JP4737386B2 - Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device - Google Patents

Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device Download PDF

Info

Publication number
JP4737386B2
JP4737386B2 JP2005104794A JP2005104794A JP4737386B2 JP 4737386 B2 JP4737386 B2 JP 4737386B2 JP 2005104794 A JP2005104794 A JP 2005104794A JP 2005104794 A JP2005104794 A JP 2005104794A JP 4737386 B2 JP4737386 B2 JP 4737386B2
Authority
JP
Japan
Prior art keywords
resin film
circuit board
substrate
electronic device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104794A
Other languages
Japanese (ja)
Other versions
JP2006286929A (en
Inventor
耕一 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2005104794A priority Critical patent/JP4737386B2/en
Publication of JP2006286929A publication Critical patent/JP2006286929A/en
Application granted granted Critical
Publication of JP4737386B2 publication Critical patent/JP4737386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、樹脂膜保持基板の製造方法、それによって得られる基板を用いる電子機器用回路基板の製造方法及びそれにより得られる該回路基板を備えた表示装置に関する。   The present invention relates to a method for manufacturing a resin film holding substrate, a method for manufacturing a circuit board for an electronic device using the substrate obtained thereby, and a display device including the circuit substrate obtained thereby.

電子機器用回路基板(以下、「回路基板」と記すことがある。)は、ガラスや合成樹脂などの基板又は少なくとも表面に絶縁体層が形成された基板に多数の薄膜トランジスタ、及び、これらのトランジスタの相互間若しくはトランジスタと電源や入出力端子とを接続するための電気配線層を単層又は多層に配置して構成されている。代表的な回路基板の用途の一つにアクティブマトリクス液晶表示装置や有機エレクトロルミネッセンス(以下「有機EL」と表記す。)表示装置などの表示装置がある。走査線、信号線などを含む基板全体はアクティブマトリクス基板とも呼ばれ、回路基板の表面に減圧雰囲気で形成される絶縁層やフォトリソグラフィなどによって形成される複数の回路パターン層により構成されている。しかしながら、上記アクティブマトリクス基板の製造方法は煩雑なため、減圧雰囲気における成膜工程やフォトリソグラフィ工程の削減によって簡素化を図ることが求められている。
特に、配線をスパッタにより成膜する工程では、全面に成膜した配線材料をフォトリソグラフィ法により加工して配線部を形成するため、膜厚を均一にすることを目的として基板面積より大きなターゲットにスパッタしたり、材料の大部分をエッチングで除去したりする。そのため、配線材料の利用効率が著しく低く、回路基板の製造工程を複雑にし、多量の廃棄物を出す要因になっている。
A circuit board for electronic equipment (hereinafter sometimes referred to as “circuit board”) includes a glass substrate, a synthetic resin substrate or the like, or a substrate having an insulator layer formed on at least a surface thereof, and a number of these thin film transistors. The electrical wiring layers for connecting the transistors to each other or the power source and the input / output terminal are arranged in a single layer or multiple layers. One of the typical uses of a circuit board is a display device such as an active matrix liquid crystal display device or an organic electroluminescence (hereinafter referred to as “organic EL”) display device. The entire substrate including the scanning lines and signal lines is also called an active matrix substrate, and is composed of an insulating layer formed in a reduced-pressure atmosphere on the surface of the circuit substrate and a plurality of circuit pattern layers formed by photolithography or the like. However, since the manufacturing method of the active matrix substrate is complicated, there is a demand for simplification by reducing the number of film forming steps and photolithography steps in a reduced pressure atmosphere.
In particular, in the process of forming the wiring by sputtering, the wiring material formed on the entire surface is processed by the photolithography method to form the wiring portion, so that the target is larger than the substrate area for the purpose of making the film thickness uniform. Sputtering or removing most of the material by etching. For this reason, the utilization efficiency of the wiring material is remarkably low, which complicates the circuit board manufacturing process and causes a large amount of waste.

このような問題を解決するために、印刷法により必要な部位のみに配線を形成し配線材料の利用効率を高める手法が開発されている。例えば、特許文献1にはインクジェット法を用いて所定の場所に配線を形成する方法が開示されている。このような印刷法を用いることで、減圧成膜工程を削減することができる。
ところで、インクジェット法を用いて基板上に配線を形成する場合、通常、配線を形成しようとする基板の上で、樹脂膜からなる凸状の仕切部材(「凸部」又は「バンク」とも呼ばれる。)で囲まれた領域(以下、「凹部」と記すことがある。)に液状の導電性材料を充填する方法が採られる。このとき、仕切部材が導電性材料に対して親液性を有する場合は、仕切部材に引っ張られて仕切部材の外周にまで濡れ広がり、所望の微細な配線幅を得ることができなくなる。一方、凹部の底面全体に液状の導電性材料が均一に濡れ拡がるためには、凹部底面(基板表面)は導電性材料に対して高い濡れ性を有する必要がある。底面が導電性材料に対する濡れ性に劣ると凹部に導電性材料が濡れ拡がらず、断線の原因になりかねない。
この濡れ性の問題に対して、特許文献2〜4は仕切部材の上部を撥液性にし、それ以外の部分を親液性にする表面処理技術を提案している。これらにおける仕切部材上部の撥液化表面処理技術は、減圧雰囲気下や大気圧雰囲気下でフッ素化合物を含むガスのプラズマを照射するなどの技術である。また、凹部底面の親液化の表面処理技術は、親水性基含有界面活性剤を塗布する方法や紫外線照射する方法などである。
In order to solve such a problem, a technique has been developed in which wiring is formed only in a necessary portion by a printing method to increase the utilization efficiency of the wiring material. For example, Patent Document 1 discloses a method of forming a wiring at a predetermined location using an inkjet method. By using such a printing method, the reduced pressure film forming step can be reduced.
By the way, when a wiring is formed on a substrate using an ink jet method, it is usually called a convex partition member (“convex portion” or “bank”) made of a resin film on the substrate on which the wiring is to be formed. ) (Hereinafter, referred to as “concave portion”) is filled with a liquid conductive material. At this time, when the partition member is lyophilic with respect to the conductive material, the partition member is pulled by the partition member and spreads to the outer periphery of the partition member, and a desired fine wiring width cannot be obtained. On the other hand, in order for the liquid conductive material to uniformly spread on the entire bottom surface of the recess, the bottom surface of the recess (substrate surface) needs to have high wettability with respect to the conductive material. If the bottom surface is inferior in wettability with respect to the conductive material, the conductive material does not spread out in the recess, which may cause disconnection.
In response to this wettability problem, Patent Documents 2 to 4 propose surface treatment techniques in which the upper part of the partition member is made liquid-repellent and the other parts are made lyophilic. The lyophobic surface treatment technology for the upper part of the partition member is a technology such as irradiating plasma of a gas containing a fluorine compound under a reduced pressure atmosphere or an atmospheric pressure atmosphere. The surface treatment technology for making the bottom surface of the recess lyophilic includes a method of applying a hydrophilic group-containing surfactant and a method of irradiating with ultraviolet rays.

しかし、幅10μm以下の微細幅配線をインクジェット法にて形成する場合は、基板面での液状の導電性材料に対する親液性(濡れ性)の差がより大きいことが必要であるが、未だ十分な差を実現できないためしばしば導電性材料の溢れや余分な濡れ拡がりが生じる。いまだ親液、撥液の大きな差が得られていないのは次の事情による。例えば、フッ素化合物を含むガスのプラズマ照射によって撥液部を形成する場合、仕切部材が有機材料であると、フッ化物形成と同時にフッ化物のエッチングも進行するので一定の撥液性しか得られない。また、一般的に界面活性剤溶液の塗布や紫外線照射により親液部を形成した後にフッ素化合物をプラズマ照射して撥液部を形成する手順を採るが、本来親液化されるべき部位も一部フッ化物が形成されてしまい、親液性のコントラストを拡大する効果が小さくなるという問題がある。さらに、プラズマ処理は垂直方向から行うため、フッ素化されるのは仕切部材の上面のみであり、仕切部材の側壁部は撥液性が低いままとなる。これらの事情により、微細配線形成の際は、液状の導電性材料の、基板上にある凹部底面での収納性が悪いのである。また、プラズマ装置が非常に高価なため、プラズマを多用する回路基板の製造方法は製造コストを押し上げるという問題もある。   However, when a fine width wiring having a width of 10 μm or less is formed by the inkjet method, it is necessary that the difference in lyophilicity (wetting property) with respect to the liquid conductive material on the substrate surface is larger, but it is still sufficient. Often this difference cannot be realized, resulting in overflow of the conductive material and excessive wetting and spreading. The large difference between the lyophilic and lyophobic properties has not been obtained due to the following circumstances. For example, when the liquid repellent part is formed by plasma irradiation of a gas containing a fluorine compound, if the partition member is made of an organic material, only a certain liquid repellent property can be obtained because the fluoride etching proceeds simultaneously with the fluoride formation. . In general, a procedure is adopted in which a lyophilic part is formed by applying a surfactant solution or by irradiating ultraviolet rays, and then irradiating the fluorine compound with plasma to form a lyophobic part. There is a problem that fluoride is formed and the effect of increasing the lyophilic contrast is reduced. Further, since the plasma treatment is performed from the vertical direction, only the upper surface of the partition member is fluorinated, and the side wall portion of the partition member remains low in liquid repellency. Due to these circumstances, when fine wiring is formed, the storage property of the liquid conductive material on the bottom surface of the recess on the substrate is poor. In addition, since the plasma apparatus is very expensive, there is a problem that the manufacturing method of the circuit board that frequently uses plasma increases the manufacturing cost.

撥液化の別法として、仕切部材用の有機材料をフッ素ガス雰囲気に曝してフッ化物を形成させる技術が以前より知られている。例えば特許文献5は、感光性樹脂をフッ素ガス雰囲気中に曝してフッ素樹脂膜を形成させる技術を提案している。これは、フッ素ガス雰囲気に曝すことにより樹脂中のC−H結合をC−F結合に変換し、炭素−炭素不飽和結合にフッ素を付加してフッ素樹脂を得るものである。しかし特許文献5の方法を実施するとフッ酸を生成することがあり、生成したフッ酸によって、有機材料からなる仕切部材である樹脂膜やシリコン系の基板が劣化することがある。   As another method of liquid repellency, a technique for forming a fluoride by exposing an organic material for a partition member to a fluorine gas atmosphere has been known. For example, Patent Document 5 proposes a technique for forming a fluororesin film by exposing a photosensitive resin to a fluorine gas atmosphere. In this method, the C—H bond in the resin is converted to a C—F bond by exposure to a fluorine gas atmosphere, and fluorine is added to the carbon-carbon unsaturated bond to obtain a fluororesin. However, when the method of Patent Document 5 is performed, hydrofluoric acid may be generated, and the generated hydrofluoric acid may cause deterioration of a resin film or a silicon-based substrate that is a partition member made of an organic material.

特開2002−026014号公報JP 2002-026014 A 特開平9−203803号公報JP-A-9-203803 特開平9−230129号公報Japanese Patent Laid-Open No. 9-230129 特開2000−353594号公報JP 2000-353594 A 特開平6−69190号公報JP-A-6-69190

本発明の目的は、仕切部材である樹脂膜を劣化させることなく、該樹脂膜と基板間の液状導電性材料の濡れ性に十分なコントラストを有する樹脂膜保持基板を得る方法、及び、該基板のパターン凹部にインクジェット法による微細な配線形成を実現できる電子機器用回路基板の製造方法を提供し、さらに、該回路基板を用いた表示装置を提供することにある。   An object of the present invention is to provide a method for obtaining a resin film holding substrate having sufficient contrast for the wettability of the liquid conductive material between the resin film and the substrate without deteriorating the resin film as a partition member, and the substrate Another object of the present invention is to provide a method for manufacturing a circuit board for electronic equipment capable of realizing fine wiring formation by an ink-jet method in the pattern recess, and to provide a display device using the circuit board.

本発明者らは、上記目的を達成すべく鋭意研究した結果、基板上に形成した感光性樹脂による仕切部材をフッ素ガスに曝した後に行うアルカリ性溶液による洗浄処理が基板面の親液化に効果的で仕切部材と基板との間の導電性材料に対する濡れ性の大きなコントラストが得られて配線の微細化形成が可能となり、更に仕切部材と基板との劣化も防ぐ効果があることを見出し、かかる知見に基づき本発明を完成するに至った。
かくして本発明によれば、下記1〜14が提供される。
1. 基板の上にパターン状の樹脂膜を形成した後、該樹脂膜の表面をフッ素ガス雰囲気に曝し、次いで該樹脂膜を有する面に対してアルカリ性溶液を接触させることを特徴とする樹脂膜保持基板の製造方法。
2. 前記樹脂膜が、基板上に熱硬化性で未硬化の樹脂膜を形成した後、該未硬化の樹脂膜を、マスクを介して露光後に現像し、又はエッチングし、残存する樹脂膜を加熱硬化してから乾燥してなるものである上記1記載の樹脂膜保持基板の製造方法。
3. 前記アルカリ性溶液が、0.1〜5重量%のテトラメチルアンモニウムヒドロキシド水溶液である上記1又は2記載の樹脂膜保持基板の製造方法。
4. 樹脂膜の加熱硬化を不活性ガス雰囲気で行う上記2記載の樹脂膜保持基板の製造方法。
5. 上記1〜4のいずれかに記載の製造方法によって得られる樹脂膜保持基板の上で、樹脂膜の凸部に囲まれた凹部に、導電性材料を充填して電気配線を形成することを特徴とする電子機器用回路基板の製造方法。
6. 前記導電性材料の充填をめっき法又は印刷法によって行う上記5記載の電子機器用回路基板の製造方法。
7. 前記印刷法がインクジェット印刷法又はスクリーン印刷法である上記6記載の電子機器用回路基板の製造方法。
8. 前記電気配線の上面と樹脂膜の上面とが実質上同一平面にある上記5〜7のいずれかに記載の電子機器用回路基板の製造方法。
9. 前記基板がガラス基板又はシリコンウェハである上記5〜8のいずれかに記載の電子機器用回路基板の製造方法。
10. 前記導電性材料が有機物を含有している上記5〜9のいずれかに記載の電子機器用回路基板の製造方法。
11. 前記樹脂膜が酸性基を有する樹脂を用いて得られる膜である上記5〜10のいずれかに記載の電子機器用回路基板の製造方法。
12. 前記樹脂膜がカルボキシル基含有脂環式オレフィン系樹脂及び感放射線成分を含有する感光性樹脂組成物で形成されたものである上記5〜11のいずれかに記載の電子機器用回路基板の製造方法。
13. 上記5〜12のいずれかに記載の製造方法によって得られる電子機器用回路基板。
14. 上記5〜12のいずれかに記載の製造方法によって得られる電子機器用回路基板を備えた表示装置。
As a result of intensive research aimed at achieving the above object, the present inventors have found that a cleaning treatment with an alkaline solution performed after exposing a partition member made of a photosensitive resin formed on a substrate to fluorine gas is effective for making the substrate surface lyophilic. It has been found that a high contrast of the wettability with respect to the conductive material between the partition member and the substrate is obtained, the wiring can be miniaturized, and further, the deterioration of the partition member and the substrate is prevented. Based on this, the present invention has been completed.
Thus, according to the present invention, the following 1 to 14 are provided.
1. A resin film holding substrate comprising: forming a patterned resin film on a substrate; exposing the surface of the resin film to a fluorine gas atmosphere; and then bringing an alkaline solution into contact with the surface having the resin film Manufacturing method.
2. After the resin film forms a thermosetting uncured resin film on the substrate, the uncured resin film is developed or exposed after exposure through a mask, and the remaining resin film is heat cured. Then, the method for producing a resin film holding substrate according to 1 above, which is dried.
3. 3. The method for producing a resin film holding substrate according to 1 or 2, wherein the alkaline solution is a 0.1 to 5% by weight tetramethylammonium hydroxide aqueous solution.
4). 3. The method for producing a resin film holding substrate according to 2 above, wherein the resin film is heat-cured in an inert gas atmosphere.
5. On the resin film holding substrate obtained by the manufacturing method according to any one of the above 1 to 4, an electrical wiring is formed by filling a concave portion surrounded by the convex portion of the resin film with a conductive material. A method for manufacturing a circuit board for electronic equipment.
6). 6. The method for manufacturing a circuit board for electronic equipment according to 5 above, wherein the conductive material is filled by a plating method or a printing method.
7). 7. The method for producing a circuit board for an electronic device according to 6 above, wherein the printing method is an inkjet printing method or a screen printing method.
8). 8. The method for manufacturing a circuit board for an electronic device according to any one of 5 to 7, wherein the upper surface of the electrical wiring and the upper surface of the resin film are substantially in the same plane.
9. 9. The method for manufacturing a circuit board for electronic equipment according to any one of 5 to 8 above, wherein the substrate is a glass substrate or a silicon wafer.
10. 10. The method for manufacturing a circuit board for electronic equipment according to any one of 5 to 9 above, wherein the conductive material contains an organic substance.
11. 11. The method for producing a circuit board for an electronic device according to any one of 5 to 10 above, wherein the resin film is a film obtained using a resin having an acidic group.
12 The method for producing a circuit board for an electronic device according to any one of 5 to 11 above, wherein the resin film is formed of a photosensitive resin composition containing a carboxyl group-containing alicyclic olefin-based resin and a radiation-sensitive component. .
13. The circuit board for electronic devices obtained by the manufacturing method in any one of said 5-12.
14 The display apparatus provided with the circuit board for electronic devices obtained by the manufacturing method in any one of said 5-12.

本発明によれば、仕切部材である樹脂膜を劣化させることなく、仕切部材と基板間の液状導電性材料の濡れ性に十分なコントラストを有する樹脂膜保持基板を得ることができる。また、基板上で、この樹脂膜の凸部で仕切られた領域にインクジェット法などにより導電性材料で電気配線を形成して微細な電気配線を有する回路基板を容易に得ることができる。さらに、該回路基板を用いることにより、低コストの液晶表示装置、有機EL表示装置又はプラズマアドレス表示装置などの表示装置が提供される。   According to the present invention, it is possible to obtain a resin film holding substrate having sufficient contrast for the wettability of the liquid conductive material between the partition member and the substrate without deteriorating the resin film as the partition member. Also, a circuit board having fine electrical wiring can be easily obtained by forming electrical wiring with a conductive material by an ink jet method or the like in a region partitioned by the convex portions of the resin film on the substrate. Furthermore, by using the circuit board, a low-cost display device such as a liquid crystal display device, an organic EL display device, or a plasma address display device is provided.

本発明の樹脂膜保持基板の製造方法及び電子機器用回路基板の製造方法の最良の形態について図面を参照しつつ説明する。図1及び図2は、本発明の樹脂膜保持基板及び電子機器用回路基板の製造方法の最良の形態の一実施態様を示す工程説明図のその一及びその二である。   The best mode of the method for manufacturing a resin film holding substrate and the method for manufacturing a circuit board for electronic equipment according to the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 are first and second of process explanatory views showing one embodiment of the best mode of the method for producing the resin film holding substrate and the electronic device circuit board of the present invention.

(1)樹脂膜形成工程
図1(a)は、基板1の上に熱硬化性で未硬化の樹脂膜2を形成する工程を示す。
本発明で用いる基板としては、液晶表示装置、有機EL表示装置、プラズマアドレス表示装置などの電子機器に使用される回路基板に通常用いられるものであれば限定されず、ガラス基板、シリコンウェハ、配線層と絶縁層とを有する内層基板などが挙げられる。
本発明で用いる樹脂膜としては、熱硬化性の感光性樹脂膜が好ましい。該樹脂膜は光の照射により現像液に対する溶解性が変化する樹脂組成物から成り、更に加熱により硬化することができる膜であれば限定されず、通常、アルカリ可溶性高分子、感放射線成分、架橋剤、溶剤等を含有する感光性樹脂組成物を塗布して形成される。
アルカリ可溶性高分子としては、アクリル系樹脂、シリコン系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、脂環式オレフィン系樹脂、エポキシ系樹脂にカルボキシル基、フェノール性水酸基などの酸性基を有する樹脂が用いられる。なかでもカルボキシル基含有脂環式オレフィン系樹脂(例えばカルボキシル基含有ノルボルネン樹脂)のようなアルカリ可溶性脂環式オレフィン樹脂がパターニング性、機械特性、耐熱性に優れる点から好ましい。
(1) Resin Film Forming Step FIG. 1A shows a step of forming a thermosetting and uncured resin film 2 on the substrate 1.
The substrate used in the present invention is not limited as long as it is usually used for a circuit substrate used in an electronic apparatus such as a liquid crystal display device, an organic EL display device, a plasma address display device, and the like. Examples thereof include an inner layer substrate having a layer and an insulating layer.
The resin film used in the present invention is preferably a thermosetting photosensitive resin film. The resin film is not limited as long as it is composed of a resin composition whose solubility in a developing solution is changed by light irradiation and can be cured by heating. Usually, an alkali-soluble polymer, a radiation-sensitive component, a crosslink It is formed by applying a photosensitive resin composition containing an agent, a solvent and the like.
Alkali-soluble polymers include acrylic resins, silicon resins, fluorine resins, polyimide resins, polyolefin resins, alicyclic olefin resins, epoxy resins having acidic groups such as carboxyl groups and phenolic hydroxyl groups. Resin is used. Of these, alkali-soluble alicyclic olefin resins such as carboxyl group-containing alicyclic olefin resins (for example, carboxyl group-containing norbornene resins) are preferable from the viewpoint of excellent patternability, mechanical properties, and heat resistance.

感放射線成分としては、キノンジアジドスルホン酸塩、オニウム塩、アセトフェノン化合物、アジド化合物などが挙げられ、ナフトキノンジアジド化合物が好ましい。
架橋剤としては、前記樹脂と反応する官能基を分子内に2つ以上、好ましくは3つ以上有するものが用いられ、官能基としては、例えば、アミノ基、カルボキシル基、ヒドロキシル基、エポキシ基、イソシアネート基、ビニル基などが挙げられ、好ましくはアミノ基、エポキシ基、イソシアネート基、更に好ましくはエポキシ基などが例示される。好ましい架橋剤としては、(2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(ダイセル化学社製、商品名「EHPE3150」)等が挙げられる。
溶剤としては、その沸点に格別な限定はないが、通常は100℃以上、好ましくは130〜300℃、より好ましくは150〜250℃、最も好ましくは160〜220℃の範囲のエーテル類、ケトン類、エステル類及び多価アルコール類などの有機溶剤が例示される。好ましい溶剤としては、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、N−メチル−2−ピロリドン等が挙げられる。
感光性樹脂組成物におけるアルカリ可溶性高分子の含有量は、通常、10重量%以上であり、好ましくは30〜100重量%、より好ましくは40〜100重量%である。感放射線成分の含有量は、アルカリ可溶性高分子100重量部に対して通常1〜100重量%、好ましくは5〜50重量%、より好ましくは10〜40重量%である。
感光性樹脂組成物の具体例としては、特開2004−4733号公報記載の感放射線性樹脂組成物、特開2003−288991号公報記載の感放射線性組成物、特開2003−302642号公報記載の感放射線性樹脂組成物、特開平10−26829号公報記載の感放射線性樹脂組成物、特開平9−230596号公報記載の感放射線性樹脂組成物、特開平9−146276号公報記載の感放射線性樹脂組成物、特開平8−262709号公報記載の感放射線性樹脂組成物、特開平10−10734号公報記載の感放射線性樹脂組成物、特開平8−240911号公報記載の感放射線性樹脂組成物、特開平8−183819号公報記載の感放射線性樹脂組成物などが挙げられる。また、樹脂膜には機械的特性及び耐熱性を向上させるためにシリカやアルミナなどの金属酸化物微粒子、ガラスファイバーなどの無機物が含まれていてもよい。
熱硬化性で感光性の樹脂膜の形成方法は特に限定されないが、感光性組成物をスピンコート,スリットコート又はスクリーン印刷によって塗布した後、加熱して乾燥する方法が挙げられる。5μm以下の薄膜を形成しようとする場合は、スピンコートやスリットコートによって塗布するのが好ましい。特に基板内の膜厚を均一にさせるためには、スピンコートによるのがより好ましい。
Examples of the radiation sensitive component include quinone diazide sulfonate, onium salt, acetophenone compound, azide compound and the like, and naphthoquinone diazide compound is preferable.
As the crosslinking agent, one having two or more, preferably three or more functional groups that react with the resin in the molecule is used. Examples of the functional groups include amino groups, carboxyl groups, hydroxyl groups, epoxy groups, An isocyanate group, a vinyl group, etc. are mentioned, Preferably an amino group, an epoxy group, an isocyanate group, More preferably, an epoxy group etc. are illustrated. As a preferable crosslinking agent, 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (trade name “EHPE3150” manufactured by Daicel Chemical Industries, Ltd.) and the like Is mentioned.
The solvent is not particularly limited in its boiling point, but is usually 100 ° C. or higher, preferably 130 to 300 ° C., more preferably 150 to 250 ° C., most preferably 160 to 220 ° C. Ethers and ketones. And organic solvents such as esters and polyhydric alcohols. Preferable solvents include propylene glycol monoethyl ether acetate, diethylene glycol ethyl methyl ether, N-methyl-2-pyrrolidone and the like.
The content of the alkali-soluble polymer in the photosensitive resin composition is usually 10% by weight or more, preferably 30 to 100% by weight, more preferably 40 to 100% by weight. The content of the radiation-sensitive component is usually 1 to 100% by weight, preferably 5 to 50% by weight, and more preferably 10 to 40% by weight with respect to 100 parts by weight of the alkali-soluble polymer.
Specific examples of the photosensitive resin composition include a radiation-sensitive resin composition described in JP-A No. 2004-4733, a radiation-sensitive composition described in JP-A No. 2003-288991, and JP-A No. 2003-302642. Radiation-sensitive resin composition, radiation-sensitive resin composition described in JP-A-10-26829, radiation-sensitive resin composition described in JP-A-9-230596, and sensitivity described in JP-A-9-146276 Radiation-sensitive resin composition, radiation-sensitive resin composition described in JP-A-8-262709, radiation-sensitive resin composition described in JP-A-10-10734, radiation-sensitivity described in JP-A-8-240911 Examples thereof include a resin composition and a radiation sensitive resin composition described in JP-A-8-183819. Further, the resin film may contain metal oxide fine particles such as silica and alumina, and inorganic substances such as glass fiber in order to improve mechanical properties and heat resistance.
A method for forming the thermosetting and photosensitive resin film is not particularly limited, and examples thereof include a method in which the photosensitive composition is applied by spin coating, slit coating, or screen printing and then heated and dried. When a thin film of 5 μm or less is to be formed, it is preferably applied by spin coating or slit coating. In particular, in order to make the film thickness in the substrate uniform, spin coating is more preferable.

(2)露光工程
図1(b)は、感光性樹脂組成物を塗布した後、乾燥して形成された樹脂膜2に、所定のパターンを有するマスク3を介して放射線4を照射して、樹脂膜に樹脂露光部21と樹脂遮光部22とを形成させる工程を示す。感光性の樹脂膜には樹脂露光部21が現像剤で除去されやすくなるもの(ポジ型)と、現像剤で除去されにくくなるもの(ネガ型)とがある。図1はポジ型の例であるが、本発明における樹脂膜はポジ型に限定されない。
放射線の照射としては、パターンの精細さに応じて適宜選択される。例えば、波長365nm、光強度10mW/cmの紫外線を空気中で100mJ/cmのエネルギー量となる照射を行う。放射線の照射による露光後、現像解像度を高めるために、例えば120℃のホットプレートで1分間程度プリベークすることが好ましい。
(2) Exposure process FIG.1 (b) irradiates the resin film 2 formed by apply | coating the photosensitive resin composition and drying the radiation 4 through the mask 3 which has a predetermined | prescribed pattern, The process of forming the resin exposure part 21 and the resin light-shielding part 22 in a resin film is shown. There are photosensitive resin films in which the resin exposed portion 21 is easily removed with a developer (positive type) and those in which the resin exposed portion 21 is difficult to remove with a developer (negative type). FIG. 1 shows an example of a positive type, but the resin film in the present invention is not limited to a positive type.
The irradiation of radiation is appropriately selected according to the fineness of the pattern. For example, irradiation with ultraviolet light having a wavelength of 365 nm and a light intensity of 10 mW / cm 2 is performed in air at an energy amount of 100 mJ / cm 2 . In order to increase the development resolution after exposure by irradiation with radiation, it is preferable to pre-bake for about 1 minute on a hot plate at 120 ° C., for example.

(3)現像工程又はエッチング工程
図1(c)は、樹脂露光部21を現像剤により溶解して除去(現像)し、残存する樹脂遮光部22によってパターンを形成する現像工程を示す。現像剤としては、従来公知のものを用いることができ、例えば、アミン類、有機アンモニウム塩などのアルカリ性有機現像剤、水酸化ナトリウム、水酸化カリウムなどのアルカリ性無機現像剤が挙げられる。現像剤で現像した後、リンス処理を加えることもできる。
(3) Development Step or Etching Step FIG. 1C shows a development step in which the resin exposed portion 21 is dissolved and removed (developed) with a developer and a pattern is formed by the remaining resin light shielding portion 22. As the developer, conventionally known ones can be used, and examples thereof include alkaline organic developers such as amines and organic ammonium salts, and alkaline inorganic developers such as sodium hydroxide and potassium hydroxide. After developing with a developer, a rinsing treatment can be added.

パターンを、露光及び現像によって形成する代わりに、エッチングによって形成してもよい。具体的には、樹脂膜の上にポジ、あるいはネガフォトレジストを成膜し、露光、現像によりパターンを形成し、ドライ又はウェットエッチングにより該樹脂膜をパターニングした後、該レジストを剥離することにより行う。   Instead of being formed by exposure and development, the pattern may be formed by etching. Specifically, a positive or negative photoresist is formed on the resin film, a pattern is formed by exposure and development, the resin film is patterned by dry or wet etching, and then the resist is peeled off. Do.

(4)加熱硬化工程
図1(d)は、露光後、現像又はエッチングした樹脂膜を加熱硬化させて、パターンを固定する工程を示す。加熱方法は特に制限されない。例えば240℃のホットプレート上で30分間加熱する。加熱によりパターン状樹脂遮光部22が硬化する。透明性維持の観点から、加熱硬化工程は窒素やアルゴン等の不活性ガス雰囲気で行われることが好ましい。
(4) Heat-curing process FIG.1 (d) shows the process of fixing the pattern by heat-curing the developed or etched resin film after exposure. The heating method is not particularly limited. For example, it heats for 30 minutes on a 240 degreeC hotplate. The patterned resin light-shielding part 22 is cured by heating. From the viewpoint of maintaining transparency, the heat curing step is preferably performed in an inert gas atmosphere such as nitrogen or argon.

(4a)酸素プラズマ又は紫外線照射処理工程
図1(e)は、基板表面に対して酸素プラズマ処理又は紫外線照射処理を行う工程を示す。この工程は本発明の樹脂膜保持基板の製造方法に必須ではないが、樹脂膜の上面と基板面との間の液状導電性材料に対する濡れ性のコントラストを拡大することができるので、後述の樹脂遮光部22のフッ素ガス処理工程の前工程として設置することが好ましい。また、本工程は、前記の露光及び現像、又は、エッチングにより熱硬化性の樹脂膜にパターンを形成する際に基板表面に残った樹脂残渣を除去するためにも有効である。基板の露出部分に樹脂残渣が残ったまま後述のフッ素ガス処理を行うと、樹脂残渣の表面にフッ素化合物が形成されて熱硬化性樹脂の表面と開口部分の濡れ性の差が小さくなるおそれがある。
酸素プラズマ処理及び紫外線照射処理は、大気圧下又は減圧下で行う。
(4a) Oxygen Plasma or Ultraviolet Irradiation Treatment Step FIG. 1E shows a step of performing oxygen plasma treatment or ultraviolet irradiation treatment on the substrate surface. Although this step is not essential for the method of manufacturing the resin film holding substrate of the present invention, the contrast of the wettability with respect to the liquid conductive material between the upper surface of the resin film and the substrate surface can be expanded. It is preferable to install as a pre-process of the fluorine gas treatment process of the light shielding part 22. This step is also effective for removing the resin residue remaining on the substrate surface when the pattern is formed on the thermosetting resin film by the exposure and development or etching. If the fluorine gas treatment described below is performed with the resin residue remaining on the exposed portion of the substrate, a fluorine compound may be formed on the surface of the resin residue, which may reduce the difference in wettability between the surface of the thermosetting resin and the opening portion. is there.
The oxygen plasma treatment and the ultraviolet irradiation treatment are performed under atmospheric pressure or reduced pressure.

(5)樹脂膜乾燥後フッ素ガス雰囲気に曝す工程(フッ素化工程)
図2(f)は、乾燥を経た樹脂膜保持基板をフッ素ガス雰囲気に曝す工程を示す。樹脂膜保持基板の乾燥条件は、通常50〜300℃、好ましくは150〜250℃の温度で、通常10〜200分間、好ましくは30〜150分間置く。乾燥によって、樹脂膜の水分含有量を好ましくは1重量%以下、より好ましくは0.1重量%以下、特に好ましくは0.05重量%以下にする。水分含有量が多いと、フッ素ガスと水分が反応してフッ化水素が生じ、樹脂の表面処理を妨げるとともに、樹脂膜の変質や基板からの剥離などの不具合を生ずるおそれがある。
(5) Step of exposing to fluorine gas atmosphere after resin film drying (fluorination step)
FIG. 2F shows a process of exposing the dried resin film holding substrate to a fluorine gas atmosphere. The drying condition of the resin film holding substrate is usually 50 to 300 ° C., preferably 150 to 250 ° C., usually 10 to 200 minutes, preferably 30 to 150 minutes. By drying, the moisture content of the resin film is preferably 1% by weight or less, more preferably 0.1% by weight or less, and particularly preferably 0.05% by weight or less. When the moisture content is high, fluorine gas reacts with moisture to produce hydrogen fluoride, which hinders the surface treatment of the resin and may cause problems such as deterioration of the resin film and peeling from the substrate.

フッ素ガス雰囲気のフッ素ガスは、希ガス類や窒素などの不活性ガスで希釈して使用することが好ましい。フッ素ガス濃度は特に限定されないが、好ましくは0.1〜50容量%、より好ましくは0.3〜30容量%、特に好ましくは0.5〜20容量%である。フッ素ガス濃度が低すぎると、樹脂膜表面のフッ化物の生成が不十分になるおそれがある。一方、濃度が高すぎると、フッ素と樹脂膜との反応が急激すぎて好ましくない事態を生ずる可能性がある。また、樹脂膜保持基板をフッ素ガス雰囲気に曝す方法に特に限定はない。例えば、樹脂膜保持基板を容器中に置いてフッ素ガスを常圧で流通させる、又は、密封下でフッ素ガスを加圧状態で充満させるなどの方法が挙げられる。   The fluorine gas in the fluorine gas atmosphere is preferably diluted with an inert gas such as a rare gas or nitrogen. The fluorine gas concentration is not particularly limited, but is preferably 0.1 to 50% by volume, more preferably 0.3 to 30% by volume, and particularly preferably 0.5 to 20% by volume. If the fluorine gas concentration is too low, the generation of fluoride on the surface of the resin film may be insufficient. On the other hand, if the concentration is too high, the reaction between fluorine and the resin film is too rapid, which may cause an undesirable situation. There is no particular limitation on the method of exposing the resin film holding substrate to the fluorine gas atmosphere. For example, the resin film holding substrate is placed in a container and fluorine gas is allowed to flow at normal pressure, or fluorine gas is filled in a pressurized state under sealing.

フッ素ガス雰囲気の水分含有量は、少ない方が樹脂膜の表面処理に有効である。フッ素ガス雰囲気の水分含有量は、好ましくは100ppm以下、より好ましくは10ppm以下、特に好ましくは1ppm以下である。水分濃度が上記範囲であると、フッ化水素が生成しにくくなる。
フッ素化工程における樹脂膜保持基板の温度は、通常23〜300℃、好ましくは50〜250℃である。
A smaller moisture content in the fluorine gas atmosphere is more effective for the surface treatment of the resin film. The moisture content in the fluorine gas atmosphere is preferably 100 ppm or less, more preferably 10 ppm or less, and particularly preferably 1 ppm or less. When the moisture concentration is in the above range, hydrogen fluoride is hardly generated.
The temperature of the resin film holding substrate in the fluorination step is usually 23 to 300 ° C, preferably 50 to 250 ° C.

(5a)加熱工程(アニーリング工程)
図2(g)は、樹脂膜保持基板をフッ素ガス雰囲気に曝した後、樹脂表面の撥液性を増強するために不活性ガス中で加熱する(アニーリング)工程を示す。この工程は本発明の樹脂膜保持基板の製造方法に必須ではないが、アニーリングによって、フッ素化が不十分だった部位のフッ素化を促進させるとともに過剰のフッ素を揮散させる効果があるので、前記フッ素化工程に後続して行われることが好ましい。アニーリングに用いる不活性ガスの種類は特に限定されないが、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンなどの希ガス類や窒素が挙げられる。アニーリング温度は、用いる硬化樹脂の軟化点によって異なるが、50〜350℃が好ましく、200〜300℃がより好ましい。アニーリング温度が上記範囲であると、アニーリングの上記の効果が十分発現し、また、生成したフッ化物が揮発するおそれがない。
(5a) Heating process (annealing process)
FIG. 2G shows a step of heating (annealing) the resin film holding substrate in an inert gas in order to enhance the liquid repellency of the resin surface after exposure to a fluorine gas atmosphere. Although this step is not essential for the method for producing the resin film holding substrate of the present invention, annealing has the effect of promoting the fluorination of the portion where the fluorination is insufficient and volatilizing excess fluorine. It is preferable to be performed subsequent to the conversion step. The type of inert gas used for annealing is not particularly limited, and examples thereof include rare gases such as helium, neon, argon, krypton, xenon, and radon, and nitrogen. The annealing temperature varies depending on the softening point of the cured resin used, but is preferably 50 to 350 ° C, more preferably 200 to 300 ° C. When the annealing temperature is within the above range, the above-mentioned effects of annealing are sufficiently exhibited, and the generated fluoride is not likely to volatilize.

本発明の樹脂膜保持基板の製造方法においては、基板上の樹脂膜を、マスクを介して露光後現像する工程、又はエッチングする工程〔前記現像工程又はエッチング工程(3)〕、樹脂膜を加熱硬化する工程〔前記加熱硬化工程(4)〕及び樹脂膜を乾燥後フッ素ガス雰囲気に曝す工程〔前記フッ素化工程(5)〕の3工程の順序には限定がなく、任意の順序で行うことができる。
図1及び図2においては、本発明の樹脂膜保持基板の製造方法の最良の形態の一実施態様として、上記(3)、(4)及び(5)の3工程をこの順に行っている。
酸素プラズマ処理又は紫外線照射処理工程(4a)を加える場合は、フッ素化工程(5)の前工程として設けることが好ましい。また、アニーリング工程(5a)を入れる場合は、フッ素化工程(5)に続く次の工程として設けることが好ましい。
In the method for producing a resin film holding substrate of the present invention, the step of developing the resin film on the substrate after exposure through a mask or the step of etching [the developing step or the etching step (3)], heating the resin film There is no limitation on the order of the three steps of the step of curing [the heat curing step (4)] and the step of exposing the resin film to a fluorine gas atmosphere after drying [the fluorination step (5)]. Can do.
1 and 2, the three steps (3), (4) and (5) are performed in this order as one embodiment of the best mode of the method for producing a resin film holding substrate of the present invention.
When an oxygen plasma treatment or an ultraviolet irradiation treatment step (4a) is added, it is preferably provided as a pre-step of the fluorination step (5). Moreover, when adding an annealing process (5a), it is preferable to provide as a next process following a fluorination process (5).

(6)アルカリ性溶液による洗浄工程
図2(h)は、樹脂表面と基板面との間の濡れ性のコントラストを拡大するために、表面がフッ素ガス雰囲気に曝された樹脂膜を載置した基板を、アルカリ性溶液に接触させて洗浄する工程を示す。この工程は、前記の酸素プラズマ処理又は紫外線照射処理によって樹脂残渣を除去しても、フッ素化工程で基板の開口部にしばしばフッ素化合物層が形成されるので、これをアルカリ性溶液との接触で除去する工程である。
使用するアルカリ性溶液としては、アルカリ化合物を水又は有機溶剤に溶解したものであれば限定されないが、操作性の観点から水に溶解したものが好ましい。アルカリ性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水などの無機アルカリ類;エチルアミン、n−プロピルアミンなどの第一級アミン類;ジエチルアミン、ジ−n−プロピルアミンなどの第二級アミン類;トリエチルアミン、メチルジエチルアミンなどの第三級アミン類;ジメチルエタノールアミン、トリエタノールアミンなどのアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリンなどの第四級アンモニウム塩;ピロール、ピペリジン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、N−メチルピロリドンなどの環状アミン類;等が挙げられ、特にテトラメチルアンモニウムヒドロキシド水溶液が好ましい。テトラメチルアンモニウムヒドロキシドは、その水溶液が電気透析により容易に回収することができるので、リサイクルの面においても優れている。アルカリ性溶液の濃度は、好ましくは0.1〜5重量%、よりこのましくは0.1〜3重量%である。アルカリ性溶液の濃度が上記範囲であると、開口部のフッ素化合物層の除去効果が十分得られ、また、樹脂膜の劣化や基板からの剥離などが生じない。アルカリ性溶液との接触方法に限定はないが、樹脂膜保持基板をフッ素樹脂等の容器中のアルカリ性溶液に浸漬する方法や、樹脂膜保持基板にアルカリ性溶液を噴霧又は散布する方法などが挙げられる。
(6) Cleaning Step with Alkaline Solution FIG. 2 (h) shows a substrate on which a resin film having a surface exposed to a fluorine gas atmosphere is placed in order to increase the wettability contrast between the resin surface and the substrate surface. Is a step of cleaning by contacting with an alkaline solution. In this process, even if the resin residue is removed by the above-mentioned oxygen plasma treatment or ultraviolet irradiation treatment, a fluorine compound layer is often formed in the opening of the substrate in the fluorination process, so this is removed by contact with an alkaline solution. It is a process to do.
The alkaline solution to be used is not limited as long as the alkaline compound is dissolved in water or an organic solvent, but is preferably dissolved in water from the viewpoint of operability. Examples of alkaline compounds include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; primary amines such as ethylamine and n-propylamine; diethylamine, di- Secondary amines such as n-propylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutyl Quaternary ammonium salts such as ammonium hydroxide and choline; pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] nona-5 Ene, N- cyclic amines such as methyl pyrrolidone; and the like, in particular tetramethylammonium hydroxide aqueous solution is preferred. Tetramethylammonium hydroxide is excellent in terms of recycling because its aqueous solution can be easily recovered by electrodialysis. The concentration of the alkaline solution is preferably 0.1 to 5% by weight, more preferably 0.1 to 3% by weight. When the concentration of the alkaline solution is within the above range, the effect of removing the fluorine compound layer in the opening can be sufficiently obtained, and the resin film is not deteriorated or peeled off from the substrate. Although there is no limitation in the contact method with an alkaline solution, the method of immersing a resin film holding board | substrate in the alkaline solution in containers, such as a fluororesin, the method of spraying or spraying an alkaline solution on a resin film holding board | substrate, etc. are mentioned.

アルカリ性溶液で洗浄された樹脂膜保持基板は、リンス液、剥離液、水などで洗浄された後、乾燥される。こうして仕切部材を劣化させることなく、仕切部材と基板間の液状導電性材料の濡れ性に十分なコントラストを有する樹脂膜保持基板が得られる。
続いて、本発明方法により得られた樹脂膜保持基板を用いて本発明の回路基板を製造する方法について図面に示す実施態様に基づいて説明する。
The resin film holding substrate washed with an alkaline solution is washed with a rinse solution, a stripping solution, water, and the like, and then dried. Thus, a resin film holding substrate having a sufficient contrast in the wettability of the liquid conductive material between the partition member and the substrate can be obtained without deteriorating the partition member.
Next, a method for producing the circuit board of the present invention using the resin film holding substrate obtained by the method of the present invention will be described based on the embodiments shown in the drawings.

(7)配線形成工程
図2(i)は、基板の上で、樹脂膜の凸部に囲まれた凹部に、導電性材料を充填し、焼成して電気的な配線を形成する工程を示す。
導電性材料の凹部への充填は、めっき法又は印刷法によることが好ましく、また、印刷法においてはインクジェット印刷法又はスクリーン印刷法が好ましい。特に、インクジェット印刷法によると、仕切部材の上面と基板の開口部露出面との液状の導電性材料に対する濡れ性の差が大きいことから、選択的に導電性材料を凹部に充填することができるので好ましい。
(7) Wiring formation process FIG.2 (i) shows the process of filling an electroconductive material in the recessed part enclosed by the convex part of the resin film on a board | substrate, and baking and forming an electrical wiring. .
The filling of the concave portion with the conductive material is preferably performed by a plating method or a printing method, and the printing method is preferably an ink jet printing method or a screen printing method. In particular, according to the ink-jet printing method, since the difference in wettability with respect to the liquid conductive material between the upper surface of the partition member and the exposed surface of the opening of the substrate is large, the conductive material can be selectively filled into the recess. Therefore, it is preferable.

導電性材料の種類は特に限定されないが、含有する金属種は、金、白金、銀、銅、ニッケル、パラジウム、マンガン、クロム又はアルミニウムを含むことが好ましい。特に金、銀、銅、ニッケルなどは、1μm以下の微粒子として用いることが可能であるため、微細配線の形成にとって好ましい。
導電性材料は、テトラデカン、ドデシルアミン、オレイン酸などの有機物を含有すると金属が溶剤中に均一に分散した状態となるので好ましい。有機物の含有量は、金属に対して、好ましくは25〜90重量%、より好ましくは60〜80重量%である。
導電性材料用の溶剤としては、水、有機溶剤又はこれらの混合物など限定されないが、仕切部材と基板表面の間に、より明瞭な濡れ性のコトラストを発現する溶剤種を用いることが好ましい。
Although the kind of conductive material is not specifically limited, It is preferable that the metal seed | species to contain contains gold | metal | money, platinum, silver, copper, nickel, palladium, manganese, chromium, or aluminum. In particular, gold, silver, copper, nickel, and the like can be used as fine particles of 1 μm or less, which is preferable for forming fine wiring.
When the conductive material contains an organic substance such as tetradecane, dodecylamine, or oleic acid, the metal is preferably dispersed in the solvent. The content of the organic substance is preferably 25 to 90% by weight, more preferably 60 to 80% by weight with respect to the metal.
The solvent for the conductive material is not limited to water, an organic solvent, or a mixture thereof, but it is preferable to use a solvent species that expresses clearer wettability between the partition member and the substrate surface.

凹部に導電性材料が充填された基板は、通常、200〜500℃で10〜120分、好ましくは250〜350℃で30〜60分焼成されて、電子機器用回路基板が形成される。   The board | substrate with which the electroconductive material was filled into the recessed part is normally baked at 200-500 degreeC for 10 to 120 minutes, Preferably it is 30 to 60 minutes at 250-350 degreeC, and the circuit board for electronic devices is formed.

本発明の製造方法により得られる本発明の電子機器用回路基板は、電気配線の上面と樹脂膜(仕切部材)の上面とが実質上同一平面にあることが好ましい。両者を実質上同一平面とすることで、断線、短絡等の発生を低減することができる。   In the electronic device circuit board of the present invention obtained by the production method of the present invention, it is preferable that the upper surface of the electrical wiring and the upper surface of the resin film (partition member) are substantially in the same plane. By making the both substantially the same plane, occurrence of disconnection, short circuit, etc. can be reduced.

本発明の電子機器用回路基板の製造方法によって得られる電子機器用回路基板は、微細配線が可能で断線、短絡が起こりにくいので、これを用いてTFT、STN、TFD等として液晶表示装置、有機EL表示装置又はプラズマアドレス表示装置に組み込むことによりドット抜けが少ない表示装置が得られる。   The electronic device circuit board obtained by the method for manufacturing an electronic device circuit board according to the present invention is capable of fine wiring and is less likely to be disconnected or short-circuited, so that it can be used as a TFT, STN, TFD, etc. By incorporating it into an EL display device or a plasma address display device, a display device with few missing dots can be obtained.

本発明の液晶表示装置の一例として、アクティブマトリクス液晶表示装置の構造を示す断面図を図5に示す。ガラス基板上に形成された走査線と、信号線と、該走査線と該信号線の交差部付近に、該走査線にゲート電極が接続され、該信号線にソースあるいはドレイン電極が接続された薄膜トランジスタを有しており、信号線、ソース電極、及びドレイン電極を囲むように平坦化層が形成され、信号線、ソース電極、ドレイン電極と該平坦化層とは実質的に同一平面を形成している。この平面上に層間絶縁膜を介して画素電極が配置され、アクティブマトリクス基板を構成し、対向基板との間で液晶を挟持して構成される。上記走査線及びゲート電極配線は、本発明の電子機器用回路基板の製造方法を適用することにより微細な配線が形成される。   As an example of the liquid crystal display device of the present invention, a cross-sectional view showing the structure of an active matrix liquid crystal display device is shown in FIG. A scanning line formed on the glass substrate, a signal line, and a gate electrode is connected to the scanning line in the vicinity of an intersection of the scanning line and the signal line, and a source or drain electrode is connected to the signal line The planarization layer is formed so as to surround the signal line, the source electrode, and the drain electrode, and the signal line, the source electrode, the drain electrode, and the planarization layer form substantially the same plane. ing. A pixel electrode is disposed on this plane via an interlayer insulating film to constitute an active matrix substrate, and a liquid crystal is sandwiched between the opposite substrate. As the scanning line and the gate electrode wiring, a fine wiring is formed by applying the method for manufacturing a circuit board for electronic equipment of the present invention.

以下に、実施例及び比較例を挙げて本発明を具体的に説明する。なお、実施例中、部及び%は、特に断りのない限り質量基準である。
また、実施例及び比較例における試験、評価は下記によった。
(1)昇温脱離分析(以下「TDS分析」と略す。)
硬化した樹脂膜の水分含有量は、TDS分析計(EMD−WA1000S/W、電子科学社製)を用いて測定した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the examples, parts and% are based on mass unless otherwise specified.
Moreover, the test and evaluation in an Example and a comparative example were based on the following.
(1) Thermal desorption analysis (hereinafter abbreviated as “TDS analysis”)
The moisture content of the cured resin film was measured using a TDS analyzer (EMD-WA1000S / W, manufactured by Electronic Science Co., Ltd.).

(2)接触角
基板表面の液滴の接触角は、接触角測定器(CA−D、協和界面科学社製)を用いて測定した。液としてはテトラデカンを用い、液滴が基板に接触して30秒経過したときの値と定義した。
(3)導電性材料の収納限界幅
幅が10、20、30、40及び50μmの5種類で、長さが50mmの直線溝に滴下された導電性材料を観察して各幅の溝についてはみ出した箇所の数を調べ、はみ出しの無い下限の幅を収納限界幅とした。
(2) Contact angle The contact angle of the droplet on the substrate surface was measured using a contact angle measuring device (CA-D, manufactured by Kyowa Interface Science Co., Ltd.). Tetradecane was used as the liquid, and it was defined as a value when 30 seconds had passed after the droplet contacted the substrate.
(3) Conductive material storage limit width Five types of widths of 10, 20, 30, 40 and 50 μm, and the conductive material dropped into a straight groove with a length of 50 mm are observed to protrude from the groove of each width. The lower limit width that does not protrude was defined as the storage limit width.

(実施例1)
熱硬化性樹脂(カルボキシル基含有脂環式オレフィン系樹脂)を100g、架橋剤のEHPE3150(ダイセル化学工業社製)25g、感放射線性化合物である1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン(1モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(1.9モル)との縮合物25g、接着助剤のγ−グリシドキシプロピルトリメトキシシラン5g、酸化防止剤のイルガノックス1010(チバ・スペシャリティーケミカルズ社製)1g、及び界面活性剤のKP−341(信越化学工業社製)0.05gをプロピレングリコールモノエチルエーテルアセテート200g、ジエチレングリコールエチルメチルエーテル100g、N−メチル−2−ピロリドン100gからなる混合溶媒に溶解させた後、孔径0.45μmのミリポアフィルタでろ過して感放射線性樹脂組成物を調製した。
得られた感放射性樹脂組成物を、あらかじめ洗浄し高純度窒素中で加熱して脱水を行い、その後、ヘキサメチレンジシラザン(HMDS)の蒸気を当ててHMDS密着層を形成した無アルカリガラス基板(縦40mm、横10mm、厚み1mm)にスピンコート法によって塗布し、100℃のオーブンに10分間置いて焼成して厚さ1μmの樹脂膜を形成した。樹脂膜を形成した無アルカリガラス基板の半面をマスクで遮蔽して、マスクアライナーにより200mJ/cmにて露光後、2.38%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液に25℃で70秒間現像処理を行い、次いで超純水で30秒間リンス処理を行った。これにより、前記感放射線樹脂組成物はポジ型であるため、樹脂露光部が溶解し、ガラス基板上半面の樹脂膜が除去された。これを水洗、乾燥後、図3に示す焼成装置を用いて99.99999容量%の高純度窒素雰囲気にて280℃で60分間加熱し、樹脂膜を硬化し、マスクアライナーで500mJ/cmにて基板全面を紫外線で照射した。この後、この樹脂膜保持基板サンプルを図4に示す電気炉に入れ、高純度窒素ガスを流通させ、150℃で60分間加熱して乾燥した。乾燥したサンプルの一部についてTDS分析により硬化した樹脂膜の水分含有量を分析したところ、0.02%であった。次に、引き続き同装置で同サンプルを180℃に加熱しつつ、高純度アルゴンガスで希釈した10容量%のフッ素ガスを1分あたり200mlのレートで導入し、1分間フッ素化処理を行った。フッ素化処理後、同装置を用いて同サンプルを高純度窒素ガス中で、300℃で10分間アニーリングを行った。アニーリング後のサンプルを2.38%TMAH水溶液に10秒間浸漬し、次いで、純水で5分間リンスして乾燥し、樹脂膜保持基板を得た。該基板の樹脂面及びガラス面につきテトラデカンにて接触角の測定を行った結果を表1に示す。
Example 1
100 g of thermosetting resin (carboxyl group-containing alicyclic olefin-based resin), 25 g of crosslinking agent EHPE3150 (manufactured by Daicel Chemical Industries), 1,1,3-tris (2,5-dimethyl) as a radiation sensitive compound 25 g of condensate of -4-hydroxyphenyl) -3-phenylpropane (1 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.9 mol), γ-glycidoxypropyl as an adhesion assistant 200 g of propylene glycol monoethyl ether acetate, 5 g of trimethoxysilane, 1 g of antioxidant Irganox 1010 (manufactured by Ciba Specialty Chemicals) and 0.05 g of surfactant KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) 100 g of diethylene glycol ethyl methyl ether, 100 g of N-methyl-2-pyrrolidone It was dissolved in Ranaru mixed solvent, to prepare a radiation-sensitive resin composition was filtered through a pore size of 0.45μm Millipore filter.
The obtained radiation-sensitive resin composition was washed in advance and heated in high-purity nitrogen for dehydration, and then a hexamethylene disilazane (HMDS) vapor was applied to form an HMDS adhesion layer ( 40 mm in length, 10 mm in width, and 1 mm in thickness) by spin coating, and placed in an oven at 100 ° C. for 10 minutes and baked to form a resin film having a thickness of 1 μm. The half surface of the alkali-free glass substrate on which the resin film is formed is shielded with a mask, exposed at 200 mJ / cm 2 with a mask aligner, and then developed in an aqueous 2.38% tetramethylammonium hydroxide (TMAH) solution at 25 ° C. for 70 seconds. Then, a rinse treatment was performed with ultrapure water for 30 seconds. Thereby, since the said radiation sensitive resin composition was a positive type, the resin exposure part melt | dissolved and the resin film of the glass substrate upper half surface was removed. This was washed with water and dried, and then heated at 280 ° C. for 60 minutes in a 99.99999% by volume high-purity nitrogen atmosphere using the baking apparatus shown in FIG. 3, to cure the resin film, and to 500 mJ / cm 2 with a mask aligner. The entire surface of the substrate was irradiated with ultraviolet rays. Thereafter, the resin film holding substrate sample was put into an electric furnace shown in FIG. 4, and high purity nitrogen gas was circulated, and dried by heating at 150 ° C. for 60 minutes. When the moisture content of the cured resin film was analyzed by TDS analysis for a part of the dried sample, it was 0.02%. Next, while the sample was continuously heated to 180 ° C. with the same apparatus, 10 vol% fluorine gas diluted with high-purity argon gas was introduced at a rate of 200 ml per minute, and fluorination treatment was performed for 1 minute. After the fluorination treatment, the sample was annealed in high-purity nitrogen gas at 300 ° C. for 10 minutes using the same apparatus. The sample after annealing was immersed in a 2.38% TMAH aqueous solution for 10 seconds, then rinsed with pure water for 5 minutes and dried to obtain a resin film holding substrate. Table 1 shows the results of measuring the contact angle with tetradecane on the resin surface and glass surface of the substrate.

(比較例1)
実施例1において、樹脂膜保持基板サンプルにつき、図3に示す焼成装置での高純度窒素ガス雰囲気での加熱硬化工程まで行った段階で操作を終了した他は実施例1と同様に行い、樹脂膜保持基板を得た。該基板の樹脂面及びガラス面につきテトラデカンにて接触角の測定を行った結果を表1に示す。
(Comparative Example 1)
In Example 1, the resin film holding substrate sample was processed in the same manner as in Example 1 except that the operation was completed at the stage where the heat curing process in the high-purity nitrogen gas atmosphere in the baking apparatus shown in FIG. A film holding substrate was obtained. Table 1 shows the results of measuring the contact angle with tetradecane on the resin surface and glass surface of the substrate.

(比較例2)
実施例1において、樹脂膜保持基板サンプルにつきフッ素化処理及びアニーリングを行った段階で操作を終了した他は実施例1と同様に行い、樹脂膜保持基板を得た。該基板の樹脂面及びガラス面につきテトラデカンにて接触角の測定を行った結果を表1に示す。
(Comparative Example 2)
In Example 1, a resin film holding substrate was obtained in the same manner as in Example 1 except that the operation was completed when the fluorination treatment and annealing were performed on the resin film holding substrate sample. Table 1 shows the results of measuring the contact angle with tetradecane on the resin surface and glass surface of the substrate.

(比較例3)
実施例1において、樹脂膜保持基板サンプルのフッ素化処理及びアニーリングを行った後、樹脂膜保持基板サンプルを2.38%TMAH水溶液に浸漬する操作に代えて、酸素プラズマ処理を行った他は実施例1と同様に行い、樹脂膜保持基板を得た。該基板の樹脂面及びガラス面につきテトラデカンにて接触角の測定を行った結果を表1に示す。
なお、酸素プラズマ処理は、樹脂膜保持基板サンプルをRFプラズマ装置に入れ、酸素を充満後圧力2.67Paで10秒間プラズマ処理した。
(Comparative Example 3)
In Example 1, after performing the fluorination treatment and annealing of the resin film holding substrate sample, instead of the operation of immersing the resin film holding substrate sample in the 2.38% TMAH aqueous solution, the oxygen plasma treatment was performed. In the same manner as in Example 1, a resin film holding substrate was obtained. Table 1 shows the results of measuring the contact angle with tetradecane on the resin surface and glass surface of the substrate.
In the oxygen plasma treatment, the resin film holding substrate sample was put in an RF plasma apparatus, and after being filled with oxygen, plasma treatment was performed at a pressure of 2.67 Pa for 10 seconds.

(比較例4)
実施例1において、樹脂膜保持基板サンプルを2.38%TMAH水溶液に浸漬する操作に代えて、樹脂膜が除去されて露出したガラス面にフッ素系界面活性剤による親液塗膜形成を行った他は実施例1と同様に行い、樹脂膜保持基板を得た。該基板の樹脂面及びガラス面につきテトラデカンにて接触角の測定を行った結果を表1に示す。
なお、フッ素系界面活性剤による親液塗膜は、樹脂膜が除去されて露出したガラス面にフッ素系界面活性剤(製品名フロラードFC−170C、住友スリーエム社製)3%水溶液をスピンコート法により塗布した後100℃で5分間加熱することにより、厚さ0.1μmの塗膜として得られた。
(Comparative Example 4)
In Example 1, instead of the operation of immersing the resin film holding substrate sample in the 2.38% TMAH aqueous solution, a lyophilic coating film was formed with a fluorosurfactant on the exposed glass surface after the resin film was removed. Others were carried out in the same manner as in Example 1 to obtain a resin film holding substrate. Table 1 shows the results of measuring the contact angle with tetradecane on the resin surface and glass surface of the substrate.
In addition, the lyophilic coating film using a fluorosurfactant is prepared by spin coating a 3% aqueous solution of a fluorosurfactant (product name: Fluorard FC-170C, manufactured by Sumitomo 3M) on the exposed glass surface after removing the resin film. After coating by heating at 100 ° C. for 5 minutes, a coating film having a thickness of 0.1 μm was obtained.

Figure 0004737386
Figure 0004737386

表1が示すように、表面がフッ素ガス雰囲気に曝されたパターン状に硬化した樹脂膜の上面のテトラデカン接触角は62度で極めて低い濡れ性を示し、また、該樹脂膜を載置した絶縁基板をTMAH水溶液に接触させることによりガラス面のテトラデカン接触角は9度で極めて高い濡れ性を呈した。これにより両接触角の較差は53度と大きな濡れ性のコントラストを実現した(実施例1)。
これに対して、樹脂膜を載置した絶縁基板に対するTMAH水溶液接触処理のみを省略すると、ガラス面の濡れ性が改善されないため、テトラデカン接触角の較差は49度に縮小した(比較例2)。TMAH水溶液接触処理に代えて酸素プラズマ処理を行うと、樹脂表面の濡れ性も向上するためテトラデカン接触角の較差は31度に縮まった(比較例3)。TMAH水溶液接触処理に代えてフッ素系界面活性剤を用いてガラス面上に親液皮膜形成を行っても、親液化の効果は小さく、テトラデカン接触角の較差は27度に縮小した(比較例4)。
また、樹脂膜に対するフッ素化処理、及び、樹脂膜を載置した絶縁基板に対するTMAH水溶液接触処理を、共に実施しないとテトラデカン接触角の較差は1度と、樹脂面及び基板面の濡れ性がほとんど同等となった(比較例1)。
As shown in Table 1, the tetradecane contact angle on the top surface of the resin film cured in a pattern exposed to a fluorine gas atmosphere is 62 degrees, indicating extremely low wettability, and the insulation on which the resin film is placed By bringing the substrate into contact with the TMAH aqueous solution, the contact angle of tetradecane on the glass surface was 9 degrees, and extremely wettability was exhibited. As a result, the difference between both contact angles was 53 degrees, and a high wettability contrast was achieved (Example 1).
On the other hand, if only the TMAH aqueous solution contact treatment with respect to the insulating substrate on which the resin film was placed was omitted, the wettability of the glass surface was not improved, and the difference in the tetradecane contact angle was reduced to 49 degrees (Comparative Example 2). When the oxygen plasma treatment was performed instead of the TMAH aqueous solution contact treatment, the wettability of the resin surface was improved, and the difference in the tetradecane contact angle was reduced to 31 degrees (Comparative Example 3). Even when a lyophilic film was formed on the glass surface using a fluorosurfactant instead of the TMAH aqueous solution contact treatment, the effect of lyophilicity was small, and the difference in the tetradecane contact angle was reduced to 27 degrees (Comparative Example 4). ).
Moreover, if the fluorination treatment for the resin film and the TMAH aqueous solution contact treatment for the insulating substrate on which the resin film is placed are not performed together, the difference in tetradecane contact angle is 1 degree, and the wettability of the resin surface and the substrate surface is almost the same. It became equivalent (comparative example 1).

(実施例2)
実施例1と同様にして無アルカリガラス基板上に厚さ1μmの熱硬化性の樹脂膜を形成した後、幅が10、20、30、40及び50μmの5種類で、長さが50mmの直線帯状パターンを有するマスクを介してマスクアライナーにより200mJ/cmで露光した後、実施例1と同様にして現像した。これにより、樹脂露光部が溶解して幅10〜50μm、長さ50mmの直線溝パターンを有する樹脂膜が形成された。これを実施例1と同様にして露光、現像及び加熱硬化した後、RFプラズマ装置にて圧力2.67Paで10秒間、酸素プラズマ処理を行った。図4に示す電気炉に樹脂膜保持基板サンプルを入れ、実施例1と同様にしてアルゴンガス流通下で乾燥後フッ素化処理、アニーリング、TMAH水溶液接触処理、水洗及び乾燥を行って樹脂膜保持基板を得た。
この基板サンプルの樹脂膜の直線溝部に、マイクロシリンジを用いて導電性材料(銀インク、藤倉化成製)を滴下して充填した。導電性材料の収納限界幅を調べた結果を表2に示す。
(Example 2)
After forming a thermosetting resin film having a thickness of 1 μm on an alkali-free glass substrate in the same manner as in Example 1, five types of widths of 10, 20, 30, 40, and 50 μm and a straight line having a length of 50 mm are used. After exposure at 200 mJ / cm 2 with a mask aligner through a mask having a belt-like pattern, development was performed in the same manner as in Example 1. Thereby, the resin exposure part melt | dissolved and the resin film which has a width | variety of 10-50 micrometers and a linear groove pattern of length 50mm was formed. This was exposed, developed and heat-cured in the same manner as in Example 1, and then subjected to oxygen plasma treatment at a pressure of 2.67 Pa for 10 seconds using an RF plasma apparatus. A resin film holding substrate sample is placed in the electric furnace shown in FIG. 4 and dried in the same manner as in Example 1 after drying under an argon gas flow, followed by fluorination treatment, annealing, TMAH aqueous solution contact treatment, water washing and drying. Got.
A conductive material (silver ink, manufactured by Fujikura Kasei Co., Ltd.) was dropped into the linear groove portion of the resin film of the substrate sample using a micro syringe. Table 2 shows the results of examining the storage limit width of the conductive material.

(比較例5)
実施例2において、樹脂膜保持基板サンプルにつき、図3に示す焼成装置での高純度窒素ガス雰囲気での加熱硬化工程まで行った段階で操作を終了して、樹脂膜に対するフッ素化処理も、樹脂膜を載置した絶縁基板に対するTMAH水溶液接触処理も、共に実施しないで作製した樹脂膜保持基板を用いた他は実施例2と同様に行って導電性材料が充填された基板を得た。導電性材料の収納限界幅を調べた結果を表2に示す。
(Comparative Example 5)
In Example 2, the operation of the resin film holding substrate sample was completed at the stage where the heat curing process in the high purity nitrogen gas atmosphere in the baking apparatus shown in FIG. The TMAH aqueous solution contact treatment with respect to the insulating substrate on which the film was placed was also performed in the same manner as in Example 2 except that the resin film holding substrate prepared without being carried out was obtained to obtain a substrate filled with a conductive material. Table 2 shows the results of examining the storage limit width of the conductive material.

(比較例6)
実施例2において、フッ素ガスによるフッ素化処理に代えて、樹脂膜保持基板サンプルをRFプラズマ装置に入れ、四フッ化炭素を充満後圧力6.67Paで1分間プラズマ処理して作製した樹脂膜保持基板を用いた他は実施例2と同様に行って導電性材料が充填された基板を得た。導電性材料の収納限界幅を調べた結果を表2に示す。
(Comparative Example 6)
In Example 2, instead of fluorination treatment with fluorine gas, a resin film holding substrate sample was placed in an RF plasma apparatus, filled with carbon tetrafluoride, and then plasma-treated at a pressure of 6.67 Pa for 1 minute to hold the resin film. A substrate filled with a conductive material was obtained in the same manner as in Example 2 except that the substrate was used. Table 2 shows the results of examining the storage limit width of the conductive material.

Figure 0004737386
Figure 0004737386

表2が示すように、フッ素ガス雰囲気に曝された表面を持つ樹脂膜からなる仕切部材と、TMAH水溶液に接触されたガラス面からなる溝底部とを有する樹脂膜保持基板は、幅が10μmの溝でも導電性材料のはみ出しがなく、微細な配線が可能であることを示した(実施例2)。
一方、樹脂膜に対するフッ素ガスによるフッ素化処理も、樹脂膜を載置した基板に対するTMAH水溶液接触処理も、共に実施しないと、幅が50μmの溝でも導電性材料が全面的にはみ出し、微細な配線は不可能であった(比較例5)。また、樹脂膜の表面を、フッ素ガスに曝す代わりに四フッ化炭素プラズマによる撥液処理を行い、その後樹脂膜保持基板をTMAH水溶液に接触させる親液処理を行っても、導電性材料の収納限界幅は30μmで微細部位収納性は不十分であった(比較例6)。
As shown in Table 2, the resin film holding substrate having a partition member made of a resin film having a surface exposed to a fluorine gas atmosphere and a groove bottom made of a glass surface in contact with the TMAH aqueous solution has a width of 10 μm. It was shown that the conductive material did not protrude even in the groove, and fine wiring was possible (Example 2).
On the other hand, if neither the fluorination treatment with a fluorine gas for the resin film nor the TMAH aqueous solution contact treatment for the substrate on which the resin film is placed is performed, the conductive material protrudes over the entire surface even in the groove having a width of 50 μm. Was impossible (Comparative Example 5). Even if the surface of the resin film is subjected to lyophobic treatment with carbon tetrafluoride plasma instead of being exposed to fluorine gas, and then subjected to lyophilic treatment in which the resin film holding substrate is brought into contact with the TMAH aqueous solution, the conductive material can be stored. The limit width was 30 μm, and the fine area storage was insufficient (Comparative Example 6).

(実施例3)
ガラス基板の表面にカルボキシル基含有脂環式オレフィン系樹脂による感光性の厚さ1μmの透明樹脂膜をスピンコート法により形成した。この感光性の樹脂膜はフォトレジスト膜としての機能を有している。次に、樹脂膜を活性放射線を用いて選択的に露光、現像及び加熱硬化をすることにより、図6(a)に示す、ガラス基板上に配線溝を有する透明の樹脂膜を載置した樹脂膜保持基板を得た。この樹脂膜保持基板をRFプラズマ装置にて2.67Paで10秒間の酸素プラズマ処理後、フッ素ガス雰囲気に曝して表面をフッ素処理し、その後23℃にて2.38%TMAH水溶液に10秒間浸漬した。
(Example 3)
A photosensitive transparent resin film having a thickness of 1 μm with a carboxyl group-containing alicyclic olefin-based resin was formed on the surface of the glass substrate by spin coating. This photosensitive resin film has a function as a photoresist film. Next, by selectively exposing, developing, and heat-curing the resin film using actinic radiation, a resin in which a transparent resin film having a wiring groove is placed on the glass substrate shown in FIG. A film holding substrate was obtained. This resin film holding substrate was subjected to oxygen plasma treatment at 2.67 Pa for 10 seconds with an RF plasma apparatus, then exposed to a fluorine gas atmosphere to treat the surface with fluorine, and then immersed in a 2.38% TMAH aqueous solution at 23 ° C. for 10 seconds. did.

次にインクジェット印刷法により、前記溝部に導電性材料を充填した。本実施例では導電性材料として、市販されている超微粒子の銀の分散液(パーフェクトシルバー、真空冶金社製;平均粒径8nmの銀微粒子100部、ドデシルアミン15部、ターピネオール75部)の銀100部に対し、メチルヘキサヒドロ無水フタル酸6.8部、レゾール型フェノール樹脂(PL−2211、群栄化学社製)5部、トルエン35部を混合後0.5μmのフィルタでろ過して調製した銀ペーストインクを用いて配線を形成した。導電性材料を充填後250度の温度で30分間焼成し、走査線及びゲート電極配線とした〔図6(b)〕。次に、マイクロ波励起プラズマを用いたプラズマCVD法によりSiHガス、Hガス、Nガス及びArガスを用いてシリコン窒化膜(SiN膜)を形成した。 Next, the groove material was filled with a conductive material by an ink jet printing method. In this example, as a conductive material, a commercially available silver dispersion of ultrafine particles (Perfect Silver, manufactured by Vacuum Metallurgical Company; 100 parts of silver fine particles with an average particle diameter of 8 nm, 15 parts of dodecylamine, 75 parts of terpineol) Prepared by mixing 6.8 parts of methylhexahydrophthalic anhydride, 5 parts of resol type phenolic resin (PL-2211, Gunei Chemical Co., Ltd.) and 35 parts of toluene with 100 parts, followed by filtration with a 0.5 μm filter. Wiring was formed using the prepared silver paste ink. After filling with the conductive material, it was baked for 30 minutes at a temperature of 250 ° C. to form scanning lines and gate electrode wirings (FIG. 6B). Next, a silicon nitride film (SiN x film) was formed using SiH 4 gas, H 2 gas, N 2 gas, and Ar gas by plasma CVD using microwave excitation plasma.

次に、マイクロ波励起プラズマを用いたプラズマCVD法により300℃にて、SiHガスを通気してアモルファスシリコン層を、次いで、SiHガス、PHガス及びArガスを通気してn+型アモルファスシリコン層を順次成膜した〔図6(c)〕。次に、全面にフォトレジストをスピンコート法により塗布し、100℃で1分間、ホットプレート上で乾燥し溶剤を除去した。次にg線ステッパを用いて、36mJ/cmのエネルギー量で露光した。露光に際しては、素子領域を残存するようにマスクを形成し、素子領域内部のチャネル領域に相当する部分はスリットマスクを用いて、露光量を調整した。2.38%TMAH水溶液を用いてパドル現像70秒間を行った結果、図6(d)に示すフォトレジスト形状を有するサンプルを得た。 Next, at 300 ° C. by plasma CVD using microwave excitation plasma, SiH 4 gas is vented to pass through the amorphous silicon layer, then SiH 4 gas, PH 3 gas and Ar gas are vented to form n + type amorphous. Silicon layers were sequentially formed [FIG. 6 (c)]. Next, a photoresist was applied to the entire surface by spin coating, and dried on a hot plate at 100 ° C. for 1 minute to remove the solvent. Next, it exposed with the energy amount of 36 mJ / cm < 2 > using the g line | wire stepper. At the time of exposure, a mask was formed so as to leave the element region, and the exposure amount was adjusted by using a slit mask for a portion corresponding to the channel region inside the element region. As a result of performing paddle development for 70 seconds using a 2.38% TMAH aqueous solution, a sample having the photoresist shape shown in FIG. 6D was obtained.

次に、プラズマエッチング装置を用いて、n+型アモルファスシリコン層及びアモルファスシリコン層のエッチングを行った。この際、フォトレジストも若干エッチングされ、膜厚が減少するため、フォトレジスト膜厚の薄いチャネル領域部のレジストはエッチング除去され、n+シリコン層もエッチングされた。素子領域部以外のn+型アモルファスシリコン層及びアモルファスシリコン層がエッチング除去され、チャネル領域のn+型アモルファスシリコン層がエッチング除去された時点で、エッチング処理を終了し、図6(e)に示す形状を有するサンプルを得た。ソース電極部及びドレイン電極部のn+型アモルファスシリコン層上のフォトレジストは残存したままの状態で、Arガス、Nガス、Hガスを用いて、マイクロ波励起プラズマ処理を行い、チャネル部のアモルファスシリコン表面に直接、窒化膜を形成した〔図7(f)〕。 Next, the n + type amorphous silicon layer and the amorphous silicon layer were etched using a plasma etching apparatus. At this time, the photoresist was also slightly etched to reduce the film thickness, so that the resist in the channel region where the photoresist film thickness was thin was removed by etching, and the n + silicon layer was also etched. When the n + type amorphous silicon layer and the amorphous silicon layer other than the element region are removed by etching and the n + type amorphous silicon layer in the channel region is removed by etching, the etching process is finished, and the shape shown in FIG. A sample with was obtained. With the photoresist on the n + -type amorphous silicon layer of the source electrode portion and the drain electrode portion remaining, microwave excitation plasma treatment is performed using Ar gas, N 2 gas, and H 2 gas, and the channel portion A nitride film was formed directly on the amorphous silicon surface [FIG. 7 (f)].

次に、ソース電極、及びドレイン電極領域上に残存するフォトレジスト膜を、酸素プラズマアッシングを施した後、レジスト剥離液などにより除去することで図7(g)の形状を有するサンプル得た。続いて、信号線、ソース電極配線及びドレイン電極配線をインクジェット印刷法などの印刷法やメッキ法で形成する際に必要となる仕切部材として、アルカリ可溶性高分子であるカルボキシル基含有脂環式オレフィン系樹脂を100g、架橋剤のEHPE3150(ダイセル化学工業■製)25g、感放射線性化合物である1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン(1モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(1.9モル)との縮合物25g、接着助剤のγ−グリシドキシプロピルトリメトキシシラン5g、酸化防止剤のイルガノックス1010(チバ・スペシャリティーケミカルズ社製)1g、及び界面活性剤のKP−341(信越化学工業社製)0.05gとをプロピレングリコールモノエチルエーテルアセテート200g、ジエチレングリコールエチルメチルエーテル100g、N−メチル−2−ピロリドン100gからなる混合溶媒に溶解させた溶液を孔径0.45μmのミリポアフィルタによりろ過して得られる感放射線性樹脂組成物を、あらかじめ洗浄し高純度窒素中で加熱して脱水を行い、その後、ヘキサメチレンジシラザン(HMDS)の蒸気を当ててHMDS密着層を形成しておいた無アルカリガラス基板(縦40mm、横10mm、厚み1mm)にスピンコート法によって塗布し100℃のオーブンに10分間置いて焼成して厚さ1μmの樹脂膜を形成し、信号線、ソース電極配線及びドレイン電極配線用フォトマスクを用いて露光、現像及び加熱硬化を行って透明樹脂層を形成し、図7(h)に記載のように、信号線、ソース電極配線及びドレイン電極配線領域となる溝を有するサンプルを得た。   Next, the photoresist film remaining on the source and drain electrode regions was subjected to oxygen plasma ashing, and then removed with a resist stripping solution or the like to obtain a sample having the shape of FIG. Subsequently, as a partition member required when forming signal lines, source electrode wirings and drain electrode wirings by a printing method such as an ink jet printing method or a plating method, a carboxyl group-containing alicyclic olefin system which is an alkali-soluble polymer 100 g of resin, 25 g of crosslinking agent EHPE3150 (manufactured by Daicel Chemical Industries, Ltd.), 1,1,3-tris (2,5-dimethyl-4-hydroxyphenyl) -3-phenylpropane (1 mol) as a radiation sensitive compound ) And 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.9 mol), 5 g of adhesion promoter γ-glycidoxypropyltrimethoxysilane, and Irganox 1010 antioxidant (Ciba) 1 g of Specialty Chemicals) and 0.05 g of surfactant KP-341 (Shin-Etsu Chemical Co., Ltd.) Radiation-sensitive resin obtained by filtering a solution prepared by dissolving a solution of propylene glycol monoethyl ether acetate 200 g, diethylene glycol ethyl methyl ether 100 g and N-methyl-2-pyrrolidone 100 g with a Millipore filter having a pore size of 0.45 μm The composition was washed and heated in high-purity nitrogen for dehydration, and then a non-alkali glass substrate (40 mm long, 40 mm long, HMDS adhesion layer formed by applying a vapor of hexamethylene disilazane (HMDS). (10 mm wide, 1 mm thick) by spin coating, placed in an oven at 100 ° C. for 10 minutes and baked to form a 1 μm thick resin film, using a photomask for signal lines, source electrode wiring and drain electrode wiring Exposure, development and heat curing to form a transparent resin layer. As described in FIG. 7 (h), to give a signal line, a sample having a groove serving as a source electrode wiring and the drain electrode wiring region.

前記サンプルを酸素プラズマ処理後、フッ素ガス雰囲気に曝して表面をフッ素処理し、次いで2.38%TMAH水溶液に浸漬した。次にインクジェット印刷法により、溝部に前記銀ペーストインクの導電性材料を充填した。導電性材料を充填後250度の温度で30分間焼成し、配線とした〔図6(i)〕。このようにして、TFTの形成を完了した。   After the oxygen plasma treatment, the sample was exposed to a fluorine gas atmosphere to treat the surface with fluorine, and then immersed in a 2.38% TMAH aqueous solution. Next, the conductive material of the silver paste ink was filled in the groove by an ink jet printing method. After filling the conductive material, it was baked at a temperature of 250 ° C. for 30 minutes to form a wiring [FIG. 6 (i)]. In this way, the formation of the TFT was completed.

次に、層間絶縁膜として、カルボキシル基含有脂環式オレフィン系樹脂による感光性で透明の樹脂膜を形成し、露光、現像を行って画素電極からTFT電極へのコンタクトホールを形成した。感光性透明樹脂の硬化は、感光性透明樹脂の光線透過率を高めるため、装置内表面をSUS316の電解研磨処理した加熱装置を用い、また、残存酸素濃度を10ppmに制御し、250℃で60分焼成した。これに引き続き、基板全面にITOをスパッタ成膜し、パターニングすることで画素電極とした。この表面に液晶の配向膜としてポリイミド膜を形成し、対向基板との間に液晶を挟持することにより図5に示す構造を有するアクティブマトリクス液晶表示装置を得た。
同表示装置は、平坦化層の透明性が高いため、輝度が高く、かつ、消費電力が低かった。
Next, as the interlayer insulating film, a photosensitive and transparent resin film was formed from a carboxyl group-containing alicyclic olefin-based resin, and exposure and development were performed to form a contact hole from the pixel electrode to the TFT electrode. In order to increase the light transmittance of the photosensitive transparent resin, the photosensitive transparent resin is cured by using a heating device in which the inner surface of the device is electropolished with SUS316, and the residual oxygen concentration is controlled to 10 ppm. Bake for minutes. Subsequently, ITO was sputtered on the entire surface of the substrate and patterned to form a pixel electrode. A polyimide film was formed on the surface as a liquid crystal alignment film, and the liquid crystal was sandwiched between the opposite substrate and an active matrix liquid crystal display device having the structure shown in FIG. 5 was obtained.
Since the flattening layer has high transparency, the display device has high luminance and low power consumption.

本発明の樹脂膜保持基板及び電子機器用回路基板の製造方法の一実施態様を示す工程説明図(その一)である。It is process explanatory drawing (the 1) which shows one embodiment of the manufacturing method of the resin film holding | maintenance board | substrate of this invention, and the circuit board for electronic devices. 本発明の樹脂膜保持基板及び電子機器用回路基板の製造方法の一実施態様を示す工程説明図(その二)である。It is process explanatory drawing (the 2) which shows one embodiment of the manufacturing method of the resin film holding | maintenance board | substrate of this invention, and the circuit board for electronic devices. 本発明実施例で用いる焼成装置の概念図である。It is a conceptual diagram of the baking apparatus used by this invention Example. 本発明実施例で用いる乾燥、フッ素ガス処理などのための電気炉の概念図である。It is a conceptual diagram of the electric furnace for drying, a fluorine gas process, etc. which are used by the Example of this invention. 本発明の一例のアクティブマトリクス液晶装置の構造を示す断面図である。It is sectional drawing which shows the structure of the active matrix liquid crystal device of an example of this invention. 本発明実施例4の工程説明図(その一)である。It is process explanatory drawing (the 1) of this invention Example 4. FIG. 本発明実施例4の工程説明図(その二)である。It is process explanatory drawing (the 2) of this invention Example 4. FIG.

符号の説明Explanation of symbols

1.基板
2.樹脂膜
3.マスク
4.紫外線
5.酸素プラズマ又は紫外線
6.フッ化物層
7.フッ素ガス
8.テトラメチルアンモニウムヒドロキシド水溶液
9.金属配線
10.インクジェットノズル
1. Substrate 2. 3. Resin film Mask 4. Ultraviolet light 5. Oxygen plasma or ultraviolet light 6. Fluoride layer Fluorine gas 8. 8. Tetramethylammonium hydroxide aqueous solution Metal wiring 10. Inkjet nozzle

Claims (13)

基板の上にパターン状の樹脂膜を形成した後、該樹脂膜の表面をフッ素ガス雰囲気に曝して撥液処理し、次いで該樹脂膜を有する面に対してアルカリ性溶液を接触させて親液処理することにより、樹脂膜保持基板を得て、当該樹脂膜保持基板の上で、樹脂膜の凸部に囲まれた凹部に、液状の導電性材料を充填して電気配線を形成することを特徴とする電子機器用回路基板の製造方法。 After forming a patterned resin film on the substrate, the surface of the resin film is exposed to a fluorine gas atmosphere to make a liquid repellent treatment, and then an alkaline solution is brought into contact with the surface having the resin film to make a lyophilic treatment by be Rukoto to obtain a resin film holding substrate, on the resin film support substrate, a concave portion surrounded by the convex portions of the resin film, to form an electrical wiring by filling a conductive material in a liquid phase A method for manufacturing a circuit board for electronic equipment, which is characterized . 前記樹脂膜が、基板上に熱硬化性で未硬化の樹脂膜を形成した後、該未硬化の樹脂膜を、マスクを介して露光後に現像し、又はエッチングし、残存する樹脂膜を加熱硬化してから乾燥してなるものである請求項1記載の電子機器用回路基板の製造方法。 After the resin film forms a thermosetting uncured resin film on the substrate, the uncured resin film is developed or exposed after exposure through a mask, and the remaining resin film is heat cured. The method for producing a circuit board for an electronic device according to claim 1 , wherein the circuit board is then dried. 前記アルカリ性溶液が、0.1〜5重量%のテトラメチルアンモニウムヒドロキシド水溶液である請求項1又は2記載の電子機器用回路基板の製造方法。 The method for producing a circuit board for an electronic device according to claim 1, wherein the alkaline solution is a 0.1 to 5 wt% tetramethylammonium hydroxide aqueous solution. 樹脂膜の加熱硬化を不活性ガス雰囲気で行う請求項2記載の電子機器用回路基板の製造方法。 The method for manufacturing a circuit board for an electronic device according to claim 2, wherein the heat curing of the resin film is performed in an inert gas atmosphere. 前記導電性材料の充填を印刷法によって行う請求項1〜4のいずれかに記載の電子機器用回路基板の製造方法。 Method of manufacturing a circuit board for an electronic device according to claim 1 for performing filling of the conductive material by printing method. 前記印刷法がインクジェット印刷法又はスクリーン印刷法である請求項記載の電子機器用回路基板の製造方法。 The method for manufacturing a circuit board for an electronic device according to claim 5 , wherein the printing method is an inkjet printing method or a screen printing method. 前記電気配線の上面と樹脂膜の上面とが実質上同一平面にある請求項のいずれかに記載の電子機器用回路基板の製造方法。 Method of manufacturing a circuit board for an electronic device according to any one of claims 1 to 6, the upper surface of the upper surface and the resin film of the electric wiring is in a substantially coplanar. 前記基板がガラス基板又はシリコンウェハである請求項のいずれかに記載の電子機器用回路基板の製造方法。 Method of manufacturing a circuit board for an electronic device according to any one of claims 1-7 wherein the substrate is a glass substrate or a silicon wafer. 前記導電性材料が有機物を含有している請求項のいずれかに記載の電子機器用回路基板の製造方法。 The method for manufacturing a circuit board for electronic equipment according to any one of claims 1 to 8 , wherein the conductive material contains an organic substance. 前記樹脂膜が酸性基を有する樹脂を用いて得られる膜である請求項のいずれかに記載の電子機器用回路基板の製造方法。 The method for manufacturing a circuit board for an electronic device according to any one of claims 1 to 9 , wherein the resin film is a film obtained using a resin having an acidic group. 前記樹脂膜がカルボキシル基含有脂環式オレフィン系樹脂及び感放射線成分を含有する感光性樹脂組成物で形成されたものである請求項10のいずれかに記載の電子機器用回路基板の製造方法。 The circuit board for electronic devices according to any one of claims 1 to 10 , wherein the resin film is formed of a photosensitive resin composition containing a carboxyl group-containing alicyclic olefin-based resin and a radiation-sensitive component. Method. 請求項11のいずれかに記載の製造方法によって得られる電子機器用回路基板。 A circuit board for an electronic device obtained by the production method according to any one of claims 1 to 11. 請求項11のいずれかに記載の製造方法によって得られる電子機器用回路基板を備えた表示装置。 Display device having a circuit board for an electronic device obtained by the production method according to any one of claims 1 to 11.
JP2005104794A 2005-03-31 2005-03-31 Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device Expired - Fee Related JP4737386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104794A JP4737386B2 (en) 2005-03-31 2005-03-31 Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104794A JP4737386B2 (en) 2005-03-31 2005-03-31 Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device

Publications (2)

Publication Number Publication Date
JP2006286929A JP2006286929A (en) 2006-10-19
JP4737386B2 true JP4737386B2 (en) 2011-07-27

Family

ID=37408504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104794A Expired - Fee Related JP4737386B2 (en) 2005-03-31 2005-03-31 Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device

Country Status (1)

Country Link
JP (1) JP4737386B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213708B1 (en) * 2009-06-03 2012-12-18 엘지디스플레이 주식회사 Array substrate and method of fabricating the same
JP5885904B2 (en) * 2009-08-07 2016-03-16 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP5468496B2 (en) * 2010-08-25 2014-04-09 株式会社東芝 Manufacturing method of semiconductor substrate
KR101363151B1 (en) * 2011-09-06 2014-02-14 삼성전자주식회사 Transparent circuit substrate for touchscreen, method for fabricating the same and touchscreen comprising the same
JP6346161B2 (en) * 2015-12-15 2018-06-20 株式会社東芝 Pattern formation method
JP6337363B1 (en) * 2016-10-05 2018-06-06 国立大学法人北陸先端科学技術大学院大学 Composite member and manufacturing method thereof
JP2019181293A (en) * 2019-08-05 2019-10-24 株式会社三洋物産 Game machine
JP2019181294A (en) * 2019-08-05 2019-10-24 株式会社三洋物産 Game machine
JP2019181295A (en) * 2019-08-05 2019-10-24 株式会社三洋物産 Game machine
CN112289681A (en) * 2020-10-28 2021-01-29 上海华力集成电路制造有限公司 Method for removing amorphous silicon layer in groove

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256490A (en) * 1999-03-05 2000-09-19 Mitsubishi Chemicals Corp Production of ion exchange resin
JP2002091006A (en) * 2000-08-16 2002-03-27 Internatl Business Mach Corp <Ibm> Resist composition containing bulky anhydride additive
JP2002121403A (en) * 2000-10-19 2002-04-23 Nippon Zeon Co Ltd Curing composition, insulating material and circuit board
JP2003124215A (en) * 2001-10-15 2003-04-25 Seiko Epson Corp Patterning method, semiconductor device, electric circuit, display module, color filter and light emitting element
JP2003124213A (en) * 2001-10-09 2003-04-25 Seiko Epson Corp Patterning method, semiconductor device, electric circuit, display module, color filter and light emitting element
JP2003128820A (en) * 2001-10-29 2003-05-08 Daiwabo Co Ltd Method of surface modification of synthetic resin material and method for producing battery separator
JP2003234558A (en) * 2001-12-05 2003-08-22 Toray Ind Inc Wiring board and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224451A (en) * 1995-02-21 1996-09-03 Mitsubishi Chem Corp Production of porous high-molecular membrane
JPH1051112A (en) * 1996-08-07 1998-02-20 Fujitsu Ltd Formation method for circuit board using heat-resistant resin composition
JPH10261387A (en) * 1997-01-14 1998-09-29 Mitsubishi Chem Corp Battery component and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256490A (en) * 1999-03-05 2000-09-19 Mitsubishi Chemicals Corp Production of ion exchange resin
JP2002091006A (en) * 2000-08-16 2002-03-27 Internatl Business Mach Corp <Ibm> Resist composition containing bulky anhydride additive
JP2002121403A (en) * 2000-10-19 2002-04-23 Nippon Zeon Co Ltd Curing composition, insulating material and circuit board
JP2003124213A (en) * 2001-10-09 2003-04-25 Seiko Epson Corp Patterning method, semiconductor device, electric circuit, display module, color filter and light emitting element
JP2003124215A (en) * 2001-10-15 2003-04-25 Seiko Epson Corp Patterning method, semiconductor device, electric circuit, display module, color filter and light emitting element
JP2003128820A (en) * 2001-10-29 2003-05-08 Daiwabo Co Ltd Method of surface modification of synthetic resin material and method for producing battery separator
JP2003234558A (en) * 2001-12-05 2003-08-22 Toray Ind Inc Wiring board and its manufacturing method

Also Published As

Publication number Publication date
JP2006286929A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4737386B2 (en) Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device
JPWO2005096684A1 (en) Circuit board, circuit board manufacturing method, and display device including circuit board
JP4410951B2 (en) Pattern forming method and manufacturing method of liquid crystal display device
US7547567B2 (en) Method of forming film pattern, device, method of manufacturing device, electro-optical device, and electronic apparatus
US20100184289A1 (en) Substrate and method of manufacturing the same
WO2019182041A1 (en) Method for manufacturing cured film and method for manufacturing organic el display
JPWO2019009101A1 (en) Method of manufacturing conductive film, method of manufacturing field effect transistor using the same, and method of manufacturing wireless communication device
KR101899481B1 (en) Method of forming line in electric device
US20060178013A1 (en) Method of forming film pattern, device, method of manufacturing device, electro-optical device, and electronic apparatus
KR20090071538A (en) Semiconductor device and semiconductor device manufacturing method
KR101338301B1 (en) Apparatus for producing electronic device such as display device, process for producing electronic device such as display device, and electronic device such as display device
US7179697B2 (en) Method of fabricating an electronic device
JP2012256726A (en) Rework method for resist film, manufacturing method for semiconductor device, and substrate processing system
JP3605567B2 (en) Method for forming transparent conductive film using chemically amplified resist
JP2015233044A (en) Organic semiconductor element manufacturing method and organic semiconductor element
KR101641957B1 (en) Method of forming patterns, display substrate and display device manufactured by using the same
JP2005118660A (en) Liquid repellent region forming method, pattern forming method and electronic device
WO2012050006A1 (en) Array substrate and method for manufacturing same
JP2006202961A (en) Processing method using printing pattern and printing pattern forming apparatus
JP2009105218A (en) Pattern forming method
KR101023292B1 (en) Method for manufacturing lcd
KR100616714B1 (en) A method for a forming contact hole and a TFT fabrication method thereof
JP5335843B2 (en) Manufacturing method of substrates for electronic devices
JP2010082946A (en) Image forming method and image pattern
JP2001110711A (en) Eliminating method of organic thin film, manufacturing method of semiconductor device and liquid crystal display device using the method, and eliminating equipment of organic thin film used for manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees