JP4739326B2 - Integrated separator for electrolytic capacitors - Google Patents

Integrated separator for electrolytic capacitors Download PDF

Info

Publication number
JP4739326B2
JP4739326B2 JP2007509057A JP2007509057A JP4739326B2 JP 4739326 B2 JP4739326 B2 JP 4739326B2 JP 2007509057 A JP2007509057 A JP 2007509057A JP 2007509057 A JP2007509057 A JP 2007509057A JP 4739326 B2 JP4739326 B2 JP 4739326B2
Authority
JP
Japan
Prior art keywords
valve metal
metal oxide
cathode
layer
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007509057A
Other languages
Japanese (ja)
Other versions
JP2007535145A (en
Inventor
ザルニトスキー,ユリ
ブレグマン,レオニド
Original Assignee
アクタール リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクタール リミテッド filed Critical アクタール リミテッド
Publication of JP2007535145A publication Critical patent/JP2007535145A/en
Application granted granted Critical
Publication of JP4739326B2 publication Critical patent/JP4739326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は電解コンデンサ、およびそれらの製造に関する。 The present invention relates to electrolytic capacitors and their manufacture.

電解コンデンサのプレート間の直接の機械的および電気的な接触を防ぐために、それらの構造は概して多孔性要素を含み、それは、プレートを分離しながら、同時にそれを通して電流キャリアの移動を可能にする。この要素は従って絶縁物質から製造され、電解質媒質内に配置されるときに、それは機械的、熱的および化学的に、十分に安定でなければならない。また、それはこの媒質を汚染してはならず、および、コンデンサの等価直列(電気)抵抗(ESR)を著しく増大させてはならない。従来は、広範囲の温度で信頼性が高い電気特性を提供するために、特別な種類の紙または被覆が、薄いおよびきわめて薄い層の形で使用されている。公称電圧定格に従い、紙セパレータの典型的な厚さは、25−200ミクロンの範囲内にあり、一方、布セパレータは、110−120ミクロンの厚さおよび40ミクロンの最小厚さによって特徴づけられている。紙セパレータの典型的な厚さは、低電圧コンデンサに対して約50−60ミクロン、および高圧コンデンサに対して160−200ミクロンである。紙セパレータの透磁率φの無次元の係数は、約25−30であり、布タイプセパレータに対しては10近くである。紙セパレータの極めて薄いタイプは、厚さで約12−13ミクロンである。従来のセパレータの厚さの寄与は、大きい場合があり、例えばコンデンサの体積の最高40%の場合がある。セパレータが薄くなればなるほど、コンデンサの等価直列抵抗(ESR)の値がより小さくなることは、明白である。 In order to prevent direct mechanical and electrical contact between the plates of the electrolytic capacitor, their structure generally includes a porous element, which allows movement of current carriers through the plates while simultaneously separating them. This element is therefore manufactured from an insulating material and when placed in the electrolyte medium, it must be sufficiently stable mechanically, thermally and chemically. It must also not contaminate this medium and must not significantly increase the equivalent series (electrical) resistance (ESR) of the capacitor. Traditionally, special types of paper or coatings have been used in the form of thin and very thin layers to provide reliable electrical properties over a wide range of temperatures. According to the nominal voltage rating, the typical thickness of the paper separator is in the range of 25-200 microns, while the fabric separator is characterized by a thickness of 110-120 microns and a minimum thickness of 40 microns. Yes. Typical thicknesses for paper separators are about 50-60 microns for low voltage capacitors and 160-200 microns for high voltage capacitors. The dimensionless coefficient of permeability φ of the paper separator is about 25-30, which is close to 10 for the cloth type separator. A very thin type of paper separator is about 12-13 microns in thickness. The contribution of the thickness of a conventional separator can be large, for example up to 40% of the capacitor volume. Obviously, the thinner the separator, the smaller the equivalent series resistance (ESR) value of the capacitor.

セパレータの種々のタイプおよびそのESR値に対する寄与を比較するために、その厚さとその透磁率の係数を掛け合わせることは、合理的である。この積H=d・φは長さの次元を持ち、それはセパレータのない電極間距離に対応し、適用された電解質と同じ抵抗率を持つ。したがって、典型的な産業的に製造されたセパレータのこの等価厚さHは、一般に1−2mm未満ではない。電解質の比導電率の値が低いため、パラメータHの値は、アルミニウム電解コンデンサにとって特に重要ある。我々の関心は、ESR値がHに比例しているため、この値をできる限り減少させることである。残念なことに、従来のセパレータの厚さの更なる減少は、機械的強度の決定的な損失のために不可能である。別の深刻な問題は、塩素および金属イオン(陽イオン)例えばCa、MgまたはNa、による電解質の汚染の可能性である。この種の汚染は、例えば電解質溶液の不安定な導電率および腐蝕の加速などの、コンデンサ特性上に有害な影響を与える可能性がある欠陥を引き起こす。紙および布セパレータは電解コンデンサの熱伝導率を著しく低下させ、この影響は明らかに、コンデンサの最大負荷を減少させる。 In order to compare the different types of separators and their contribution to ESR values, it is reasonable to multiply their thickness by their permeability factor. This product H = d · φ has a dimension of length, which corresponds to the interelectrode distance without the separator and has the same resistivity as the applied electrolyte. Thus, this equivalent thickness H of typical industrially manufactured separators is generally not less than 1-2 mm. The value of parameter H is particularly important for aluminum electrolytic capacitors because of the low value of the specific conductivity of the electrolyte. Our interest is to reduce this value as much as possible because the ESR value is proportional to H. Unfortunately, further reduction in the thickness of conventional separators is not possible due to the critical loss of mechanical strength. Another serious problem is the possibility of electrolyte contamination by chlorine and metal ions (cations) such as Ca, Mg or Na. This type of contamination causes defects that can have a detrimental effect on the capacitor properties, such as, for example, unstable conductivity of the electrolyte solution and accelerated corrosion. Paper and fabric separators significantly reduce the thermal conductivity of electrolytic capacitors, and this effect clearly reduces the maximum load on the capacitor.

コンデンサ電極の表面上へ直接セパレータを被覆することによって電解コンデンサの比容積を低下させるために、多くの試みがなされた。電極表面上に望ましい厚さの連続膜を得るために、サブミクロンの粉末(例えば酸化クロム、ホウ酸および酸化チタン)を含む、溶液内のフェノール樹脂接着材が提案された。また、セパレータ層を製造する別の方法が、電極表面への接着が可融性体の、例えばアンモニウム過ホウ酸塩の適用による、絶縁粉末(アルミナまたはシリカ)に基づいて提案された。また、二酸化珪素(または珪酸塩)の真空蒸着が、望ましい特性のセパレータ被覆を得るために提案された。 Many attempts have been made to reduce the specific volume of electrolytic capacitors by coating the separator directly onto the surface of the capacitor electrode. In order to obtain a continuous film of the desired thickness on the electrode surface, a phenolic resin adhesive in solution containing submicron powders (eg chromium oxide, boric acid and titanium oxide) has been proposed. Another method for producing the separator layer has also been proposed on the basis of insulating powders (alumina or silica) whose adhesion to the electrode surface is fusible, for example by application of ammonium perborate. Also, vacuum deposition of silicon dioxide (or silicate) has been proposed to obtain separator coatings with desirable properties.

セパレータ層を形成するための多孔性耐火性酸化物を有する金属塩の熱分解の代替方式が、英国特許第1092741号において開示された。この方法の中心的な考えは、コロイドシリカ粉末上のアルミナのその後の堆積を含むアルミニウム硝酸塩の熱分解であり、次に電極箔の焼鈍し中に電極表面に強い結合を作成するために焼結される。セパレータ膜の厚さは、電極間の短絡を避けるために、10μmを超えることが推奨される。しかし、この被覆は比容量の、初期値の最高40−50%の、相当な損失を生じさせたことがわかった。また、比容量の高い損失にはESR値のそれに対応する増加が伴うことが想定される。 An alternative method of pyrolysis of metal salts with porous refractory oxides to form a separator layer was disclosed in British Patent No. 1092741. The central idea of this method is the thermal decomposition of aluminum nitrate, including subsequent deposition of alumina on colloidal silica powder, and then sintering to create a strong bond to the electrode surface during electrode foil annealing. Is done. The thickness of the separator film is recommended to exceed 10 μm in order to avoid a short circuit between the electrodes. However, it was found that this coating produced substantial losses in specific capacity, up to 40-50% of the initial value. Further, it is assumed that a loss with a high specific capacity is accompanied by a corresponding increase in the ESR value.

従来の方法、例えば上で列挙されるものは、これらの被覆の容量減少、貧弱な密着性ならびに低い多孔率および透磁率、の類似した欠点を被る。最後の効果は、特に電極箔のエッチングに起因する点状の構造によって説明され、それは、外部絶縁被覆によって容易に閉じられる(すなわち遮断される)可能性があり、したがって、箔表面に沿った電流キャリアの移動を防ぐ。電流が電極の表面のより大きい部分にアクセスを持ち、多孔性線内に伝播されるときに、別の状況が、特に一体型セパレータ内のトレンチ状の多孔質構造体に対して、実現されるかもしれない。したがって、多孔質構造体内の変化により起こりうる否定的結果に気がつくはずである。 Conventional methods, such as those listed above, suffer from the similar disadvantages of volume reduction, poor adhesion and low porosity and permeability of these coatings. The last effect is explained by the point-like structure, especially due to the etching of the electrode foil, which can be easily closed (ie interrupted) by the outer insulation coating, and thus the current along the foil surface Prevent carrier movement. Another situation is realized, especially for trench-like porous structures in an integral separator, when the current has access to a larger part of the electrode surface and is propagated into the porous wire. It may be. Therefore, one should be aware of the negative consequences that can occur due to changes in the porous structure.

関連した別の方法が、ロシアのL.ゴーデスによって最初に開発され、彼は、陰極および陽極箔上に、水酸化アルミニウムの多孔質層(アルミニウム塩類の混合による)を、II群カチオン(陽イオン)を含む電解質内で、6−60ボルトにおける電極の電気化学処理によって形成することを提案した。これは、例えば水溶性硫黄またはシュウ酸溶液中で、更に、酸性混合物中で、なされることが可能である。作用電解質によるこの多孔質層の飽和は、この膜全体の導電率を増進する傾向があることがわかった。各層(陰極および陽極を覆う)の厚さは5−6ミクロンとすることが推奨されている。残念なことに、この処理中にセパレータの下に形成されるバリア膜の相当な厚さは、容量の著しい減少を引き起こす。加えて、この被覆の低い機械的強度、高い損失率および、わずかに可溶なアルミニウム塩類により考えられる作用電解質の汚染が、この多孔質層内部で不可避的に発生し、この方法を産業製造目的に対して不適当なものにする。この方法は表面積拡張のための技術として使用される陽極箔の電気化学エッチングと密接に関係がある。電極製造の他の方法、例えば本発明の真空蒸着技術は、紙セパレータの使用を避ける可能性を開き、および、特にこの技術が電極表面を被覆するために前もって適用された場合、粘着性のセパレータ膜を堆積させるための環境保全にやさしい技術としてより有望であると考えられる。 Another related method is Russian L. First developed by Godes, he developed a porous layer of aluminum hydroxide (by mixing aluminum salts) on the cathode and anode foils, 6-60 volts in an electrolyte containing group II cations (cations). It was proposed to form the electrode by electrochemical treatment. This can be done, for example, in a water-soluble sulfur or oxalic acid solution, and also in an acidic mixture. It has been found that saturation of the porous layer with the working electrolyte tends to enhance the overall conductivity of the membrane. It is recommended that the thickness of each layer (covering the cathode and anode) be 5-6 microns. Unfortunately, the considerable thickness of the barrier film formed under the separator during this process causes a significant reduction in capacity. In addition, the low mechanical strength of the coating, the high loss rate and the contamination of the working electrolyte, which can be attributed to the slightly soluble aluminum salts, inevitably occur inside the porous layer, and this process is intended for industrial Make it inappropriate. This method is closely related to the electrochemical etching of the anode foil used as a technique for surface area expansion. Other methods of electrode manufacture, such as the vacuum deposition technique of the present invention, open the possibility of avoiding the use of paper separators, and sticky separators, especially when this technique has been previously applied to coat the electrode surface It is considered more promising as an environmentally friendly technology for depositing films.

本発明の一つの目的は、新しい技術を創造し、かつ従来技術セパレータに伴う問題を克服することである。本発明の他の目的は、あとに続く記述から明らかになるであろう。 One object of the present invention is to create new technologies and overcome the problems associated with prior art separators. Other objects of the present invention will become clear from the following description.

したがって本発明は、一態様において、その表面上に絶縁膜を有する陽極、陰極、陽極および陰極表面と接触する電解質、および一体型陽極−陰極セパレータとして、陽極および陰極から選択される少なくとも一つの電極の少なくとも一つの表面と一体化された少なくとも一つのバルブ金属酸化物層を含み、陽極または陰極のどちらかまたはそれぞれの上に一体型バルブ金属酸化物セパレータ層の平均の厚さが10ミクロン未満である、電解コンデンサを提供する。 Accordingly, in one aspect, the present invention provides an anode having an insulating film on its surface, a cathode, an electrolyte in contact with the anode and the cathode surface, and at least one electrode selected from the anode and the cathode as an integrated anode-cathode separator. At least one valve metal oxide layer integrated with at least one surface of the substrate, wherein the average thickness of the integral valve metal oxide separator layer on either or each of the anode and cathode is less than 10 microns. An electrolytic capacitor is provided.

任意選択で、コンデンサはあらゆる非一体型陽極−陰極セパレータの欠如によって特徴づけられることができる。 Optionally, the capacitor can be characterized by the lack of any non-integrated anode-cathode separator.

陽極および陰極は各々(独立に)基本的にバルブ金属から成ることができ、かつ絶縁膜は基本的にバルブ金属酸化物から成ることができる。現在のところ好適なバルブ金属およびバルブ金属酸化物は、それぞれ、アルミニウムおよびアルミナである。好ましくは、一体型バルブ金属酸化物セパレータ層は、陰極上にだけ存在する。 The anode and cathode can each (independently) consist essentially of a valve metal, and the insulating film can consist essentially of a valve metal oxide. Currently preferred valve metals and valve metal oxides are aluminum and alumina, respectively. Preferably, the integral valve metal oxide separator layer is present only on the cathode.

特定の実施例において、陰極は、一体型バルブ金属酸化物セパレータ層の堆積の前に、その上に堆積されたバルブ金属とバルブ金属酸化物との混合物の少なくとも一つの層を備える。 In certain embodiments, the cathode comprises at least one layer of a mixture of valve metal and valve metal oxide deposited thereon prior to deposition of the integral valve metal oxide separator layer.

別の態様において、本発明は本発明の電解コンデンサの製造のためのプロセスを提供し、それは、陽極および陰極から選択された、少なくとも一つの電極を、10ミクロン未満の所定の厚さのバルブ酸化物層が得られるまで、バルブ金属酸化物が、少なくとも一つの電極の少なくとも一つの表面上に堆積されるような条件の下で、酸素の存在下においてバルブ金属の蒸着にかけるステップを含む。 In another aspect, the present invention provides a process for the manufacture of the electrolytic capacitor of the present invention, which comprises at least one electrode selected from an anode and a cathode is valve oxidized with a predetermined thickness of less than 10 microns. Subjecting the valve metal to vapor deposition in the presence of oxygen under conditions such that the valve metal oxide is deposited on at least one surface of the at least one electrode until a physical layer is obtained.

このプロセスを実施する好適な方法において、陰極は、上記で定義された所定の厚さを持つバルブ金属酸化物の蒸着の前に、その上にバルブ金属およびバルブ金属酸化物の混合物の少なくとも一つの層の蒸着にかけられる。混合物の蒸着、および所定の厚さを持つバルブ金属酸化物の蒸着は、同じ機器内で中間排気無しで、連続的に実施されることが特に好適である。 In a preferred method of carrying out this process, the cathode is subjected to at least one of a mixture of valve metal and valve metal oxide thereon prior to deposition of the valve metal oxide having a predetermined thickness as defined above. Subjected to layer deposition. It is particularly preferred that the vapor deposition of the mixture and the vapor deposition of the valve metal oxide with a predetermined thickness are carried out continuously without intermediate exhaust in the same equipment.

さらにもう一つの態様において、本発明は、本発明の電解コンデンサに用いられる陰極を提供し、それは、実質的に平らな基板(例えばAl箔のようなバルブ金属箔)と、基本的に、この平らな基板の少なくとも一つの側面上に堆積されたバルブ金属およびバルブ金属酸化物の混合物から成る第1層と、第1層の上に堆積され、厚さ10ミクロン未満のバルブ金属酸化物からなる更なる層と、を備える。本発明の陰極は、基板を、その上にバルブ金属およびバルブ金属酸化物の混合物の少なくとも一つの層の蒸着にかけ、そして次に、上記に規定された所定の厚さを持つバルブ金属酸化物の蒸着にかけることによって作られることができる。好ましくは、2つの蒸着ステップは、中間排気無しで、同じ機器内で連続的に実施される。 In yet another aspect, the present invention provides a cathode for use in the electrolytic capacitor of the present invention, which comprises a substantially flat substrate (eg, a valve metal foil such as an Al foil) and essentially this A first layer comprising a mixture of valve metal and valve metal oxide deposited on at least one side of a flat substrate, and comprising a valve metal oxide deposited on the first layer and having a thickness of less than 10 microns A further layer. The cathode of the present invention comprises subjecting a substrate to the deposition of at least one layer of a mixture of a valve metal and a valve metal oxide, and then a valve metal oxide having a predetermined thickness as defined above. It can be made by subjecting it to vapor deposition. Preferably, the two deposition steps are carried out continuously in the same equipment without intermediate evacuation.

発明のコンデンサ内に使用される電解質は、固体または液体であることが考えられ、かつ有機または無機であることが考えられる。 The electrolyte used in the inventive capacitor can be solid or liquid and can be organic or inorganic.

参照が、基板上のバルブ金属およびバルブ金属酸化物の混合物の堆積に関する例示的な詳細に対して、「高表面積箔電極を形成するための方法」という名称の本発明者らの以前の米国特許第6,287,673号になされることができる。米国特許第6,287,673号の全内容は、この参照により本願明細書に含まれる。 Reference is made to our previous U.S. patent entitled "Method for Forming High Surface Area Foil Electrodes" for exemplary details regarding the deposition of a mixture of valve metal and valve metal oxide on a substrate. No. 6,287,673. The entire contents of US Pat. No. 6,287,673 are hereby incorporated by reference.

一般に、本発明は一態様において、バルブ金属電解コンデンサのための改善された設計を提供する。この種のコンデンサは、その表面上に絶縁膜を有する陽極板、陰極板、そして陽極および陰極表面と接触する電解質、を含む。本発明のコンデンサは、電極の少なくとも一つの外面上の、好ましくは陰極板上の、多孔性バルブ金属酸化物被覆の存在によって、さらに特徴づけられる。 In general, in one aspect, the present invention provides an improved design for a valve metal electrolytic capacitor. This type of capacitor includes an anode plate having an insulating film on its surface, a cathode plate, and an electrolyte in contact with the anode and cathode surfaces. The capacitor of the present invention is further characterized by the presence of a porous valve metal oxide coating on at least one outer surface of the electrode, preferably on the cathode plate.

本発明の別の態様に従って、絶縁バルブ金属酸化物被覆、好ましくはその少なくとも一つの表面上に酸化アルミニウム層を持つ陽極箔および陰極箔、と接触する電解質を含む、コンデンサを製造するための方法における改善が提供され、それは、陰極の少なくとも一つの表面上の多孔性バルブ金属(例えばアルミニウム)酸化物被覆の真空蒸着のステップを備える。特定の実施例において、この方法は、約120−620Å/秒、好ましくは400−500Å/秒の範囲の成膜速度、および約1−2mTorr、好ましくは1.0−1.4mTorrの範囲の圧力の純酸素雰囲気、または1mTorr近くの酸素分圧およびアルゴン分圧1.3−2.3mTorr、好ましくは1.7−2mTorrのO/Arガス混合物によって、および約200−350℃、好ましくは250−300℃の範囲の基板温度で、実施されることができる。 In accordance with another aspect of the invention, in a method for manufacturing a capacitor comprising an electrolyte in contact with an insulating valve metal oxide coating, preferably an anode foil and a cathode foil having an aluminum oxide layer on at least one surface thereof. An improvement is provided, which comprises the step of vacuum deposition of a porous valve metal (eg aluminum) oxide coating on at least one surface of the cathode. In certain embodiments, the method comprises a deposition rate in the range of about 120-620 liters / second, preferably 400-500 liters / second, and a pressure in the range of about 1-2 mTorr, preferably 1.0-1.4 mTorr. Pure oxygen atmosphere, or an O 2 / Ar gas mixture with an oxygen partial pressure close to 1 mTorr and an argon partial pressure 1.3-2.3 mTorr, preferably 1.7-2 mTorr, and about 200-350 ° C., preferably 250 It can be carried out at substrate temperatures in the range of −300 ° C.

本発明の1つの利点は、従来のコンデンサと比較すると、誘電層を有する陽極箔、セパレータ体および陰極箔を含む生成物コンデンサの、全厚さ(直径)および重量の減少である。 One advantage of the present invention is a reduction in overall thickness (diameter) and weight of a product capacitor including an anode foil, a separator body and a cathode foil with a dielectric layer compared to a conventional capacitor.

本発明の別の利点は、より薄いセパレータ体によって達成される、ESRの値の減少である。本発明のさらに他の利点は、電解質組成の改善された純度、特に標準コンデンサと比較すると塩素イオンの量の減少である。本発明のさらにもう一つの利点は、形成されたセパレータ層の優れた機械的強さ、柔軟性および硬さである。別の利点は、その軸を横切る、巻回されたコンデンサ体の改善された熱伝導率である。この最後の効果は、紙の0.13watt/m/°Kと(例えば)アルミナの3.35watt/m/°Kの熱伝導率の対応する値を比較するならば、より明白になる。 Another advantage of the present invention is the reduction in the ESR value achieved with a thinner separator body. Yet another advantage of the present invention is the improved purity of the electrolyte composition, particularly the reduced amount of chloride ions compared to standard capacitors. Yet another advantage of the present invention is the excellent mechanical strength, flexibility and hardness of the formed separator layer. Another advantage is the improved thermal conductivity of the wound capacitor body across its axis. This last effect becomes more apparent when comparing the corresponding values of thermal conductivity of 0.13 watt / m 2 / ° K for paper and 3.35 watt / m 2 / ° K for alumina (for example). .

本発明の更なる利点は、本願明細書において発明の詳細な説明を読み、かつ理解すると、即座に、当業者にとって明らかになるであろう。 Further advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the detailed description of the invention herein.

定義のために、バルブ金属は、酸化された場合、陰極として使われるならば、電流が通過することを可能にするが、陽極として使われる場合、電流の流れに反対する金属である。バルブ金属の例は、マグネシウム、トリウム、カドミウム、タングステン、すず、鉄、銀、シリコン、タンタル、チタン、アルミニウム、ジルコニウムおよびニオブを含む。 For definition, a valve metal is a metal that, when oxidized, allows current to pass through if used as a cathode, but opposes current flow when used as an anode. Examples of valve metals include magnesium, thorium, cadmium, tungsten, tin, iron, silver, silicon, tantalum, titanium, aluminum, zirconium and niobium.

一体型セパレータは、異なる起源のコンデンサ陰極(および陽極)箔を被覆するために、および同時に両方の箔を被覆するために、適用されることができる。しかし、全コンデンサ厚さおよび特に陽極箔の厚さ(および形成、すなわち陽極の電気化学処理)の考慮のために、その堆積を陰極だけに限定することが一般により合理的で、およびしたがって、現在のところ好適である。陽極箔のこの避けられない処理は、概ねアルミナセパレータの構造を変化させる可能性があり(陽極に堆積するならば)、したがって、その特性において望ましくない変化を引き起こす。この種の処理に続くアルミナセパレータ堆積によってこの困難を克服する可能性が存在するが、それは残念なことに、陽極箔を製造する技術を複雑にする。さらに、比較的より一様に箔を処理するための方法を広めることは、運営上より都合がいい。 The monolithic separator can be applied to coat capacitor cathode (and anode) foils of different origins and to coat both foils at the same time. However, due to consideration of the total capacitor thickness and especially the thickness of the anode foil (and formation, ie electrochemical treatment of the anode), it is generally more reasonable to limit its deposition to the cathode only, and therefore However, it is preferable. This inevitable treatment of the anode foil can generally change the structure of the alumina separator (if deposited on the anode), thus causing an undesirable change in its properties. Although there is the potential to overcome this difficulty by alumina separator deposition following this type of processing, it unfortunately complicates the technique of making anode foils. Furthermore, it is more convenient for operation to spread a method for treating the foil relatively more uniformly.

アルミナ酸化物セパレータの2つの種類が、下記のようにテストされ、かつ例証され、したがって、
(1)アルミニウム箔基板上の外部多孔性被覆としてのアルミナの真空蒸着。
この種類のアルミナセパレータは、そのパラメータの実験的な検討およびVD措置の最適化を意図している。
(2)表面積を増大するための方法として意図される、アルミニウム箔基板上の一次アルミニウム/酸化アルミニウムVD被覆上の外部多孔性被覆としてのアルミナの真空蒸着。
Two types of alumina oxide separators have been tested and illustrated as follows, and thus
(1) Vacuum deposition of alumina as an outer porous coating on an aluminum foil substrate.
This type of alumina separator is intended for experimental investigation of its parameters and optimization of VD measures.
(2) Vacuum deposition of alumina as the outer porous coating on the primary aluminum / aluminum oxide VD coating on the aluminum foil substrate, intended as a method to increase the surface area.

アルミナ被覆の上述の両方の種類は、堆積プロセスの間に堆積されたアルミニウムを完全に酸化する目的で、純酸素の反応性雰囲気または酸素を含むガス混合物中で、純アルミニウムの真空蒸着によって得られた。32/64ミクロン厚の箔基板帯は、気化されたアルミニウムの供給源中で固定されるか、または均質な速度で動くかのどちらかであった。アルミニウム凝縮(蒸発)の速度、真空槽内の全ガス圧力および箔速度(可動箔が使われる場合)が、0.3−7μmの範囲のアルミナ被覆の厚さ、同じく多孔性層状構造として堆積されるアルミナ、を提供するために適用された。 Both above-mentioned types of alumina coatings are obtained by vacuum deposition of pure aluminum in a reactive atmosphere of pure oxygen or a gas mixture containing oxygen for the purpose of fully oxidizing the aluminum deposited during the deposition process. It was. The 32/64 micron thick foil substrate band was either fixed in a vaporized aluminum source or moved at a uniform speed. The rate of aluminum condensation (evaporation), the total gas pressure in the vacuum chamber, and the foil velocity (if movable foils are used) are deposited as alumina coating thicknesses in the range of 0.3-7 μm, also as a porous layered structure. Applied to provide alumina.

本発明の実施例は、図1内に例示される。一体型セパレータを有する電極は、アルミニウム箔1を備え、従って、その両側面上に、アルミニウムとアルミナからなる層2、およびアルミナからなる層3が設けられる。層2および3の各々の厚さは、好ましくは10ミクロン未満である。 An embodiment of the present invention is illustrated in FIG. The electrode having an integral separator comprises an aluminum foil 1 and, therefore, a layer 2 made of aluminum and alumina and a layer 3 made of alumina are provided on both side surfaces thereof. The thickness of each of layers 2 and 3 is preferably less than 10 microns.

一次(予備)蒸着された下位層状構造は、続いて堆積されるアルミナセパレータ層の特性に対する強い影響を与えることが、本発明の一実施例に従って明らかになった。特に、この外側のアルミナセパレータ層の多孔率は、内部の下位層の凹凸に依存することが明らかになった。この点について、アルミナが平面アルミニウム箔表面に堆積された場合、透過多孔率の程度は低く、かつ特に比較的厚いアルミナ被覆に対してきわめて低かった。混合されたAl/Alの適切な多孔性下位層が設けられた場合、より良好な結果は、VDプロセスの種類(2)に対して得られた。 It has been found according to one embodiment of the present invention that the primary (preliminary) deposited sub-layered structure has a strong influence on the properties of the subsequently deposited alumina separator layer. In particular, it has been clarified that the porosity of the outer alumina separator layer depends on the unevenness of the inner lower layer. In this regard, when alumina was deposited on a planar aluminum foil surface, the degree of permeation porosity was low, and very low, especially for relatively thick alumina coatings. Better results were obtained for the VD process type (2) when a suitable porous sublayer of mixed Al / Al 2 O 3 was provided.

全ての標本は、乾燥表面導電率、機械的剛性、密着品質および電気特性、例えば比容量、Qファクターの値および従来のテスト手順のもとでのこれらのパラメータの安定性、を測定する目的で検討された。ここでQファクター(またはサンプル品質)として示す従来の積の値は、Q=ω・C・R=2π・f・C・R、ここで、fは測定周波数(120Hzに等しいとみなす)であり、CおよびRは、容量および直列抵抗値であり、Thurlby Thundar装置社の精密LCR−ブリッジによる、測定用電解層に対して測定された。透過多孔率の程度は、サンプルの比容量およびQファクターに対するその影響によって評価された。アルミナセパレータ被覆のない同一の参照サンプルとの比較が主要な方法であり、二次被覆の影響を見積もるために適用された。 All specimens are intended to measure dry surface conductivity, mechanical stiffness, adhesion quality and electrical properties such as specific capacity, Q factor values and the stability of these parameters under conventional test procedures. It was examined. The value of the conventional product shown here as the Q factor (or sample quality) is Q = ω · C · R = 2π · f · C · R, where f is the measurement frequency (assumed to be equal to 120 Hz). , C and R are capacitance and series resistance values, measured against a measuring electrolytic layer by a Thorby Thunder device precision LCR-bridge. The degree of permeation porosity was assessed by its specific capacity and its effect on the Q factor. Comparison with the same reference sample without the alumina separator coating was the primary method and was applied to estimate the impact of the secondary coating.

一体型アルミナセパレータ層の、両側面に被覆されて、陰極箔の全てのサンプルが、外部アルミナ層の絶縁特性を確認するためにディジタルMultiLog(商標)710装置によって試験された。考慮中の全ての乾燥標本が、箔の両側面上でおよび印加電圧の両極性で、装置の上限50メガオームを超える表面抵抗を伴う、信頼性が高い絶縁特性を持つことが明らかになった。 All samples of cathode foil, coated on both sides of the integral alumina separator layer, were tested with a digital MultiLog ™ 710 apparatus to verify the insulation properties of the outer alumina layer. It was found that all the dry specimens under consideration have reliable insulation properties with surface resistance exceeding the upper limit of 50 megohms of the device, on both sides of the foil and with the polarity of the applied voltage.

製造されたサンプルの機械的性質は、下部の下位層への上部アルミナ被覆の密着性および箔基板体への全被覆密着性を確認する、従来の必要条件に従って調査された。サンプルの全てに対して、粘着テープ試験および曲げ試験を含み、規格必要条件を満足する良好な密着性であることが明らかになった。サンプルの電気特性(比容量、Qファクター)に関するアルミナ層の影響が、測定された。実施例(2)の場合、アルミナ層の厚さが増大するにつれて、平均比容量(以下に記載する真空蒸着の条件に対する)は減少することがわかった。特に、アルミナ層の厚さが2.5μmであるならば、アルミナ層がない場合(参照サンプル)の225μF/μm/cmと比較して、サンプルの体積比容量は178μF/μm/cm近くであり、さらに、この割合は、両方のサンプルの電気化学処理(いわゆるパシベーション)の後で、ほぼ維持される(例1−4を参照)。以下の計算によって分かるように、評価はアルミナ層の厚さ1ミクロンに対して概算10%の容量低下を与える。
100%・(225−178)/0.5(225+178)/2.5=100%・47/201.5/2.5=9.33%.
The mechanical properties of the manufactured samples were investigated according to conventional requirements to confirm the adhesion of the upper alumina coating to the lower lower layer and the total coating adhesion to the foil substrate body. All of the samples were found to have good adhesion satisfying standard requirements, including adhesive tape test and bending test. The influence of the alumina layer on the electrical properties (specific capacity, Q factor) of the sample was measured. In the case of Example (2), it was found that the average specific capacity (relative to the vacuum deposition conditions described below) decreased as the thickness of the alumina layer increased. In particular, if the thickness of the alumina layer is 2.5 μm, the volume specific capacity of the sample is close to 178 μF / μm / cm 2 compared to 225 μF / μm / cm 2 without the alumina layer (reference sample). Furthermore, this ratio is almost maintained after electrochemical treatment (so-called passivation) of both samples (see Examples 1-4). As can be seen by the following calculation, the evaluation gives an approximate 10% capacity drop for an alumina layer thickness of 1 micron.
100% * (225-178) /0.5 (225 + 178) /2.5=100%*47/201.5/2.5=9.33%.

アルミナ層の多孔性チャンネル内の電解質抵抗の有限の値は、Qファクター増加、すなわち、サンプルの品質の低下を生じさせた。さらに、サンプル面積S=5cmの場合、アルミナ層厚D(sep)1μmにつき、サンプルの抵抗δR=0.02オームの漸次の増加が明らかになった。 The finite value of the electrolyte resistance in the porous channel of the alumina layer caused an increase in Q factor, i.e. a decrease in sample quality. Further, in the case of the sample area S = 5 cm 2 , a gradual increase in the resistance of the sample δR = 0.02 ohm was revealed per 1 μm of the alumina layer thickness D (sep).

測定用電解質の比抵抗(p(el)=12.7Ohms・cm)がわかっているならば、その時、与えられたサンプルに対するHパラメータの値は、次式で算出することができる。
H=2・δR・S・D(sep)/p(el)=2・0.02Ohms/μm・5・D(μm)/12.7・10(−4)=157・D[μ]
アルミナセパレータの厚さがD=1.6μmならば、その時H(D)=0.25mmである。したがって、従来のセパレータと比較すると、かなり小さな値のHパラメータが、本発明において得られる。
If the specific resistance (p (el) = 12.7 Ohms · cm) of the electrolyte for measurement is known, then the value of the H parameter for a given sample can be calculated by the following equation.
H = 2 · δR · S · D (sep) / p (el) = 2 · 0.02 Ohms / μm · 5 · D (μm) /12.7·10 (−4) = 157 · D [μ]
If the thickness of the alumina separator is D = 1.6 μm, then H (D) = 0.25 mm. Therefore, compared to a conventional separator, a much smaller value of the H parameter is obtained in the present invention.

陰極箔の標本は、電解質媒質内の一次Al/Al黒被覆の化学的長期安定性を提供する目的で電気化学処理(パシベーション)にかけられた。パシベーションは、室温で一次(内部)被覆の低電圧形成を呈する。準備された陰極箔サンプルは、次いで2つの加速エージング手順によってテストされた。第1の手順において、サンプルは60分間純脱イオン水の中で沸騰され、その後電気的パラメータを確認された。第2の手順において、作動しているモードに擬するために、サンプルは、指定された時間の間、特別な電解質内に浸漬された。「ペースト」と下記で呼ばれているこの電解質組成は、次の通りである。
脱イオン水 51%
エチレングリコール 34%
アジピン酸アンモニウム 13%
リン酸アンモニウム 1%
D−グルコン酸 1%
堆積後のサンプルの処理に使用される電解質組成E−IIは、以下の成分を持つ。
脱イオン水 1000ml
ホウ酸 30グラム/リットル
アジピン酸アンモニウム 30グラム/リットル
アンモニウムリン酸二水素塩 1.5グラム/リットル
アンモニウム5−ホウ酸塩 0.5グラム/リットル
The cathode foil specimens were subjected to electrochemical treatment (passivation) in order to provide chemical long-term stability of the primary Al / Al 2 O 3 black coating in the electrolyte medium. Passivation exhibits a low voltage formation of the primary (inner) coating at room temperature. The prepared cathode foil samples were then tested by two accelerated aging procedures. In the first procedure, the sample was boiled in pure deionized water for 60 minutes, after which the electrical parameters were verified. In the second procedure, the sample was immersed in a special electrolyte for a specified time to mimic the operating mode. The electrolyte composition, referred to below as “paste”, is as follows.
51% deionized water
Ethylene glycol 34%
Ammonium adipate 13%
Ammonium phosphate 1%
D-Gluconic acid 1%
The electrolyte composition E-II used for processing the sample after deposition has the following components.
1000ml deionized water
Boric acid 30 grams / liter ammonium adipate 30 grams / liter ammonium dihydrogen phosphate 1.5 grams / liter ammonium 5-borate 0.5 grams / liter

下の実験データの限定されない例は、本発明の主要な特徴を例示する。
例1−4

Figure 0004739326
例5−8
Figure 0004739326
The non-limiting examples of experimental data below illustrate the main features of the present invention.
Example 1-4
Figure 0004739326
Example 5-8
Figure 0004739326

アルミニウム(Al/Al)タイプ被覆の厚さのわずかな増加によって、この容量損失が容易に補償されることができるので、容量損失のこれらの値は、電解コンデンサ製造において完全に許容できる。例えば、典型的な陰極箔が比容量1000μF/cmを持つならば、導電被覆の厚さは、4.5μmに等しい。追加のセパレータ使用という場合は、この被覆厚さは、最大5.6μmまで増大する。両面被覆陰極箔に対する全厚さの変化は、従って2.2μmに等しい。この厚さの増加はコンデンサの外形を著しく損なわないことは明白である。 These values of capacity loss are perfectly acceptable in electrolytic capacitor manufacturing, since this capacity loss can be easily compensated by a slight increase in the thickness of the aluminum (Al / Al 2 O 3 ) type coating. . For example, if a typical cathode foil has a specific capacity of 1000 μF / cm 2 , the thickness of the conductive coating is equal to 4.5 μm. In the case of using additional separators, this coating thickness increases up to 5.6 μm. The total thickness change for a double coated cathode foil is therefore equal to 2.2 μm. Obviously, this increase in thickness does not significantly impair the outer shape of the capacitor.

本発明が、本発明を実施する現在のところ好適な方式を含む特定の実施例に関して記述されたとはいえ、本発明の範囲内に含まれる上記したシステムおよび技術の数多くの変更および置換がある、ことを当業者は理解されよう。 Although the present invention has been described with reference to specific embodiments, including the presently preferred manner of practicing the present invention, there are numerous modifications and substitutions of the systems and techniques described above that fall within the scope of the invention. Those skilled in the art will appreciate that.

本発明の一実施例に従う一体型セパレータを有する電極の断面図である。1 is a cross-sectional view of an electrode having an integrated separator according to one embodiment of the present invention.

Claims (13)

その表面上に絶縁膜を有する陽極、陰極、陽極および陰極表面と接触する電解質、そして一体型陽極−陰極セパレータとして、前記陽極および前記陰極から選択される、少なくとも一つの電極の少なくとも一つの表面と一体化された少なくとも一つのバルブ金属酸化物層、を含み、前記陽極または陰極のどちらかまたは各々の上の前記一体型バルブ金属酸化物セパレータ層の平均的厚さは10ミクロン未満である、ことを特徴とする電解コンデンサ。An anode having an insulating film on its surface, a cathode, an electrolyte in contact with the anode and the cathode surface, and at least one surface of at least one electrode selected from the anode and the cathode as an integral anode-cathode separator; At least one valve metal oxide layer integrated, and the average thickness of the integrated valve metal oxide separator layer on either or each of the anode or cathode is less than 10 microns. Electrolytic capacitor characterized by. 以下の4つの特徴、すなわち、
前記陽極はバルブ金属から成り、および、前記絶縁膜はバルブ金属酸化物から成ること、
前記陰極は、バルブ金属から成ること、
前記バルブ金属はアルミニウムであり、および、前記バルブ金属酸化物はアルミナであること、
あらゆる非一体型陽極−陰極セパレータの欠如、
のうちの少なくとも一つによって更に特徴づけられる、請求項1に記載の電解コンデンサ。
The following four features:
The anode is made of a valve metal, and the insulating film is made of a valve metal oxide ;
The cathode is made of a valve metal ;
The valve metal is aluminum, and the valve metal oxide is alumina;
Lack of any non-integrated anode-cathode separator,
The electrolytic capacitor of claim 1, further characterized by at least one of:
前記一体型金属酸化物セパレータ層は陰極上だけに存在する、ことを特徴とする請求項2に記載の電解コンデンサ。The electrolytic capacitor according to claim 2, wherein the integrated metal oxide separator layer exists only on the cathode. 前記陰極が、バルブ金属の混合物の少なくとも一つの層と、前記一体型バルブ金属酸化物セパレータ層の堆積の前に、その上に堆積されたバルブ金属酸化物、を備えることを特徴とする請求項3に記載の電解コンデンサ。The said cathode comprises at least one layer of a mixture of valve metals and a valve metal oxide deposited thereon prior to the deposition of said integral valve metal oxide separator layer. 3. The electrolytic capacitor according to 3. 前記陽極および前記陰極から選択される、少なくとも一つの電極を、バルブ金属酸化物が、前記少なくとも一つの電極の少なくとも一つの表面に堆積されるような条件の下で、バルブ酸化物層の10ミクロン未満の所定の厚さが得られるまで、酸素の存在においてバルブ金属の蒸着にかけるステップを含む、請求項1に記載の電解コンデンサの製造のためのプロセス。At least one electrode selected from the anode and the cathode is 10 microns of the valve oxide layer under conditions such that a valve metal oxide is deposited on at least one surface of the at least one electrode. The process for the production of an electrolytic capacitor according to claim 1, comprising subjecting the deposition of the valve metal in the presence of oxygen until a predetermined thickness of less than is obtained. 以下の4つの特徴、すなわち、
前記陽極はバルブ金属から成り、および、前記絶縁膜はバルブ金属酸化物から成ること、
前記陰極は、バルブ金属から成ること、
前記バルブ金属はアルミニウムであり、および、前記バルブ金属酸化物はアルミナであること、
あらゆる非一体型陽極−陰極セパレータの欠如、
のうちの少なくとも一つによって更に特徴づけられる、請求項5に記載のプロセス。
The following four features:
The anode is made of a valve metal, and the insulating film is made of a valve metal oxide ;
The cathode is made of a valve metal ;
The valve metal is aluminum, and the valve metal oxide is alumina;
Lack of any non-integrated anode-cathode separator,
The process of claim 5 further characterized by at least one of:
前記一体型バルブ金属酸化物セパレータ層は陰極上だけに堆積されている、ことを特徴とする請求項6に記載のプロセス。The process of claim 6 wherein the integral valve metal oxide separator layer is deposited only on the cathode. 前記陰極は、前記所定の厚さを持つバルブ金属酸化物の蒸着の前に、その上にバルブ金属およびバルブ金属酸化物の混合物の最小の一つの層の蒸着にかけられる、ことを特徴とする請求項7に記載のプロセス。The cathode is subjected to deposition of a minimum layer of a mixture of valve metal and valve metal oxide thereon prior to deposition of the valve metal oxide having the predetermined thickness. Item 8. The process according to Item 7. 前記混合物の蒸着および前記所定の厚さを持つ前記バルブ金属酸化物の蒸着は、中間排気無しで、同じ機器中で連続的に実施される、ことを特徴とする請求項8に記載のプロセス。9. The process of claim 8, wherein the deposition of the mixture and the deposition of the valve metal oxide having the predetermined thickness are performed continuously in the same equipment without intermediate evacuation. 平らな基板と、前記平らな基板の少なくとも一つの側面上に堆積されたバルブ金属およびバルブ金属酸化物の混合物から成る第1層と、前記第1層上に堆積された、厚さ10ミクロン未満のバルブ金属酸化物からなる更なる層を備える、ことを特徴とする請求項4の電解コンデンサに用いられる陰極。 A flat substrate, a first layer of a mixture of valve metal and valve metal oxide deposited on at least one side of the flat substrate, and a thickness of less than 10 microns deposited on the first layer The cathode used in the electrolytic capacitor of claim 4, further comprising a further valve metal oxide layer. 前記バルブ金属はアルミニウムであり、および、前記バルブ金属酸化物はアルミナである、ことを特徴とする請求項10に記載の陰極。11. The cathode according to claim 10, wherein the valve metal is aluminum, and the valve metal oxide is alumina. 前記基板は、その上にバルブ金属およびバルブ金属酸化物の混合物の最小の一つの層の蒸着にかけられ、そして次に、前記所定の厚さを持つバルブ金属酸化物の蒸着にかけられることを特徴とする請求項10に記載の陰極の製造のためのプロセス。The substrate is subjected to vapor deposition of a minimum layer of a mixture of valve metal and valve metal oxide thereon and then subjected to vapor deposition of a valve metal oxide having the predetermined thickness. A process for the manufacture of a cathode according to claim 10. 以下の特徴、すなわち、
前記混合物の蒸着および前記所定の厚さを持つ前記バルブ金属酸化物の蒸着は、中間排気無しで、同じ機器の中で連続的に実施されること、
前記バルブ金属はアルミニウムであり、および、前記バルブ金属酸化物はアルミナであること、
のうちの少なくとも一つによって更に特徴づけられる、請求項12に記載のプロセス。
The following features:
The deposition of the mixture and the deposition of the valve metal oxide having the predetermined thickness are carried out continuously in the same equipment without intermediate exhaust;
The valve metal is aluminum, and the valve metal oxide is alumina;
The process of claim 12, further characterized by at least one of:
JP2007509057A 2004-04-25 2005-04-20 Integrated separator for electrolytic capacitors Expired - Fee Related JP4739326B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL161606 2004-04-25
IL16160604A IL161606A0 (en) 2004-04-25 2004-04-25 Integral separator for electrolytic capacitors
PCT/IL2005/000412 WO2005101972A2 (en) 2004-04-25 2005-04-20 Integral separator for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2007535145A JP2007535145A (en) 2007-11-29
JP4739326B2 true JP4739326B2 (en) 2011-08-03

Family

ID=34074032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007509057A Expired - Fee Related JP4739326B2 (en) 2004-04-25 2005-04-20 Integrated separator for electrolytic capacitors

Country Status (3)

Country Link
JP (1) JP4739326B2 (en)
IL (1) IL161606A0 (en)
WO (1) WO2005101972A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585867B2 (en) * 2005-01-07 2010-11-24 ダイソー株式会社 Insoluble anode
IL173121A (en) * 2006-01-12 2011-07-31 Dina Katsir Electrodes, membranes, printing plate precursors and other articles including multi-strata porous coatings
JP5104008B2 (en) * 2007-04-20 2012-12-19 富士通株式会社 Electrolytic capacitor
JP5104007B2 (en) * 2007-04-20 2012-12-19 富士通株式会社 Electrode foil and manufacturing method thereof
EP2148341A1 (en) 2007-04-20 2010-01-27 Fujitsu Limited Electrode foil, process for producing the electrode foil, and electrolytic capacitor
JP5181401B1 (en) * 2012-07-12 2013-04-10 日本蓄電器工業株式会社 Cathode foil for aluminum electrolytic capacitors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1092741A (en) *
JPH01298713A (en) * 1988-05-27 1989-12-01 Elna Co Ltd Manufacture of cathode foil for electrolytic capacitor
JPH0644977A (en) * 1992-02-14 1994-02-18 Satma Sheet for electrode of electrolytic capacitor and its manufacture
JPH11317331A (en) * 1998-03-03 1999-11-16 Acktar Ltd Manufacture of large surface area foil electrode
JP2000277386A (en) * 1999-03-23 2000-10-06 Toyota Motor Corp Electric double-layer capacitor separator and its manufacturing method
JP2003297692A (en) * 2002-03-29 2003-10-17 Nippon Chemicon Corp Solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104573C1 (en) * 2001-02-01 2002-07-18 Epcos Ag Operating electrolyte used for an aluminum electrolyte capacitor contains ethylene glycol and a cinnamic acid-substituted salt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1092741A (en) *
JPH01298713A (en) * 1988-05-27 1989-12-01 Elna Co Ltd Manufacture of cathode foil for electrolytic capacitor
JPH0644977A (en) * 1992-02-14 1994-02-18 Satma Sheet for electrode of electrolytic capacitor and its manufacture
JPH11317331A (en) * 1998-03-03 1999-11-16 Acktar Ltd Manufacture of large surface area foil electrode
JP2000277386A (en) * 1999-03-23 2000-10-06 Toyota Motor Corp Electric double-layer capacitor separator and its manufacturing method
JP2003297692A (en) * 2002-03-29 2003-10-17 Nippon Chemicon Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
WO2005101972A3 (en) 2006-02-02
WO2005101972A2 (en) 2005-11-03
IL161606A0 (en) 2004-09-27
JP2007535145A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
KR101224064B1 (en) Electrode structure, capacitor and method for producing electrode structure
JP4739326B2 (en) Integrated separator for electrolytic capacitors
TW201928344A (en) Electrode film and electrochemical measurement system
JP2010021589A (en) Foil for cathode of capacitor and its manufacturing method
JP4561428B2 (en) Porous valve metal thin film, manufacturing method thereof, and thin film capacitor
JPH0715864B2 (en) Electrode capacitor electrode sheet and method for manufacturing the same
JP2014016158A (en) High-temperature heat-resistant temperature sensor
JP4879040B2 (en) Solid electrolytic capacitor
KR101251101B1 (en) Porous valve metal thin film, method for production thereof and thin film capacitor
US10483041B2 (en) Monolithic ceramic capacitor and structure for mounting the same
TWI423927B (en) Composite oxide film and its manufacturing method, composite and manufacturing method thereof, dielectric material, piezoelectric material, capacitor, piezoelectric element and electronic machine
TWI470660B (en) Method for manufacturing electrode structure body, electrode structure body and capacitor
TWI423926B (en) A composite oxide film and a method for producing the same, a dielectric material containing a composite oxide film, a piezoelectric material, a capacitor, a piezoelectric element, and an electronic device
US8254082B2 (en) Capacitor material, production method of the same, and capacitor, wiring board and electronic device containing that material
JP2007208254A (en) Electrode, membrane, printing plate precursor, and another article including multi-strata porous coating, and method of manufacturing them
JPH08213288A (en) Anodic foil for electrolytic capacitor and manufacture thereof
WO2007013598A1 (en) Complex oxide film and method for producing same, dielectric material including complex oxide film, piezoelectric material, capacitor, piezoelectric element and electronic device.
JP5573362B2 (en) Electrode foil, capacitor using this electrode foil, and method for producing electrode foil
EP3208856B1 (en) Solid electrolyte for reram
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JP4604758B2 (en) Capacitor film and capacitor using the same
JP7259406B2 (en) Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element
JP2010109265A (en) Solid electrolytic capacitor
JP6907876B2 (en) Film formation method
JP2009152273A (en) Porous electrode for electrolytic capacitor, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101124

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4739326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees