JP4736459B2 - Hollow container made of polypropylene resin composition - Google Patents

Hollow container made of polypropylene resin composition Download PDF

Info

Publication number
JP4736459B2
JP4736459B2 JP2005041870A JP2005041870A JP4736459B2 JP 4736459 B2 JP4736459 B2 JP 4736459B2 JP 2005041870 A JP2005041870 A JP 2005041870A JP 2005041870 A JP2005041870 A JP 2005041870A JP 4736459 B2 JP4736459 B2 JP 4736459B2
Authority
JP
Japan
Prior art keywords
component
ethylene
weight
hollow container
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005041870A
Other languages
Japanese (ja)
Other versions
JP2006225536A (en
Inventor
征治 城本
博之 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005041870A priority Critical patent/JP4736459B2/en
Publication of JP2006225536A publication Critical patent/JP2006225536A/en
Application granted granted Critical
Publication of JP4736459B2 publication Critical patent/JP4736459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Wrappers (AREA)

Description

本発明は、透明性、柔軟性、低温での衝撃強度の物性バランスに優れ、特に加熱処理しても透明性が良好なポリプロピレン系樹脂組成物からなる層を有する中空容器に関する。   The present invention relates to a hollow container having a layer made of a polypropylene resin composition that is excellent in the balance of physical properties of transparency, flexibility, and impact strength at low temperatures, and has good transparency even when heat-treated.

ポリプロピレン樹脂からなる中空容器は、柔軟性、透明性、耐熱性、耐薬品性、水蒸気バリア性、軽量性、リサイクル性等の多くの特性に優れているため、広範な用途に利用されている。しかしながら、該容器は、低温での衝撃強度や加熱処理後の透明性に劣るという問題を有しており、これらを改良するための種々の提案がなされている。
例えば、230℃におけるメルトフローレートが0.3〜8g/10分であり、プロピレン含有量が82〜96.5重量%、エチレン含有量が3〜8重量%、炭素原子数4以上のα−オレフィン含有量が0.5〜10重量%の結晶性プロピレン共重合体と、190℃におけるメルトフローレートが0.3〜50g/10分であり、密度が900〜935kg/m3である結晶性エチレン系共重合体とからなり、結晶性プロピレン共重合体に対して結晶性エチレン系共重合体を4〜0.05重量%配合してなる樹脂製容器が知られているが(特許文献1参照)、低温での衝撃強度は十分なものではなかった。またこの容器は加熱処理後の透明性が十分なものでなかった。
A hollow container made of polypropylene resin is excellent in many properties such as flexibility, transparency, heat resistance, chemical resistance, water vapor barrier property, light weight, and recyclability, and thus is used in a wide range of applications. However, the container has a problem that it is inferior in impact strength at low temperature and transparency after heat treatment, and various proposals have been made to improve these.
For example, the melt flow rate at 230 ° C. is 0.3 to 8 g / 10 min, the propylene content is 82 to 96.5% by weight, the ethylene content is 3 to 8% by weight, and α- having 4 or more carbon atoms. Crystalline propylene copolymer having an olefin content of 0.5 to 10% by weight, crystallinity having a melt flow rate at 190 ° C. of 0.3 to 50 g / 10 min and a density of 900 to 935 kg / m 3 A resin container made of an ethylene copolymer and containing 4 to 0.05% by weight of a crystalline ethylene copolymer to a crystalline propylene copolymer is known (Patent Document 1). See), impact strength at low temperature was not sufficient. Further, this container was not sufficiently transparent after the heat treatment.

230℃におけるメルトフローレートが8〜80g/10分である結晶性プロピレン共重合体70〜90重量%と、190℃におけるメルトフローレートが0.5〜40g/10分であり、密度が890〜915kg/m3である結晶性エチレン―α―オレフィン共重合体10〜30重量%とからなる組成物100重量部に対して、有機リン酸エステル系化合物に代表される造核剤を0.05〜0.5重量部配合してなる樹脂組成物からなる容器が知られている(特許文献2参照)。この容器の低温での衝撃強度や透明性は良好であるが、加熱処理後の透明性が十分なものではなかった。 70 to 90 wt% of a crystalline propylene copolymer having a melt flow rate at 230 ° C of 8 to 80 g / 10 min, a melt flow rate at 190 ° C of 0.5 to 40 g / 10 min, and a density of 890 to 90 With respect to 100 parts by weight of a composition comprising 10 to 30% by weight of a crystalline ethylene-α-olefin copolymer of 915 kg / m 3 , 0.05 nucleating agent represented by an organic phosphate ester compound is added. A container made of a resin composition containing ˜0.5 parts by weight is known (see Patent Document 2). Although the impact strength and transparency at low temperatures of this container were good, the transparency after the heat treatment was not sufficient.

特開平8−47980号公報JP-A-8-47980 特開2002−212358号公報JP 2002-212358 A

本発明の目的は、透明性、柔軟性、低温での衝撃強度の物性バランスおよび加熱処理後の透明性が良好なポリプロピレン系樹脂組成物からなる層を有する中空容器を提供するものである。   An object of the present invention is to provide a hollow container having a layer made of a polypropylene resin composition having good transparency, flexibility, balance of physical properties of impact strength at low temperature, and transparency after heat treatment.

すなわち本発明は、示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピーク温度が100〜145℃である結晶性プロピレン系重合体(成分(A))35〜93重量部と、示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピーク温度が150℃以上である結晶性プロピレン系重合体(成分(B))2〜35重量部と、下記要件[1]、[2]及び[3]を満たすエチレン−α−オレフィン共重合体(成分(C))5〜30重量部(但し、成分(A)、(B)及び(C)の合計量を100重量部とする)を含むポリプロピレン系樹脂組成物からなる層を有する中空容器である。
[1]エチレン由来の構成単位の含有量が50重量%以上であり、エチレンと炭素原子数4〜12のα−オレフィンとの共重合体である。
[2]温度が190℃、荷重が2.16kgfの条件で測定したメルトフローレートが0.1〜50g/10分である。
[3]密度が865〜898kg/m3である。
That is, the present invention provides 35 to 93 parts by weight of a crystalline propylene polymer (component (A)) having a maximum crystal melting peak temperature of 100 to 145 ° C. observed in the range of 50 to 180 ° C. in differential scanning calorimetry. 2 to 35 parts by weight of a crystalline propylene polymer (component (B)) having a maximum crystal melting peak temperature of 150 ° C. or higher observed in the range of 50 to 180 ° C. in differential scanning calorimetry, and the following requirements 5 to 30 parts by weight of ethylene-α-olefin copolymer (component (C)) satisfying [1], [2] and [3] (however, the total amount of components (A), (B) and (C)) Is a hollow container having a layer made of a polypropylene resin composition.
[1] The ethylene-derived constituent unit content is 50% by weight or more, and is a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms.
[2] The melt flow rate measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kgf is 0.1 to 50 g / 10 min.
[3] The density is 865 to 898 kg / m 3 .

本発明によれば、透明性、柔軟性、低温での衝撃強度の物性バランスに優れ、かつ加熱処理しても透明性に優れるポリプロピレン系樹脂組成物からなる層を有する中空容器を提供することができる。   According to the present invention, it is possible to provide a hollow container having a layer made of a polypropylene resin composition that is excellent in the balance of physical properties of transparency, flexibility, and impact strength at low temperatures, and that is excellent in transparency even when heat-treated. it can.

本発明の中空容器の層を構成するポリプロピレン系樹脂組成物に含まれる結晶性プロピレン系重合体(成分(A))は、示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピークの温度が100〜145℃の重合体である。中空容器の透明性、柔軟性、衝撃強度の観点から、成分(A)の前記結晶融解ピーク温度は好ましくは110〜145℃であり、特に好ましくは120〜145℃である。結晶融解ピークの温度が100℃より低いと中空容器が柔らかくなりすぎて形状保持が困難になる。結晶融解ピークの温度が145℃より高いと、中空容器の柔軟性が悪化し、また、低温での衝撃強度が低下する。   The crystalline propylene polymer (component (A)) contained in the polypropylene resin composition constituting the layer of the hollow container of the present invention is the largest crystal observed in the range of 50 to 180 ° C. in differential scanning calorimetry. It is a polymer having a melting peak temperature of 100 to 145 ° C. From the viewpoint of the transparency, flexibility, and impact strength of the hollow container, the crystal melting peak temperature of the component (A) is preferably 110 to 145 ° C, and particularly preferably 120 to 145 ° C. If the temperature of the crystal melting peak is lower than 100 ° C., the hollow container becomes too soft and it becomes difficult to maintain the shape. When the temperature of the crystal melting peak is higher than 145 ° C., the flexibility of the hollow container is deteriorated, and the impact strength at a low temperature is lowered.

本発明における示差走査熱量測定とは、窒素雰囲気下で試験片に以下に示す熱履歴を加えて行なう。
(i) 24℃から220℃へ300℃/分の速度で昇温
(ii) (i)の昇温後、220で5分間保持
(iii) (ii)の保温後、300℃/分の速度で150℃に降温
(iv) (iii)の降温後、150℃で1分間保持
(v) (iv)の保温後、5℃/分の速度で50℃に降温
(vi) (v)の降温後、50℃で1分間保持
(vii) (vi)の保温後、5℃/分の速度で180℃に昇温
上記の(vii)の工程から得られる結晶融解曲線から、50〜180℃の範囲に観測される最大の結晶融解ピークの温度、および結晶の融解熱量(J/g)を算出する。結晶の融解熱量は、前記結晶融解曲線にベースラインを引き、結晶融解曲線とベースラインに囲まれた領域の面積から算出される値である。
The differential scanning calorimetry in the present invention is performed by adding the following thermal history to the test piece in a nitrogen atmosphere.
(I) Temperature rise from 24 ° C. to 220 ° C. at a rate of 300 ° C./min. (Ii) After temperature rise in (i), hold at 220 for 5 minutes (iii) Rate of 300 ° C./min after heat retention in (ii) Decrease to 150 ° C at (iv) (iii) Decrease and hold at 150 ° C for 1 minute (v) Decrease to 50 ° C at a rate of 5 ° C / min after keeping at (iv) (vi) Decrease at (v) Thereafter, hold at 50 ° C. for 1 minute (vii) After keeping the temperature of (vi), the temperature is raised to 180 ° C. at a rate of 5 ° C./min. From the crystal melting curve obtained from the above step (vii), The temperature of the maximum crystal melting peak observed in the range and the heat of fusion (J / g) of the crystal are calculated. The amount of heat of fusion of the crystal is a value calculated from the area of the region surrounded by the crystal melting curve and the base line by subtracting the base line from the crystal melting curve.

本発明における結晶性プロピレン系重合体とは、示差走査型熱量計を用いて測定される結晶融解熱量が20J/g以上の重合体を意味する。本発明における結晶性ポリプロピレン系重合体(成分(A))の結晶融解熱量は、通常20〜75J/gであり、中空容器の透明性、柔軟性、衝撃強度の観点から、好ましくは30〜75J/gである。   The crystalline propylene polymer in the present invention means a polymer having a heat of crystal fusion of 20 J / g or more measured using a differential scanning calorimeter. The crystal melting heat amount of the crystalline polypropylene polymer (component (A)) in the present invention is usually 20 to 75 J / g, and preferably 30 to 75 J from the viewpoint of the transparency, flexibility and impact strength of the hollow container. / G.

本発明で用いる結晶性プロピレン系重合体(成分(A))は、前記の結晶融解ピークの温度を有する結晶性プロピレン系重合体であれば特に限定されないが、例えば、プロピレン単独重合体、プロピレンと他のオレフィンとの共重合体が挙げられる。他のオレフィンとしては、エチレンまたはα−オレフィンが挙げられ、α−オレフィンとしてはブテン−1、ヘキセン−1、4−メチルペンテン−1、オクテン−1などが挙げられる。本発明では、ポリプロピレン系樹脂組成物中に成分(A)に該当する複数の結晶性プロピレン系重合体を含んでいてもよい。その場合のポリプロピレン系樹脂組成物中の成分(A)の含有量とは、成分(A)に該当する結晶性プロピレン系重合体の合計量である。   The crystalline propylene polymer (component (A)) used in the present invention is not particularly limited as long as it is a crystalline propylene polymer having the above-mentioned crystal melting peak temperature. For example, propylene homopolymer, propylene and Examples include copolymers with other olefins. Other olefins include ethylene or α-olefins, and α-olefins include butene-1, hexene-1, 4-methylpentene-1, octene-1, and the like. In the present invention, the polypropylene resin composition may contain a plurality of crystalline propylene polymers corresponding to the component (A). In this case, the content of the component (A) in the polypropylene resin composition is the total amount of the crystalline propylene polymer corresponding to the component (A).

中空容器の透明性、柔軟性の観点から、前記結晶性プロピレン系重合体(成分(A))は、プロピレン−エチレン共重合体、プロピレン−エチレン−ブテン−1共重合体、もしくはプロピレン−ブテン−1共重合体が好ましく、エチレン由来の構成単位の含有量が2〜5重量%であるプロピレン−エチレン共重合体、ブテン−1由来の構成単位の含有量が5〜35重量%であるプロピレン−ブテン−1共重合体もしくは、エチレン由来の構成単位の含有量が2〜5重量%であり、かつブテン−1由来の構成単位の含有量が5〜35重量%であるプロピレン−エチレン−ブテン−1共重合体がより好ましい。これらの結晶性プロピレン系重合体は、例えば、特公昭64−6211号公報、特公平4−37084号公報に記載されている高活性触媒を用い、プロピレンと他のオレフィンを重合系へ供給して重合を行うことにより得ることができる。   From the viewpoint of transparency and flexibility of the hollow container, the crystalline propylene polymer (component (A)) is a propylene-ethylene copolymer, a propylene-ethylene-butene-1 copolymer, or a propylene-butene- 1 copolymer is preferable, propylene-ethylene copolymer in which the content of structural units derived from ethylene is 2 to 5% by weight, and propylene in which the content of structural units derived from butene-1 is 5 to 35% by weight Propylene-ethylene-butene having a butene-1 copolymer or ethylene-derived structural unit content of 2 to 5% by weight and a butene-1 derived structural unit content of 5 to 35% by weight One copolymer is more preferred. These crystalline propylene polymers are prepared by supplying propylene and other olefins to the polymerization system using, for example, highly active catalysts described in Japanese Patent Publication No. 64-6211 and Japanese Patent Publication No. 4-37084. It can be obtained by polymerization.

前記結晶性プロピレン系重合体(成分(A))のメルトフローレートは特に限定されるものではないが、通常1〜10g/10分であり、中空容器の透明性と柔軟性の観点から、好ましくは1.5〜8g/10分、より好ましくは2〜6g/10分である。ここで前記メルトフローレートは、温度が230℃、荷重が2.16kgfの条件で測定される値である。以下、この条件で測定されるメルトフローレートをMFR(230℃,2.16kgf)と表す。   The melt flow rate of the crystalline propylene-based polymer (component (A)) is not particularly limited, but is usually 1 to 10 g / 10 minutes, preferably from the viewpoint of transparency and flexibility of the hollow container. Is 1.5 to 8 g / 10 min, more preferably 2 to 6 g / 10 min. Here, the melt flow rate is a value measured under conditions of a temperature of 230 ° C. and a load of 2.16 kgf. Hereinafter, the melt flow rate measured under these conditions is expressed as MFR (230 ° C., 2.16 kgf).

本発明の中空容器の層を構成するポリプロピレン系樹脂組成物に含まれる結晶性プロピレン系重合体(成分(B))は、示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピークの温度が150℃以上の重合体である。加熱処理後の中空容器の透明性の観点から、成分(B)の前記結晶融解ピークの温度は155℃以上であることが好ましい。結晶融解ピークの温度が150℃より低いと、加熱処理後の中空容器の透明性に劣る。   The crystalline propylene polymer (component (B)) contained in the polypropylene resin composition constituting the layer of the hollow container of the present invention is the largest crystal observed in the range of 50 to 180 ° C. in differential scanning calorimetry. It is a polymer having a melting peak temperature of 150 ° C. or higher. From the viewpoint of transparency of the hollow container after the heat treatment, the temperature of the crystal melting peak of the component (B) is preferably 155 ° C. or higher. When the temperature of the crystal melting peak is lower than 150 ° C., the transparency of the hollow container after the heat treatment is inferior.

本発明に用いる結晶性プロピレン系重合体(成分(B))の結晶融解熱量は通常82J/g以上であり、加熱処理後の中空容器の透明性の観点から好ましくは85J/g以上である。   The crystal melting heat amount of the crystalline propylene polymer (component (B)) used in the present invention is usually 82 J / g or more, and preferably 85 J / g or more from the viewpoint of the transparency of the hollow container after the heat treatment.

また、本発明に用いる結晶性プロピレン系重合体(成分(B))は、前記の結晶融解ピークの温度を有する結晶性プロピレン系重合体であれば特に限定されないが、例えば、プロピレン単独重合体、プロピレンと他のオレフィンとの共重合体が挙げられる。他のオレフィンとしては、エチレンまたはα−オレフィンが挙げられ、α−オレフィンとしてはブテン−1、ヘキセン−1、4−メチルペンテン−1、オクテン−1などが挙げられる。本発明では、ポリプロピレン系樹脂組成物中に成分(B)に該当する複数の結晶性プロピレン系重合体を含んでいてもよい。その場合のポリプロピレン系樹脂組成物中の成分(B)の含有量とは、成分(B)に該当する結晶性プロピレン系重合体の合計量である。   The crystalline propylene polymer (component (B)) used in the present invention is not particularly limited as long as it is a crystalline propylene polymer having the above-mentioned crystal melting peak temperature. For example, a propylene homopolymer, Examples include copolymers of propylene and other olefins. Other olefins include ethylene or α-olefins, and α-olefins include butene-1, hexene-1, 4-methylpentene-1, octene-1, and the like. In the present invention, the polypropylene resin composition may include a plurality of crystalline propylene polymers corresponding to the component (B). In this case, the content of the component (B) in the polypropylene resin composition is the total amount of the crystalline propylene polymer corresponding to the component (B).

前記結晶性プロピレン系重合体(成分(B))のなかでも、中空容器の透明性、柔軟性の観点から、プロピレン単独重合体、プロピレン−エチレン共重合体、プロピレン−エチレン−ブテン−1共重合体、もしくはプロピレン−ブテン−1共重合体が好ましく、プロピレン単独重合体、エチレン由来の構成単位の含有量が2重量%未満であるプロピレン−エチレン共重合体、ブテン−1由来の構成単位の含有量が5重量%未満であるプロピレン−ブテン−1共重合体、もしくはエチレン由来の構成単位の含有量が2重量%未満であり、かつブテン−1由来の構成単位の含有量が5重量%未満であるプロピレン−エチレン−ブテン−1共重合体がより好ましい。これらの結晶性プロピレン系重合体は、例えば、特公昭64−6211号公報、特公平4−37084号公報に記載されている高活性触媒を用い、プロピレンを単独に重合系へ供給するか、もしくはプロピレンと他のオレフィンを重合系へ供給して重合を行うことにより得ることができる。   Among the crystalline propylene polymers (component (B)), from the viewpoint of transparency and flexibility of the hollow container, propylene homopolymer, propylene-ethylene copolymer, propylene-ethylene-butene-1 copolymer Preferred is a propylene-butene-1 copolymer, a propylene homopolymer, a propylene-ethylene copolymer having a content of ethylene-derived structural units of less than 2% by weight, and a content of structural units derived from butene-1 Propylene-butene-1 copolymer whose amount is less than 5% by weight, or the content of structural units derived from ethylene is less than 2% by weight, and the content of structural units derived from butene-1 is less than 5% by weight A propylene-ethylene-butene-1 copolymer is more preferred. These crystalline propylene-based polymers are, for example, using a highly active catalyst described in Japanese Patent Publication No. 64-6211 and Japanese Patent Publication No. 4-37084, and supplying propylene alone to the polymerization system, or Propylene and other olefins can be supplied to the polymerization system for polymerization.

前記結晶性プロピレン系重合体(成分(B))のエチレン由来の構成単位の含有量とブテン−1由来の構成単位の含有量との合計は特に限定されるものではないが、通常0〜7重量%であり、0〜5重量%であることが好ましく、0〜3重量%であることがより好ましい。   Although the total of the content of the structural unit derived from ethylene and the content of the structural unit derived from butene-1 in the crystalline propylene polymer (component (B)) is not particularly limited, it is usually 0-7. % By weight, preferably 0 to 5% by weight, more preferably 0 to 3% by weight.

前記結晶性プロピレン系重合体(成分(B))のMFR(230℃,2.16kgf)は0.1〜30g/10分であり、好ましくは0.3〜20g/10分、より好ましくは0.5〜10g/10分である。MFR(230℃,2.16kgf)が0.1g/10分未満では、中空容器の表面が荒れて透明性が低下する。また、MFR(230℃,2.16kgf)が30g/10分を超えると、中空容器の柔軟性が低下し、また低温での衝撃強度も低下する。   The MFR (230 ° C., 2.16 kgf) of the crystalline propylene polymer (component (B)) is 0.1 to 30 g / 10 minutes, preferably 0.3 to 20 g / 10 minutes, more preferably 0. 5-10 g / 10 min. If MFR (230 degreeC, 2.16kgf) is less than 0.1 g / 10min, the surface of a hollow container will be rough and transparency will fall. Moreover, when MFR (230 degreeC, 2.16kgf) exceeds 30 g / 10min, the softness | flexibility of a hollow container will fall and the impact strength in low temperature will also fall.

本発明に用いるプロピレン系重合体(成分(A)および成分(B))は、例えば特公昭64−6211号公報、特公平4−37084号公報に記載されている重合触媒を用い、プロピレンを単独に重合系へ供給するか、もしくはプロピレンと他のオレフィンを重合系へ供給して重合することにより、得ることができる。重合方法としては、例えば、溶液重合、バルク重合、気相重合などが挙げられ、いずれか単一の重合方法でも、これらの重合方法を組み合わせて多段重合してもよい。   As the propylene polymer (component (A) and component (B)) used in the present invention, for example, a polymerization catalyst described in Japanese Patent Publication No. 64-6211 and Japanese Patent Publication No. 4-37084 is used, and propylene is used alone. It can be obtained by supplying to the polymerization system or by supplying propylene and another olefin to the polymerization system for polymerization. Examples of the polymerization method include solution polymerization, bulk polymerization, gas phase polymerization, and the like, and any single polymerization method may be used to combine these polymerization methods for multistage polymerization.

本発明に用いるエチレン−α−オレフィン共重合体(成分(C))とは、エチレン由来の構成単位を50重量%以上含有する、エチレンと炭素原子数4〜12のα−オレフィンとの共重合体である。中空容器の柔軟性、衝撃強度の観点から、成分(C)中のエチレン由来の構成単位の含有量は55重量%以上が好ましく、60重量%以上がより好ましく、65重量%以上が特に好ましい。エチレンと共重合するα−オレフィンとしてはブテン−1、4−メチルペンテン−1、ヘキセン−1、オクテン−1、デセン−1を例示することができる。中空容器の低温での衝撃強度の観点から、好ましいα−オレフィンは、ブテン−1、ヘキセン−1である。本発明では、ポリプロピレン系樹脂組成物中に成分(C)に該当する複数のエチレン−α−オレフィン共重合体を含んでいてもよい。その場合のポリプロピレン系樹脂組成物中の成分(C)の含有量とは、成分(C)に該当するエチレン−α−オレフィン共重合体の合計量である。
The ethylene-α-olefin copolymer (component (C)) used in the present invention is a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms, which contains 50% by weight or more of a structural unit derived from ethylene. It is a coalescence. From the viewpoint of flexibility and impact strength of the hollow container, the content of the structural unit derived from ethylene in the component (C) is preferably 55% by weight or more, more preferably 60% by weight or more, and particularly preferably 65% by weight or more. Examples of the α-olefin copolymerized with ethylene include butene-1, 4-methylpentene-1, hexene-1, octene-1, and decene-1. From the viewpoint of impact strength of the hollow container at low temperature, preferred α-olefins are butene-1 and hexene-1. In the present invention, the polypropylene resin composition may contain a plurality of ethylene-α-olefin copolymers corresponding to the component (C). In this case, the content of the component (C) in the polypropylene resin composition is the total amount of the ethylene-α-olefin copolymer corresponding to the component (C).

前記エチレン−α−オレフィン共重合体(成分(C))は、温度が190℃、荷重が2.16kgfの条件で測定したメルトフローレート(以下、MFR(190℃,2.16kgf)と記す)が0.1〜50g/10分であり、中空容器の透明性、低温での耐衝撃性の観点から0.5〜40g/10分であることが好ましく、1〜30g/10分であることがより好ましく、2〜20g/10分であることが特に好ましい。MFR(190℃,2.16kgf)が0.1g/10分より低いと、中空容器の透明性が悪化する。また、50g/10分より高いと中空容器の低温での衝撃強度が低下する。   The ethylene-α-olefin copolymer (component (C)) was measured at a temperature of 190 ° C. and a load of 2.16 kgf (hereinafter referred to as MFR (190 ° C., 2.16 kgf)). Is from 0.1 to 50 g / 10 min, preferably from 0.5 to 40 g / 10 min, and from 1 to 30 g / 10 min from the viewpoint of transparency of the hollow container and impact resistance at low temperature. Is more preferable, and 2 to 20 g / 10 min is particularly preferable. When MFR (190 ° C., 2.16 kgf) is lower than 0.1 g / 10 minutes, the transparency of the hollow container is deteriorated. On the other hand, if it is higher than 50 g / 10 min, the impact strength of the hollow container at low temperature is lowered.

前記エチレン−α−オレフィン共重合体(成分(C))の密度は、865〜898kg/m3であり、中空容器の透明性、低温での衝撃強度の観点から868〜897kg/m3であることが好ましく、870〜896kg/m3であることが特に好ましい。密度が865kg/m3に満たないと中空容器の透明性が低下する。また、密度が898kg/m3を超えると中空容器の低温での衝撃強度が低下する。 Density of the ethylene -α- olefin copolymer (component (C)) is a 865~898kg / m 3, transparency of the hollow vessel, is 868~897kg / m 3 from the viewpoint of impact strength at low temperatures It is preferably 870 to 896 kg / m 3 . If the density is less than 865 kg / m 3 , the transparency of the hollow container is lowered. On the other hand, when the density exceeds 898 kg / m 3 , the impact strength of the hollow container at low temperature decreases.

前記エチレン−α−オレフィン共重合体(成分(C))の製造方法としては、例えば、エチレンとα−オレフィンとを、シクロペンタジエン形アニオン骨格を有する基を有する遷移金属化合物を含む触媒(メタロセン触媒)の存在下で重合させる特開平3−234717号公報に記載の方法などが挙げられる。重合方法としては、例えば、溶液法、スラリー法、気相法、高圧イオン法などの公知の重合方法が挙げられる。   Examples of the method for producing the ethylene-α-olefin copolymer (component (C)) include a catalyst (metallocene catalyst) containing a transition metal compound having a group having a cyclopentadiene type anion skeleton, ethylene and α-olefin. And the like, and the method described in JP-A-3-234717. Examples of the polymerization method include known polymerization methods such as a solution method, a slurry method, a gas phase method, and a high-pressure ion method.

本発明の中空容器の層を構成するポリプロピレン系樹脂組成物中の成分(A)、成分(B)および成分(C)の割合は、各成分の合計量を100重量部として、成分(A)が35〜93重量部、成分(B)が2〜35重量部であり、成分(C)が5〜30重量部である。中空容器の柔軟性、透明性、低温での衝撃強度および加熱処理後の透明性の観点から、成分(A)が45〜90重量部、成分(B)が5〜35重量部、成分(C)が5〜20重量部であることが好ましい。成分(A)の含有量が35重量部より少ないと、中空容器の柔軟性が低下し、93重量部より多いと加熱処理後の透明性が悪化する。成分(B)の含有量が2重量部より少ないと加熱処理後の透明性が悪化し、35重量部より多いと中空容器の柔軟性が低下する。成分(C)の含有量が5重量部より少ないと、中空容器の低温での衝撃強度が得られず、30重量部より多いと中空容器が柔らかくなり過ぎる。   The ratio of the component (A), the component (B), and the component (C) in the polypropylene resin composition constituting the layer of the hollow container of the present invention is such that the total amount of each component is 100 parts by weight. Is 35 to 93 parts by weight, component (B) is 2 to 35 parts by weight, and component (C) is 5 to 30 parts by weight. From the viewpoints of flexibility, transparency, impact strength at low temperature and transparency after heat treatment of the hollow container, the component (A) is 45 to 90 parts by weight, the component (B) is 5 to 35 parts by weight, and the component (C ) Is preferably 5 to 20 parts by weight. When the content of the component (A) is less than 35 parts by weight, the flexibility of the hollow container is lowered, and when it is more than 93 parts by weight, the transparency after the heat treatment is deteriorated. When the content of the component (B) is less than 2 parts by weight, the transparency after the heat treatment is deteriorated, and when it is more than 35 parts by weight, the flexibility of the hollow container is lowered. If the content of component (C) is less than 5 parts by weight, the impact strength at low temperatures of the hollow container cannot be obtained, and if it exceeds 30 parts by weight, the hollow container becomes too soft.

本発明に用いる成分(A)、成分(B)および成分(C)を含有するポリプロピレン系樹脂組成物のMFR(230℃,2.16kgf)は、中空容器の透明性および柔軟性の観点から0.1〜8g/10分であることが好ましく、より好ましくは1.5〜8g/7分であり、さらに好ましくは2〜6g/10分である。   The MFR (230 ° C., 2.16 kgf) of the polypropylene resin composition containing the component (A), the component (B) and the component (C) used in the present invention is 0 from the viewpoint of the transparency and flexibility of the hollow container. It is preferably 1 to 8 g / 10 minutes, more preferably 1.5 to 8 g / 7 minutes, and still more preferably 2 to 6 g / 10 minutes.

本発明の中空容器の層を構成する、前記結晶性プロピレン系重合体(成分(A))、結晶性プロピレン系重合体(成分(B))およびエチレン−α−オレフィン共重合体(成分(C))を含有するポリプロピレン系樹脂組成物は、成分(A)、成分(B)および成分(C)の他に本発明の効果が損なわれない範囲で、中和剤、酸化防止剤、熱安定剤、耐候剤、紫外線吸収剤、帯電防止剤、分散剤、抗菌剤、蛍光増白剤、染料、顔料などの添加剤、タルク、炭酸カルシウム、マイカ、硫酸バリウム、アルミノシリケート、クレー、ガラス繊維、炭素繊維などの充填剤を含有してもよい。   The crystalline propylene polymer (component (A)), crystalline propylene polymer (component (B)) and ethylene-α-olefin copolymer (component (C) constituting the layer of the hollow container of the present invention. )), The neutralizing agent, antioxidant, heat stability, as long as the effects of the present invention are not impaired in addition to component (A), component (B) and component (C). Additives, weathering agents, ultraviolet absorbers, antistatic agents, dispersants, antibacterial agents, fluorescent brighteners, dyes, pigments, additives such as talc, calcium carbonate, mica, barium sulfate, aluminosilicate, clay, glass fiber, You may contain fillers, such as carbon fiber.

本発明の中空容器を構成するポリプロピレン系樹脂組成物を得る方法としては、前記の各成分の配合割合を本発明の要件の範囲になるように調整し、さらに必要に応じて前記の添加剤等を配合して以下の方法で均一になるように混合した後、各種の公知の方法で溶融混練し、ペレット化する方法が挙げられる。
また、本発明に用いる結晶性プロピレン系重合体(成分(A))、結晶性プロピレン系重合体(成分(B))、エチレン−α−オレフィン共重合体(成分(C))、添加剤および充填剤は、公知の方法で均一になるように混合した後、直接中空成形機に供給することもできる。また、各成分を本発明の要件の範囲になるように、計量機を用いて調整しながら中空成形機に直接供給することもできる。
As a method for obtaining a polypropylene resin composition constituting the hollow container of the present invention, the blending ratio of each of the above components is adjusted so as to be within the range of the requirements of the present invention. And blending to be uniform by the following method, followed by melt kneading by various known methods and pelletizing.
Further, the crystalline propylene polymer (component (A)), crystalline propylene polymer (component (B)), ethylene-α-olefin copolymer (component (C)), additive and The filler can be directly fed to the hollow molding machine after being mixed uniformly by a known method. In addition, each component can be directly supplied to the hollow molding machine while being adjusted using a measuring machine so as to be within the requirements of the present invention.

前記の各成分の混合に用いる装置としては、例えば、ヘンシェルミキサー、V−ブレンダー、リボンブレンダー、タンブラブレンダー等が挙げられる。また、溶融混練に用いられる装置としては、例えば、一軸押出機、二軸押出機、ニーダー混練機、バンバリーミキサー、ロールミル等が挙げられる。   Examples of the apparatus used for mixing each component include a Henschel mixer, a V-blender, a ribbon blender, and a tumbler blender. Examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, a kneader kneader, a Banbury mixer, and a roll mill.

本発明の中空容器の製造には、汎用の押出中空成形機を用いることができる。押出中空成形機は、例えば、押出機により溶融、可塑化、混練した組成物をダイから連続または間欠に押出してパリソンを形成する部分、製品形状のキャビティを有する金型、および金型キャビティ内への加圧ガスの吹込装置とを有する。金型が押出機と吹込装置の間を往復移動して成形サイクルをなすレシプロ式の押出中空成形機や、複数の金型を垂直または水平方向に円周上に配置して連続回転移動させるロータリー式の押出中空成形機などが挙げられる。   A general-purpose extrusion hollow molding machine can be used for the production of the hollow container of the present invention. The extrusion hollow molding machine is, for example, a part in which a composition melted, plasticized and kneaded by an extruder is continuously or intermittently extruded from a die to form a parison, a mold having a product-shaped cavity, and a mold cavity. A pressurized gas blowing device. A reciprocating extrusion hollow molding machine in which a mold moves back and forth between an extruder and a blower to form a molding cycle, and a rotary that continuously rotates by arranging a plurality of molds vertically or horizontally on the circumference. For example, an extrusion hollow molding machine of the type is mentioned.

本発明の中空容器を、押出中空成形機を用いて製造する方法の概略について説明する。
成形機に投入された原材料は、押出機部分のシリンダ中で溶融、混練され、押出機先端のダイとコアとの間隙からチューブ状のパリソンに押出される。押し出されたパリソンを金型にて挟む。次いでパリソン内部に加圧気体が吹込まれる。加圧気体の圧力によりパリソンは金型のキャビティ形状に賦形され、冷却される。その後、金型を開いて容器が排出される。
An outline of a method for producing the hollow container of the present invention using an extrusion hollow molding machine will be described.
The raw materials charged in the molding machine are melted and kneaded in the cylinder of the extruder part, and extruded into a tube-shaped parison through the gap between the die and the core at the tip of the extruder. The extruded parison is sandwiched between molds. Next, pressurized gas is blown into the parison. The parison is shaped into the cavity shape of the mold by the pressure of the pressurized gas and cooled. Thereafter, the mold is opened and the container is discharged.

本発明の中空容器の一態様は、前記した成分(A)、成分(B)および成分(C)を含有するポリプロピレン樹脂組成物からなる層のみから構成される、すなわち単層の容器である。この場合、前記ポリプロピレン系樹脂組成物からなる層の厚さは、容器の用途に応じて適宜決定することができ、特に限定されない。   One aspect of the hollow container of the present invention is a single-layer container composed of only a layer made of a polypropylene resin composition containing the component (A), the component (B) and the component (C). In this case, the thickness of the layer made of the polypropylene resin composition can be appropriately determined according to the use of the container, and is not particularly limited.

本発明の中空容器の他の態様は、前記必須のポリプロピレン樹脂組成物からなる少なくとも1層を含む2層以上からなる多層容器である。前記樹脂組成物からなる層以外の層を構成する材料として、エチレン−ビニルアルコール共重合体、ポリアミド樹脂、ポリエチレンテレフタレート樹脂などが挙げられる。また、本発明のプラスチック容器の成形加工時に発生するバリをリサイクルした組成物を用いることもできる。前記多層容器において、前記壁の厚さは、容器の用途に応じて適宜決定することができ、特に限定されない。前記必須の組成物から構成される層の厚さは、容器の壁全体の厚さの30%以上であることが好ましく、より好ましくは40%以上であり、特に好ましくは50%以上である。   Another aspect of the hollow container of the present invention is a multilayer container composed of two or more layers including at least one layer composed of the essential polypropylene resin composition. Examples of the material constituting the layer other than the layer composed of the resin composition include an ethylene-vinyl alcohol copolymer, a polyamide resin, and a polyethylene terephthalate resin. Moreover, the composition which recycled the burr | flash which generate | occur | produces at the time of the shaping | molding process of the plastic container of this invention can also be used. In the multilayer container, the thickness of the wall can be appropriately determined according to the use of the container, and is not particularly limited. The thickness of the layer composed of the essential composition is preferably 30% or more, more preferably 40% or more, and particularly preferably 50% or more of the total thickness of the container wall.

本発明の中空容器は、液体包装容器、食品包装容器、医療容器、自動車用品、家電用品、工業用品、雑貨などの広範囲の用途に使用可能であり、マヨネーズ、ケチャップ、ソース、ドレッシング、蜂蜜、ジャム、清涼飲料水、アイスキャンディーなどの食品包装容器や、血液成分、生理食塩水、電解質、デキストラン製剤、マンニトール製剤、糖類製剤、アミノ酸製剤、脂肪乳剤、目薬、流動食などの薬液の収容、運搬容器などの医療容器として特に好適に使用することができる。   The hollow container of the present invention can be used for a wide range of applications such as liquid packaging containers, food packaging containers, medical containers, automobile products, household appliances, industrial products, sundries, mayonnaise, ketchup, sauce, dressing, honey, jam , Food packaging containers such as soft drinks and ice candy, and storage and transport containers for blood components, physiological saline, electrolytes, dextran preparations, mannitol preparations, saccharide preparations, amino acid preparations, fat emulsions, eye drops, liquid foods, etc. It can be particularly suitably used as a medical container.

以下、本発明を実施例に基づいて説明するが、本発明が実施例により限定されるものでないことは言うまでもない。
実施例および比較例で用いた評価方法は以下のとおりである。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, it cannot be overemphasized that this invention is not what is limited by an Example.
The evaluation methods used in Examples and Comparative Examples are as follows.

1.メルトフローレート(MFR)
結晶性プロピレン系重合体(成分(A))、結晶性プロピレン系重合体(成分(B))は、JIS K7210の条件14の方法に従って230℃で測定した。ポリプロピレン系樹脂組成物のMFR(g/10分)もこれと同様の条件下に測定した。エチレン−α−オレフィン共重合体(成分(C))のMFR(g/10分)はJIS K6760に従い190℃で測定した。
1. Melt flow rate (MFR)
The crystalline propylene polymer (component (A)) and the crystalline propylene polymer (component (B)) were measured at 230 ° C. according to the method of condition 14 of JIS K7210. The MFR (g / 10 min) of the polypropylene resin composition was also measured under the same conditions. The MFR (g / 10 minutes) of the ethylene-α-olefin copolymer (component (C)) was measured at 190 ° C. according to JIS K6760.

2.密度(d)
エチレン−α−オレフィン共重合体(成分(C))の密度(kg/m3)は、JIS K6760−1981に従って測定した。
2. Density (d)
The density (kg / m 3 ) of the ethylene-α-olefin copolymer (component (C)) was measured according to JIS K6760-1981.

3.結晶融解ピークの温度
パーキンエルマー社製の示差走査型熱量計DSC−VIIを用いて、以下の手順で結晶融解曲線を作成した。下記の(4)−(vii)の工程から得られる結晶融解曲線におけるピーク温度のうち、最もピーク強度の高い温度を結晶融解ピークの温度として求めた。
(1)熱プレス成形により温度230℃にて、直径65mm、厚さ100μmの中空容器を作成する。
(2)(1)で作成した中空容器を、打ち抜き機を用いて直径5mmに打ち抜いて試験片を作成する。この試験片の重量を電子天秤を用いて測定する。
(3)(2)で作成した試験片をサンプルパンに詰める。
(4)サンプルパン中の試験片に、窒素雰囲気下で以下に示す熱履歴を加える。
(i) 24℃から220℃へ300℃/分の速度で昇温
(ii) (i)の昇温後、220で5分間保持
(iii) (ii)の保温後、300℃/分の速度で150℃に降温
(iv) (iii)の降温後、150℃で1分間保持
(v) (iv)の保温後、5℃/分の速度で50℃に降温
(vi) (v)の降温後、50℃で1分間保持
(vii) (vi)の保温後、5℃/分の速度で180℃に昇温
3. Crystal Melting Peak Temperature Using a differential scanning calorimeter DSC-VII manufactured by PerkinElmer, a crystal melting curve was prepared by the following procedure. Of the peak temperatures in the crystal melting curve obtained from the following step (4)-(vii), the temperature with the highest peak intensity was determined as the temperature of the crystal melting peak.
(1) A hollow container having a diameter of 65 mm and a thickness of 100 μm is prepared by hot press molding at a temperature of 230 ° C.
(2) The hollow container created in (1) is punched out to a diameter of 5 mm using a punching machine to create a test piece. The weight of this test piece is measured using an electronic balance.
(3) The test piece prepared in (2) is packed in a sample pan.
(4) The following thermal history is added to the test piece in the sample pan under a nitrogen atmosphere.
(I) Temperature rise from 24 ° C. to 220 ° C. at a rate of 300 ° C./min. (Ii) After temperature rise in (i), hold at 220 for 5 minutes (iii) Rate of 300 ° C./min after heat retention in (ii) Decrease to 150 ° C at (iv) (iii) Decrease and hold at 150 ° C for 1 minute (v) Decrease to 50 ° C at a rate of 5 ° C / min after keeping at (iv) (vi) Decrease at (v) Thereafter, hold at 50 ° C. for 1 minute (vii) After keeping (vi), the temperature is raised to 180 ° C. at a rate of 5 ° C./min

4.結晶の融解熱量
前記結晶融解ピークの温度の測定により得られた結晶融解曲線にベースラインを引いた。結晶融解曲線とベースラインに囲まれた領域の面積から結晶の融解熱量(J/g)を算出した。
4). Heat of fusion of crystal Baseline was drawn on the crystal melting curve obtained by measuring the temperature of the crystal melting peak. The heat of fusion (J / g) of the crystal was calculated from the area of the region surrounded by the crystal melting curve and the baseline.

5.中空容器の落下強度
中空容器に水を500g充填し、ポリプロピレン製キャップをした。その後、5℃の低温恒温槽で24時間以上静置後、1.2mの高さからコンクリート床に容器の胴部を下にして10回繰り返して自由落下させた。10回落下後の容器の状態を観察した。同じ構成の10本の試験容器について同様の試験を行い、未破壊である試験容器の本数の、試験容器の全本数に対する比率(%)を、その構成の容器の落下強度とした。
5. Drop strength of the hollow container 500 g of water was filled in the hollow container and a polypropylene cap was applied. Then, after leaving still in a 5 degreeC low temperature thermostat for 24 hours or more, it was made to fall freely from the height of 1.2 m to the concrete floor 10 times, repeating the trunk | drum of a container. The state of the container after dropping 10 times was observed. A similar test was performed on 10 test containers having the same configuration, and the ratio (%) of the number of undestructed test containers to the total number of test containers was defined as the drop strength of the container having the configuration.

6.中空容器の圧縮荷重
中空容器の短径側の側壁を上下方向に向けて万能試験機にセットした。その後、直径が25mmの円柱形状をしたダートにより、温度23℃、圧縮速度100mm/minの条件で、中空容器の胴部中を圧縮した。圧縮歪みが10mmのときの圧縮荷重(N)を測定した。
6). Compression load of hollow container The side wall on the short diameter side of the hollow container was set in a universal testing machine with the side wall facing up and down. Thereafter, the inside of the body of the hollow container was compressed with a dart having a cylindrical shape with a diameter of 25 mm under the conditions of a temperature of 23 ° C. and a compression speed of 100 mm / min. The compressive load (N) when the compressive strain was 10 mm was measured.

7.中空容器のヘイズ、透過率
本発明の中空容器の側壁部の中央部を切り出して試験片を作成した。この試験片のヘイズ(%)および透過率(%)をJIS K7105に従って測定した。
7. Haze and transmittance of hollow container A test piece was prepared by cutting out the central part of the side wall of the hollow container of the present invention. The haze (%) and transmittance (%) of this test piece were measured according to JIS K7105.

8.加熱処理後の中空容器のヘイズ、透過率
純水を500g充填した中空容器を、アルプ(株)社製RK−3030型オートクレーブ内に静置し、温度121℃、加圧圧力0.15MPaの条件で20分間水蒸気加熱処理した。その後、オートクレーブ内に冷却水を噴霧して中空容器を冷却した。その後、中空容器の側壁部の中央部を切り抜いて試験片を作成した。この試験片のヘイズ(%)および透過率(%)をJIS K7105に従い測定した。
8). Haze and transmittance of hollow container after heat treatment A hollow container filled with 500 g of pure water is placed in an RK-3030 type autoclave manufactured by Alp Co., Ltd., at a temperature of 121 ° C. and a pressure of 0.15 MPa. For 20 minutes with steam. Thereafter, cooling water was sprayed into the autoclave to cool the hollow container. Then, the center part of the side wall part of a hollow container was cut out, and the test piece was created. The haze (%) and transmittance (%) of this test piece were measured according to JIS K7105.

実施例および比較例で用いた重合体は以下のとおりである。
1.結晶性プロピレン系重合体(成分(A))
プロピレン−エチレン−ブテン−1共重合体(A−1):
MFR(230℃,2.16kgf)は3.8g/10分、エチレン由来の構成単位の含有量は2.4重量%、ブテン−1由来の構成単位の含有量は6.8重量%であった。また、示差走査型熱量計で測定された結晶融解ピークの温度は133℃、結晶の融解熱量は71J/gであった。
The polymers used in Examples and Comparative Examples are as follows.
1. Crystalline propylene polymer (component (A))
Propylene-ethylene-butene-1 copolymer (A-1):
MFR (230 ° C., 2.16 kgf) was 3.8 g / 10 min, the content of structural units derived from ethylene was 2.4% by weight, and the content of structural units derived from butene-1 was 6.8% by weight. It was. Further, the temperature of the crystal melting peak measured by a differential scanning calorimeter was 133 ° C., and the heat of fusion of the crystal was 71 J / g.

2.プロピレン−エチレン−ブテン−1共重合体(A−2):
MFR(230℃,2.16kgf)は5.0g/10分、エチレン由来の構成単位の含有量は2.2重量%、ブテン−1由来の構成単位の含有量は9.2重量%であった。示差走査型熱量計で測定された結晶融解ピークの温度は130℃、結晶の融解熱量は66J/gであった。
2. Propylene-ethylene-butene-1 copolymer (A-2):
MFR (230 ° C., 2.16 kgf) was 5.0 g / 10 min, the content of structural units derived from ethylene was 2.2% by weight, and the content of structural units derived from butene-1 was 9.2% by weight. It was. The temperature of the crystal melting peak measured by a differential scanning calorimeter was 130 ° C., and the heat of fusion of the crystal was 66 J / g.

3.プロピレン−ブテン−1共重合体(A−3):
MFR(230℃,2.16kgf)は3.0g/10分、ブテン−1由来の構成単位の含有量は25.0重量%であった。示差走査型熱量計で測定された結晶融解ピークの温度は130℃、結晶の融解熱量は54J/gであった。
3. Propylene-butene-1 copolymer (A-3):
MFR (230 degreeC, 2.16 kgf) was 3.0 g / 10min, and content of the structural unit derived from butene-1 was 25.0 weight%. The temperature of the crystal melting peak measured with a differential scanning calorimeter was 130 ° C., and the heat of fusion of the crystal was 54 J / g.

4.結晶性プロピレン系重合体(成分(B))
プロピレン−エチレン共重合体(B−1):
MFR(230℃,2.16kgf)は0.5g/10分、エチレン由来の構成単位の含有量は0.3重量%であった。示差走査型熱量計で測定された結晶融解ピークの温度は163℃、結晶の融解熱量は96J/gであった。
4). Crystalline propylene polymer (component (B))
Propylene-ethylene copolymer (B-1):
The MFR (230 ° C., 2.16 kgf) was 0.5 g / 10 min, and the content of structural units derived from ethylene was 0.3% by weight. The temperature of the crystal melting peak measured with a differential scanning calorimeter was 163 ° C., and the heat of fusion of the crystal was 96 J / g.

5.プロピレン−エチレン共重合体(B−2):
MFR(230℃,2.16kgf)は3.0g/10分、エチレン由来の構成単位の含有量は1.5重量%であった。示差走査型熱量計で測定された結晶融解ピークの温度は155℃、結晶の融解熱量は89J/gであった。
5. Propylene-ethylene copolymer (B-2):
MFR (230 ° C., 2.16 kgf) was 3.0 g / 10 min, and the content of structural units derived from ethylene was 1.5% by weight. The temperature of the crystal melting peak measured with a differential scanning calorimeter was 155 ° C., and the heat of fusion of the crystal was 89 J / g.

6.エチレン−α−オレフィン共重合体(成分(C))
エチレン−ヘキセン−1共重合体(C−1):
住友化学(株)製の商品名がエクセレンFX グレード名CX4008なるエチレン−ヘキセン−1共重合体であり、MFR(190℃,2.16kgf)が8.0g/10分、密度が883kg/m3、ヘキセン単量体単位の含有量は22.5重量%であった。
6). Ethylene-α-olefin copolymer (component (C))
Ethylene-hexene-1 copolymer (C-1):
Sumitomo Chemical Co., Ltd. is an ethylene-hexene-1 copolymer having the trade name EXCELEN FX grade name CX4008, MFR (190 ° C., 2.16 kgf) 8.0 g / 10 min, density 883 kg / m 3 The hexene monomer unit content was 22.5% by weight.

7.エチレン−ブテン−1共重合体(C−2):
住友化学(株)製の商品名がエクセレンVL グレード名VL100なるエチレン−ブテン−1共重合体であり、MFR(190℃,2.16kgf)が0.8g/10分、密度が900kg/m3であった。
7. Ethylene-butene-1 copolymer (C-2):
Sumitomo Chemical Co., Ltd. is an ethylene-butene-1 copolymer whose trade name is Excellen VL Grade name VL100, MFR (190 ° C., 2.16 kgf) is 0.8 g / 10 min, density is 900 kg / m 3 Met.

8.エチレン−ブテン−1共重合体(C−3):
住友化学(株)製の商品名がスミカセン−L グレード名FS250Aなるエチレン−ブテン−1共重合体であり、MFR(190℃,2.16kgf)が1.8g/10分、密度が922kg/m3であった。
8). Ethylene-butene-1 copolymer (C-3):
Sumitomo Chemical Co., Ltd. trade name is Sumikasen-L, an ethylene-butene-1 copolymer with grade name FS250A, MFR (190 ° C., 2.16 kgf) 1.8 g / 10 min, density 922 kg / m It was 3 .

実施例1
成分(A)としてプロピレン−エチレン−ブテン−1共重合体(A−1)89重量部、成分(B)としてプロピレン−エチレン共重合体(B−1)5重量部、成分(C)としてエチレン−ヘキセン−1共重合体(C−1)6重量部を配合し、さらにハイドロタルサイトDHT−4C(協和化学工業株式会社製)0.01重量部、イルガノックス1010(チバ・スペシャルティ・ケミカルズ社製)0.075重量部を加え、ヘンシェルミキサーで混合した。得られた混合物をフルフライトタイプで直径が65mmのスクリューを有する単軸押出機を用い、温度230℃、スクリュー回転数100rpmにて溶融混練してポリプロピレン系樹脂組成物を得た。この樹脂組成物のMFRは4.1g/10分であった。各成分の配合比、樹脂組成物のMFRを表1に示した。該ポリプロピレン系樹脂組成物を、フルフライトタイプで直径が50mmのスクリューを有する(株)日本製鋼所製NB3B型中空成形機にて、押出量5kg/時、ダイおよびコア温度210℃でホットパリソンに押し出した。該ホットパリソンを、14℃に温度調節した金型で挟んだ後、圧力0.3MPaの圧縮空気を20秒間吹き込み、重量が28g、容量が600ml、側壁の厚さが約0.4mmで該ポリプロピレン系樹脂組成物からなる層のみから構成される中空容器を製造した。この中空容器の物性を表3に示した。
Example 1
89 parts by weight of propylene-ethylene-butene-1 copolymer (A-1) as component (A), 5 parts by weight of propylene-ethylene copolymer (B-1) as component (B), ethylene as component (C) -Mixing 6 parts by weight of hexene-1 copolymer (C-1), 0.01 parts by weight of hydrotalcite DHT-4C (manufactured by Kyowa Chemical Industry Co., Ltd.), Irganox 1010 (Ciba Specialty Chemicals) (Made) 0.075 weight part was added, and it mixed with the Henschel mixer. The obtained mixture was melt-kneaded at a temperature of 230 ° C. and a screw rotation speed of 100 rpm using a single-screw extruder having a full flight type screw having a diameter of 65 mm to obtain a polypropylene resin composition. The MFR of this resin composition was 4.1 g / 10 minutes. Table 1 shows the compounding ratio of each component and the MFR of the resin composition. The polypropylene resin composition was converted into a hot parison at an extrusion rate of 5 kg / hour with a die and core temperature of 210 ° C. in a NB3B type hollow molding machine manufactured by Nippon Steel, Ltd. having a full flight type screw having a diameter of 50 mm. Extruded. After sandwiching the hot parison with a mold whose temperature was adjusted to 14 ° C., compressed air with a pressure of 0.3 MPa was blown for 20 seconds, the weight was 28 g, the volume was 600 ml, and the side wall thickness was about 0.4 mm. The hollow container comprised only from the layer which consists of a resin composition is manufactured. The physical properties of this hollow container are shown in Table 3.

実施例2〜5
前記の成分(A)の結晶性プロピレン系重合体、成分(B)の結晶性プロピレン系重合体、成分(C)のエチレン−α−オレフィン共重合体から選ばれる各重合体を、表1に示す配合割合で、実施例1と同様に溶融混練してポリプロピレン系樹脂組成物を得た。該樹脂組成物のMFRを表1に示す。実施例1と同様にポリプロピレン系樹脂組成物のみから構成される中空容器を製造した。これらの中空容器の物性を表3に示した。
Examples 2-5
Table 1 shows the polymers selected from the crystalline propylene polymer of the component (A), the crystalline propylene polymer of the component (B), and the ethylene-α-olefin copolymer of the component (C). A polypropylene resin composition was obtained by melting and kneading in the same manner as in Example 1 at the blending ratio shown. Table 1 shows the MFR of the resin composition. The hollow container comprised only from a polypropylene resin composition like Example 1 was manufactured. The physical properties of these hollow containers are shown in Table 3.

比較例1〜5
前記の成分(A)の結晶性プロピレン系重合体、成分(B)の結晶性プロピレン系重合体、成分(C)のエチレン−α−オレフィン共重合体から選ばれる各重合体を、表2に示す配合割合で、実施例1と同様に溶融混練してポリプロピレン系樹脂組成物を得た。該樹脂組成物のMFRを表1に示す。実施例1と同様にポリプロピレン系樹脂組成物のみから構成される中空容器を製造した。これらの中空容器の物性を表3に示した。これらの中空容器は、柔軟性、透明性、耐衝撃性、加熱処理後の透明性のいずれかで前記の実施例より劣るものであった。
Comparative Examples 1-5
Table 2 shows polymers selected from the component (A) crystalline propylene polymer, the component (B) crystalline propylene polymer, and the component (C) ethylene-α-olefin copolymer. A polypropylene resin composition was obtained by melting and kneading in the same manner as in Example 1 at the blending ratio shown. Table 1 shows the MFR of the resin composition. The hollow container comprised only from a polypropylene resin composition like Example 1 was manufactured. The physical properties of these hollow containers are shown in Table 3. These hollow containers were inferior to the above examples in any of flexibility, transparency, impact resistance, and transparency after heat treatment.

Figure 0004736459
Figure 0004736459

Figure 0004736459
Figure 0004736459

Figure 0004736459
Figure 0004736459

Claims (5)

プロピレン−エチレン共重合体、プロピレン−エチレン−ブテン−1共重合体またはプロピレン−ブテン−1共重合体であり、かつ示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピーク温度が100〜145℃である結晶性プロピレン系重合体(成分(A))35〜93重量部と、示差走査熱量測定において50〜180℃の範囲に観測される最大の結晶融解ピーク温度が150℃以上である結晶性プロピレン系重合体(成分(B))2〜35重量部と、下記要件[1]、[2]及び[3]を満たすエチレン−α−オレフィン共重合体(成分(C))5〜30重量部(但し、成分(A)、(B)及び(C)の合計量を100重量部とする)を含むポリプロピレン系樹脂組成物からなる層を有する中空容器。
[1]エチレン由来の構成単位の含有量が50重量%以上であり、エチレンと炭素原子数4〜12のα−オレフィンとの共重合体である。
[2]温度が190℃、荷重が2.16kgfの条件で測定したメルトフローレートが0.1〜50g/10分である。
[3]密度が865〜898kg/m3である。
The maximum crystal melting peak which is a propylene-ethylene copolymer, a propylene-ethylene-butene-1 copolymer or a propylene-butene-1 copolymer and is observed in the range of 50 to 180 ° C. in differential scanning calorimetry 35 to 93 parts by weight of a crystalline propylene polymer (component (A)) having a temperature of 100 to 145 ° C. and a maximum crystal melting peak temperature observed in the range of 50 to 180 ° C. in the differential scanning calorimetry is 150. 2 to 35 parts by weight of a crystalline propylene polymer (component (B)) having a temperature of not lower than ° C. and an ethylene-α-olefin copolymer (component (C) satisfying the following requirements [1], [2] and [3]: )) A hollow container having a layer made of a polypropylene resin composition containing 5 to 30 parts by weight (provided that the total amount of components (A), (B) and (C) is 100 parts by weight).
[1] The ethylene-derived constituent unit content is 50% by weight or more, and is a copolymer of ethylene and an α-olefin having 4 to 12 carbon atoms.
[2] The melt flow rate measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kgf is 0.1 to 50 g / 10 min.
[3] The density is 865 to 898 kg / m3.
温度が230℃、荷重が2.16kgfの条件で測定した前記ポリプロピレン系樹脂組成物のメルトフローレートが0.1〜8g/10分である請求項1に記載の中空容器。   The hollow container according to claim 1, wherein the melt flow rate of the polypropylene resin composition measured under conditions of a temperature of 230 ° C and a load of 2.16 kgf is 0.1 to 8 g / 10 minutes. 前記ポリプロピレン系樹脂組成物からなる層のみから構成される請求項1または2に記載の中空容器。   The hollow container of Claim 1 or 2 comprised only from the layer which consists of the said polypropylene resin composition. 食品用容器である請求項1〜いずれかに記載の中空容器。 It is a food container, The hollow container in any one of Claims 1-3 . 医療用容器である請求項1〜いずれかに記載の中空容器。 It is a medical container, The hollow container in any one of Claims 1-3 .
JP2005041870A 2005-02-18 2005-02-18 Hollow container made of polypropylene resin composition Expired - Fee Related JP4736459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041870A JP4736459B2 (en) 2005-02-18 2005-02-18 Hollow container made of polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041870A JP4736459B2 (en) 2005-02-18 2005-02-18 Hollow container made of polypropylene resin composition

Publications (2)

Publication Number Publication Date
JP2006225536A JP2006225536A (en) 2006-08-31
JP4736459B2 true JP4736459B2 (en) 2011-07-27

Family

ID=36987187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041870A Expired - Fee Related JP4736459B2 (en) 2005-02-18 2005-02-18 Hollow container made of polypropylene resin composition

Country Status (1)

Country Link
JP (1) JP4736459B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707740B2 (en) * 2010-06-04 2015-04-30 東洋製罐株式会社 Olefin resin bottle for non-oil content
JP6485151B2 (en) * 2015-03-23 2019-03-20 日本ポリエチレン株式会社 Medical bag
JP6771809B2 (en) * 2015-03-23 2020-10-21 日本ポリエチレン株式会社 Medical bag
JP6980452B2 (en) * 2017-08-09 2021-12-15 住友化学株式会社 Hollow container and its manufacturing method, and polypropylene resin composition for blow fill seal
CN114456474B (en) * 2021-11-24 2023-12-29 中国石油化工股份有限公司 Thin-wall multilayer hollow blow molding material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143714A (en) * 1994-11-17 1996-06-04 Chisso Corp Container made of olefin polymer composition
JPH0948884A (en) * 1995-08-07 1997-02-18 Mitsui Petrochem Ind Ltd Polypropylene composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143714A (en) * 1994-11-17 1996-06-04 Chisso Corp Container made of olefin polymer composition
JPH0948884A (en) * 1995-08-07 1997-02-18 Mitsui Petrochem Ind Ltd Polypropylene composition

Also Published As

Publication number Publication date
JP2006225536A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
KR101333450B1 (en) Multilayer blow-molded container, and process for production thereof
TW200909494A (en) Polypropylene resin foam particle and molding thereof
US20140288228A1 (en) Polypropylene compounds with high impact performance and improved stress whitening resistance
JP4736459B2 (en) Hollow container made of polypropylene resin composition
JP5636348B2 (en) Propylene-based resin multilayer sheet and package for heat treatment using the same
EP2889328A1 (en) Blow-molded container, and resin composition for blow-molded container
JP6386874B2 (en) Polyolefin composition, polyolefin stretched film, and method for producing stretched film
JP2014031221A (en) Food container for cold storage
JP5439293B2 (en) Propylene-based resin multilayer sheet and package for heat treatment using the same
KR102460745B1 (en) Laminate, container and manufacturing method thereof, and sheet for use as raw material of laminate
JP4040185B2 (en) Polyolefin resin composition, sheet and molded article
JP2006225537A (en) Polypropylene-based resin composition and sheet consisting of the same
JP2016074760A (en) Stretched film, production method of the same, and packaging material using the same
JP2003342429A (en) Polypropylene resin composition and its application
JPH11293059A (en) Olefinic resin composition and sheet thereof
JP5929633B2 (en) Polypropylene resin molded body and method for producing resin molded body
JP2001181455A (en) Resin composition for blow molding and cow molded container
KR101842787B1 (en) Polypropylene resin composition for blow molded article integrated with handle and preparing method same
JP2016074091A (en) Production method of stretched film, and packaging material composed of the stretched film obtained by the production method
JPH11165390A (en) Olefin composite resin laminated sheet
US20050042401A1 (en) Plastic container
JP2005088998A (en) Plastic hollow container
EP3312102A1 (en) Direct blow-molded container having excellent surface gloss
JP4449131B2 (en) Propylene resin composition and hollow molded container
JP7029500B2 (en) Thermoplastic resin composition and molded article obtained from it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees