to the lowest voltage side is the first stage, and the voltage driven semiconductor element connected to the highest voltage side is the nth stage. (Where n is an integer), for power converters in which n voltage-driven semiconductor elements are connected in series to each arm,
Each voltage-driven semiconductor element is provided with a gate drive circuit having a function of gently turning off the voltage-driven semiconductor element when an overcurrent is detected, and the gate lines connecting the voltage-driven semiconductor element and the gate drive circuit are magnetically connected to each other. Connected by a coupling circuit, the m (m = 1 to n) stage gate drive circuit includes a current detector for detecting a current flowing in the mth stage voltage driven semiconductor element, and a detection result of the current detector And a voltage detection circuit for detecting a voltage generated based on the magnetic coupling circuit, and a voltage detection circuit for detecting a voltage generated based on the magnetic coupling circuit. And an overcurrent protection circuit that outputs a protection signal according to the detection result.

この発明によれば、各アームに電圧駆動型半導体素子が複数個直列接続された電力変換装置において、過電流遮断時に各電圧駆動型半導体素子の電圧分担に不平衡を発生させることなく同時に緩やかにオフさせる(ソフト遮断させる)ことができるため、アーム短絡などが発生した場合に、電圧駆動型半導体素子を過電流破壊から確実に防ぐことができる。また、1個の電流検出回路で複数個の電圧駆動型半導体素子を保護できるため、保護が低コストに提供可能となる。   According to the present invention, in a power conversion device in which a plurality of voltage-driven semiconductor elements are connected in series to each arm, at the same time, without overloading, the voltage sharing of each voltage-driven semiconductor element is moderately reduced. Since it can be turned off (softly interrupted), the voltage-driven semiconductor element can be reliably prevented from overcurrent breakdown when an arm short circuit occurs. In addition, since a plurality of voltage-driven semiconductor elements can be protected by a single current detection circuit, protection can be provided at a low cost.

図1はこの発明の実施の形態を示す回路構成図で、IGBTが4直列接続された場合の例である。図1において、1〜4はダイオードが逆並列に接続されたIGBT、5〜7は磁気結合回路、8〜10は電圧検出回路、11〜14は過電流保護回路、15〜18はソフト遮断機能を有するゲート駆動回路、19は電流検出器である。   FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, which is an example when four IGBTs are connected in series. In FIG. 1, 1-4 are IGBTs having diodes connected in antiparallel, 5-7 are magnetic coupling circuits, 8-10 are voltage detection circuits, 11-14 are overcurrent protection circuits, and 15-18 are soft shut-off functions. Numeral 19 is a current detector.

図1より、各IGBT1〜4にはゲート駆動回路15〜18が接続され、IGBTとゲート駆動回路を接続するゲート線がそれぞれ、互いに磁気結合回路5〜7によって接続されている。そして、1段目のゲート駆動回路15には過電流保護回路11と、IGBTに流れる電流を検出する電流検出器19を接続し、1段目以外のゲート駆動回路16〜18には過電流保護回路12〜14と、電圧検出回路8〜10とを接続して構成する。   As shown in FIG. 1, gate drive circuits 15 to 18 are connected to the IGBTs 1 to 4, and gate lines connecting the IGBT and the gate drive circuit are connected to each other by magnetic coupling circuits 5 to 7, respectively. An overcurrent protection circuit 11 and a current detector 19 for detecting a current flowing through the IGBT are connected to the gate drive circuit 15 at the first stage, and overcurrent protection is provided to the gate drive circuits 16 to 18 other than the first stage. The circuits 12 to 14 and the voltage detection circuits 8 to 10 are connected to each other.

図1の動作について、図2,図3を参照して説明する。図2は図1を簡略化してIGBTを2直列接続した場合を示し、図3はその各部波形例を示す。
いま、図2のIGBT1,2に過電流が流れると、電流検出器19がそれを検出し、過電流保護回路11に検出信号が入力される。過電流保護回路11に検出信号が入力され、過電流保護回路11が過電流と判別すると、ゲート駆動回路15へ保護信号を出力するので、ゲート駆動回路15がソフト遮断モードに切り替わり、ゲート駆動回路15→IGBT1のエミッタ→IGBT1ゲート→磁気結合回路5→ゲート駆動回路15の経路で、IGBT1のゲート電流が流れる。
The operation of FIG. 1 will be described with reference to FIGS. FIG. 2 shows a case where two IGBTs are connected in series by simplifying FIG. 1, and FIG. 3 shows an example of the waveform of each part.
Now, when an overcurrent flows through the IGBTs 1 and 2 in FIG. 2, the current detector 19 detects it and a detection signal is input to the overcurrent protection circuit 11. When a detection signal is input to the overcurrent protection circuit 11 and the overcurrent protection circuit 11 determines that it is an overcurrent, a protection signal is output to the gate drive circuit 15, so that the gate drive circuit 15 is switched to the soft cutoff mode and the gate drive circuit The gate current of the IGBT 1 flows through the path 15 → the emitter of the IGBT 1 → the IGBT 1 gate → the magnetic coupling circuit 5 → the gate drive circuit 15.

磁気結合回路5の一次巻線にゲート電流が流れると、磁気結合回路5の二次巻線にもゲート電流が流れる。その結果、IGBT1のゲート電圧VGE(Q1)とIGBT2のゲート電圧VGE(Q2)が下降し、IGBT1とIGBT2がソフト遮断を開始する。これと同時に、電圧検出回路8が磁気結合回路5の二次巻線に発生する電圧VTr2を検出し、その検出結果を受けて過電流保護回路12がゲート駆動回路16に保護信号を出力し、IGBT2がソフト遮断を継続する。   When a gate current flows through the primary winding of the magnetic coupling circuit 5, a gate current also flows through the secondary winding of the magnetic coupling circuit 5. As a result, the gate voltage VGE (Q1) of the IGBT 1 and the gate voltage VGE (Q2) of the IGBT 2 are lowered, and the IGBT 1 and the IGBT 2 start soft shutoff. At the same time, the voltage detection circuit 8 detects the voltage VTr2 generated in the secondary winding of the magnetic coupling circuit 5, and upon receiving the detection result, the overcurrent protection circuit 12 outputs a protection signal to the gate drive circuit 16, IGBT2 continues soft shutoff.

このとき、電圧検出回路8に動作遅れΔt2(図3参照)を生じる可能性があるが、磁気結合回路5によってスイッチングタイミングが調整される(IGBT1とIGBT2は既にソフト遮断動作を開始している)ため、問題は無い。なお、このような磁気結合によってスイッチングタイミング調整する方法は、例えば特開2002−204578号公報などにより周知である。このような動作により、過電流検出時にIGBT1とIGBT2を同時にソフト遮断することができる。
以上のように、過電流検出時にIGBT1とIGBT2を同時にソフト遮断できるため、電圧分担が不平衡となる問題を解決することが可能となる。
At this time, an operation delay Δt2 (see FIG. 3) may occur in the voltage detection circuit 8, but the switching timing is adjusted by the magnetic coupling circuit 5 (IGBT1 and IGBT2 have already started the soft shutoff operation). Therefore, there is no problem. Note that a method for adjusting the switching timing by such magnetic coupling is well known, for example, in Japanese Patent Application Laid-Open No. 2002-204578. By such an operation, the IGBT 1 and the IGBT 2 can be softly cut off simultaneously when an overcurrent is detected.
As described above, since the IGBT 1 and the IGBT 2 can be simultaneously softly interrupted when an overcurrent is detected, it is possible to solve the problem that the voltage sharing is unbalanced.

図4に別の実施の形態を示す。
図1では1段目のゲート駆動回路15には過電流保護回路11と、IGBTに流れる電流を検出する電流検出器19を接続し、1段目以外のゲート駆動回路16〜18には過電流保護回路12〜14と、電圧検出回路8〜10を接続したのに対し、図4では4段目のゲート駆動回路18には過電流保護回路14と、IGBTに流れる電流を検出する電流検出器23を接続し、4段目以外のゲート駆動回路15〜17には過電流保護回路11〜13と、電圧検出回路20〜22をそれぞれ接続した他は図1と全く同様であるので、詳細は省略する。
FIG. 4 shows another embodiment.
In FIG. 1, an overcurrent protection circuit 11 and a current detector 19 for detecting a current flowing through the IGBT are connected to the first stage gate drive circuit 15, and overcurrent is connected to the gate drive circuits 16 to 18 other than the first stage. While the protection circuits 12 to 14 and the voltage detection circuits 8 to 10 are connected, in FIG. 4, the fourth stage gate drive circuit 18 includes an overcurrent protection circuit 14 and a current detector for detecting the current flowing through the IGBT. 23, except that the overcurrent protection circuits 11 to 13 and the voltage detection circuits 20 to 22 are connected to the gate drive circuits 15 to 17 other than the fourth stage, respectively. Omitted.

図5に別の実施の形態を示す。
図1では1段目のゲート駆動回路15には過電流保護回路11と、IGBTに流れる電流を検出する電流検出器19を接続し、1段目以外のゲート駆動回路16〜18には過電流保護回路12〜14と、電圧検出回路8〜10を接続したのに対し、図5では2段目のゲート駆動回路16には過電流保護回路12と、IGBTに流れる電流を検出する電流検出器24を接続し、2段目以外のゲート駆動回路15,17,18には過電流保護回路11,13,14と、電圧検出回路20,9,10をそれぞれ接続した他は図1と全く同様なので、詳細は省略する。
FIG. 5 shows another embodiment.
In FIG. 1, an overcurrent protection circuit 11 and a current detector 19 for detecting a current flowing through the IGBT are connected to the first stage gate drive circuit 15, and overcurrent is connected to the gate drive circuits 16 to 18 other than the first stage. While the protection circuits 12 to 14 and the voltage detection circuits 8 to 10 are connected, the gate drive circuit 16 in the second stage in FIG. 5 includes the overcurrent protection circuit 12 and a current detector that detects the current flowing through the IGBT. 24 except that the overcurrent protection circuits 11, 13, and 14 and the voltage detection circuits 20, 9, and 10 are connected to the gate drive circuits 15, 17, and 18 other than the second stage, respectively. Therefore, details are omitted.

この発明の実施の形態を示す回路構成図Circuit configuration diagram showing an embodiment of the present invention 図1を簡略化した構成図Simplified configuration diagram of FIG. 図2の動作説明図Operation explanatory diagram of FIG. 図1の変形例を示す回路構成図1 is a circuit configuration diagram showing a modification of FIG. 図1の別の変形例を示す回路構成図1 is a circuit configuration diagram showing another modification of FIG. 電力変換装置の一般的な例を示す構成図Configuration diagram showing a general example of a power converter 過電流保護方式の従来例を示す構成図Configuration diagram showing a conventional example of overcurrent protection 図7を簡略化した構成図Simplified configuration diagram of FIG. 図8の動作説明図Operation explanatory diagram of FIG.

符号の説明Explanation of symbols

1〜4(Q1〜Q4)…IGBT、5〜7…磁気結合回路、8〜10,20〜22…電圧検出回路、11〜14…過電流保護回路、15〜18…ゲート駆動回路、19,24…電流検出器。   1 to 4 (Q1 to Q4) ... IGBT, 5-7 ... magnetic coupling circuit, 8-10, 20-22 ... voltage detection circuit, 11-14 ... overcurrent protection circuit, 15-18 ... gate drive circuit, 19, 24: Current detector.

Claims (1)

最も低圧側に接続された電圧駆動型半導体素子を1段目とし、最も高圧側に接続された電圧駆動型半導体素子をn段目(nは整数)として、各アームに電圧駆動型半導体素子がn個直列接続された電力変換装置に対し、
各電圧駆動型半導体素子には過電流検出時に電圧駆動型半導体素子を緩やかにオフさせる機能を有するゲート駆動回路をそれぞれ設け、電圧駆動型半導体素子とゲート駆動回路を接続するゲート線をそれぞれ互いに磁気結合回路により接続し、m(m=1〜n)段目のゲート駆動回路には、m段目の電圧駆動型半導体素子に流れる電流を検出する電流検出器と、この電流検出器の検出結果に応じて保護信号を出力する過電流保護回路とを接続し、m段目以外のゲート駆動回路には、前記磁気結合回路に基づいて発生する電圧を検出する電圧検出回路と、この電圧検出回路の検出結果に応じて保護信号を出力する過電流保護回路とをそれぞれ接続したことを特徴とする電力変換装置の保護方式。
The voltage-driven semiconductor element connected to the lowest voltage side is the first stage, the voltage-driven semiconductor element connected to the highest voltage side is the n-th stage (n is an integer), and each arm has a voltage-driven semiconductor element. For n power converters connected in series,
Each voltage-driven semiconductor element is provided with a gate drive circuit having a function of gently turning off the voltage-driven semiconductor element when an overcurrent is detected, and the gate lines connecting the voltage-driven semiconductor element and the gate drive circuit are magnetically connected to each other. Connected by a coupling circuit, the m (m = 1 to n) stage gate drive circuit includes a current detector for detecting a current flowing in the mth stage voltage driven semiconductor element, and a detection result of the current detector And a voltage detection circuit for detecting a voltage generated based on the magnetic coupling circuit, and a voltage detection circuit for detecting a voltage generated based on the magnetic coupling circuit. An overcurrent protection circuit that outputs a protection signal according to the detection result of each of the power conversion devices is connected.
JP2006079111A 2006-03-22 2006-03-22 Power converter protection system Expired - Fee Related JP4742313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079111A JP4742313B2 (en) 2006-03-22 2006-03-22 Power converter protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079111A JP4742313B2 (en) 2006-03-22 2006-03-22 Power converter protection system

Publications (2)

Publication Number Publication Date
JP2007259563A JP2007259563A (en) 2007-10-04
JP4742313B2 true JP4742313B2 (en) 2011-08-10

Family

ID=38633218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079111A Expired - Fee Related JP4742313B2 (en) 2006-03-22 2006-03-22 Power converter protection system

Country Status (1)

Country Link
JP (1) JP4742313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148494B (en) * 2010-02-10 2014-01-29 艾默生网络能源系统北美公司 Bridge arm conduction protection circuit and rectification circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669117B2 (en) * 1990-07-19 1997-10-27 富士電機株式会社 Drive circuit for voltage-driven semiconductor devices
JP2777307B2 (en) * 1992-04-28 1998-07-16 株式会社東芝 Short circuit protection circuit

Also Published As

Publication number Publication date
JP2007259563A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US11139808B2 (en) Semiconductor device and power conversion system
JP5983274B2 (en) Gate drive circuit having failure detection circuit of semiconductor switch element
US7110272B2 (en) Inverter bridge controller implementing short-circuit protection scheme
US7489487B2 (en) Multi-level power converter
US20140192449A1 (en) Short-circuit protection circuit
WO2013125366A1 (en) Power switching circuit
JP2008118834A (en) Surge reduction circuit and inverter device equipped with surge reduction circuit
JP2006166691A (en) Semiconductor apparatus for electric power
JP4244005B2 (en) Multi-level output power converter
EP2747260B1 (en) Method for operating an electrical power rectifier, and an electrical power rectifier
JP3780898B2 (en) Power device drive circuit
JP2008236907A (en) Gate control circuit and method of power conversion apparatus
JP2019165347A (en) Drive device and power module
JP5605183B2 (en) 3-level power converter protection device
JP4920434B2 (en) Semiconductor switching element drive circuit
JP4742313B2 (en) Power converter protection system
JP4946103B2 (en) Power converter
JP6643957B2 (en) Power converter and control method therefor
JP2004140891A (en) Power converter
JP2005185003A (en) Protective device of power conversion apparatus
KR20190111550A (en) Power converter and overcurrent protection method thereof
JPH04322173A (en) Bridge type converter protection apparatus
JP7099643B2 (en) Switching control circuit, drive control device and switching control method
JPH1022801A (en) Protection circuit for control element
KR20170009344A (en) A power conversion device with short circuit protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees