JP2004140891A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004140891A
JP2004140891A JP2002301177A JP2002301177A JP2004140891A JP 2004140891 A JP2004140891 A JP 2004140891A JP 2002301177 A JP2002301177 A JP 2002301177A JP 2002301177 A JP2002301177 A JP 2002301177A JP 2004140891 A JP2004140891 A JP 2004140891A
Authority
JP
Japan
Prior art keywords
constant voltage
self
circuit
extinguishing semiconductor
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301177A
Other languages
Japanese (ja)
Other versions
JP4230190B2 (en
Inventor
Kenji Takao
高尾 健志
Hiroshi Masunaga
益永 博史
Fumio Mizohata
溝畑 文雄
Hiroshi Nakatake
中武 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002301177A priority Critical patent/JP4230190B2/en
Publication of JP2004140891A publication Critical patent/JP2004140891A/en
Application granted granted Critical
Publication of JP4230190B2 publication Critical patent/JP4230190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To get a power converter which surely detects short circuit trouble having occurred in some elements in case that the constant voltage elements of a protective circuit against overvoltage are constituted of a plurality of series connection bodies. <P>SOLUTION: An EXOR circuit 50 outputs a signal as long as the tuning delay time of a timing tuning circuit 36 by inputting the signal from an OR circuit 21 and the signal from a delay circuit 20. A time difference judging circuit 51 operates a fault indicator 52 for judging that short circuit fault has occurred in some elements within the constant voltage elements ZD when the above tuning delay time length gets over the specified set time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置に係り、特に、上記自己消弧形半導体素子の過電圧抑制の目的で使用される定電圧素子の故障検出に関するものである。
【0002】
【従来の技術】
自己消弧形半導体素子を使用した電力変換装置では、通例、電圧仕様に応じて、自己消弧形半導体素子、例えば、IGBTを複数互いに直列にして直流電圧源に接続し各素子で電圧を分担する構成を採用する。この場合、各IGBTは、本来同時にオンオフ動作がなされるが、素子特性のばらつき等により素子間でこのタイミングに差が生じ得る。特に、ターンオフタイミングに差が生じると、早くターンオフした素子に本来の分担電圧以上の電圧が印加されることになり、素子の耐圧が脅かされることになる。
そこで、従来の電力変換装置においては、IGBTのコレクタ(正極)とゲート(制御極)との間に定電圧素子ZDを含む過電圧保護回路を設け、このZDの電圧クランプ動作によりIGBTの過電圧印加を抑制している。
【0003】
更に、この電圧クランプ動作が繰り返されることによる損失の増大を防止するため、クランプ動作に応じてIGBTのターンオフタイミングを調整するタイミング調整回路を設けている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−231247号公報(第2、3頁、図1、2)
【0005】
【発明が解決しようとする課題】
従来の電力変換装置は以上のように構成されているが、各IGBTの電圧仕様とこれに接続される過電圧保護回路に使用される定電圧素子ZDの電圧仕様との関係で、定電圧素子ZDを複数の互いに直列に接続した直列接続体で構成することが考えられる。
この回路で、定電圧素子ZDが短絡故障した場合を想定すると、その直列接続体の全体が短絡故障とならない限りその一部の素子に短絡故障が発生しても、当該故障が検出されず、過電圧保護回路が過度な電圧抑制を行うなど異常動作が発生し、最悪、IGBTを破壊する可能性があるという問題があった。
【0006】
この発明は、上記のような問題点を解消するためになされたもので、過電圧保護回路の定電圧素子が複数の直列接続体で構成されている場合に、その一部の素子に短絡故障が発生したことを確実に検出することができる電力変換装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る電力変換装置は、自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置であって、
上記自己消弧形半導体素子の正極と制御極との間に定電圧素子を含む過電圧保護回路を設け、上記定電圧素子のクランプ動作により上記自己消弧形半導体素子の正極負極間に印加される過電圧を抑制し、かつ、上記定電圧素子を複数の互いに直列に接続した直列接続体で構成するものにおいて、
上記自己消弧形半導体素子のオフ動作後、上記定電圧素子のクランプ動作に基づき発生する上記自己消弧形半導体素子の制御極負極間電圧の変化を検出し、この変化時間長が所定の設定時間長を越えたとき、上記定電圧素子を構成する直列接続体の一部の素子に短絡故障が発生したと判定する定電圧素子故障検出手段を備えたものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1〜5は、この発明の実施の形態1を説明するもので、図1は、そのゲートドライブ回路40の内部構成図、図2は、図1のゲートドライブ回路40を用いて構成された半導体スイッチ41の内部構成図、図3は、図2の半導体スイッチ41を用いて構成された電力変換装置としての3相2レベルインバータを示す回路図、図4は、図1の過電圧保護回路6を説明する図、図5は、図1における定電圧素子の短絡故障の検出動作を説明するタイミングチャートである。
【0009】
以下、先ず、図1〜4を参照してこの発明の実施の形態1における電力変換装置(3相2レベルインバータ)の構成について説明する。3相2レベルインバータは、直流電圧源Edに3相ブリッジ結線された半導体スイッチ41から構成され、直流電圧源Edの直流電圧を3相交流電圧に変換して出力する(図3)。
ここでは、各半導体スイッチ41は、互いに直列に接続された2個の自己消弧形半導体素子、ここではIGBT(Insulated Gate Bipolar Transistor)2、各IGBT2と逆並列に接続された還流ダイオード3、および各IGBT2をオンオフ駆動するゲートドライブ回路40から構成される。そして、各ゲートドライブ回路40は制御信号発生器1からの制御信号に基づき動作する。
【0010】
次に、ゲートドライブ回路40の内部構成を図1、図4に基づき説明する。ゲートドライブ回路40は、過電圧保護回路6と、入力判定回路7と、信号保持回路13と、パルス成形回路16とを備えている。
先ず、過電圧保護回路6は2個のIGBT2のターンオフタイミングのずれにより印加される過電圧を抑制すると共に、過電圧抑制動作を検出するもので、図4に示すように、一端がIGBT2のコレクタC(正極)に接続された定電圧素子ZDを備えており、ここでは個々の素子zdを複数互いに直列に接続した直列接続体でなる。なお、本願発明の目的は、この直列接続体の任意の素子zdの短絡故障を検出することである。
定電圧素子ZDの他端は、ダイオードD、更に、ゲートアンプ5、ゲート抵抗4を介してIGBT2のゲートG(制御極)に接続されている。ダイオードDのカソードにはNPNトランジスタ22が接続され定電圧素子ZDの電圧クランプ動作による電圧変化により出力し、その出力は、後述するタイミング調整回路36の入力判定回路7に導出される。
【0011】
図1に戻り、入力判定回路7は、ディレイ回路11、NOT回路10およびOR回路9からなるスイッチング過渡状態検出器8とPNPトランジスタ12とで構成され、制御信号発生器1からの信号と過電圧保護回路6から出力される信号(過電圧保護回路6のNPNトランジスタ22からの信号で、定電圧素子ZDの動作電圧E1を超える過電圧に対応する信号)とを入力し、過電圧保護回路6から出力される上記信号が、ターンオフ時のスイッチングタイミングずれによってIGBT2に過電圧が発生し出力された信号であることを判定する。
即ち、本実施の形態におけるスイッチング過渡状態検出器8は、制御信号発生器1からの信号がターンオフを開始してからディレイ回路11で定めた時間のみPNPトランジスタ12を駆動することにより、上記時間に過電圧保護回路6が動作した場合に、過電圧保護回路6から出力される信号を出力してスイッチングタイミングずれによって過電圧が発生したことを判定する。
【0012】
信号保持回路13は、コンデンサ(蓄積素子)15と入力抵抗14とで構成され、入力判定回路7からの信号(ターンオフ時のスイッチングタイミングずれによって発生する過電圧に対応する信号)を保持する。
パルス成形回路16は、論理回路18とPNPトランジスタ17と抵抗19とディレイ回路20とOR回路21とで構成され、信号保持回路13のコンデンサ15に蓄えられた電荷を、複数回のスイッチングに1回の割合でターンオフ時に放電させるとともに、この放電信号と制御信号発生器1からのスイッチング制御信号とにより補正されたスイッチング制御信号を成形する。
即ち、OR回路21では入力される放電電圧が予め設定されたしきい値以上の時、オン信号が出力され、最終的には制御信号発生器1からのスイッチング制御信号にこのオン信号が時間的に加算されて出力される、即ち、この加算時間だけターンオフタイミングが遅延調整される。なお、スイッチング制御信号はディレイ回路20で後述のように所定時間遅延された信号となって加算される。
【0013】
定電圧素子zdの短絡故障を検出する定電圧素子故障検出手段としての故障検出回路53は、EXOR回路50と時間差判定回路51と故障表示器52とからなる。そして、EXOR回路50は、ディレイ回路20からの出力信号とOR回路21からの出力信号とを入力して排他的論理和の信号を出力する。即ち、タイミング調整回路36での調整遅延時間長のパルス信号が出力される。時間差判定回路51は、この調整遅延時間長が予め設定したマスク時間を越えたとき、定電圧素子ZD内のいずれかの定電圧素子zdに短絡故障が発生したと判定して故障表示器52を動作させる。
【0014】
次に、図5を参照して、ターンオフタイミングを調整する動作、および定電圧素子zdの短絡故障を検出する動作について説明する。図5において、(a)は信号保持回路13のコンデンサ15の電圧、(b)はPNPトランジスタ17の導通状態、(c)はOR回路21の入力電圧A、(d)はIGBT2のスイッチング状態、(e)はIGBT2のコレクターエミッタ間電圧、(f)はEXOR回路の出力と時間差判定回路のマスクの関係を示す。図5は2個のIGBT2を直列接続した場合の波形を示しており、(e)はターンオフタイミングが早いIGBTと遅いIGBTとの両方の電圧波形を示している。また(a)〜(d)は早くターンオフするIGBTに対する波形である。
【0015】
入力判定回路7は、制御信号発生器1からのスイッチング制御信号がターンオフを開始してからディレイ回路11で定められた期間だけ、過電圧保護回路6からの信号を通過させる。これにより、早くターンオフしたIGBT2のコレクターエミッタ間電圧が過電圧保護回路6の動作電圧E1を越えた時刻(t1)から、IGBT2のコレクターエミッタ間電圧が過電圧保護回路6の動作電圧E1より下がった時刻(t2)まで、コンデンサ15の電圧は上昇する。コンデンサ15の電圧は過電圧保護回路6の動作量、即ち、動作電圧E1以上の過電圧のレベル、および過電圧が印加されている時間に応じて上昇する。論理回路18は制御信号発生器1からのターンオフ信号の複数回に1回の割合(ここでは2回に1回の割合)でPNPトランジスタ17を駆動する。PNPトランジスタ17がオンしたとき(t3)、コンデンサ15の電圧はコンデンサ15と抵抗19の放電回路で放電し低下する。OR回路21の入力電圧は、コンデンサ15の電圧とほぼ等しくなり、OR回路21の入力電圧がOR回路21の入力しきい電圧A1より大きい期間(t3〜t4)、IGBT2のオンは続きスイッチングのタイミングずれは小さくなる。なお、この際、ディレイ回路20によって、PNPトランジスタ17および論理回路18の時間遅れが補償され、制御信号発生器1からのスイッチング信号と信号保持回路13からの信号(スイッチングタイミングずれ補正信号)の同期が取られる。
【0016】
時刻(t5)で定電圧素子zdに短絡故障が発生(過電圧検出部位短絡発生)すると、過電圧保護回路6の動作電圧が正常値のE1からE2に低下する。そこで、この低下した動作電圧E2にIGBT2のコレクターエミッタ間電圧が達すると、定電圧素子ZDによる電圧クランプ動作がその分、長時間(t6〜t7)継続し、コンデンサ15の電圧が大きく上昇する。この結果、次に論理回路18からの信号によりPNPトランジスタ17がオンしてコンデンサ15が放電すると、その放電電圧が高いため調整遅延時間(t8〜t9)が正常時より長くなり、マスク量を越えて時間差判定回路51が故障発生と判定して故障表示器52に出力する。
【0017】
以上説明したように、過電圧保護回路6の定電圧素子ZD内のいずれかの定電圧素子zdに発生した短絡故障をタイミング調整回路36による調整遅延時間長から確実に検出することができる。
従って、例えば、この故障検出信号を上位制御回路に送信し装置を停止させるようにすれば、一部の定電圧素子の短絡故障で過度な電圧抑制動作が継続してIGBTの事故に至るという恐れが無くなり装置の信頼性が向上する。
なお、図1の回路では、調整遅延時間長をOR回路21の出力信号から求めるようにしたが、OR回路21の入力信号、従って、PNPトランジスタ17からの信号Aのパルス時間幅を直接検出するようにしてもよい。
【0018】
実施の形態2.
図6は、この発明の実施の形態2における電力変換装置のゲートドライブ回路40を示す回路構成図である。先の実施の形態1の図1と異なるのは、故障検出回路53のみである。即ち、図6では、電圧レベル判定回路54を設け、コンデンサ15の電圧が予め設定した判定レベルを越えると一部の定電圧素子zdに短絡故障が発生したと判定して故障表示器52を動作させる。
【0019】
図7に、この故障検出の動作を示す。即ち、時刻(t5)で定電圧素子zdに短絡故障が発生すると、定電圧素子の動作電圧が正常値のE1からE2に低下する。このため、次に、ターンオフタイミングが早いIGBT2のコレクターエミッタ間電圧が上昇して上記動作電圧E2に達すると、通常より長い時間(t6〜t7)電圧クランプ動作が継続し、結果として、コンデンサ15への充電時間が増え、図7(a)に示すように、コンデンサ15の電圧が正常時より高くなって設定された判定レベルを越え、電圧レベル判定回路54が故障を検出する。
【0020】
以上のように、過電圧保護回路6の定電圧素子ZD内のいずれかの定電圧素子zdに発生した短絡故障をタイミング調整回路36のコンデンサ15の電圧から確実に検出することができ、実施の形態1と同様、装置の信頼性が向上する。
【0021】
実施の形態3.
図8は、この発明の実施の形態3における電力変換装置を示す回路構成図である。ここでは、先の実施の形態で説明したゲートドライブ回路40の構成を一部簡略化しても定電圧素子の短絡故障を検出できる場合について説明する。
即ち、互いに直列に接続された2個のIGBT2の一方に接続されたゲートドライブ回路40は、先の実施の形態1と同様、定電圧素子ZDの電圧クランプ動作に基づきIGBT2のターンオフタイミングを遅延調整するタイミング調整回路36とこの調整遅延時間長がマスク量を越えたことから定電圧素子ZDの一部での短絡故障を検出する故障検出回路53の両回路を備えている(故障検出手段付自己消弧形半導体素子)。これに対し、他方のIGBT2に接続されたゲートドライブ回路40Aは、タイミング調整回路36は存在するが故障検出回路53は存在しない、構成を一部簡略化したものである(故障検出手段無自己消弧形半導体素子)。
【0022】
次に、定電圧素子ZDの一部短絡故障時の動作について説明する。先ず、ゲートドライブ回路40側で発生した短絡故障は、当該ゲートドライブ回路40に故障検出回路53を備えているので、形態1で既述したとおり可能であるのは言うまでもない。
問題は、故障検出回路53を備えていないゲートドライブ回路40A側で短絡故障が発生した場合である。この場合、先ず、故障検出回路無しのゲートドライブ回路40A側でタイミング調整回路36による調整遅延時間長が増大する。増大するが故障検出回路が無いのでそのIGBTのターンオフタイミングは調整の結果遅れていく。従って、相対的に故障検出回路付のゲートドライブ回路40側のIGBTのターンオフタイミングが早まることになる。そして、この早まり量が大きくなるとゲートドライブ回路40側での調整遅延時間長が次第に高まり、当該ゲートドライブ回路40側の定電圧素子ZDには異常が無くても調整遅延時間長が設定されたマスク量を越え得ることになり、やがてゲートドライブ回路40に備えられた故障検出回路53が故障検出の判定を行うことになる。
【0023】
複数のIGBTを直列にして直流電圧源に接続する場合、各素子のターンオフタイミングの相対的ずれにより以上で説明した現象が生じるので、この現象を利用することにより、その複数のゲートドライブ回路の一部で故障検出回路を省略しても、当該故障検出回路を省略したゲートドライブ回路で発生した定電圧素子ZDの一部短絡故障を、他のゲートドライブ回路に備えられた故障検出回路53により検出することが可能になり、全体として、装置の構成を簡便安価にすることができる。
なお、図8のゲートドライブ回路40として、以上の説明では、実施の形態1の、即ち、調整遅延時間長から定電圧素子の短絡故障を検出する故障検出回路を備えたものとしたが、実施の形態2の、即ち、コンデンサ15の電圧から短絡故障を検出する故障検出回路を備えたものとしてもよいことは言うまでもない。
【0024】
実施の形態4.
以上の各実施の形態では、いずれも、IGBTは複数直列にして直流電圧源に接続するものであり、かつ、IGBTのターンオフタイミングを調整するタイミング調整回路を備えたものを前提にしているが、これらの前提が存在しない場合においても、IGBTを過電圧から保護するため、定電圧素子ZDを含む過電圧保護回路を設けることがあり、更に、この定電圧素子ZDを複数の定電圧素子zdの直列接続体で構成する場合がある。実施の形態4では、このような場合にも、定電圧素子ZDの一部の短絡故障を確実に検出することができる電力変換装置を扱うものである。
【0025】
図9は、この発明の実施の形態4における故障検出回路を含む電力変換装置を示す回路構成図である。図において、IGBTのコレクターゲート間に定電圧素子ZDとダイオードDが接続されている。なお、定電圧素子ZDは便宜上、単体で図示しているが、実際は定電圧素子zdを複数直列に接続したものである点は、先の実施の形態の図4で示したものと同様である。そして、この実施の形態4は、この定電圧素子ZD内の一部の素子zdの短絡故障を検出するものである。
以下、動作を示す図10のタイミングチャートを共に参照して説明する。
ここでは、タイミング調整回路が無いので、(制御信号発生器1)からのオン・オフ信号はインターフェイス回路23を介して直接トランジスタTR1、TR2に出力される。IGBTのオン時は、トランジスタTR1をオン、TR2をオフしてゲートーエミッタ間電圧VGE=P15Vとする。IGBTのターンオフ時は、トランジスタTR1をオフ、TR2をオンに操作してVGE=N15Vとする。この状態からIGBTのコレクターエミッタ間に過電圧が印加されこれが定電圧素子ZDのアバランシェ電圧に達すると、定電圧素子ZDが電圧クランプ動作をし、定電圧素子ZDを介してゲートに漏れ電流IZDが流れ(図10(b))、VGEは順バイアス方向に充電されIGBTがオンするスレッシホールド電圧(普通+10V程度)に引き上げられる(図10(c))。これによりIGBTのコレクターエミッタ間電圧は定電圧素子ZDのアバランシェ電圧にクランプされるわけである。
【0026】
比較器25は、IGBTのゲートーエミッタ間電圧VGEを入力し、しきい値電圧REF(図10(c))と比較して前者が大きいときHレベルの信号を出力する(図10(d)CMP出力)。
ディレイ回路24は、HレベルからLレベルになるOFF指令タイミング(図10(a)参照)から所定の時間遅延してLレベルになる信号を出力する(図10(e))。この遅延時間は、定電圧素子ZDが正常な場合に、IGBTがターンオフした後、電圧クランプ動作終了時点までの時間の最大予測値にほぼ近い値に設定される。
EXOR回路26は、比較器25からの信号とディレイ回路24からの信号との排他的論理和を演算する。そして、AND回路28はこのEXOR回路26からの信号とインバータ回路27によるディレイ回路24の反転信号との論理積を演算する。
【0027】
従って、定電圧素子ZDが全て正常で電圧クランプ動作がディレイ回路24による設定遅延時間までに終了する場合は、AND回路28からのAND信号はLレベルを維持するが、定電圧素子ZDの一部の素子で短絡故障が発生し電圧クランプ動作が上記設定遅延時間を越えて継続すると、図10(h)に示すように、単パルス信号Sを出力し、これにより、定電圧素子ZDの一部短絡故障を検出することができ、装置の信頼性が向上する。
なお、図9では、AND回路28の後段にワンショット回路29を挿入してZD故障信号としているが、AND回路28からのAND信号が短いときでも、図示しない上位回路でのラッチが可能となるようパルス幅を伸ばすためである。
【0028】
この実施の形態4は、例えば、IGBTを直列接続しない2レベルインバータにおいて、IGBTのターンオフ時に発生するサージをスナバ回路ではなくIGBTに接続した定電圧素子ZDでクランプして過電圧から保護する回路に適用した場合に有効であり、定電圧素子ZDの一部故障からインバータの故障に進展することを未然に防止することができる。
なお、図9に示した構成に限定されることはなく、要は、IGBTのターンオフ後、定電圧素子ZDの電圧クランプ動作に基づく、IGBTのゲートーエミッタ間電圧の変化時間長を検出するものであれば、上記で説明したと同様の要領で定電圧素子ZDの一部短絡故障を検出することができる。
【0029】
実施の形態5.
図11は、この発明の実施の形態5における電力変換装置を示し、ここでは、特に、IGBTを過電圧から保護する定電圧素子ZDの電流定格を低減する方策について説明する。即ち、先の実施の形態4で説明したように、IGBTのコレクターエミッタ間に過電圧が印加され、定電圧素子ZDがクランプすると、定電圧素子ZDを介して電流がゲートに流れるが、この電流値は、それまでのオフ操作で抵抗Rg(off)を介してN15Vが印加されていたゲートーエミッタ間電圧VGEをIGBTがオンするスレッシホールド電圧(普通+10V程度)にまで引き上げるレベルのものである必要がある。Rg=10Ωとすると、(+10V−(−15V))/10Ω=2.5Aとなり、定電圧素子ZDとして電流定格の大きなものを採用する必要がある。
特に、定電圧素子ZDを複数の素子の直列接続体で構成するような高電圧仕様の場合はこの電流定格が大きいことで定電圧素子ZDが大容量なものとなる。
【0030】
図11の回路は、この定電圧素子ZDの電流定格低減を実現するもので、NPNトランジスタ32およびPFET33からなるAMP部31を備えている。なお、図11では、実施の形態1の内容との整合性を図るため、定電圧素子ZDの電圧クランプ動作に基づきIGBTのターンオフタイミングを調整するタイミング調整回路36を備えたものに適用している。但し、説明の便宜上、図1等ではタイミング調整回路36内に存在するPNPトランジスタ12、入力抵抗14およびコンデンサ15を外部に引き出して図示している。
【0031】
次に動作について説明する。トランジスタTR1をオフ、TR2をオンに操作してVGE=N15VとしIGBTがターンオフする。この状態からIGBTのコレクターエミッタ間に過電圧が印加されこれが定電圧素子ZDのアバランシェ電圧に達すると、定電圧素子ZDに電流が流れてクランプ動作に入るが、その電流値は、図11の負担抵抗にNPNトランジスタ32を駆動させるに必要な電圧を誘起させるレベルで足りるので、数mA〜数十mA程度でよい。NPNトランジスタ32の動作でPFET33が駆動し、IGBTのゲートに必要な電流が供給される。定電圧素子ZDのクランプ動作が実行されると定電圧素子ZDの電流はなくなり、PFET33もオフする。
負担抵抗の電圧変化でNPNトランジスタ22がオンし、PNPトランジスタ12を経てコンデンサ15が充電され、更に、このコンデンサ15の充電電圧に基づきIGBTのターンオフタイミングが調整される動作は先の実施の形態1と同様である。
【0032】
以上のように、この実施の形態5においては、定電圧素子ZDの電流定格を大幅に低減することができ、サイズ、コストの低減が可能となる。
【0033】
なお、以上の各実施の形態では、自己消弧形半導体素子としてIGBTを使用した場合について説明したが、他の種類の自己消弧形半導体素子であっても同様に適用でき同等の効果を奏する。また、これら素子を直流電圧源に直列接続した複数の素子で構成する場合、以上の形態例で例示した2個で構成する場合に限られるものではない。
【0034】
【発明の効果】
以上のように、この発明に係る電力変換装置は、自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置であって、
上記自己消弧形半導体素子の正極と制御極との間に定電圧素子を含む過電圧保護回路を設け、上記定電圧素子のクランプ動作により上記自己消弧形半導体素子の正極負極間に印加される過電圧を抑制し、かつ、上記定電圧素子を複数の互いに直列に接続した直列接続体で構成するものにおいて、
上記自己消弧形半導体素子のオフ動作後、上記定電圧素子のクランプ動作に基づき発生する上記自己消弧形半導体素子の制御極負極間電圧の変化を検出し、この変化時間長が所定の設定時間長を越えたとき、上記定電圧素子を構成する直列接続体の一部の素子に短絡故障が発生したと判定する定電圧素子故障検出手段を備えたので、簡単な構成で定電圧素子の一部素子で発生した短絡故障を確実に検出することができ、過電圧保護回路が過度な電圧抑制を行うなど異常動作の発生を未然に防止し、この異常動作に伴い自己消弧形半導体素子が破壊するという恐れもなくなる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の電力変換装置におけるゲートドライブ回路40の内部構成を示す図である。
【図2】図1のゲートドライブ回路40を用いて構成された半導体スイッチ41の内部構成を示す図である。
【図3】図2の半導体スイッチ41を用いて構成された電力変換装置としての3相2レベルインバータを示す回路図である。
【図4】図1の過電圧保護回路6を説明する図である。
【図5】図1における定電圧素子の短絡故障の検出動作を説明するタイミングチャートである。
【図6】この発明の実施の形態2の電力変換装置におけるゲートドライブ回路40の内部構成を示す図である。
【図7】図6における定電圧素子の短絡故障の検出動作を説明するタイミングチャートである。
【図8】この発明の実施の形態3における電力変換装置を示す図である。
【図9】この発明の実施の形態4における電力変換装置を示す図である。
【図10】図9における定電圧素子の短絡故障の検出動作を説明するタイミングチャートである。
【図11】この発明の実施の形態5における電力変換装置を示す図である。
【符号の説明】
1 制御信号発生器、2 IGBT、6 過電圧保護回路、
7 入力判定回路、13 信号保持回路、15 コンデンサ、
16 パルス成形回路、30 故障検出回路、31 AMP部、
36 タイミング調整回路、40 (故障検出回路付)ゲートドライブ回路、
40A 故障検出回路無ゲートドライブ回路、41 半導体スイッチ、
50 EXOR回路、51 時間差判定回路、53 故障検出回路、
54 電圧レベル判定回路、Ed 直流電圧源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device that converts power by an on / off switching operation of a self-extinguishing semiconductor element, and more particularly, to detect a failure of a constant voltage element used for the purpose of suppressing an overvoltage of the self-extinguishing semiconductor element. It is about.
[0002]
[Prior art]
In power converters using self-extinguishing semiconductor elements, usually, self-extinguishing semiconductor elements, for example, multiple IGBTs are connected in series with each other and connected to a DC voltage source according to the voltage specifications, and each element shares the voltage Adopt the configuration to do. In this case, each IGBT is originally turned on and off at the same time, but there may be a difference in timing between elements due to variations in element characteristics. In particular, when a difference occurs in the turn-off timing, a voltage higher than the original shared voltage is applied to the element that is turned off earlier, and the breakdown voltage of the element is threatened.
Therefore, in the conventional power converter, an overvoltage protection circuit including a constant voltage element ZD is provided between the collector (positive electrode) and gate (control electrode) of the IGBT, and the overvoltage application of the IGBT is performed by the voltage clamping operation of the ZD. Suppressed.
[0003]
Further, in order to prevent an increase in loss due to the repetition of the voltage clamping operation, a timing adjustment circuit that adjusts the turn-off timing of the IGBT according to the clamping operation is provided (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-231247 A (2nd and 3rd pages, FIGS. 1 and 2)
[0005]
[Problems to be solved by the invention]
The conventional power conversion device is configured as described above, but the constant voltage element ZD is related to the voltage specification of each IGBT and the voltage specification of the constant voltage element ZD used in the overvoltage protection circuit connected thereto. It is conceivable to form a plurality of serially connected bodies connected in series.
In this circuit, assuming that the constant voltage element ZD has a short-circuit failure, even if a short-circuit failure occurs in some of the elements unless the entire series-connected body becomes a short-circuit failure, the failure is not detected, An abnormal operation such as excessive voltage suppression by the overvoltage protection circuit occurs, and there is a problem that the IGBT may be destroyed in the worst case.
[0006]
The present invention has been made to solve the above-described problems. When the constant voltage element of the overvoltage protection circuit is composed of a plurality of serially connected bodies, a short circuit failure occurs in some of the elements. It aims at obtaining the power converter device which can detect reliably having generate | occur | produced.
[0007]
[Means for Solving the Problems]
A power conversion device according to the present invention is a power conversion device that performs power conversion by an on / off switching operation of a self-extinguishing semiconductor element,
An overvoltage protection circuit including a constant voltage element is provided between the positive electrode and the control electrode of the self-extinguishing semiconductor element, and is applied between the positive and negative electrodes of the self-extinguishing semiconductor element by a clamping operation of the constant voltage element. In what constitutes a series connection body in which overvoltage is suppressed and the constant voltage elements are connected in series to each other,
After the self-extinguishing semiconductor element is turned off, a change in the voltage between the control pole and negative electrode of the self-extinguishing semiconductor element generated based on the clamping operation of the constant voltage element is detected, and the change time length is set to a predetermined value. When the time length is exceeded, there is provided a constant voltage element failure detecting means for determining that a short circuit failure has occurred in some elements of the series connection body constituting the constant voltage element.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 to 5 illustrate the first embodiment of the present invention. FIG. 1 is an internal configuration diagram of the gate drive circuit 40, and FIG. 2 is configured using the gate drive circuit 40 of FIG. FIG. 3 is a circuit diagram showing a three-phase two-level inverter as a power conversion device configured using the semiconductor switch 41 of FIG. 2, and FIG. 4 is an overvoltage protection circuit 6 of FIG. FIG. 5 is a timing chart for explaining the detection operation of the short-circuit fault of the constant voltage element in FIG.
[0009]
Hereinafter, first, the configuration of the power conversion device (three-phase two-level inverter) in the first embodiment of the present invention will be described with reference to FIGS. The three-phase two-level inverter includes a semiconductor switch 41 that is three-phase bridge-connected to the DC voltage source Ed, and converts the DC voltage of the DC voltage source Ed into a three-phase AC voltage and outputs the converted voltage (FIG. 3).
Here, each semiconductor switch 41 includes two self-extinguishing semiconductor elements connected in series with each other, here, an IGBT (Insulated Gate Bipolar Transistor) 2, a free-wheeling diode 3 connected in antiparallel with each IGBT 2, and The gate drive circuit 40 is configured to drive each IGBT 2 on and off. Each gate drive circuit 40 operates based on a control signal from the control signal generator 1.
[0010]
Next, the internal configuration of the gate drive circuit 40 will be described with reference to FIGS. The gate drive circuit 40 includes an overvoltage protection circuit 6, an input determination circuit 7, a signal holding circuit 13, and a pulse shaping circuit 16.
First, the overvoltage protection circuit 6 suppresses an overvoltage applied due to a shift in the turn-off timing of the two IGBTs 2 and detects an overvoltage suppression operation. As shown in FIG. 4, one end is a collector C (positive electrode) of the IGBT 2. And a constant voltage element ZD connected to each other). Here, a plurality of individual elements zd are connected in series. The object of the present invention is to detect a short-circuit fault of an arbitrary element zd of this series connection body.
The other end of the constant voltage element ZD is connected to the gate G (control pole) of the IGBT 2 via the diode D, the gate amplifier 5 and the gate resistor 4. An NPN transistor 22 is connected to the cathode of the diode D, and output by a voltage change caused by the voltage clamping operation of the constant voltage element ZD. The output is led to the input determination circuit 7 of the timing adjustment circuit 36 described later.
[0011]
Returning to FIG. 1, the input determination circuit 7 includes a switching transient state detector 8 including a delay circuit 11, a NOT circuit 10, and an OR circuit 9 and a PNP transistor 12, and a signal from the control signal generator 1 and overvoltage protection. A signal output from the circuit 6 (a signal from the NPN transistor 22 of the overvoltage protection circuit 6 and corresponding to an overvoltage exceeding the operating voltage E1 of the constant voltage element ZD) is input and output from the overvoltage protection circuit 6 It is determined that the signal is a signal that is output because an overvoltage is generated in the IGBT 2 due to a switching timing deviation at the time of turn-off.
That is, the switching transient state detector 8 in the present embodiment drives the PNP transistor 12 only for the time determined by the delay circuit 11 after the signal from the control signal generator 1 starts to turn off. When the overvoltage protection circuit 6 is operated, a signal output from the overvoltage protection circuit 6 is output to determine that an overvoltage has occurred due to a switching timing deviation.
[0012]
The signal holding circuit 13 includes a capacitor (storage element) 15 and an input resistor 14, and holds a signal from the input determination circuit 7 (a signal corresponding to an overvoltage generated due to a switching timing deviation at turn-off).
The pulse shaping circuit 16 includes a logic circuit 18, a PNP transistor 17, a resistor 19, a delay circuit 20, and an OR circuit 21, and charges accumulated in the capacitor 15 of the signal holding circuit 13 once for a plurality of switching operations. At the time of turn-off, the switching control signal corrected by the discharge signal and the switching control signal from the control signal generator 1 is formed.
That is, in the OR circuit 21, when the input discharge voltage is equal to or higher than a preset threshold value, an ON signal is output, and this ON signal is finally added to the switching control signal from the control signal generator 1 over time. In other words, the turn-off timing is delayed and adjusted by this addition time. The switching control signal is added as a signal delayed by a predetermined time in the delay circuit 20 as described later.
[0013]
A failure detection circuit 53 as a constant voltage element failure detection means for detecting a short-circuit failure of the constant voltage element zd includes an EXOR circuit 50, a time difference determination circuit 51, and a failure indicator 52. The EXOR circuit 50 receives the output signal from the delay circuit 20 and the output signal from the OR circuit 21 and outputs an exclusive OR signal. That is, a pulse signal having an adjustment delay time length in the timing adjustment circuit 36 is output. When the adjustment delay time length exceeds a preset mask time, the time difference determination circuit 51 determines that a short circuit failure has occurred in any one of the constant voltage elements zd in the constant voltage element ZD, and displays the failure indicator 52. Make it work.
[0014]
Next, an operation for adjusting the turn-off timing and an operation for detecting a short-circuit failure of the constant voltage element zd will be described with reference to FIG. 5, (a) is the voltage of the capacitor 15 of the signal holding circuit 13, (b) is the conduction state of the PNP transistor 17, (c) is the input voltage A of the OR circuit 21, (d) is the switching state of the IGBT 2, (E) shows the collector-emitter voltage of the IGBT 2, and (f) shows the relationship between the output of the EXOR circuit and the mask of the time difference determination circuit. FIG. 5 shows a waveform when two IGBTs 2 are connected in series, and (e) shows voltage waveforms of both an IGBT with early turn-off timing and a later IGBT. Further, (a) to (d) are waveforms for the IGBT that turns off early.
[0015]
The input determination circuit 7 allows the signal from the overvoltage protection circuit 6 to pass for a period determined by the delay circuit 11 after the switching control signal from the control signal generator 1 starts to turn off. As a result, the collector-emitter voltage of the IGBT 2 that is turned off earlier exceeds the operating voltage E1 of the overvoltage protection circuit 6 (t1), and the time when the collector-emitter voltage of the IGBT2 falls below the operating voltage E1 of the overvoltage protection circuit 6 ( Until t2), the voltage of the capacitor 15 rises. The voltage of the capacitor 15 increases according to the operation amount of the overvoltage protection circuit 6, that is, the level of the overvoltage equal to or higher than the operation voltage E1 and the time during which the overvoltage is applied. The logic circuit 18 drives the PNP transistor 17 at a rate of once per a plurality of turn-off signals from the control signal generator 1 (here, once every two times). When the PNP transistor 17 is turned on (t3), the voltage of the capacitor 15 is discharged by the discharge circuit of the capacitor 15 and the resistor 19 and decreases. The input voltage of the OR circuit 21 is substantially equal to the voltage of the capacitor 15, and during the period (t3 to t4) when the input voltage of the OR circuit 21 is greater than the input threshold voltage A1 of the OR circuit 21, the IGBT2 continues to be turned on and the switching timing. Deviation is reduced. At this time, the delay circuit 20 compensates for the time delay of the PNP transistor 17 and the logic circuit 18, and synchronizes the switching signal from the control signal generator 1 and the signal (switching timing deviation correction signal) from the signal holding circuit 13. Is taken.
[0016]
When a short-circuit failure occurs in the constant voltage element zd at time (t5) (overvoltage detection site short-circuit occurrence), the operating voltage of the overvoltage protection circuit 6 decreases from the normal value E1 to E2. Therefore, when the collector-emitter voltage of the IGBT 2 reaches the lowered operating voltage E2, the voltage clamping operation by the constant voltage element ZD is continued for a long time (t6 to t7), and the voltage of the capacitor 15 is greatly increased. As a result, when the PNP transistor 17 is next turned on by the signal from the logic circuit 18 and the capacitor 15 is discharged, the adjustment delay time (t8 to t9) becomes longer than normal because the discharge voltage is high, exceeding the mask amount. Thus, the time difference determination circuit 51 determines that a failure has occurred and outputs it to the failure indicator 52.
[0017]
As described above, it is possible to reliably detect a short-circuit failure occurring in any one of the constant voltage elements zd in the constant voltage element ZD of the overvoltage protection circuit 6 from the adjustment delay time length by the timing adjustment circuit 36.
Therefore, for example, if this failure detection signal is sent to the host control circuit to stop the apparatus, excessive voltage suppression operation may continue due to a short-circuit failure of some constant voltage elements, leading to an IGBT accident. And the reliability of the device is improved.
In the circuit of FIG. 1, the adjustment delay time length is obtained from the output signal of the OR circuit 21, but the input signal of the OR circuit 21, and therefore the pulse time width of the signal A from the PNP transistor 17 is directly detected. You may do it.
[0018]
Embodiment 2. FIG.
FIG. 6 is a circuit configuration diagram showing a gate drive circuit 40 of the power conversion device according to Embodiment 2 of the present invention. Only the failure detection circuit 53 is different from FIG. 1 of the first embodiment. That is, in FIG. 6, a voltage level determination circuit 54 is provided, and when the voltage of the capacitor 15 exceeds a predetermined determination level, it is determined that a short circuit failure has occurred in some constant voltage elements zd and the failure indicator 52 is operated. Let
[0019]
FIG. 7 shows this failure detection operation. That is, when a short-circuit failure occurs in the constant voltage element zd at time (t5), the operating voltage of the constant voltage element decreases from the normal value E1 to E2. Therefore, when the collector-emitter voltage of the IGBT 2 whose turn-off timing is early rises and reaches the operating voltage E2, the voltage clamping operation continues for a longer time (t6 to t7) than usual, and as a result, to the capacitor 15. As shown in FIG. 7A, the voltage of the capacitor 15 is higher than normal and exceeds the set determination level, and the voltage level determination circuit 54 detects a failure.
[0020]
As described above, it is possible to reliably detect a short-circuit failure occurring in any one of the constant voltage elements zd in the constant voltage element ZD of the overvoltage protection circuit 6 from the voltage of the capacitor 15 of the timing adjustment circuit 36. As in 1, the reliability of the apparatus is improved.
[0021]
Embodiment 3 FIG.
FIG. 8 is a circuit configuration diagram showing a power conversion device according to Embodiment 3 of the present invention. Here, a case will be described in which a short-circuit fault of a constant voltage element can be detected even if the configuration of the gate drive circuit 40 described in the previous embodiment is partially simplified.
That is, the gate drive circuit 40 connected to one of the two IGBTs 2 connected in series with each other delays the turn-off timing of the IGBT 2 based on the voltage clamping operation of the constant voltage element ZD, as in the first embodiment. And a failure detection circuit 53 for detecting a short-circuit failure in a part of the constant voltage element ZD because the adjustment delay time length exceeds the mask amount (self-with failure detection means). Arc extinguishing type semiconductor device). On the other hand, the gate drive circuit 40A connected to the other IGBT 2 has a partially simplified configuration in which the timing adjustment circuit 36 is present but the failure detection circuit 53 is not present (no failure detection means self-extinguishing). Arc-shaped semiconductor device).
[0022]
Next, the operation at the time of a partial short-circuit failure of the constant voltage element ZD will be described. First, it is needless to say that a short circuit failure occurring on the gate drive circuit 40 side is possible as described in the first embodiment because the gate drive circuit 40 includes the failure detection circuit 53.
The problem is when a short-circuit failure occurs on the side of the gate drive circuit 40A that does not include the failure detection circuit 53. In this case, first, the adjustment delay time length by the timing adjustment circuit 36 increases on the gate drive circuit 40A side without the failure detection circuit. Although there is no failure detection circuit, the IGBT turn-off timing is delayed as a result of adjustment. Accordingly, the turn-off timing of the IGBT on the gate drive circuit 40 side with the failure detection circuit is relatively advanced. When the amount of advance is increased, the adjustment delay time length on the gate drive circuit 40 side gradually increases, and the constant delay element ZD on the gate drive circuit 40 side is set with the adjustment delay time length even if there is no abnormality. As a result, the failure detection circuit 53 provided in the gate drive circuit 40 determines the failure detection.
[0023]
When a plurality of IGBTs are connected in series to a DC voltage source, the phenomenon described above occurs due to the relative shift of the turn-off timing of each element. By utilizing this phenomenon, one of the plurality of gate drive circuits is used. Even if the failure detection circuit is omitted in the part, a partial short-circuit failure of the constant voltage element ZD generated in the gate drive circuit in which the failure detection circuit is omitted is detected by the failure detection circuit 53 provided in another gate drive circuit. As a whole, the configuration of the apparatus can be simplified and made inexpensive.
In the above description, the gate drive circuit 40 of FIG. 8 is provided with the failure detection circuit that detects the short-circuit failure of the constant voltage element from the adjustment delay time length in the first embodiment. It goes without saying that a failure detection circuit for detecting a short-circuit failure from the voltage of the capacitor 15 may be provided.
[0024]
Embodiment 4 FIG.
In each of the above-described embodiments, it is assumed that a plurality of IGBTs are connected in series to a DC voltage source and have a timing adjustment circuit that adjusts the turn-off timing of the IGBT. Even when these preconditions do not exist, an overvoltage protection circuit including a constant voltage element ZD may be provided in order to protect the IGBT from overvoltage, and the constant voltage element ZD is connected in series with a plurality of constant voltage elements zd. May consist of body. In the fourth embodiment, even in such a case, a power conversion device that can reliably detect a short-circuit failure in a part of the constant voltage element ZD is handled.
[0025]
FIG. 9 is a circuit configuration diagram showing a power conversion device including a failure detection circuit according to Embodiment 4 of the present invention. In the figure, a constant voltage element ZD and a diode D are connected between the collector gate of the IGBT. Note that the constant voltage element ZD is shown as a single unit for convenience, but the fact that a plurality of constant voltage elements zd are connected in series is the same as that shown in FIG. 4 of the previous embodiment. . In the fourth embodiment, a short circuit failure of a part of the elements zd in the constant voltage element ZD is detected.
Hereinafter, the operation will be described with reference to the timing chart of FIG.
Here, since there is no timing adjustment circuit, the ON / OFF signal from (control signal generator 1) is directly output to the transistors TR1 and TR2 via the interface circuit 23. When the IGBT is on, the transistor TR1 is turned on and TR2 is turned off so that the gate-emitter voltage VGE = P15V. When the IGBT is turned off, the transistor TR1 is turned off and TR2 is turned on so that VGE = N15V. From this state, when an overvoltage is applied between the collector and emitter of the IGBT and this reaches the avalanche voltage of the constant voltage element ZD, the constant voltage element ZD performs a voltage clamping operation, and a leakage current IZD flows to the gate via the constant voltage element ZD. (FIG. 10 (b)), VGE is charged in the forward bias direction and raised to a threshold voltage (usually about + 10V) that turns on the IGBT (FIG. 10 (c)). Thereby, the collector-emitter voltage of the IGBT is clamped to the avalanche voltage of the constant voltage element ZD.
[0026]
The comparator 25 receives the gate-emitter voltage VGE of the IGBT, and outputs an H level signal when the former is larger than the threshold voltage REF (FIG. 10C) (FIG. 10D). CMP output).
The delay circuit 24 outputs a signal that becomes L level after a predetermined time delay from the OFF command timing (see FIG. 10A) that changes from H level to L level (FIG. 10E). When the constant voltage element ZD is normal, this delay time is set to a value that is substantially close to the maximum predicted value of the time from when the IGBT is turned off to when the voltage clamping operation ends.
The EXOR circuit 26 calculates an exclusive OR of the signal from the comparator 25 and the signal from the delay circuit 24. The AND circuit 28 calculates a logical product of the signal from the EXOR circuit 26 and the inverted signal of the delay circuit 24 by the inverter circuit 27.
[0027]
Accordingly, when all the constant voltage elements ZD are normal and the voltage clamping operation is completed by the set delay time by the delay circuit 24, the AND signal from the AND circuit 28 maintains the L level, but a part of the constant voltage element ZD. When a short-circuit failure occurs in the element and the voltage clamping operation continues beyond the set delay time, a single pulse signal S is output as shown in FIG. 10 (h), whereby a part of the constant voltage element ZD is output. Short circuit faults can be detected, improving the reliability of the device.
In FIG. 9, a one-shot circuit 29 is inserted after the AND circuit 28 to generate a ZD fault signal. However, even when the AND signal from the AND circuit 28 is short, it can be latched by an upper circuit (not shown). This is for extending the pulse width.
[0028]
The fourth embodiment is applied to, for example, a circuit that protects from overvoltage by clamping a surge generated at IGBT turn-off with a constant voltage element ZD connected to the IGBT instead of a snubber circuit in a two-level inverter without IGBTs connected in series. In this case, it is effective to prevent the constant voltage element ZD from progressing partially to inverter failure.
9 is not limited to the configuration shown in FIG. 9. The point is to detect the change time length of the gate-emitter voltage of the IGBT based on the voltage clamping operation of the constant voltage element ZD after the IGBT is turned off. If so, a partial short-circuit fault of the constant voltage element ZD can be detected in the same manner as described above.
[0029]
Embodiment 5. FIG.
FIG. 11 shows a power conversion apparatus according to Embodiment 5 of the present invention, and here, in particular, a measure for reducing the current rating of the constant voltage element ZD that protects the IGBT from overvoltage will be described. That is, as described in the fourth embodiment, when an overvoltage is applied between the collector and emitter of the IGBT and the constant voltage element ZD is clamped, a current flows to the gate via the constant voltage element ZD. Is a level that raises the gate-emitter voltage VGE, to which the N15V has been applied via the resistor Rg (off), until the threshold voltage (usually about + 10V) at which the IGBT is turned on by the off-operation until then. There is a need. When Rg = 10Ω, (+ 10V − (− 15V)) / 10Ω = 2.5A, and it is necessary to employ a constant voltage element ZD having a large current rating.
In particular, in the case of a high voltage specification in which the constant voltage element ZD is constituted by a series connection body of a plurality of elements, the constant voltage element ZD has a large capacity due to the large current rating.
[0030]
The circuit shown in FIG. 11 realizes a reduction in the current rating of the constant voltage element ZD, and includes an AMP unit 31 including an NPN transistor 32 and a PFET 33. In FIG. 11, in order to achieve consistency with the contents of the first embodiment, the present invention is applied to a device including a timing adjustment circuit 36 that adjusts the turn-off timing of the IGBT based on the voltage clamping operation of the constant voltage element ZD. . However, for convenience of explanation, in FIG. 1 and the like, the PNP transistor 12, the input resistor 14, and the capacitor 15 existing in the timing adjustment circuit 36 are drawn out to the outside.
[0031]
Next, the operation will be described. The transistor TR1 is turned off and TR2 is turned on so that VGE = N15V and the IGBT is turned off. From this state, when an overvoltage is applied between the collector and emitter of the IGBT and this reaches the avalanche voltage of the constant voltage element ZD, a current flows through the constant voltage element ZD to enter a clamping operation. Therefore, it is sufficient to induce a voltage necessary for driving the NPN transistor 32, so that it may be several mA to several tens mA. The PFET 33 is driven by the operation of the NPN transistor 32, and a necessary current is supplied to the gate of the IGBT. When the clamping operation of the constant voltage element ZD is executed, the current of the constant voltage element ZD disappears and the PFET 33 is also turned off.
The operation in which the NPN transistor 22 is turned on by the voltage change of the burden resistance, the capacitor 15 is charged via the PNP transistor 12, and the turn-off timing of the IGBT is adjusted based on the charging voltage of the capacitor 15 is the same as in the first embodiment. It is the same.
[0032]
As described above, in the fifth embodiment, the current rating of the constant voltage element ZD can be greatly reduced, and the size and cost can be reduced.
[0033]
In each of the above embodiments, the case where an IGBT is used as a self-extinguishing semiconductor element has been described. However, other types of self-extinguishing semiconductor elements can be applied in the same manner and have equivalent effects. . Further, the case where these elements are constituted by a plurality of elements connected in series to a DC voltage source is not limited to the case of being constituted by two elements exemplified in the above embodiment.
[0034]
【The invention's effect】
As described above, the power conversion device according to the present invention is a power conversion device that converts power in the on / off switching operation of the self-extinguishing semiconductor element,
An overvoltage protection circuit including a constant voltage element is provided between the positive electrode and the control electrode of the self-extinguishing semiconductor element, and is applied between the positive and negative electrodes of the self-extinguishing semiconductor element by a clamping operation of the constant voltage element. In what constitutes a series connection body in which overvoltage is suppressed and the constant voltage elements are connected in series to each other,
After the self-extinguishing semiconductor element is turned off, a change in the voltage between the control pole and negative electrode of the self-extinguishing semiconductor element generated based on the clamping operation of the constant voltage element is detected, and the change time length is set to a predetermined value. Since there is a constant voltage element failure detection means for determining that a short circuit fault has occurred in some elements of the series connection body constituting the constant voltage element when the time length is exceeded, a simple configuration of the constant voltage element Short circuit faults that occur in some elements can be reliably detected, and overvoltage protection circuit prevents excessive operation such as excessive voltage suppression. There is no fear of destruction.
[Brief description of the drawings]
FIG. 1 is a diagram showing an internal configuration of a gate drive circuit 40 in a power conversion device according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an internal configuration of a semiconductor switch 41 configured using the gate drive circuit 40 of FIG.
3 is a circuit diagram showing a three-phase two-level inverter as a power conversion device configured using the semiconductor switch 41 of FIG. 2. FIG.
4 is a diagram illustrating the overvoltage protection circuit 6 of FIG. 1. FIG.
5 is a timing chart for explaining a short-circuit fault detection operation of the constant voltage element in FIG. 1; FIG.
6 is a diagram showing an internal configuration of a gate drive circuit 40 in the power conversion device according to the second embodiment of the present invention. FIG.
7 is a timing chart for explaining an operation for detecting a short-circuit fault of the constant voltage element in FIG. 6;
FIG. 8 is a diagram showing a power conversion device according to Embodiment 3 of the present invention.
FIG. 9 is a diagram showing a power conversion device according to Embodiment 4 of the present invention.
10 is a timing chart for explaining an operation for detecting a short-circuit fault of the constant voltage element in FIG. 9;
FIG. 11 is a diagram showing a power conversion device according to a fifth embodiment of the present invention.
[Explanation of symbols]
1 control signal generator, 2 IGBT, 6 overvoltage protection circuit,
7 input determination circuit, 13 signal holding circuit, 15 capacitor,
16 pulse shaping circuit, 30 failure detection circuit, 31 AMP part,
36 timing adjustment circuit, 40 (with failure detection circuit) gate drive circuit,
40A failure detection circuit no gate drive circuit, 41 semiconductor switch,
50 EXOR circuit, 51 Time difference judgment circuit, 53 Fault detection circuit,
54 Voltage level determination circuit, Ed DC voltage source.

Claims (5)

自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置であって、
上記自己消弧形半導体素子の正極と制御極との間に定電圧素子を含む過電圧保護回路を設け、上記定電圧素子のクランプ動作により上記自己消弧形半導体素子の正極負極間に印加される過電圧を抑制し、かつ、上記定電圧素子を複数の互いに直列に接続した直列接続体で構成するものにおいて、
上記自己消弧形半導体素子のオフ動作後、上記定電圧素子のクランプ動作に基づき発生する上記自己消弧形半導体素子の制御極負極間電圧の変化を検出し、この変化時間長が所定の設定時間長を越えたとき、上記定電圧素子を構成する直列接続体の一部の素子に短絡故障が発生したと判定する定電圧素子故障検出手段を備えたことを特徴とする電力変換装置。
A power conversion device that converts power in an on / off switching operation of a self-extinguishing semiconductor element,
An overvoltage protection circuit including a constant voltage element is provided between the positive electrode and the control electrode of the self-extinguishing semiconductor element, and is applied between the positive and negative electrodes of the self-extinguishing semiconductor element by a clamping operation of the constant voltage element. In what constitutes a series connection body in which overvoltage is suppressed and the constant voltage elements are connected in series to each other,
After the self-extinguishing semiconductor element is turned off, a change in the voltage between the control pole and negative electrode of the self-extinguishing semiconductor element generated based on the clamping operation of the constant voltage element is detected, and the change time length is set to a predetermined value. A power converter comprising: a constant voltage element failure detection means for determining that a short circuit fault has occurred in some of the elements of the series connection body constituting the constant voltage element when the time length is exceeded.
直流電圧源に複数の自己消弧形半導体素子が互いに直列に接続され上記各自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置であって、
上記各自己消弧形半導体素子の正極と制御極との間に定電圧素子を含む過電圧保護回路を設け、上記定電圧素子のクランプ動作により上記自己消弧形半導体素子の正極負極間に印加される過電圧を抑制し、かつ、上記定電圧素子を複数の互いに直列に接続した直列接続体で構成するものにおいて、
上記自己消弧形半導体素子のオフ動作後、上記定電圧素子のクランプ動作時間長に比例した電荷量で充電されるコンデンサ、およびこのコンデンサの電圧に応じて定まる時間だけ当該自己消弧形半導体素子のオフ動作開始タイミングを遅延させるタイミング調整回路を備え、
上記タイミング調整回路における上記調整遅延時間長が所定の設定時間長を越えたとき、上記定電圧素子を構成する直列接続体の一部の素子に短絡故障が発生したと判定する定電圧素子故障検出手段を備えたことを特徴とする電力変換装置。
A power conversion device in which a plurality of self-extinguishing semiconductor elements are connected in series to a direct-current voltage source and perform power conversion by an on / off switching operation of each of the self-extinguishing semiconductor elements,
An overvoltage protection circuit including a constant voltage element is provided between the positive electrode and the control electrode of each self-extinguishing semiconductor element, and is applied between the positive and negative electrodes of the self-extinguishing semiconductor element by the clamping operation of the constant voltage element. In which the overvoltage is suppressed, and the constant voltage element is composed of a plurality of serially connected bodies connected in series with each other,
A capacitor charged with an amount of charge proportional to the clamp operation time length of the constant voltage element after the self-extinguishing semiconductor element is turned off, and the self-extinguishing semiconductor element for a time determined according to the voltage of the capacitor With a timing adjustment circuit that delays the off operation start timing of
Constant voltage element failure detection for determining that a short circuit fault has occurred in some elements of the series connection body constituting the constant voltage element when the adjustment delay time length in the timing adjustment circuit exceeds a predetermined set time length A power conversion device comprising means.
直流電圧源に複数の自己消弧形半導体素子が互いに直列に接続され上記各自己消弧形半導体素子のオンオフスイッチング動作で電力の変換を行う電力変換装置であって、
上記各自己消弧形半導体素子の正極と制御極との間に定電圧素子を含む過電圧保護回路を設け、上記定電圧素子のクランプ動作により上記自己消弧形半導体素子の正極負極間に印加される過電圧を抑制し、かつ、上記定電圧素子を複数の互いに直列に接続した直列接続体で構成するものにおいて、
上記自己消弧形半導体素子のオフ動作後、上記定電圧素子のクランプ動作時間長に比例した電荷量で充電されるコンデンサ、およびこのコンデンサの電圧に応じて定まる時間だけ当該自己消弧形半導体素子のオフ動作開始タイミングを遅延させるタイミング調整回路を備え、
上記コンデンサの電圧値が所定の設定電圧値を越えたとき、上記定電圧素子を構成する直列接続体の一部の素子に短絡故障が発生したと判定する定電圧素子故障検出手段を備えたことを特徴とする電力変換装置。
A power conversion device in which a plurality of self-extinguishing semiconductor elements are connected in series to a direct-current voltage source and perform power conversion by an on / off switching operation of each of the self-extinguishing semiconductor elements,
An overvoltage protection circuit including a constant voltage element is provided between the positive electrode and the control electrode of each self-extinguishing semiconductor element, and is applied between the positive and negative electrodes of the self-extinguishing semiconductor element by the clamping operation of the constant voltage element. In which the overvoltage is suppressed, and the constant voltage element is composed of a plurality of serially connected bodies connected in series with each other,
A capacitor charged with an amount of charge proportional to the clamp operation time length of the constant voltage element after the self-extinguishing semiconductor element is turned off, and the self-extinguishing semiconductor element for a time determined according to the voltage of the capacitor With a timing adjustment circuit that delays the off operation start timing of
When the voltage value of the capacitor exceeds a predetermined set voltage value, a constant voltage element failure detection means is provided for determining that a short circuit failure has occurred in some elements of the series connection body constituting the constant voltage element. The power converter characterized by this.
上記直流電圧源に互いに直列に接続される複数の自己消弧形半導体素子の内、一部は請求項2または3の定電圧素子故障検出手段を備えたもの(以下、故障検出手段付自己消弧形半導体素子と称す)とし、残部は請求項2または3の構成から定電圧素子故障検出手段のみを省略したもの(以下、故障検出手段無自己消弧形半導体素子と称す)とし、
上記故障検出手段無自己消弧形半導体素子で定電圧素子に短絡故障が発生した場合、当該故障検出手段無自己消弧形半導体素子におけるオフ動作開始タイミングの調整遅延時間長の増大に基づき上記故障検出手段付自己消弧形半導体素子における上記定電圧素子のクランプ動作時間長が増大して上記定電圧故障検出手段が動作する現象を利用することにより、上記故障検出手段無自己消弧形半導体素子で発生した定電圧素子の短絡故障を上記故障検出手段付自己消弧形半導体素子の定電圧故障検出手段で検出可能としたことを特徴とする電力変換装置。
Among the plurality of self-extinguishing semiconductor elements connected in series to the DC voltage source, some include the constant voltage element failure detection means according to claim 2 or 3 (hereinafter referred to as self-extinguishing with failure detection means). The remainder is assumed to be obtained by omitting only the constant voltage element failure detection means from the configuration of claim 2 or 3 (hereinafter referred to as failure detection means self-extinguishing semiconductor element),
When a short-circuit fault occurs in the constant voltage element in the failure detection means self-extinguishing semiconductor element, the failure is detected based on an increase in the adjustment delay time length of the off operation start timing in the failure detection means self-extinguishing semiconductor element. In the self-extinguishing semiconductor element with a detecting means, the failure detecting means self-extinguishing semiconductor element is obtained by utilizing the phenomenon that the constant voltage failure detecting means operates by increasing the clamp operation time length of the constant voltage element. A power conversion device characterized in that the short-circuit fault of the constant voltage element generated in step 1 can be detected by the constant voltage fault detection means of the self-extinguishing semiconductor element with the fault detection means.
上記過電圧保護回路を、上記定電圧素子のクランプ動作で発生する電流を増幅し上記自己消弧形半導体素子の制御極負極間に供給する増幅部を備えたものとすることにより、上記定電圧素子の電流定格を、自己消弧形半導体素子の正極負極間に漏れ電流を流して両極間に印加される過電圧を抑制するために制御極負極間に供給する必要がある電流値より低減可能としたことを特徴とする請求項1ないし4のいずれかに記載の電力変換装置。The overvoltage protection circuit includes an amplifying unit that amplifies a current generated by the clamping operation of the constant voltage element and supplies the current between the control pole and negative electrode of the self-extinguishing semiconductor element. The current rating of the self-extinguishing semiconductor element can be reduced from the current value that needs to be supplied between the control electrode and the negative electrode in order to suppress the overvoltage applied between both electrodes by causing a leakage current to flow between the electrode and the negative electrode. The power conversion device according to claim 1, wherein the power conversion device is a power conversion device.
JP2002301177A 2002-10-16 2002-10-16 Power converter Expired - Lifetime JP4230190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301177A JP4230190B2 (en) 2002-10-16 2002-10-16 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301177A JP4230190B2 (en) 2002-10-16 2002-10-16 Power converter

Publications (2)

Publication Number Publication Date
JP2004140891A true JP2004140891A (en) 2004-05-13
JP4230190B2 JP4230190B2 (en) 2009-02-25

Family

ID=32449582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301177A Expired - Lifetime JP4230190B2 (en) 2002-10-16 2002-10-16 Power converter

Country Status (1)

Country Link
JP (1) JP4230190B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054143A1 (en) * 2007-10-24 2009-04-30 Kabushiki Kaisha Toshiba Power converter
JP2015033198A (en) * 2013-08-01 2015-02-16 東芝三菱電機産業システム株式会社 Gate control circuit of semiconductor element for power
WO2016042970A1 (en) * 2014-09-19 2016-03-24 株式会社日立製作所 Power conversion device
JP2016073082A (en) * 2014-09-30 2016-05-09 株式会社日立製作所 Protection device for power conversion system, and protection method
US10298115B2 (en) 2014-09-11 2019-05-21 Mitsubishi Electric Corporation Semiconductor device
CN113794357A (en) * 2021-07-29 2021-12-14 广东美的白色家电技术创新中心有限公司 Fault processing circuit, chip, intelligent power module and household appliance
EP4057508A1 (en) 2021-03-11 2022-09-14 Tamura Corporation Drive circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054143A1 (en) * 2007-10-24 2009-04-30 Kabushiki Kaisha Toshiba Power converter
US8836311B2 (en) 2007-10-24 2014-09-16 Kabushiki Kaisha Toshiba Power converter with switching circuits
JP2015033198A (en) * 2013-08-01 2015-02-16 東芝三菱電機産業システム株式会社 Gate control circuit of semiconductor element for power
US10298115B2 (en) 2014-09-11 2019-05-21 Mitsubishi Electric Corporation Semiconductor device
WO2016042970A1 (en) * 2014-09-19 2016-03-24 株式会社日立製作所 Power conversion device
JP2016063667A (en) * 2014-09-19 2016-04-25 株式会社日立製作所 Power conversion device
CN106716814A (en) * 2014-09-19 2017-05-24 株式会社日立制作所 Power conversion device
JP2016073082A (en) * 2014-09-30 2016-05-09 株式会社日立製作所 Protection device for power conversion system, and protection method
EP4057508A1 (en) 2021-03-11 2022-09-14 Tamura Corporation Drive circuit
US11984879B2 (en) 2021-03-11 2024-05-14 Tamura Corporation Drive circuit
CN113794357A (en) * 2021-07-29 2021-12-14 广东美的白色家电技术创新中心有限公司 Fault processing circuit, chip, intelligent power module and household appliance

Also Published As

Publication number Publication date
JP4230190B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US11139808B2 (en) Semiconductor device and power conversion system
KR101662471B1 (en) Drive protection circuit, semiconductor module, and automobile
US5200878A (en) Drive circuit for current sense igbt
JP5644830B2 (en) Drive circuit for switching element to be driven
US9059709B2 (en) Gate drive circuit for transistor
US7940503B2 (en) Power semiconductor arrangement including conditional active clamping
JP2013126278A (en) Semiconductor device
US20150131350A1 (en) Electrical power converter
JP2019058056A (en) Protection circuit, vibration compensation circuit and power feeding circuit in solid pulse modulator
US11545972B2 (en) Overcurrent protection circuit for switching element turned on and off based on control voltage
JP2018011467A (en) Gate drive circuit for semiconductor switching element
JP5542719B2 (en) Drive protection circuit for power semiconductor device
JP4230190B2 (en) Power converter
CN112886541B (en) Protection circuit and method for converter and IGBT gate electrode drive
JP4321491B2 (en) Voltage-driven semiconductor device driving apparatus
JP2017224999A (en) Protection circuit of semiconductor switching element
JP2014217151A (en) Power conversion device and overcurrent protection method for the same
JP4901083B2 (en) Gate drive device
JP5585514B2 (en) Load drive device
KR100807547B1 (en) A drive circuit of a semiconductor switch for an inverter
JP6590437B2 (en) Semiconductor power converter
JP3240489B2 (en) IGBT overcurrent protection device and IGBT protection device
JP3661813B2 (en) Drive circuit for voltage-driven semiconductor element
KR102388544B1 (en) Over voltage protection circuit for protecting power semiconductor switching device
JP6622405B2 (en) Inverter drive

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4230190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term