JP2003128820A - Method of surface modification of synthetic resin material and method for producing battery separator - Google Patents

Method of surface modification of synthetic resin material and method for producing battery separator

Info

Publication number
JP2003128820A
JP2003128820A JP2001330863A JP2001330863A JP2003128820A JP 2003128820 A JP2003128820 A JP 2003128820A JP 2001330863 A JP2001330863 A JP 2001330863A JP 2001330863 A JP2001330863 A JP 2001330863A JP 2003128820 A JP2003128820 A JP 2003128820A
Authority
JP
Japan
Prior art keywords
gas
reactor
vol
synthetic resin
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001330863A
Other languages
Japanese (ja)
Other versions
JP3709160B2 (en
JP2003128820A5 (en
Inventor
Hiroyuki Yamamoto
博之 山本
Nobuo Aoki
延夫 青木
Shuji Hori
修二 堀
Tatsunobu Kida
達宣 木田
Toshio Kamisasa
利夫 上笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Daiwabo Polytec Co Ltd
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Daiwabo Polytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd, Daiwabo Polytec Co Ltd filed Critical Daiwa Boseki KK
Priority to JP2001330863A priority Critical patent/JP3709160B2/en
Publication of JP2003128820A publication Critical patent/JP2003128820A/en
Publication of JP2003128820A5 publication Critical patent/JP2003128820A5/ja
Application granted granted Critical
Publication of JP3709160B2 publication Critical patent/JP3709160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of surface modification in which a porous synthetic resin sheet including the inside of the voids can be uniformly surface- modified safely and efficiently and a sulfone group and other hydrophilic functional groups are fixed on the material, and which is suitable for providing hydrophilic properties to a nonwoven fabric such as a battery separator. SOLUTION: The porous synthetic resin sheet 3 that is uniformly and efficiently surface-modified including the inside of the voids of the sheet 3 is obtained safely by bringing the porous synthetic resin sheet 3 in a reactor 1 in contact with a gas containing a low concentration of sulfur dioxide, exhausting a part of the gas containing sulfur dioxide outside the reactor 1 to prepare an environment in which the sulfur dioxide gas is remaining under a desired reduced pressure, introducing a gas containing a low concentration of fluorine to bring the sheet 3 in contact with the gas. The method of surface modification is used for a nonwoven fabric mainly comprising a polyolefin fiber to obtain the battery separator excellent in battery properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂材料を安
全、かつ効率的に表面改質する方法であり、詳しくは、
多孔性合成樹脂シートの空隙内部まで均一に表面改質が
でき、材料にスルホン基および他の親水性官能基を固定
する電池用セパレータなど不織布の親水化に好適な表面
改質方法に関する。
TECHNICAL FIELD The present invention relates to a method for safely and efficiently surface-modifying a synthetic resin material.
The present invention relates to a surface reforming method suitable for hydrophilizing a nonwoven fabric such as a battery separator in which a sulfo group and other hydrophilic functional groups are fixed to a material, which allows the surface to be uniformly reformed even inside the voids of a porous synthetic resin sheet.

【0002】[0002]

【従来の技術】従来より、ポリオレフィン系不織布から
なる電池セパレータは、耐アルカリ性に優れていること
から、アルカリ2次電池セパレータとして好適に使用さ
れている。しかしポリオレフィン系繊維は電解液との親
和性に乏しいため、ポリオレフィン系不織布に親水性を
付与する様々な親水化処理方法が提案されている。親水
化表面改質処理方法として、フッ素ガスの酸化力を利用
して亜硫酸ガスなどを繊維表面に官能基として固定させ
る方法がある。例えば、特開平4−59838公報で
は、25vol%以上の亜硫酸ガス雰囲気下にシートをさ
らし、連続して25vol%以上のフッ素ガス雰囲気下で
シートと各ガスを接触させる方法が提案されている。ま
た、特開平10−7829公報では亜硫酸ガスと酸素ガ
ス、フッ素ガス、酸素を混合させた状態で表面改質処理
を行う方法が提案されている。
2. Description of the Related Art Conventionally, a battery separator made of a polyolefin-based non-woven fabric has been used as an alkaline secondary battery separator because it is excellent in alkali resistance. However, since polyolefin fibers have a poor affinity with the electrolytic solution, various hydrophilic treatment methods for imparting hydrophilicity to polyolefin nonwoven fabrics have been proposed. As a hydrophilic surface modification treatment method, there is a method of fixing sulfurous acid gas or the like as a functional group on the fiber surface by utilizing the oxidizing power of fluorine gas. For example, Japanese Patent Application Laid-Open No. 4-59838 proposes a method of exposing a sheet to a sulfurous acid gas atmosphere of 25 vol% or more and continuously contacting each sheet with each gas in a fluorine gas atmosphere of 25 vol% or more. Further, Japanese Patent Application Laid-Open No. 10-7829 proposes a method of performing surface modification treatment in a state where sulfurous acid gas, oxygen gas, fluorine gas and oxygen are mixed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記表
面改質方法には、以下のような問題点がある。例えば、
特開平4−59838号公報では、電解液との親和性を
向上させる親水基を繊維表面に固定させることできる
が、前記方法では亜硫酸ガスとフッ素ガスの比較的高濃
度のガス雰囲気下で表面改質処理を施すため、被処理体
表面で2成分のガスの発熱反応により繊維表面の温度上
昇が発生し、ある濃度限界値を超えるとガス同士の化学
反応が促進され、工業的に安全性に問題がある。また、
常圧下で表面改質処理を施すため、高目付の不織布、見
掛け密度の大きい不織布、あるいは極細繊維を用いた緻
密な不織布などでは不織布内部までガスが浸透しにく
く、その結果不織布内部まで親水化処理が均一にされに
くい欠点がある。また、特開平10−7829号公報で
は、同時に亜硫酸ガス、フッ素ガスを混合した系でロー
ル形状のサンプルを巻き取って親水化処理を施すため、
ガス同士の反応、あるいはガスと基布との反応によっ
て、反応系内の亜硫酸ガス、フッ素ガスの濃度が経時的
に変化する要因が大きく、不織布の長さ方向において均
一な親水化処理を制御しにくいという欠点がある。さら
に、前記公報と同様に、常圧下で表面改質処理を施すた
め、不織布内部まで親水化処理が均一にされにくい欠点
がある。
However, the above surface modification method has the following problems. For example,
In Japanese Patent Application Laid-Open No. 4-59838, a hydrophilic group that improves the affinity with an electrolytic solution can be fixed on the fiber surface, but in the method described above, the surface modification is performed under a gas atmosphere of relatively high concentration of sulfur dioxide and fluorine gas. Since the quality treatment is applied, the temperature of the fiber surface rises due to the exothermic reaction of the two-component gas on the surface of the object to be treated, and when a certain concentration limit value is exceeded, the chemical reaction between the gases is promoted, which is industrially safe. There's a problem. Also,
Since the surface modification treatment is performed under normal pressure, it is difficult for gas to permeate into the inside of non-woven fabrics with high basis weight, high apparent density, or dense non-woven fabrics using ultrafine fibers, and as a result, the inside of the non-woven fabric is hydrophilized. However, there is a drawback that it is difficult to make them uniform. Further, in JP-A-10-7829, since a roll-shaped sample is wound up in a system in which sulfurous acid gas and fluorine gas are mixed at the same time to perform hydrophilic treatment,
The concentration of sulfurous acid gas and fluorine gas in the reaction system changes over time due to the reaction of gases with each other or the reaction of gas with the base cloth, and it is possible to control the uniform hydrophilic treatment in the length direction of the nonwoven fabric. It has the drawback of being difficult. Further, as in the above-mentioned publication, since the surface modification treatment is performed under normal pressure, there is a drawback that it is difficult to make the hydrophilic treatment even inside the nonwoven fabric.

【0004】[0004]

【課題を解決するための手段】本発明は上記の問題を解
決するため鋭意検討した結果、合成樹脂材料を予め亜硫
酸ガス雰囲気下に通過させた後、亜硫酸ガスの一部を外
部に排気し、反応器内が減圧された状態にして、合成樹
脂材料の表面に十分な残亜硫酸ガスを接触させた状態を
保持するとともに、合成樹脂材料の内部にまで残亜硫酸
ガスを浸透させてフッ素ガスを反応させることにより、
反応器内の亜硫酸ガスとフッ素ガスとの発熱反応による
温度上昇を抑制しつつ、かつ材料の空隙内部まで均一か
つ効率的に、しかも安全に亜硫酸ガスおよびフッ素ガス
を接触させて、合成樹脂材料にスルホン基などの硫黄含
有親水性官能基、および他の親水性官能基を固定するこ
とが可能であることを見い出し、本発明に至った。すな
わち、本発明の合成樹脂材料の表面改質方法は、反応器
内の合成樹脂材料を、亜硫酸ガス濃度が0.5vol%以
上、10vol%以下の範囲からなる亜硫酸含有ガスに接
触させ、次いで亜硫酸含有ガスの一部を反応器外に排気
し、1×104Pa以上、8×104Pa以下の範囲の減圧下
で亜硫酸ガスが残存した雰囲気中に、フッ素含有ガスを
導入し、合成樹脂材料をフッ素ガス濃度が0.1vol%
以上、10vol%以下の範囲からなるフッ素含有ガスに
接触させるものである。
Means for Solving the Problems The present invention has been earnestly studied to solve the above-mentioned problems. As a result, a synthetic resin material is passed through a sulfurous acid gas atmosphere in advance, and then a part of the sulfurous acid gas is exhausted to the outside. Keeping the inside of the reactor in a depressurized state, keeping the surface of the synthetic resin material in contact with sufficient residual sulfurous acid gas, and allowing the residual sulfurous acid gas to penetrate into the synthetic resin material and reacting with fluorine gas By letting
While suppressing the temperature rise due to the exothermic reaction between sulfur dioxide gas and fluorine gas in the reactor, the sulfurous acid gas and the fluorine gas are brought into contact with each other uniformly and efficiently even inside the voids of the material, and safely to the synthetic resin material. It was found that it is possible to immobilize a sulfur-containing hydrophilic functional group such as a sulfone group, and other hydrophilic functional groups, and the present invention has been completed. That is, the method for surface modification of a synthetic resin material of the present invention comprises contacting the synthetic resin material in the reactor with a sulfur dioxide-containing gas having a sulfur dioxide gas concentration of 0.5 vol% or more and 10 vol% or less, and then sulfite. A part of the contained gas was exhausted to the outside of the reactor, and the fluorine-containing gas was introduced into the atmosphere in which the sulfurous acid gas remained under a reduced pressure in the range of 1 × 10 4 Pa or more and 8 × 10 4 Pa or less. The material has a fluorine gas concentration of 0.1 vol%
As described above, the gas is brought into contact with the fluorine-containing gas in the range of 10 vol% or less.

【0005】前記亜硫酸含有ガスは、濃度0.5vol%
以上、10vol%以下の範囲の亜硫酸ガスと、濃度90v
ol%以上、99.5vol%以下の範囲の窒素ガスを含有
することにより、急激な反応を抑制させるとともに、反
応時の温度上昇を緩和させ、安全、かつ効率的に表面改
質することができ、好ましい。
The sulfur-containing gas has a concentration of 0.5 vol%.
Above, sulfur dioxide in the range of 10vol% or less, and a concentration of 90v
By containing the nitrogen gas in the range of ol% or more and 99.5 vol% or less, it is possible to suppress a rapid reaction, moderate the temperature rise during the reaction, and perform surface modification safely and efficiently. ,preferable.

【0006】前記亜硫酸含有ガスの一部を反応器外に排
気したときの亜硫酸含有ガスの残存率は、10%以上、
80%以下の範囲とすることにより、合成樹脂材料の表
面に残亜硫酸ガスを接触させた状態を保持することがで
き、適量のスルホン基を導入することができ、好まし
い。
When a part of the sulfurous acid-containing gas is exhausted outside the reactor, the residual ratio of the sulfurous acid-containing gas is 10% or more,
The range of 80% or less is preferable because the state in which residual sulfurous acid gas is brought into contact with the surface of the synthetic resin material can be maintained and a suitable amount of sulfone group can be introduced.

【0007】また、前記フッ素含有ガス処理後、フッ素
含有ガスの50vol%以上を反応器外に排気し、次いで
酸素含有ガスを導入し、10×104Paに復圧して合成
樹脂材料と接触させることにより、合成樹脂材料の表面
に残留した副生成物であるフッ酸(HF)が除去された
り、残留フッ素ガス成分が置換されて、親水性能を阻害
する恐れのある成分を除去することができ、好ましい。
After the treatment of the fluorine-containing gas, 50 vol% or more of the fluorine-containing gas is exhausted to the outside of the reactor, then the oxygen-containing gas is introduced, and the pressure is restored to 10 × 10 4 Pa and brought into contact with the synthetic resin material. As a result, hydrofluoric acid (HF), which is a by-product that remains on the surface of the synthetic resin material, can be removed, or residual fluorine gas components can be replaced, and components that may impair hydrophilic performance can be removed. ,preferable.

【0008】前記合成樹脂材料は、多孔性合成樹脂シー
トからなり、ロール状に巻き取られた多孔性合成樹脂シ
ートを反応器内の2軸の巻き取り装置に設置し、一方の
軸から巻き出し、もう一方の軸に巻き取りながら反応ガ
スを接触させると、効率的に表面改質が施され、好まし
い。さらに、巻き出し、巻き取り処理回数は、2回以上
であると、表面改質効率がよく、好ましい。
The synthetic resin material comprises a porous synthetic resin sheet, and the porous synthetic resin sheet wound in a roll shape is installed in a biaxial winding device in the reactor, and is unwound from one shaft. It is preferable that the reaction gas is brought into contact with the other shaft while being wound on the other shaft, since the surface modification is efficiently performed. Furthermore, it is preferable that the number of unwinding and winding processes is two or more because the surface modification efficiency is good.

【0009】本発明の電池用セパレータの製造方法にお
いて、前記表面改質方法に基づき、反応器内のポリオレ
フィン系繊維を主体とする不織布を、亜硫酸ガス濃度が
0.5vol%以上、10vol%以下の範囲からなる亜硫酸
含有ガスに接触させ、次いで亜硫酸含有ガスの一部を反
応器外に排気し、1×104Pa以上、8×104Pa以下の
範囲の減圧下で亜硫酸ガスが残存した雰囲気中に、フッ
素含有ガスを導入し、合成樹脂材料をフッ素ガス濃度が
0.1vol%以上、10vol%以下の範囲からなるフッ素
含有ガスに接触させることにより、不織布の空隙内部の
繊維表面まで十分に親水化処理され、スルホン基、カル
ボキシル基、水酸基などの親水性官能基が付与された電
池用セパレータを製造することができる。以下、本発明
について詳細に説明する。
In the method for producing a battery separator according to the present invention, a non-woven fabric mainly composed of polyolefin fibers in a reactor having a sulfurous acid gas concentration of 0.5 vol% or more and 10 vol% or less is prepared based on the surface modification method. An atmosphere in which sulfurous acid gas remains under reduced pressure in the range of 1 × 10 4 Pa or more and 8 × 10 4 Pa or less by contacting with a sulfurous acid-containing gas having a range, and then exhausting a part of the sulfurous acid-containing gas to the outside of the reactor. By introducing a fluorine-containing gas into the inside and bringing the synthetic resin material into contact with a fluorine-containing gas having a fluorine gas concentration of 0.1 vol% or more and 10 vol% or less, the fiber surface inside the voids of the nonwoven fabric can be sufficiently It is possible to manufacture a battery separator that has been subjected to a hydrophilization treatment and is provided with a hydrophilic functional group such as a sulfone group, a carboxyl group or a hydroxyl group. Hereinafter, the present invention will be described in detail.

【0010】[0010]

【発明の実施の形態】本発明における合成樹脂材料とし
ては、例えば、合成樹脂で形成された繊維、糸、フィル
ム、多孔性膜、織物、編物、不織布、ネット、成形体な
どでこれらを2種類以上の用いた複合体であってもよ
い。合成樹脂材料が多孔性シートであると、ロール状に
巻き取ることができ、反応器内で巻き出し、巻き取りを
繰り返すことができるとともに、本発明の表面改質方法
により最も効率的に反応させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the synthetic resin material in the present invention include fibers, threads, films, porous membranes, woven fabrics, knitted fabrics, non-woven fabrics, nets, and molded bodies made of synthetic resin. The complex used above may be used. When the synthetic resin material is a porous sheet, it can be wound in a roll shape, unwound in a reactor and can be repeatedly wound, and the surface reforming method of the present invention causes the most efficient reaction. be able to.

【0011】前記合成樹脂材料の素材としては、例え
ば、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミ
ド系樹脂、ポリオレフィン系樹脂、ポリフェニレンサル
ファイド系樹脂などが挙げられ、特に、電池用セパレー
タ用途としては、耐アルカリ性の点からポリプロピレ
ン、ポリエチレン、エチレン−ビニルアルコール共重合
体、ポリメチルペンテンなどのポリオレフィン系樹脂が
好適である。
Examples of the material of the synthetic resin material include polyester resins, polyamide resins, polyimide resins, polyolefin resins, polyphenylene sulfide resins, and the like. Particularly, for battery separator applications, alkali resistance is used. From the viewpoint of the above, polyolefin resins such as polypropylene, polyethylene, ethylene-vinyl alcohol copolymer, polymethylpentene and the like are preferable.

【0012】前記合成樹脂材料は、反応器内に収納さ
れ、一旦0.2×104Pa(0.02atm)以下になるま
で反応器内が減圧される。前記減圧は、反応器内あるい
は合成樹脂材料が水分を含んでいると、フッ素ガスによ
る材料の酸化作用が不十分となる恐れがあるからであ
る。例えば、図1に示す合成樹脂材料の表面改質方法に
従って説明すると、ロール状に巻き取られた多孔性合成
樹脂シート(2)を用いた場合、まず、反応器(1)内
に2軸の巻き取り装置(4)を設置し、前記ロール
(2)を巻き取り装置(4)にセットし、反応器(1)
を密閉する。前記巻き取り装置(4)は、ガス反応の各
工程でA軸(4A)からB軸(4B)へ、あるいはB軸
(4B)からA軸(4A)へと自由に巻き出し、巻き取
りを繰り返すことが可能である。次いで、排気口(6)
から反応器(1)内に充満している空気、水分などを排
出し、0.2×104Pa(0.02atm)以下まで反応器
(1)内を減圧する。必要に応じて、減圧後、反応器内
で多孔性合成樹脂シート(3)の巻き出し、巻き取りを
1回以上行って、合成樹脂シート内部の水分を除去して
もよい。
[0012] The synthetic resin material is housed in the reactor, and the interior of the reactor is decompressed until it becomes 0.2 × 10 4 Pa (0.02 atm) or less. This is because the reduced pressure may result in insufficient oxidation of the material by the fluorine gas if the inside of the reactor or the synthetic resin material contains water. For example, to explain according to the surface modification method of the synthetic resin material shown in FIG. 1, when the porous synthetic resin sheet (2) wound in a roll shape is used, first, the biaxial shaft in the reactor (1) is used. The winding device (4) is installed, the roll (2) is set on the winding device (4), and the reactor (1) is set.
Seal. The winding device (4) freely unwinds and winds from the A axis (4A) to the B axis (4B) or from the B axis (4B) to the A axis (4A) in each step of gas reaction. It is possible to repeat. Then the exhaust port (6)
The air, water and the like filled in the reactor (1) are discharged from the reactor, and the pressure in the reactor (1) is reduced to 0.2 × 10 4 Pa (0.02 atm) or less. If necessary, after the pressure is reduced, the porous synthetic resin sheet (3) may be unwound and taken up once or more in the reactor to remove the water content in the synthetic resin sheet.

【0013】前記減圧後、まず亜硫酸含有ガス雰囲気下
で合成樹脂材料を亜硫酸ガスと接触させるべくガスの調
製を行う。反応器内の亜硫酸含有ガスは、濃度が0.5
vol%以上、10vol%以下の範囲の亜硫酸ガスを含有す
る。好ましい亜硫酸ガス濃度の下限は、1vol%以上で
ある。好ましい亜硫酸ガス濃度の上限は、5vol%以下
である。亜硫酸ガス濃度が0.5vol%未満であると、
合成樹脂材料に十分な亜硫酸ガス成分を接触させること
ができず、10vol%を超えると、フッ素ガス導入時、
ガス同士の反応による発熱で反応器内の温度上昇が顕著
になり安全性が問題となる恐れがある。
After the depressurization, the gas is prepared so that the synthetic resin material is brought into contact with the sulfurous acid gas in the atmosphere containing the sulfurous acid. The sulfur-containing gas in the reactor has a concentration of 0.5.
It contains sulfur dioxide in the range of vol% or more and 10 vol% or less. The preferable lower limit of the sulfurous acid gas concentration is 1 vol% or more. The preferable upper limit of the sulfurous acid gas concentration is 5 vol% or less. If the sulfur dioxide concentration is less than 0.5 vol%,
If the sulfurous acid gas component cannot be contacted with the synthetic resin material sufficiently and exceeds 10 vol%, when fluorine gas is introduced,
Due to the heat generated by the reaction between the gases, the temperature rise in the reactor becomes significant, which may cause a safety problem.

【0014】また、前記亜硫酸含有ガスには、急激な反
応を抑制させるとともに、反応時の温度上昇を緩和さ
せ、安全、かつ効率的に表面改質するために、濃度90
vol%以上、99.5vol%以下の範囲の窒素ガスを含有
することが好ましい。より好ましい窒素ガス濃度の下限
は、95vol%以上である。より好ましい窒素ガス濃度
の上限は、99vol%以下である。
Further, the sulfurous acid-containing gas has a concentration of 90% in order to suppress a rapid reaction, moderate a temperature rise during the reaction, and safely and efficiently modify the surface.
It is preferable to contain nitrogen gas in the range of vol% or more and 99.5 vol% or less. The more preferable lower limit of the nitrogen gas concentration is 95 vol% or more. A more preferable upper limit of the nitrogen gas concentration is 99 vol% or less.

【0015】前記亜硫酸含有ガスの調製手順としては、
所望のガス濃度に調整する手段であれば特に限定はされ
ず、例えば、亜硫酸ガスと窒素ガスを予め混合した混合
ガスを用いる方法、あるいは窒素ガスを反応器内に所定
量導入した後、最後に亜硫酸含有ガスを導入する方法が
挙げられ、後者が亜硫酸ガス濃度の微妙な調整、反応時
間の制御がしやすく都合が良い。具体的には、まず窒素
ガスを反応器内に50vol%以上、90vol%以下の範囲
で導入する。次いで、窒素ガスで希釈された亜硫酸ガス
を反応器内に導入してガスの調整を行う。前記導入時の
亜硫酸ガス濃度は、10vol%以上、20vol%以下の範
囲であることが好ましい。導入時の亜硫酸ガス濃度が1
0vol%未満であると、反応器内を所望の亜硫酸ガス濃
度に調製する際のガス濃度の調整に必要以上に時間を費
やし、工程性に劣る。導入時の亜硫酸ガス濃度が20vo
l%を超えると、反応器内の亜硫酸ガスの拡散が悪くな
り、均一な亜硫酸ガス雰囲気に調製することが困難とな
るからである。
The procedure for preparing the sulfurous acid-containing gas is as follows:
It is not particularly limited as long as it is a means for adjusting to a desired gas concentration, for example, a method using a mixed gas in which sulfur dioxide gas and nitrogen gas are mixed in advance, or after introducing a predetermined amount of nitrogen gas into the reactor, finally There is a method of introducing a sulfurous acid-containing gas, and the latter is convenient because it is easy to finely adjust the sulfurous acid gas concentration and control the reaction time. Specifically, first, nitrogen gas is introduced into the reactor in a range of 50 vol% or more and 90 vol% or less. Then, sulfur dioxide gas diluted with nitrogen gas is introduced into the reactor to adjust the gas. The sulfur dioxide gas concentration at the time of introduction is preferably in the range of 10 vol% or more and 20 vol% or less. Sulfurous acid gas concentration at the time of introduction is 1
If it is less than 0 vol%, it takes more time than necessary to adjust the gas concentration when the inside of the reactor is adjusted to the desired sulfurous acid gas concentration, resulting in poor processability. Sulfurous acid gas concentration at the time of introduction is 20 vo
This is because if it exceeds 1%, the diffusion of sulfurous acid gas in the reactor becomes poor and it becomes difficult to prepare a uniform sulfurous acid gas atmosphere.

【0016】反応器内を亜硫酸含有ガス雰囲気に調製し
た後、反応器内に収納された合成樹脂材料を反応させ
る。反応条件としては、反応温度は0℃以上、40℃以
下の範囲が好ましい。反応温度が0℃未満であると、亜
硫酸ガスの液化の危険性があり、40℃を超えると、過
剰反応が起こる恐れがある。また、反応時間は、30秒
以上であることが好ましい。具体的には、図1に示すロ
ール状に巻き取られた多孔性合成樹脂シート(2)を用
いた場合、前記減圧した反応器(1)内に亜硫酸含有ガ
スを吹出ノズル(5)から噴出して反応器(1)内を亜
硫酸含有ガス雰囲気に調製する。次いで、ロール(2)
の巻き出しを開始し、反応させる。巻き取り速度(ガス
接触速度)は、特に限定されるものではないが、亜硫酸
ガスを十分、かつ均一に接触させるため、30m/min以
下で巻き取るのが好ましい。また、巻き出し、巻き取り
の回数も反応効率に合わせて適宜設定すればよく、1回
以上行えばよい。
After preparing the atmosphere of the sulfurous acid-containing gas in the reactor, the synthetic resin material housed in the reactor is reacted. The reaction conditions are preferably such that the reaction temperature is 0 ° C. or higher and 40 ° C. or lower. If the reaction temperature is lower than 0 ° C, there is a risk of liquefaction of sulfurous acid gas, and if it exceeds 40 ° C, an excessive reaction may occur. Further, the reaction time is preferably 30 seconds or more. Specifically, when the roll-shaped porous synthetic resin sheet (2) shown in FIG. 1 is used, a sulfur dioxide-containing gas is ejected from the ejection nozzle (5) into the depressurized reactor (1). Then, the inside of the reactor (1) is adjusted to a gas atmosphere containing sulfurous acid. Then roll (2)
Start unrolling and react. The winding speed (gas contact speed) is not particularly limited, but it is preferable to wind at 30 m / min or less in order to contact the sulfurous acid gas sufficiently and uniformly. Further, the number of times of unwinding and winding may be appropriately set according to the reaction efficiency, and may be performed once or more.

【0017】次いで、反応器(1)内の亜硫酸含有ガス
は、真空ポンプ(7)などの吸引装置を用いて、反応器
内を1×104Pa(0.1atm)以上、8×104Pa
(0.8atm)以下の範囲に減圧しながら、反応器外に
ガスの一部が排気口(6)から排気される。亜硫酸含有
ガスの一部を排気し、前記範囲の減圧下として、一部の
ガスを反応器(1)内に残存させることにより、合成樹
脂材料の表面に残亜硫酸ガスが常時接触した状態で、次
工程のフッ素ガス反応させることができるので、合成樹
脂材料への亜硫酸ガス成分の付与が効率よく行われる。
特に、多孔性合成樹脂シート(3)であれば、亜硫酸含
有ガスを接触後、反応器内を減圧することにより、次工
程の復圧時に、亜硫酸ガスが多孔性合成樹脂シート
(3)の空隙内部にまで浸透しやすく都合がよい。排気
による亜硫酸含有ガスの残存率は、10%以上、80%
以下であることが好ましい。より好ましい残存率の下限
は、20%である。より好ましい残存率の上限は、50
%以下である。亜硫酸ガスの残存率が10%未満である
と、材料表面に存在する亜硫酸ガス濃度が低く、スルホ
ン基などの硫黄成分が十分に付与することができない。
残存率が80%を超えると、反応器内雰囲気の亜硫酸ガ
ス濃度が高く、フッ素ガス導入時、導入されたフッ素ガ
スと、反応器内の残亜硫酸ガスとが反応してしまい、均
一な処理がしにくくなる。
Next, the sulfurous acid-containing gas in the reactor (1) is introduced into the reactor by a suction device such as a vacuum pump (7) at a pressure of 1 × 10 4 Pa (0.1 atm) or more, 8 × 10 4 or more. Pa
A part of the gas is exhausted from the exhaust port (6) to the outside of the reactor while reducing the pressure to a range of (0.8 atm) or less. A part of the sulfurous acid-containing gas is exhausted, and a part of the gas is left in the reactor (1) under reduced pressure within the above range, so that the residual sulfurous acid gas is always in contact with the surface of the synthetic resin material, Since the fluorine gas reaction in the next step can be performed, the sulfurous acid gas component can be efficiently added to the synthetic resin material.
In particular, in the case of the porous synthetic resin sheet (3), after the sulfurous acid-containing gas is contacted, the inside of the reactor is depressurized, so that when the pressure is restored in the next step, the sulfurous acid gas becomes voids of the porous synthetic resin sheet (3). It is convenient because it easily penetrates into the interior. Residual rate of sulfur-containing gas by exhaust is 10% or more, 80%
The following is preferable. A more preferable lower limit of the remaining rate is 20%. The more preferable upper limit of the remaining rate is 50.
% Or less. When the residual rate of sulfurous acid gas is less than 10%, the concentration of sulfurous acid gas existing on the surface of the material is low, and sulfur components such as sulfone groups cannot be sufficiently added.
When the residual rate exceeds 80%, the sulfur dioxide gas concentration in the atmosphere inside the reactor is high, and when the fluorine gas is introduced, the introduced fluorine gas reacts with the residual sulfur dioxide gas in the reactor, resulting in uniform treatment. Hard to do.

【0018】前記亜硫酸含有ガスの一部を排気した後、
フッ素ガス処理を施すべく、フッ素含有ガスの調製を行
う。反応器内のフッ素含有ガスは、濃度が0.1vol%
以上、10vol%以下の範囲のフッ素ガスを含有する。
好ましいフッ素ガス濃度の下限は、0.5vol%以上で
ある。好ましいフッ素ガス濃度の上限は、5vol%以下
である。フッ素ガス濃度が0.1vol%以下であると、
十分な親水化処理がされにくく、フッ素ガス濃度が10
vol%を超えると、残亜硫酸ガスとの発熱反応が促進さ
れ安全性が問題となる恐れがある。
After exhausting a part of the sulfurous acid-containing gas,
A fluorine-containing gas is prepared so that the fluorine gas treatment is performed. The fluorine-containing gas in the reactor has a concentration of 0.1 vol%
The fluorine gas is contained in the range of 10 vol% or less.
The preferable lower limit of the fluorine gas concentration is 0.5 vol% or more. The preferable upper limit of the fluorine gas concentration is 5 vol% or less. When the fluorine gas concentration is 0.1 vol% or less,
Sufficient hydrophilization treatment is difficult and fluorine gas concentration is 10
If it exceeds vol%, the exothermic reaction with residual sulfurous acid gas is promoted and safety may become a problem.

【0019】また、前記フッ素含有ガスには、急激な反
応を抑制させるとともに、反応時の温度上昇を緩和さ
せ、安全、かつ効率的に表面改質するために、窒素ガス
を含有することが好ましい。窒素ガス濃度は、前記残存
亜硫酸ガス濃度とフッ素ガス濃度を所望の範囲に設定す
ることで決定される。
The fluorine-containing gas preferably contains nitrogen gas in order to suppress a rapid reaction, moderate a temperature rise during the reaction, and safely and efficiently modify the surface. . The nitrogen gas concentration is determined by setting the residual sulfurous acid gas concentration and the fluorine gas concentration within desired ranges.

【0020】前記フッ素含有ガスの調製順序としては、
所望のガス濃度に調整する手段であれば特に限定はされ
ず、例えば、フッ素ガスと窒素ガスを予め混合した混合
ガスを用いる方法、あるいは窒素ガスを反応器内に所定
量導入した後、最後にフッ素含有ガスを導入する方法が
挙げられ、後者が、あらかじめ窒素ガスの存在している
雰囲気にフッ素含有混合ガスを導入するため、発熱反応
が抑制され都合が良い。具体的には、図1に示す窒素ガ
スを吹出ノズル(5)から反応器(1)内に50vol%
以上、90vol%以下の範囲で導入し、反応器(1)内
の圧力が約9×104Pa(0.9atm)程度まで復圧させ
る。次いで、窒素ガスで希釈されたフッ素ガスを吹出ノ
ズル(5)から反応器(1)内に導入してガスの調整を
行い、最終的に約10×104Pa(1atm)程度まで復圧
させる。前記導入時のフッ素ガス濃度は、5vol%以
上、40vol%以下の範囲であることが好ましい。導入
時のフッ素ガス濃度が5vol%未満であると、反応器内
を所望のフッ素ガス濃度に調製する際に、必要以上に時
間を費やし都合が悪い。導入時のフッ素ガス濃度が40
vol%を超えると、ガス調製時に合成樹脂材料に直接接
触するフッ素濃度が高いため、急激な発熱が促進される
恐れがある。
The order of preparing the fluorine-containing gas is as follows:
It is not particularly limited as long as it is a means for adjusting to a desired gas concentration, and for example, a method using a mixed gas in which fluorine gas and nitrogen gas are mixed in advance, or after introducing a predetermined amount of nitrogen gas into the reactor, finally There is a method of introducing a fluorine-containing gas, and the latter is convenient because the exothermic reaction is suppressed because the fluorine-containing mixed gas is introduced into an atmosphere in which nitrogen gas is present in advance. Specifically, 50 vol% of the nitrogen gas shown in FIG. 1 was blown into the reactor (1) from the nozzle (5).
As described above, the gas is introduced in the range of 90 vol% or less, and the pressure in the reactor (1) is restored to about 9 × 10 4 Pa (0.9 atm). Next, fluorine gas diluted with nitrogen gas is introduced into the reactor (1) from the blowout nozzle (5) to adjust the gas, and finally the pressure is restored to about 10 × 10 4 Pa (1 atm). . The fluorine gas concentration at the time of introduction is preferably in the range of 5 vol% or more and 40 vol% or less. If the fluorine gas concentration at the time of introduction is less than 5 vol%, it takes more time than is necessary to adjust the inside of the reactor to a desired fluorine gas concentration, which is not convenient. Fluorine gas concentration at the time of introduction is 40
If it exceeds vol%, the concentration of fluorine that is in direct contact with the synthetic resin material at the time of gas preparation is high, which may accelerate rapid heat generation.

【0021】反応器内をフッ素含有ガス雰囲気に調製し
た後、反応器内に収納された合成樹脂材料を反応させ
る。反応条件としては、反応温度は0℃以上、40℃以
下の範囲が好ましい。反応温度が0℃未満であると、亜
硫酸ガスの液化の危険性があり、40℃を超えると、過
剰反応が起こる恐れがある。また、反応時間は、30秒
以上であることが好ましい。具体的には、図1に示すロ
ール状に巻き取られた多孔性合成樹脂シート(2)を用
いた場合、フッ素含有ガスを吹出ノズル(5)から導入
し、反応器(1)内をフッ素含有ガス雰囲気に調製した
後、ロール(2)の巻き出しを開始し、反応させる。巻
き取り速度(ガス接触速度)は、特に限定されるもので
はないが、フッ素ガスを十分、かつ均一に接触させるた
め、30m/min以下で巻き取るのが好ましい。また、巻
き出し、巻き取りの回数も反応効率に合わせて適宜設定
すればよく、1回以上、好ましくは2回以上接触させる
と反応効率がよい。
After the inside of the reactor is adjusted to a fluorine-containing gas atmosphere, the synthetic resin material contained in the reactor is reacted. The reaction conditions are preferably such that the reaction temperature is 0 ° C. or higher and 40 ° C. or lower. If the reaction temperature is lower than 0 ° C, there is a risk of liquefaction of sulfurous acid gas, and if it exceeds 40 ° C, an excessive reaction may occur. Further, the reaction time is preferably 30 seconds or more. Specifically, when the porous synthetic resin sheet (2) wound in a roll shape shown in FIG. 1 is used, a fluorine-containing gas is introduced from a blow-out nozzle (5), and the inside of the reactor (1) is fed with fluorine. After the atmosphere of the contained gas is adjusted, the unwinding of the roll (2) is started to react. The winding speed (gas contact speed) is not particularly limited, but in order to bring the fluorine gas into contact with the fluorine gas sufficiently and uniformly, it is preferably wound at 30 m / min or less. Further, the number of times of unwinding and winding may be appropriately set in accordance with the reaction efficiency, and the reaction efficiency is good when they are contacted once or more, preferably twice or more.

【0022】さらに、フッ素含有ガス反応時に、フッ素
ガスと合成樹脂材料、あるいはフッ素ガスと亜硫酸ガス
との反応により消費されるフッ素ガスを反応器内に消費
分を供給し、反応器内のフッ素濃度を均一にすることが
好ましい。追加フッ素ガス量としては、窒素ガスで希釈
されたフッ素ガス濃度5vol%以上、40vol%以下の範
囲のフッ素含有ガスをマスフローコントローラー(図示
なし)を介して1〜10l/minで供給することが好まし
い。供給量が1l/min未満であると、反応器内が常圧で
あるためフッ素ガスを反応器内に安定して供給すること
が困難になる。供給量が10l/minを超えると、反応器
内の圧力上昇が大きくなり、安全性が問題となる恐れが
ある。また、前記範囲で追加フッ素ガスを供給させる
と、反応器内が加圧されていく恐れがあるが、不要分の
ガスを反応器外に放出して反応器内圧を一定に維持する
とよい。
Further, during the reaction of the fluorine-containing gas, the fluorine gas consumed by the reaction between the fluorine gas and the synthetic resin material or the reaction between the fluorine gas and the sulfurous acid gas is supplied into the reactor so that the fluorine concentration in the reactor is increased. Is preferably uniform. As the additional fluorine gas amount, it is preferable to supply a fluorine-containing gas diluted with nitrogen gas in a concentration range of 5 vol% or more and 40 vol% or less at 1 to 10 l / min via a mass flow controller (not shown). . When the supply amount is less than 1 l / min, it is difficult to stably supply the fluorine gas into the reactor because the pressure inside the reactor is normal pressure. If the supply rate exceeds 10 l / min, the pressure rise in the reactor becomes large, which may cause a safety problem. Further, if the additional fluorine gas is supplied in the above range, the inside of the reactor may be pressurized, but it is preferable to discharge the unnecessary amount of gas to the outside of the reactor to keep the internal pressure of the reactor constant.

【0023】前記フッ素ガス処理を完了した後、反応器
内の残留ガスを排気口から排気し、窒素ガスなどで約1
0×104Pa(1atm)程度まで復圧して、表面改質され
た合成樹脂材料は取り出される。このとき、必要に応じ
て、反応器内のフッ素残留ガスを5×104Pa(0.5at
m)以下になるまで真空ポンプの吸引装置を用いて、反
応器内を減圧しながら、排気口から反応器外に排気し、
さらに、その減圧系に酸素含有ガスで復圧させて約10
×104Pa(1atm)程度まで復圧した後、前記酸素含有
ガス中で合成樹脂材料を処理することができる。前記処
理を施すことにより、合成樹脂材料の表面に残留した副
生成物であるフッ酸(HF)の除去や、残留フッ素ガス
成分を置換の効果がある。前記酸素含有ガスは、酸素ガ
スのみであってもよいし、窒素ガスを含有していてもよ
い。窒素ガスと酸素ガスの混合比率としては、特に限定
するものではなく、前記効果が期待できる量の酸素ガス
が含まれていればよい。
After the above-mentioned fluorine gas treatment is completed, the residual gas in the reactor is exhausted from the exhaust port, and nitrogen gas or the like for about 1
The pressure is restored to about 0 × 10 4 Pa (1 atm), and the surface-modified synthetic resin material is taken out. At this time, if necessary, the residual fluorine gas in the reactor may be adjusted to 5 × 10 4 Pa (0.5 at).
m) using the vacuum pump suction device, while reducing the pressure inside the reactor, exhaust from the exhaust port to the outside of the reactor,
Further, the decompression system is decompressed with an oxygen-containing gas to about 10
After the pressure is restored to about 10 4 Pa (1 atm), the synthetic resin material can be treated in the oxygen-containing gas. By performing the above-mentioned treatment, there is an effect of removing hydrofluoric acid (HF), which is a by-product remaining on the surface of the synthetic resin material, and replacing the residual fluorine gas component. The oxygen-containing gas may be only oxygen gas or may contain nitrogen gas. The mixing ratio of the nitrogen gas and the oxygen gas is not particularly limited as long as the oxygen gas is contained in such an amount that the above effects can be expected.

【0024】以上のようにして表面改質された合成樹脂
材料は、反応器外に取り出される。前記表面改質された
合成樹脂材料は、表面に残留フッ酸や、フッ素ガスで分
解された低分子量成分が微量に残存している恐れがある
ため、アルカリ洗浄処理、温水洗浄処理、乾燥処理が施
される。前記アルカリ洗浄処理において、アルカリ洗浄
液の種類は特に限定されるものではないが、特に合成樹
脂材料をアルカリ電池用セパレータに用いる場合であれ
ば、アルカリ電解液と同質の洗浄液、例えば、水酸化カ
リウム、水酸化ナトリウム、水酸化リチウムなどを用い
るとよい。アルカリ濃度としては、1mass%以上、30
mass%以下の範囲であることが好ましい。より好ましい
アルカリ濃度の下限は、3mass%である。より好ましい
アルカリ濃度の上限は、10mass%以下である。アルカ
リ濃度が1mass%未満であると、洗浄能力が劣り、アル
カリ濃度が30mass%を超えると、アルカリ洗浄後の水
洗工程でアルカリ成分の除去が困難になる。また、アル
カリ洗浄液の温度としては、10℃以上、90℃以下で
あることが好ましい。より好ましいアルカリ洗浄液温度
の下限は、30℃である。より好ましいアルカリ洗浄液
温度の上限は、70℃である。アルカリ洗浄液温度が1
0℃未満であると、洗浄能力が劣り、90℃を超える
と、アルカリ成分が気化しやすくなり、濃度の管理が困
難となる。合成樹脂材料とアルカリ洗浄液との接触時間
としては、特に限定するものではないが、通常10秒以
上であれば、十分な洗浄効果が期待できる。また、多孔
性合成樹脂シートの場合、アルカリ洗浄液の空隙内部へ
の浸透性、洗浄効率を高めるためにアルカリ溶液中に界
面活性剤を混入してもよい。界面活性剤の種類は特に限
定するものではなく、公知の界面活性剤を用いるとよ
い。
The synthetic resin material surface-modified as described above is taken out of the reactor. The surface-modified synthetic resin material may have residual hydrofluoric acid or a small amount of low-molecular-weight components decomposed by fluorine gas remaining on the surface.Therefore, alkali cleaning treatment, warm water cleaning treatment, and drying treatment are required. Is given. In the alkaline cleaning treatment, the type of the alkaline cleaning liquid is not particularly limited, but in the case of using a synthetic resin material for the alkaline battery separator, a cleaning liquid of the same quality as the alkaline electrolyte, for example, potassium hydroxide, It is preferable to use sodium hydroxide, lithium hydroxide, or the like. Alkali concentration is 1 mass% or more, 30
It is preferably in the range of mass% or less. The more preferable lower limit of the alkali concentration is 3 mass%. The more preferable upper limit of the alkali concentration is 10 mass% or less. If the alkali concentration is less than 1 mass%, the cleaning ability will be poor, and if the alkali concentration exceeds 30 mass%, it will be difficult to remove the alkali component in the water washing step after the alkali cleaning. The temperature of the alkaline cleaning liquid is preferably 10 ° C or higher and 90 ° C or lower. The more preferable lower limit of the temperature of the alkaline cleaning liquid is 30 ° C. The more preferable upper limit of the temperature of the alkaline cleaning liquid is 70 ° C. Alkaline cleaning solution temperature is 1
When the temperature is lower than 0 ° C, the cleaning ability is poor, and when the temperature is higher than 90 ° C, the alkaline component is easily vaporized, and it becomes difficult to control the concentration. The contact time between the synthetic resin material and the alkali cleaning solution is not particularly limited, but if it is usually 10 seconds or more, a sufficient cleaning effect can be expected. Further, in the case of the porous synthetic resin sheet, a surfactant may be mixed in the alkaline solution in order to enhance the permeability of the alkaline cleaning solution into the voids and the cleaning efficiency. The type of surfactant is not particularly limited, and a known surfactant may be used.

【0025】前記温水洗浄処理としては、例えば、合成
樹脂材料をアルカリ電池用セパレータに用いる場合、イ
オン性不純物の混入を低減させるため、イオン交換水を
用いるのが好ましい。温水洗浄の温度としては、10℃
以上、90℃以下の範囲であることが好ましい。より好
ましい温水洗浄温度の下限は30℃以上である。より好
ましい温水洗浄温度の上限は、70℃である。温水洗浄
温度が10℃未満であると、アルカリ残留成分の洗浄効
率が低減する恐れがあり、90℃を超えると、親水化処
理で導入された親水性官能基の形態が変化する恐れがあ
るからである。また、合成樹脂材料と温水との接触時間
は特に限定するものではないが、通常1min以上であれ
ば十分な洗浄効果が期待できる。
As the hot water washing treatment, for example, when a synthetic resin material is used for a separator for an alkaline battery, it is preferable to use ion-exchanged water in order to reduce mixing of ionic impurities. The temperature for washing with warm water is 10 ℃
As described above, it is preferably in the range of 90 ° C. or lower. The more preferable lower limit of the warm water washing temperature is 30 ° C or higher. The more preferable upper limit of the warm water washing temperature is 70 ° C. If the washing temperature with warm water is less than 10 ° C, the washing efficiency of the residual alkali components may be reduced, and if it exceeds 90 ° C, the form of the hydrophilic functional group introduced by the hydrophilic treatment may be changed. Is. The contact time between the synthetic resin material and the hot water is not particularly limited, but a sufficient cleaning effect can be expected if it is usually 1 min or more.

【0026】前記乾燥工程としては、熱風貫通タイプ、
加熱ロール接触タイプなど、乾燥可能であれば特に限定
されない。多孔性合成樹脂シートであれば、熱風貫通タ
イプが空隙内部まで効率よく乾燥させることができ、好
ましい。乾燥温度としては、40℃以上、90℃以下の
範囲であることが好ましい。より好ましい乾燥温度の下
限は、50℃である。より好ましい乾燥温度の上限は、
70℃以下である。感想温度が40℃未満であると、十
分な乾燥させるのに多大な時間を費やし、効率的ではな
い。90℃を超えると、親水性官能基の形態が変化する
恐れがあるからである。乾燥工程の通過時間としては、
特に限定するものではないが、例えば、合成樹脂材料が
ポリオレフィン系不織布であれば2min以上で十分な乾
燥効果が期待できる。このようにして表面改質された合
成樹脂材料は、材料表面にスルホン基及び他の極性基を
付与することにより、親水性能やイオン交換性能などの
様々な機能を付加することができる。
As the drying step, hot air penetration type,
It is not particularly limited as long as it can be dried, such as a heating roll contact type. The porous synthetic resin sheet is preferable because the hot air penetrating type can efficiently dry the inside of the voids. The drying temperature is preferably 40 ° C. or higher and 90 ° C. or lower. The more preferable lower limit of the drying temperature is 50 ° C. More preferable upper limit of the drying temperature is
It is 70 ° C or lower. If the impression temperature is less than 40 ° C., a great amount of time is spent for sufficient drying, which is not efficient. This is because if the temperature exceeds 90 ° C, the form of the hydrophilic functional group may change. As the passing time of the drying process,
Although not particularly limited, for example, if the synthetic resin material is a polyolefin-based nonwoven fabric, a sufficient drying effect can be expected in 2 minutes or more. The synthetic resin material surface-modified in this manner can have various functions such as hydrophilicity and ion exchange performance by imparting sulfone groups and other polar groups to the surface of the material.

【0027】次に、本発明の電池用セパレータの製造方
法について説明する。まず、本発明に用いられる繊維と
しては、ポリプロピレン、ポリエチレン、エチレン−ビ
ニルアルコール共重合体、ポリメチルペンテンなどのポ
リオレフィン系樹脂を1種以上用いた繊維を主体とす
る。例えば、前記ポリオレフィン系樹脂の単一繊維、エ
チレン−プロピレン共重合体/ポリプロピレン、高密度
ポリエチレン/ポリプロピレン、低密度ポリエチレン/
ポリプロピレンなどの組み合わせからなる鞘芯型複合繊
維、あるいはポリ4−メチルペンテン−1/ポリプロピ
レン、ポリ4−メチルペンテン−1/高密度ポリエチレ
ン、ポリプロピレン/高密度ポリエチレン、ポリプロピ
レン/エチレン-ビニルアルコール共重合体などの組み
合わせからなる分割型複合繊維、海島型複合繊維などが
挙げられ、繊維断面形態も、円形、異形、中空などいず
れであってもよい。
Next, a method for manufacturing the battery separator of the present invention will be described. First, as the fibers used in the present invention, fibers mainly made of one or more kinds of polyolefin resins such as polypropylene, polyethylene, ethylene-vinyl alcohol copolymer and polymethylpentene are mainly used. For example, a single fiber of the above polyolefin resin, ethylene-propylene copolymer / polypropylene, high density polyethylene / polypropylene, low density polyethylene /
Sheath-core type composite fiber made of a combination of polypropylene or the like, or poly-4-methylpentene-1 / polypropylene, poly-4-methylpentene-1 / high density polyethylene, polypropylene / high density polyethylene, polypropylene / ethylene-vinyl alcohol copolymer Examples of the composite fiber include a split type conjugate fiber, a sea-island type conjugate fiber, and the like, and the cross-sectional shape of the fiber may be circular, irregular, hollow, or the like.

【0028】前記ポリオレフィン系繊維を主体とした繊
維ウェブを作製する。繊維ウェブ形態としては、例え
ば、カードウェブ、エアレイウェブ、湿式抄紙ウェブ、
スパンボンドウェブ、メルトブローウェブなどを単独、
あるいは積層して用いられる。なかでも、湿式抄紙ウェ
ブが得られる不織布の均一性、緻密性から好ましく用い
られる。また、前記ウェブは、フッ素処理により強力が
低下する恐れがあるため、熱風、熱ロールなどの熱処
理、水流交絡処理などの結合手段により繊維同士を結合
させることが好ましい。このようにして得られた不織布
は、一旦ロール状に巻き取られる。
A fiber web mainly composed of the above-mentioned polyolefin fiber is prepared. Examples of the fibrous web form include a card web, an air laid web, a wet papermaking web,
Spunbond web, melt blown web, etc.
Alternatively, they are used by stacking. Above all, it is preferably used because of the uniformity and denseness of the nonwoven fabric from which the wet papermaking web is obtained. Further, since the strength of the web may be lowered by the fluorine treatment, it is preferable to bond the fibers to each other by a bonding means such as heat treatment with hot air or a hot roll, or hydroentangling treatment. The nonwoven fabric thus obtained is once wound into a roll.

【0029】次いで、前記不織布ロールは、前記合成樹
脂材料の表面改質方法により処理される。まず、前記不
織布ロールを反応器内の2軸の巻き取り装置にセット
し、反応器を密閉し、一旦減圧して余分な水分を除去す
る。次いで、亜硫酸含有ガスを吹出ノズルから導入し、
反応器内を亜硫酸ガス濃度が0.5vol%以上、10vol
%以下の範囲からなる亜硫酸含有ガス雰囲気に調製した
後、ロールの巻き出しを開始し、巻き出し、巻き取りを
1〜5回繰り返し、亜硫酸ガスを接触させる。次いで、
反応器内の亜硫酸含有ガスを真空ポンプで吸引し、反応
器内を1×104Pa(0.1atm)以上、8×104Pa
(0.8atm)以下にまで減圧しながら、反応器外にガス
の一部を排気させる。排出後、フッ素含有ガスを吹出ノ
ズルから導入し、反応器内をフッ素ガス濃度が0.5vo
l%以上、10vol%以下の範囲からなるフッ素含有ガス
雰囲気に調製した後、ロールの巻き出しを開始し、巻き
出し、巻き取りを1〜2回繰り返し、フッ素ガスを接触
させる。前記フッ素ガス処理を完了後、必要に応じて窒
素ガスと酸素ガスで残留副生成物を除去し、反応器外に
取り出され、ロール状の親水化ポリオレフィン系不織布
が得られる。
Next, the non-woven fabric roll is treated by the surface modification method of the synthetic resin material. First, the non-woven fabric roll is set on a biaxial winding device in the reactor, the reactor is sealed, and the pressure is once reduced to remove excess water. Then, a sulfurous acid-containing gas is introduced from the blowing nozzle,
Sulfurous acid gas concentration in the reactor is 0.5 vol% or more, 10 vol
% Of the sulfurous acid-containing gas atmosphere, unrolling of the roll is started, unrolling and winding are repeated 1 to 5 times, and sulfurous acid gas is contacted. Then
Sulfurous acid-containing gas in the reactor was sucked by a vacuum pump, and the inside of the reactor was 1 × 10 4 Pa (0.1 atm) or more, 8 × 10 4 Pa
While reducing the pressure to (0.8 atm) or less, a part of the gas is exhausted outside the reactor. After discharging, the fluorine-containing gas was introduced from the blow-out nozzle, and the fluorine gas concentration in the reactor was 0.5 vo.
After preparing a fluorine-containing gas atmosphere in the range of 1% or more and 10 vol% or less, unrolling of the roll is started, and unrolling and winding are repeated once or twice to bring the fluorine gas into contact. After completion of the fluorine gas treatment, residual by-products are removed with nitrogen gas and oxygen gas as necessary, and the product is taken out of the reactor to obtain a roll-shaped hydrophilic polyolefin-based nonwoven fabric.

【0030】次いで、前記不織布ロールを巻き出し、ア
ルカリ洗浄処理、温水洗浄処理、乾燥処理を施して、残
留低分子量成分を除去し、一旦ロールの巻き取った後、
あるいは乾燥処理の後、カレンダーロールを用いて所望
の厚みに調整し、電池用セパレータが得られる。また、
本発明においては、フッ素処理以外のスルホン化、コロ
ナ放電、プラズマ放電、グラフト重合、オゾン処理、界
面活性剤処理などの親水化処理方法を併用してもよい。
このようにして得られた電池用セパレータは、スルホン
基などの硫黄成分を含む親水性官能基、あるいは水酸基
などの親水性官能基が付与されているので、電池内部で
の内部抵抗、内圧の抑制を可能にし、優れた充放電サイ
クル寿命を有しており、アルカリ二次電池、リチウムイ
オン二次電池、あるいは電気二重層キャパシタ、コンデ
ンサーなどのセパレータとして有用である。また、イオ
ン交換セパレータ(イオンキャッチャー)としても有用
である。
Next, the non-woven fabric roll is unwound, subjected to an alkali washing treatment, a warm water washing treatment and a drying treatment to remove residual low molecular weight components, and once the roll is wound up,
Alternatively, after the drying treatment, a calender roll is used to adjust to a desired thickness to obtain a battery separator. Also,
In the present invention, a hydrophilic treatment method other than fluorine treatment, such as sulfonation, corona discharge, plasma discharge, graft polymerization, ozone treatment, and surfactant treatment may be used together.
The battery separator thus obtained is provided with a hydrophilic functional group containing a sulfur component such as a sulfone group or a hydrophilic functional group such as a hydroxyl group, so that internal resistance inside the battery and suppression of internal pressure are suppressed. And has an excellent charge / discharge cycle life, and is useful as a separator for alkaline secondary batteries, lithium ion secondary batteries, electric double layer capacitors, capacitors and the like. It is also useful as an ion exchange separator (ion catcher).

【0031】[0031]

【実施例】以下、本発明の具体例を実施例により説明す
る。なお、各種性能は、下記の方法により測定した。
EXAMPLES Specific examples of the present invention will be described below with reference to examples. Various performances were measured by the following methods.

【0032】[厚み]175kPa荷重(JIS−B−7
502に準じたマイクロメーターによる測定)により、
3枚の試料のそれぞれ異なる10箇所で厚みを測定し、
計30箇所の平均値を求めた。
[Thickness] 175 kPa load (JIS-B-7
By the measurement with the micrometer according to 502),
Measure the thickness at 10 different points on each of the 3 samples,
The average value of 30 locations was calculated.

【0033】[保液率]試験片の水分平衡状態の質量W
(mg)を1mg単位まで測定する。次に比重1.30のK
OH溶液中に試験片を浸漬し、KOH溶液を1時間吸収
させたのち液中から引き上げて10分間放置した後、試
験片の質量W1(mg)を測定し、下記式より保液率を算
出した。 保液率(%)=((W1 −W)/W)×100
[Liquid retention rate] Mass W of test piece in water equilibrium state
(Mg) is measured to the nearest 1 mg. Next, K with a specific gravity of 1.30
The test piece was immersed in an OH solution, the KOH solution was absorbed for 1 hour, then pulled out of the solution and allowed to stand for 10 minutes, and then the mass W 1 (mg) of the test piece was measured. It was calculated. Hoekiritsu (%) = ((W 1 -W) / W) × 100

【0034】[吸液高さ]巾25mm×高さ200mmの短
冊状にサンプルを切断し、サンプル端から5mmまでの部
分を30mass%の水酸化カリウム水溶液に浸積し、気温
25℃、室温65%に調湿された雰囲気下で垂直に立て
たとき、30分後の水酸化カリウム水溶液の吸液上昇高
さ(mm)を測定した。
[Liquid absorption height] The sample was cut into a strip shape having a width of 25 mm and a height of 200 mm, and the portion from the sample end to 5 mm was immersed in a 30 mass% potassium hydroxide aqueous solution, and the temperature was 25 ° C and the room temperature was 65 ° C. When it was stood vertically in an atmosphere whose humidity was adjusted to%, the rising height (mm) of the aqueous solution of potassium hydroxide after 30 minutes was measured.

【0035】[円筒型密閉ニッケル水素電池の製造]負
極は、水素吸蔵合金、カルボニルニッケル、カルボキシ
メチルセルロース(CMC)、ポリテトラフルオロエチ
レン(PTFE)に水を加え混練りしスラリーを調整し
た。このスラリーをニッケルメッキしたパンチングメタ
ルに浸漬塗りした後80℃で乾燥し、加圧成型して水素
吸蔵合金負極を作製した。正極は、公知の焼結式ニッケ
ル極を使用した。上記の負極、正極間に各セパレータを
挟み電槽缶に挿入し、電解液を注液することで、円筒形
密閉ニッケル水素電池を作製した。
[Production of Cylindrical Sealed Nickel-Hydrogen Battery] The negative electrode was prepared by adding water to a hydrogen storage alloy, carbonyl nickel, carboxymethyl cellulose (CMC) and polytetrafluoroethylene (PTFE) and kneading to prepare a slurry. This slurry was dip-coated on a nickel-plated punching metal, dried at 80 ° C., and pressure-molded to produce a hydrogen storage alloy negative electrode. A known sintered nickel electrode was used as the positive electrode. Each separator was sandwiched between the negative electrode and the positive electrode, inserted into a battery case, and the electrolytic solution was injected to prepare a cylindrical sealed nickel-hydrogen battery.

【0036】[内部抵抗]3225ミリオーム計(日置
電気(株)製)を使用し、周波数1KHzのインピーダン
ス抵抗で円筒形密閉ニッケル水素電池の抵抗値を測定し
た。
[Internal resistance] A 3225 milliohm meter (manufactured by Hioki Electric Co., Ltd.) was used to measure the resistance value of the cylindrical sealed nickel-hydrogen battery with an impedance resistance of frequency 1 KHz.

【0037】[サイクル寿命]前記円筒型密閉ニッケル
水素電池を、充電0.1C率で12時間、休止0.5時
間、放電0.1C率で終止電圧1.0Vとし、10サイ
クル充放電を繰返し、電池初期活性を行った。次いで、
円筒型密閉ニッケル水素電池を、充電1.0C率で、
1.1時間、休止1.0時間、放電1.0C率(終止電
圧1.0V)で理論容量に対する利用率が80%以下に
なったときのサイクル数を求めた。充放電は25℃で行
った。
[Cycle Life] The cylindrical sealed nickel-hydrogen battery was charged at a rate of 0.1 C for 12 hours, stopped for 0.5 hours, and discharged at a rate of 0.1 C at a final voltage of 1.0 V, and repeatedly charged and discharged for 10 cycles. The initial battery activity was performed. Then
A cylindrical sealed nickel-metal hydride battery with a charge rate of 1.0C
The number of cycles was calculated when the utilization rate to the theoretical capacity was 80% or less at 1.1 hours, 1.0 hour of rest, and 1.0 C discharge rate (final voltage 1.0 V). Charging / discharging was performed at 25 degreeC.

【0038】[実施例1]合成樹脂材料として、エチレ
ン−ビニルアルコール共重合体/ポリプロピレンの組み
合わせからなり、放射状に16分割された繊度3.3dt
ex、繊維長6mmの分割型複合繊維(大和紡績(株)製、
DF−2)を50mass%、鞘成分が高密度ポリエチレ
ン、芯成分がポリプロピレンからなる繊度1.7dtex、
繊維長10mmの鞘芯型熱接着性複合繊維(大和紡績
(株)製、NBF(H))を30mass%、繊度0.7dt
ex、繊維長10mmのポリプロピレン単一繊維(大和紡績
(株)製、PZ)を20mass%を混抄し、135℃のシ
リンダードライヤーで鞘芯型熱接着性複合繊維の鞘成分
により熱接着させた目付55g/m2、厚み220μmの湿
式不織布を紙管に巻き付け、500mm巾×200m長の
不織布ロールを準備した。
[Example 1] As a synthetic resin material, a combination of ethylene-vinyl alcohol copolymer / polypropylene was used, and the fineness was 3.3 dt which was radially divided into 16 parts.
ex, split type composite fiber with fiber length 6 mm (manufactured by Daiwa Spinning Co., Ltd.,
DF-2) 50 mass%, sheath component is high-density polyethylene, core component is polypropylene fineness 1.7 dtex,
30 mass% of sheath-core type heat-bondable composite fiber (manufactured by Daiwa Boshoku Co., Ltd., NBF (H)) having a fiber length of 10 mm and a fineness of 0.7 dt
ex, polypropylene single fiber of 10 mm fiber length (PZ, manufactured by Daiwa Boshoku Co., Ltd.) was mixed at 20 mass% and heat-bonded by the sheath component of the sheath-core type heat-bondable composite fiber with a cylinder dryer at 135 ° C. A wet non-woven fabric of 55 g / m 2 and a thickness of 220 μm was wound around a paper tube to prepare a non-woven fabric roll of 500 mm width × 200 m length.

【0039】前記不織布ロールを図1のように反応器内
(容量2300l)のA軸にセットし、A軸→B軸ある
いはB軸→A軸に巻き出し、巻き取りが可能なように導
布して、反応器を完全に密閉した。次いで、排気口から
真空ポンプで反応器内の空気を外部に排気させ反応器内
を0.13×104Pa(0.013atm)の減圧状態にし
た。次に窒素ガスを吹出ノズルから噴出し、2070l
(90vol%)を反応器内に導入した。次いで、窒素ガ
スで10vol%に希釈した亜硫酸ガスを230l(10v
ol%)吹出ノズルから導入し、反応器内が1vol%の亜
硫酸ガスと、99vol%の窒素ガスとで満たされるよう
にガスを調製した。次に、不織布ロールを巻き取り速度
16m/minで、A→B→A軸の順に2回巻き出し、巻き
取り処理を行った。
As shown in FIG. 1, the non-woven fabric roll is set on the A-axis in the reactor (capacity 2300 l), and is unwound from the A-axis to the B-axis or the B-axis to the A-axis, and is guided so that it can be wound up. The reactor was completely sealed. Then, the air in the reactor was exhausted to the outside from the exhaust port with a vacuum pump, and the inside of the reactor was depressurized to 0.13 × 10 4 Pa (0.013 atm). Next, nitrogen gas was ejected from the ejection nozzle to give 2070 l.
(90 vol%) was introduced into the reactor. Next, 230 l (10 v) of sulfurous acid gas diluted to 10 vol% with nitrogen gas
Gas was prepared so that the inside of the reactor was filled with 1 vol% sulfurous acid gas and 99 vol% nitrogen gas. Next, the non-woven fabric roll was unwound twice at a winding speed of 16 m / min in the order of A->B-> A axis to perform a winding process.

【0040】前記亜硫酸含有ガス処理後、反応器内の亜
硫酸含有ガスが1725l(75vol%)残存するよう
に真空ポンプで亜硫酸含有ガスを反応器外に排気させ
て、反応器内を7.5×104Pa(0.75atm)にまで
減圧した。このときの亜硫酸含有ガスの残存率は75%
であった。そして、吹出ノズルから窒素ガス460l
(20vol%)分を導入し、さらに窒素ガスで10vol%
に希釈されたフッ素ガスを115l(5vol%)を導入
して、反応器内が0.5vol%のフッ素ガスを含有する
窒素/亜硫酸/フッ素の混合ガスとなるように調製し
た。次いで、不織布ロールを巻き取り速度16m/min
で、A→B軸に1回巻き出し、巻き取り処理を行った。
このとき10vol%の希釈フッ素ガスを反応器内に2.
8l/minの流量で供給し、フッ素ガス濃度を一定に保っ
た。
After the treatment with the sulfurous acid-containing gas, the sulfurous acid-containing gas was exhausted to the outside of the reactor by a vacuum pump so that the sulfurous acid-containing gas remained in the reactor at 1725 l (75 vol%). pressure was reduced to 10 4 Pa (0.75atm). The residual rate of the sulfur-containing gas at this time is 75%
Met. And nitrogen gas 460l from the blowing nozzle
(20vol%) is introduced, and further 10vol% with nitrogen gas
115 l (5 vol%) of the diluted fluorine gas was introduced to prepare a mixed gas of nitrogen / sulfurous acid / fluorine containing 0.5 vol% fluorine gas in the reactor. Then, take up the non-woven fabric roll at 16m / min
Then, the film was unwound once on the A → B axis and wound up.
At this time, 10 vol% of diluted fluorine gas was introduced into the reactor 2.
It was supplied at a flow rate of 8 l / min to keep the fluorine gas concentration constant.

【0041】フッ素ガス処理後、反応器内の混合ガスを
1150l(50vol%)残存するように真空ポンプで
フッ素含有ガスを排気口から反応器外に排気させて、反
応器内を5×104Pa(0.5atm)にまで減圧した。次
に酸素ガス濃度100vol%の酸素ガスを吹出ノズルか
ら反応器内に1150l(50vol%)導入し、酸素ガ
スが50vol%含有する混合ガスに調製した。次に、不
織布ロールを巻き取り速度16m/minで、B→A軸に1
回巻き出し、巻き取り処理を行った。巻き取り完了後、
反応器内の混合ガスを排気し、0.13×104Pa
(0.013atm)まで減圧し、窒素ガス2300lを
反応器内に導入して10×104Pa(1atm)に復圧した
後、反応器を開放して親水化処理されたロール状の不織
布を得た。
After the fluorine gas treatment, the fluorine-containing gas was exhausted from the exhaust port to the outside of the reactor by a vacuum pump so that 1150 l (50 vol%) of the mixed gas in the reactor remained, and the inside of the reactor was 5 × 10 4. The pressure was reduced to Pa (0.5 atm). Next, 1150 l (50 vol%) of oxygen gas having an oxygen gas concentration of 100 vol% was introduced into the reactor through a blowing nozzle to prepare a mixed gas containing 50 vol% of oxygen gas. Next, roll the non-woven fabric at a winding speed of 16 m / min and move from B to A axis 1
It was unwound and wound up. After winding is complete,
The mixed gas in the reactor was evacuated to 0.13 × 10 4 Pa
The pressure was reduced to (0.013 atm), 2300 l of nitrogen gas was introduced into the reactor to restore the pressure to 10 × 10 4 Pa (1 atm), and then the reactor was opened to obtain a hydrophilic non-woven fabric. Obtained.

【0042】次に、得られた親水化処理不織布ロールを
図2に示すアルカリ洗浄工程、温水洗浄工程、乾燥工程
を有する後処理機にセットし、5m/minのライン速度で
巻き出し、巻き取り処理を行った。アルカリ洗浄は、温
度60℃、5mass%濃度の水酸化カリウム水溶液で満た
されたアルカリ洗浄槽に不織布を浸漬処理し、温水洗浄
は、温度60℃のイオン交換水で満たされた温水洗浄槽
に不織布を浸漬処理した。乾燥は、温度70℃の熱風循
環式乾燥機で処理した。得られた不織布を熱カレンダー
ロールを用いて、150μmの厚みに調整し、電池用セ
パレータを得た。
Next, the obtained hydrophilic treated non-woven fabric roll is set in a post-treatment machine having an alkali washing step, a hot water washing step and a drying step shown in FIG. 2, unrolled at a line speed of 5 m / min, and wound up. Processed. For alkaline cleaning, the nonwoven fabric is immersed in an alkaline cleaning tank filled with an aqueous potassium hydroxide solution at a temperature of 60 ° C and a concentration of 5 mass%, and for hot water cleaning, the nonwoven fabric is placed in a warm water cleaning tank filled with ion-exchanged water at a temperature of 60 ° C. Was dipped. Drying was performed with a hot air circulation dryer having a temperature of 70 ° C. The obtained non-woven fabric was adjusted to a thickness of 150 μm using a thermal calendar roll to obtain a battery separator.

【0043】[実施例2]亜硫酸ガス処理後、575l
(25vol%)残存するように亜硫酸含有ガスを反応器
外に排気し、2.5×104Paまで減圧し、亜硫酸含有
ガスの残存率を25%とし、窒素ガス1610l(70
vol%)分を導入し、さらに窒素で10vol%に希釈され
たフッ素ガスを115l(5vol%)を導入して、反応
器内が0.5vol%のフッ素ガスを含有する窒素/亜硫
酸/フッ素の混合ガスとした以外は、実施例1と同様の
方法で電池用セパレータを得た。
[Example 2] 575 l after treatment with sulfurous acid gas
(25 vol%) The sulfurous acid-containing gas was exhausted to the outside of the reactor and the pressure was reduced to 2.5 × 10 4 Pa so that the residual rate of the sulfurous acid-containing gas was 25%.
of the nitrogen gas / sulfuric acid / fluorine containing 0.5 vol% of fluorine gas in the reactor by introducing 115 l (5 vol%) of fluorine gas diluted to 10 vol% with nitrogen. A battery separator was obtained in the same manner as in Example 1 except that the mixed gas was used.

【0044】[比較例1]亜硫酸ガス処理後、2255
l(98vol%)分のガスを外部に排気し、0.2×
104Paまで減圧し、亜硫酸含有ガスの残存率を2%と
した以外は、実施例1と同様の方法で電池用セパレータ
を得た。
[Comparative Example 1] 2255 after treatment with sulfurous acid gas
l (98vol%) of gas is exhausted to the outside, 0.2 ×
A battery separator was obtained in the same manner as in Example 1 except that the pressure was reduced to 10 4 Pa and the residual rate of the sulfurous acid-containing gas was set to 2%.

【0045】[比較例2]実施例1の不織布ロールを反
応器内のA軸にセットし、A軸→B軸あるいはB軸→A
軸に巻き出し、巻き取りが可能なように導布して、反応
器を完全に密閉した。次いで、排気口から真空ポンプで
反応器内の空気を外部に排気し、反応器内を0.13×
104Pa(0.013atm)の減圧状態にした。次いで、
フッ素ガス3vol%、亜硫酸ガス5vol%、窒素ガス92
vol%の混合ガス2300lを吹出ノズルから反応器内
に導入した後、不織布ロールを巻き取り速度16m/min
で、A→B軸に1回巻き出し、巻き取り処理を行った。
[Comparative Example 2] The nonwoven fabric roll of Example 1 was set on the A axis in the reactor, and the A axis → B axis or the B axis → A.
The reactor was completely unsealed by unwinding it on a shaft and guiding it so that it could be wound up. Then, the air inside the reactor was exhausted to the outside from the exhaust port with a vacuum pump, and the inside of the reactor was changed to 0.13 ×.
The pressure was reduced to 10 4 Pa (0.013 atm). Then
Fluorine gas 3vol%, Sulfurous acid gas 5vol%, Nitrogen gas 92
After introducing 2300 liters of mixed gas of vol% into the reactor from the blowing nozzle, the non-woven fabric roll is wound up at a speed of 16 m / min.
Then, the film was unwound once on the A → B axis and wound up.

【0046】次いで、実施例1と同様の方法で、アルカ
リ洗浄、温水洗浄、乾燥を行い、熱カレンダーロールを
用いて、150μmの厚みに調整し、電池用セパレータ
を得た。実施例1〜2および比較例1〜2の不織布の保
液率、吸液高さ、および前記不織布を電池セパレータと
し、密閉型円筒型ニッケル水素電池に組み込んだ時の初
期内部抵抗、サイクル寿命を測定した結果を表1に示
す。
Then, in the same manner as in Example 1, alkali washing, warm water washing and drying were performed, and the thickness was adjusted to 150 μm using a hot calender roll to obtain a battery separator. The liquid retention of the nonwoven fabrics of Examples 1-2 and Comparative Examples 1-2, the liquid absorption height, and the initial internal resistance and cycle life when the nonwoven fabrics were used as a battery separator and incorporated in a sealed cylindrical nickel-hydrogen battery The measured results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1〜2の電池用セパレータは、高度
に親水化され、保液性、吸液性に優れていた。また、電
池性能でも、スルホン基などの硫黄成分を含有する親水
性官能基が高度に付与されており、内部抵抗が低く、サ
イクル寿命の長い電池であった。一方、比較例1は、工
程で亜硫酸ガスの大半を外部に排気した後にフッ素ガス
で親水性官能基を付与しているため、表面に形成される
スルホン基、カルボキシル基、水酸基などの親水性官能
基の量が少なく、親水性、電池特性とも劣っていた。比
較例2は、フッ素ガスと亜硫酸ガスを同時に混合して親
水化処理を施しているため、経時的にフッ素ガスが亜硫
酸ガスと化学反応し、フッ素ガス、亜硫酸ガスとも消費
されて、比較例1と同じく導入される親水性官能基の量
が少なくなり、親水性、電池特性とも劣っていた。
The battery separators of Examples 1 and 2 were highly hydrophilized and were excellent in liquid retention and liquid absorption. Also in terms of battery performance, a hydrophilic functional group containing a sulfur component such as a sulfone group was highly provided, and the battery had a low internal resistance and a long cycle life. On the other hand, in Comparative Example 1, since most of the sulfurous acid gas is exhausted to the outside in the process and the hydrophilic functional group is added with the fluorine gas, the hydrophilic functional groups such as sulfo group, carboxyl group, and hydroxyl group formed on the surface. The amount of groups was small, and the hydrophilicity and battery characteristics were inferior. In Comparative Example 2, since the fluorine gas and the sulfurous acid gas are simultaneously mixed and subjected to the hydrophilic treatment, the fluorine gas chemically reacts with the sulfurous acid gas over time, and both the fluorine gas and the sulfurous acid gas are consumed. Similarly, the amount of hydrophilic functional groups introduced was small and the hydrophilicity and battery characteristics were poor.

【0049】[0049]

【発明の効果】本発明の合成樹脂材料の表面改質方法
は、反応器内の合成樹脂材料を、低濃度の亜硫酸含有ガ
スに接触させ、次いで亜硫酸含有ガスの一部を反応器外
に排気し、1×104Pa以上、8×104Pa以下の範囲の
減圧下で亜硫酸含有ガスが残存した雰囲気とした後、低
濃度のフッ素含有ガスを導入し、接触させることによ
り、反応器内の亜硫酸ガスとフッ素ガスとの発熱反応に
よる温度上昇を抑制しつつ、かつ減圧作用により材料の
空隙内部にまで均一かつ効率的に亜硫酸ガス成分を接触
させて、合成樹脂材料の表面にスルホン基などの硫黄成
分含有親水性官能基や他の親水性官能基を固定すること
ができる。前記合成樹脂材料を多孔性合成樹脂シートと
し、ロール状に巻き取られた多孔性合成樹脂シートを反
応器内の2軸の巻き取り装置に設置し、一方の軸から巻
き出し、もう一方の軸に巻き取りながら反応ガスを接触
させることにより、より効率的に表面改質が施される。
Industrial Applicability According to the surface reforming method for a synthetic resin material of the present invention, the synthetic resin material in the reactor is brought into contact with a low-concentration sulfur-containing gas, and then a part of the sulfur-containing gas is exhausted outside the reactor. However, after the atmosphere containing the sulfurous acid-containing gas remained under reduced pressure in the range of 1 × 10 4 Pa or more and 8 × 10 4 Pa or less, a low-concentration fluorine-containing gas was introduced and brought into contact with the inside of the reactor. While suppressing the temperature rise due to the exothermic reaction between sulfur dioxide gas and fluorine gas, the sulfurous acid gas component is brought into contact with the inside of the voids of the material evenly and efficiently by the depressurizing action, and the surface of the synthetic resin material such as sulfone group The sulfur component-containing hydrophilic functional group or other hydrophilic functional group can be fixed. The synthetic resin material is used as a porous synthetic resin sheet, and the porous synthetic resin sheet wound in a roll shape is installed in a biaxial winding device in the reactor, unrolled from one shaft, and the other shaft. The surface modification is more efficiently performed by bringing the reaction gas into contact with the film while winding it up.

【0050】ポリオレフィン系繊維を主体とする不織布
に前記表面改質方法を用いることにより、スルホン基な
どの硫黄成分を含む親水性官能基、あるいは水酸基など
の親水性官能基が付与されて、電池内部での内部抵抗、
内圧の抑制を可能にし、優れた充放電サイクル寿命を有
する電池用セパレータが得られる。
By using the above-mentioned surface modification method on a non-woven fabric mainly composed of polyolefin fibers, hydrophilic functional groups containing a sulfur component such as a sulfone group or hydrophilic functional groups such as a hydroxyl group are imparted to the interior of the battery. Internal resistance at
It is possible to obtain a battery separator that enables suppression of internal pressure and has an excellent charge / discharge cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合成樹脂材料の表面改質方法の一例を
示す。
FIG. 1 shows an example of a method for modifying the surface of a synthetic resin material of the present invention.

【図2】本発明の表面改質後の後処理の一例を示す。FIG. 2 shows an example of post-treatment after the surface modification of the present invention.

【符号の説明】[Explanation of symbols]

1.反応器 2.ロール状多孔性合成樹脂シート 3.多孔性合成樹脂シート 4.巻き出し、巻き取り装置 4A.A軸 4B.B軸 5.吹出ノズル 6.排気口 7.真空ポンプ 1. Reactor 2. Rolled porous synthetic resin sheet 3. Porous synthetic resin sheet 4. Unwinding and winding device 4A. A axis 4B. B axis 5. Blowout nozzle 6. exhaust port 7. Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 2/16 D06M 7/02 C // C08L 101:00 11/00 Z D06M 101:20 (72)発明者 青木 延夫 兵庫県加古郡播磨町古宮877番地 ダイワ ボウポリテック株式会社播磨研究所内 (72)発明者 堀 修二 兵庫県加古郡播磨町古宮877番地 ダイワ ボウポリテック株式会社播磨研究所内 (72)発明者 木田 達宣 兵庫県加古郡播磨町古宮877番地 ダイワ ボウポリテック株式会社播磨研究所内 (72)発明者 上笹 利夫 兵庫県加古郡播磨町古宮877番地 ダイワ ボウポリテック株式会社播磨研究所内 Fターム(参考) 4F073 AA01 BA07 BA08 BB01 DA04 EA32 4L031 AA14 AB34 BA07 BA08 BA17 CA11 DA08 5H021 BB09 CC02 EE04 HH01 HH06─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 2/16 D06M 7/02 C // C08L 101: 00 11/00 Z D06M 101: 20 (72) Invention Nobuo Aoki 877, Komiya, Harima-cho, Kako-gun, Hyogo Prefecture Daiwa Bow Polytech Co., Ltd., Harima Research Center (72) Inventor Shuji Hori, 877, Komiya, Harima-cho, Kako-gun, Hyogo Daiwa Bow Polytech Co., Ltd., Harima Research Center (72) Inventor Kida Tatsuno, 877, Komiya, Harima-cho, Kako-gun, Hyogo Daiwa Bow Polytech Co., Ltd., Harima Research Center (72) Inventor Toshio Kamisasa, 877, Komiya, Harima-cho, Kako-gun, Hyogo Prefecture F-Term (Reference) 4F073, Harima Research Center, Daiwa Bow Polytec Co., Ltd. AA01 BA07 BA08 BB01 DA04 EA32 4L031 AA14 AB34 BA07 BA08 BA17 CA11 DA08 5H021 BB09 CC02 EE04 HH01 HH06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反応器内の合成樹脂材料を、亜硫酸ガス
濃度が0.5vol%以上、10vol%以下の範囲からなる
亜硫酸含有ガスに接触させ、次いで亜硫酸含有ガスの一
部を反応器外に排気し、1×104Pa以上、8×104Pa
以下の範囲の減圧下で亜硫酸含有ガスが残存した雰囲気
中に、フッ素含有ガスを導入し、合成樹脂材料をフッ素
ガス濃度が0.1vol%以上、10vol%以下の範囲から
なるフッ素含有ガスに接触させる表面改質方法。
1. The synthetic resin material in the reactor is brought into contact with a sulfur dioxide-containing gas having a sulfur dioxide gas concentration of 0.5 vol% or more and 10 vol% or less, and then a part of the sulfur dioxide-containing gas is taken out of the reactor. Exhaust, 1 × 10 4 Pa or more, 8 × 10 4 Pa
Fluorine-containing gas is introduced into the atmosphere in which the sulfurous acid-containing gas remains under reduced pressure in the following range, and the synthetic resin material is contacted with the fluorine-containing gas having a fluorine gas concentration of 0.1 vol% or more and 10 vol% or less. A surface modification method.
【請求項2】 亜硫酸含有ガスが、濃度0.5vol%以
上、10vol%以下の範囲の亜硫酸ガスと、濃度90vol
%以上、99.5vol%以下の範囲の窒素ガスを含有す
る請求項1記載の表面改質方法。
2. Sulfurous acid-containing gas having a concentration of 0.5 vol% or more and 10 vol% or less, and a concentration of 90 vol%
2. The surface modification method according to claim 1, wherein the nitrogen gas is contained in the range of not less than 9% and not more than 99.5 vol%.
【請求項3】 亜硫酸含有ガスの一部を反応器外に排気
したときの亜硫酸含有ガスの残存率が10%以上、80
%以下の範囲である請求項1または2に記載の表面改質
方法。
3. The residual ratio of the sulfurous acid-containing gas when a part of the sulfurous acid-containing gas is exhausted outside the reactor is 10% or more, 80
The surface modification method according to claim 1 or 2, which is in the range of not more than%.
【請求項4】 フッ素含有ガス処理後、前記フッ素含有
ガスの50vol%以上を反応器外に排気し、次いで酸素
含有ガスを導入し、10×104Paに復圧して合成樹脂
材料と接触させる請求項1〜3のいずれかに記載の表面
改質方法。
4. After treatment with a fluorine-containing gas, 50 vol% or more of the fluorine-containing gas is exhausted outside the reactor, then an oxygen-containing gas is introduced, and the pressure is restored to 10 × 10 4 Pa and brought into contact with a synthetic resin material. The surface modification method according to claim 1.
【請求項5】 合成樹脂材料が多孔性合成樹脂シートか
らなり、ロール状に巻き取られた多孔性合成樹脂シート
を反応器内の2軸の巻き取り装置に設置し、一方の軸か
ら巻き出し、もう一方の軸に巻き取りながら反応ガスを
接触させる請求項1〜4のいずれかに記載の表面改質方
法。
5. The synthetic resin material comprises a porous synthetic resin sheet, and the porous synthetic resin sheet wound into a roll is installed in a biaxial winding device in the reactor, and unrolled from one shaft. The surface modification method according to claim 1, wherein the reaction gas is brought into contact with the other shaft while being wound on the other shaft.
【請求項6】 巻き出し、巻き取り処理回数が2回以上
である請求項5記載の表面改質方法。
6. The surface modification method according to claim 5, wherein the number of unwinding and winding processes is two or more.
【請求項7】 反応器内のポリオレフィン系繊維を主体
とする不織布を、亜硫酸ガス濃度が0.5vol%以上、
10vol%以下の範囲からなる亜硫酸含有ガスに接触さ
せ、次いで亜硫酸含有ガスの一部を反応器外に排気し、
1×104Pa以上、8×104Pa以下の範囲の減圧下で亜
硫酸含有ガスが残存した雰囲気中に、フッ素含有ガスを
導入し、合成樹脂材料をフッ素ガス濃度が0.1vol%
以上、10vol%以下の範囲からなるフッ素含有ガスに
接触させて、不織布を親水化処理する電池用セパレータ
の製造方法。
7. A non-woven fabric composed mainly of polyolefin fibers in a reactor, the sulfur dioxide gas concentration of which is 0.5 vol% or more,
Contacting with a sulfurous acid-containing gas having a range of 10 vol% or less, and then exhausting a part of the sulfurous acid-containing gas to the outside of the reactor,
Fluorine-containing gas was introduced into the atmosphere in which the sulfurous acid-containing gas remained under a reduced pressure in the range of 1 × 10 4 Pa or more and 8 × 10 4 Pa or less, and the synthetic resin material had a fluorine gas concentration of 0.1 vol%.
As described above, the method for producing a battery separator, in which the nonwoven fabric is hydrophilized by contacting it with a fluorine-containing gas in the range of 10 vol% or less.
JP2001330863A 2001-10-29 2001-10-29 Method for modifying surface of synthetic resin material and method for producing battery separator Expired - Fee Related JP3709160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330863A JP3709160B2 (en) 2001-10-29 2001-10-29 Method for modifying surface of synthetic resin material and method for producing battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330863A JP3709160B2 (en) 2001-10-29 2001-10-29 Method for modifying surface of synthetic resin material and method for producing battery separator

Publications (3)

Publication Number Publication Date
JP2003128820A true JP2003128820A (en) 2003-05-08
JP2003128820A5 JP2003128820A5 (en) 2004-10-14
JP3709160B2 JP3709160B2 (en) 2005-10-19

Family

ID=19146522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330863A Expired - Fee Related JP3709160B2 (en) 2001-10-29 2001-10-29 Method for modifying surface of synthetic resin material and method for producing battery separator

Country Status (1)

Country Link
JP (1) JP3709160B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095268A1 (en) * 2004-03-31 2005-10-13 Kanto Denka Kogyo Co., Ltd. Method for producing f2-containing gas, apparatus for producing f2-containing gas, method for modifying article surface, and apparatus for modifying article surface
JP2006286929A (en) * 2005-03-31 2006-10-19 Nippon Zeon Co Ltd Manufacturing method for resin film retaining board and use of the board
JP2008179712A (en) * 2007-01-25 2008-08-07 Dic Corp Method for surface modification of resin molded plate by sulfur trioxide gas
JP2009052037A (en) * 2007-07-31 2009-03-12 Stella Chemifa Corp Method of producing hollow construct

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095268A1 (en) * 2004-03-31 2005-10-13 Kanto Denka Kogyo Co., Ltd. Method for producing f2-containing gas, apparatus for producing f2-containing gas, method for modifying article surface, and apparatus for modifying article surface
US7919141B2 (en) 2004-03-31 2011-04-05 Kanto Denka Kogyo Co., Ltd. Processes and equipments for preparing F2-containing gases, as well as process and equipments for modifying the surfaces of articles
JP4804345B2 (en) * 2004-03-31 2011-11-02 関東電化工業株式会社 F2-containing gas manufacturing method and F2-containing gas manufacturing apparatus
JP2006286929A (en) * 2005-03-31 2006-10-19 Nippon Zeon Co Ltd Manufacturing method for resin film retaining board and use of the board
JP4737386B2 (en) * 2005-03-31 2011-07-27 日本ゼオン株式会社 Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device
JP2008179712A (en) * 2007-01-25 2008-08-07 Dic Corp Method for surface modification of resin molded plate by sulfur trioxide gas
JP2009052037A (en) * 2007-07-31 2009-03-12 Stella Chemifa Corp Method of producing hollow construct

Also Published As

Publication number Publication date
JP3709160B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
EP2920830B1 (en) Separator media for electrochemical cells
US6772489B2 (en) Collector for alkaline secondary battery, method for making the same, and alkaline secondary battery using the same
JP3221337B2 (en) Alkaline storage battery separator
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
EP1047140B1 (en) Battery separator, process for producing the same, and alkaline battery
JP2003128820A (en) Method of surface modification of synthetic resin material and method for producing battery separator
JP2006269384A (en) Separator for alkaline battery
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
JPH11144698A (en) Separator for secondary battery
US6033803A (en) Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture
JP3993718B2 (en) Hydrophilization treatment method and battery separator production method
JP2005310444A (en) Separator material and its manufacturing method
JP2003132870A (en) Separator for secondary battery comprising resin composition having polyolefin with hydrophilic functional group as main constituent
JP3893230B2 (en) Sulfonation treatment method and battery separator production method
JP2005327671A (en) Separator for battery
JP4065630B2 (en) Method for introducing sulfur-containing functional group, method for producing battery separator, and battery separator
JP2003128820A5 (en)
JP3864153B2 (en) Alkaline battery separator and alkaline battery
JP2011198522A (en) Battery separator
JP2001126698A (en) Separator for alkaline storage battery and method of fabricating it, and alkaline storage battery
JP2002324539A (en) Separator for alkaline battery
JP2005322615A (en) Separator for battery
JP2005339813A (en) Separator for battery
JP2002141048A (en) Alkaline battery separator
JP2004235079A (en) Separator for battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees