JP4731146B2 - Management control method of apparatus having movable part and precision driving apparatus using the same - Google Patents

Management control method of apparatus having movable part and precision driving apparatus using the same Download PDF

Info

Publication number
JP4731146B2
JP4731146B2 JP2004281693A JP2004281693A JP4731146B2 JP 4731146 B2 JP4731146 B2 JP 4731146B2 JP 2004281693 A JP2004281693 A JP 2004281693A JP 2004281693 A JP2004281693 A JP 2004281693A JP 4731146 B2 JP4731146 B2 JP 4731146B2
Authority
JP
Japan
Prior art keywords
friction
driving
friction member
precision
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004281693A
Other languages
Japanese (ja)
Other versions
JP2006101579A (en
Inventor
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004281693A priority Critical patent/JP4731146B2/en
Publication of JP2006101579A publication Critical patent/JP2006101579A/en
Application granted granted Critical
Publication of JP4731146B2 publication Critical patent/JP4731146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は精密駆動装置に関するものであり、特に精密加工機械、精密測定装置、半導体製造装置に好適に用いられるものである。   The present invention relates to a precision drive device, and is particularly suitable for use in precision processing machines, precision measurement devices, and semiconductor manufacturing devices.

超音波モータは、最小振幅がナノメートルオーダーと小さく、高分解能の位置決めが可能であり、しかも摩擦駆動であるために駆動力が大きいといった特徴を有するため、これまでカメラのレンズズーム機構や腕時計のバイブレーションアラームなど回転運動系への実用化が行われており、最近では精密加工機械、精密測定装置、半導体製造装置等、直線運動系の精密駆動装置への適用が試みられている。   Ultrasonic motors have the features that the minimum amplitude is as small as nanometer order, positioning with high resolution is possible, and the driving force is large because of frictional drive. Practical application to a rotational motion system such as a vibration alarm has been made, and recently, application to a precision motion device of a linear motion system such as a precision processing machine, a precision measurement device, a semiconductor manufacturing device, etc. has been attempted.

図4に直線運動系の精密駆動装置への適用例の1つである従来の精密駆動装置10を示す。この装置は、ベース盤11上にクロスローラーガイドの如き一対のガイド部材12を備え、これらのガイド部材12によって可動体としてのステージ13を直線的に案内するようになっている。   FIG. 4 shows a conventional precision drive device 10 which is one example of application to a linear motion system precision drive device. This apparatus is provided with a pair of guide members 12 such as cross roller guides on a base board 11 and linearly guides a stage 13 as a movable body by these guide members 12.

また、ステージ13の一方の側面には、ガイド部材12に対して平行に駆動力伝達部材14が、ステージ13の他方の側面には、前記駆動力伝達部材14と平行にリニアスケール15がそれぞれ設置されており、該リニアスケール15と対向する位置には測定ヘッド16を設けて位置検出手段17を構成するとともに、前記駆動力伝達部材14と対向する位置には2つの超音波モータ20を設置し、各超音波モータ20の摩擦部材25を前記駆動力伝達部材14の当接面に対して垂直に当接させてある。   A driving force transmission member 14 is installed on one side surface of the stage 13 in parallel with the guide member 12, and a linear scale 15 is installed on the other side surface of the stage 13 in parallel with the driving force transmission member 14. A measuring head 16 is provided at a position facing the linear scale 15 to constitute a position detecting means 17, and two ultrasonic motors 20 are installed at a position facing the driving force transmitting member 14. The friction member 25 of each ultrasonic motor 20 is brought into contact with the contact surface of the driving force transmission member 14 perpendicularly.

なお、図中、26は超音波モータ20を収容するケース、27は超音波モータ20の駆動を阻害することなくケース26内に保持するためのスプリング、28は超音波モータ20をステージ13の駆動力伝達部材14に押圧するためのスプリングである。また、18は位置検出手段17より得られた位置情報を基にステージ13の駆動速度を制御するための駆動制御部であり、駆動制御部18から出力された駆動用指令信号をもとに超音波モータ20を駆動させる。   In the figure, reference numeral 26 denotes a case for housing the ultrasonic motor 20, reference numeral 27 denotes a spring for holding the ultrasonic motor 20 in the case 26 without obstructing the driving of the ultrasonic motor 20, and reference numeral 28 denotes a drive for the stage 13. A spring for pressing the force transmission member 14. Reference numeral 18 denotes a drive control unit for controlling the drive speed of the stage 13 on the basis of the position information obtained from the position detection means 17. The drive control unit 18 is based on the drive command signal output from the drive control unit 18. The sonic motor 20 is driven.

また、前記摩擦部材25および駆動力伝達部材14には、一般的なセラミックス、ガラス等が用いられており、これを当接させその摩擦駆動により、前記ステージ13を駆動させるようになっている。   The friction member 25 and the driving force transmission member 14 are made of general ceramics, glass, or the like, and are brought into contact with each other to drive the stage 13 by friction driving.

また、図5(a)、(b)に図3の精密駆動装置10に用いる超音波モータ20の構造を示すように、この超音波モータ20は、圧電セラミック板21の一方の主面に4分割された電極膜22a、22b、22c、22dを有し、対角に位置する電極膜22aと電極膜22dを結線するとともに、対角に位置する電極膜22bと電極膜22cを結線し、かつ他方の主面には、ほぼ全面に電極膜23を形成した振動体24と、上記圧電セラミック板21の端面に設けたセラミックスやガラスからなる摩擦部材25とからなり、上記一方の主面に形成された電極膜23をアースするとともに、他方の主面に形成された電極膜22aと電極膜22bにそれぞれ位相を異ならせた電圧を印加することにより、圧電セラミック板21に縦振動と横振動を発生させ、これらの振動の合力によって摩擦部材25を楕円運動させるようになっていた。   Further, as shown in FIGS. 5A and 5B, the structure of the ultrasonic motor 20 used in the precision driving apparatus 10 shown in FIG. The electrode films 22a, 22b, 22c, and 22d are divided, and the diagonal electrode films 22a and 22d are connected, the diagonal electrode films 22b and 22c are connected, and The other main surface is composed of a vibrating body 24 having an electrode film 23 formed on almost the entire surface and a friction member 25 made of ceramics or glass provided on the end surface of the piezoelectric ceramic plate 21 and formed on the one main surface. The grounded electrode film 23 is grounded, and by applying voltages having different phases to the electrode film 22a and the electrode film 22b formed on the other main surface, longitudinal vibration and lateral vibration are applied to the piezoelectric ceramic plate 21. Raised, the friction member 25 has been adapted to elliptical motion by the resultant force of these vibrations.

そして、ステージ13の移動に伴う位置検出手段16からの位置情報と、予め設定してあるステージ13の移動プロファイルに基づく基準位置情報との偏差に応じて駆動制御部18にて例えばPID演算処理し、超音波モータ20へ指令信号を出力するフィードバック制御を行うようになっていた。   Then, for example, PID calculation processing is performed in the drive control unit 18 according to the deviation between the position information from the position detecting means 16 accompanying the movement of the stage 13 and the reference position information based on the preset movement profile of the stage 13. Then, feedback control for outputting a command signal to the ultrasonic motor 20 is performed.

なお、PID演算を行うための制御パラメータであるP項、I項、D項の決定は、実駆動させる前にステージ13の移動中における位置偏差や位置決め精度が規格を満足するように実験により試行錯誤的に決定するようになっていた。   It should be noted that the determination of the P term, I term, and D term, which are control parameters for performing the PID calculation, is carried out by experiments so that the position deviation and positioning accuracy during the movement of the stage 13 satisfy the standard before actual driving. It came to be decided by mistake.

また、特許文献1には加振機のシール余寿命管理装置において、摺動量を積算した積算結果をそれまでの総摺動量に加算して、その総摺動量が予め決められた設定値に達しているか判定することが示されている。   Further, in Patent Document 1, in a seal remaining life management device for a vibrator, the total result obtained by integrating the sliding amount is added to the total sliding amount so far, and the total sliding amount reaches a predetermined set value. It is shown to determine whether or not.

さらに、本発明者らは、特許文献2において超音波モータを駆動源とした精密駆動装置において、摩擦部材25の摩擦摩耗量は摩擦仕事量を算出しこれを監視することで、摩擦部材の寿命を予測することができることを示している。
特開2003−139657号公報 特開2003−339175号公報
Furthermore, in the precision drive device using an ultrasonic motor as a drive source in Patent Document 2, the present inventors calculate the friction work amount of the friction member 25 and monitors the friction work amount, thereby monitoring the life of the friction member. It is shown that can be predicted.
JP 2003-139657 A JP 2003-339175 A

ところが、前記精密駆動装置10を高速で長時間駆動させると摩擦部材25の駆動力伝達部材14との接触面(以下駆動面と記載)に亀裂を生じる。   However, when the precision driving device 10 is driven at a high speed for a long time, a crack occurs on a contact surface (hereinafter referred to as a driving surface) of the friction member 25 with the driving force transmission member 14.

この原因は、摩擦部材25と駆動力伝達部材14の駆動面に発生する局部的な発熱により、発熱部と未発熱部の熱膨張の違いから駆動面の各所に応力差が発生すること、並びに高速で長時間駆動を実施したことによる材質疲労の2つによるものと考えられる。   This is due to the fact that local heat generated on the driving surfaces of the friction member 25 and the driving force transmission member 14 causes stress differences at various locations on the driving surface due to differences in thermal expansion between the heat generating portion and the non-heat generating portion. This is thought to be due to two factors: material fatigue due to high-speed, long-time driving.

このように摩擦部材25の駆動面に亀裂が生じると、駆動面に滑りを生じる場合があり、良好な駆動が維持できなくなるばかりか、駆動中に他の原因で精密駆動装置10のステージを急停止させなければならない場合に、急停止により駆動面にかかる応力によって亀裂を破壊起点にして摩擦部材25が破損してしまうが、これに伴う余寿命の予測ができないという問題があった。   Thus, if the driving surface of the friction member 25 is cracked, the driving surface may be slipped, and not only good driving cannot be maintained, but also the stage of the precision driving device 10 is suddenly moved during driving. When it has to be stopped, the friction member 25 is damaged from the crack as a starting point due to the stress applied to the drive surface due to the sudden stop, but there is a problem that the remaining life associated therewith cannot be predicted.

特に余寿命の管理手段としては、特許文献1のように単純に総摺動量を積算している場合があるが、力のばらつきによる影響が考慮されていない。   In particular, as a means for managing the remaining life, there is a case where the total sliding amount is simply integrated as in Patent Document 1, but the influence of force variation is not taken into consideration.

そのため、装置ごとの寿命設定がばらつき、また、予期しない要因で加速度的に負荷が大きくなっても、それにともない余寿命を予測することはできなかった。   For this reason, the life setting for each device varies, and even if the load increases at an accelerated rate due to an unexpected factor, the remaining life cannot be predicted.

また、本発明者らが既に開示している特許文献2に記載の摩擦仕事量の監視では、超音波モータの摩擦部材25の摩擦摩耗量を予測でき、これにより摩擦部材の交換時期、すなわち摩擦摩耗による寿命を予測、判定することは可能であったものの、材質疲労に起因する寿命は予測、判定することができないため、精密駆動装置の総合的な寿命を予測し、これをもとに装置を管理制御することは困難であった。   In addition, in the monitoring of the frictional work amount described in Patent Document 2 already disclosed by the present inventors, the frictional wear amount of the friction member 25 of the ultrasonic motor can be predicted. Although it was possible to predict and determine the life due to wear, it was impossible to predict and determine the life due to material fatigue. It was difficult to manage and control.

本発明の精密駆動装置は前記課題に鑑み、以下の構成を有する。 In view of the above problems, the precision drive device of the present invention has the following configuration.

本発明の精密駆動装置は、超音波モータ摩擦部材との摩擦駆動により可動する可動体と、該可動体の位置を測定する位置検出手段と、該位置検出手段からの位置情報に基づき、前記超音波モータを駆動させる駆動用指令信号を出力する駆動制御部と、前記摩擦部材の摩擦仕事積量と予め設定されたしきい値とを比較し、前記摩擦部材の寿命を判定する寿命判定部とを備える。前記摩擦仕事積算は、前記摩擦仕事量の積算値であり、
前記摩擦仕事量は、前記摩擦部材の滑り量(S)接線力(F)、およびサーボループ間の駆動回数f’を用いて算出される。
The precision drive device according to the present invention is based on a movable body that is movable by friction driving with a friction member of an ultrasonic motor , position detection means that measures the position of the movable body, and position information from the position detection means. comparing a drive control unit for outputting a driving command signal for driving the ultrasonic motor, and a friction specifications Kotoseki calculated amount and pre Me set threshold value of the friction member, it determines the life of the friction member A life determination unit. The friction work accumulated amount is an accumulated value of the friction work,
The friction work is calculated using the slip amount (S) of the friction member , the tangential force (F) , and the number of driving times f ′ between the servo loops .

また、本発明の精密駆動装置は、好ましくは、以下の構成を有する。In addition, the precision driving device of the present invention preferably has the following configuration.

好ましくは、前記超音波モータの先端部に摩擦部材を接合し、該記摩擦部材を可動体に当接させ、可動体を直線的に可動させることを特徴とする。Preferably, a friction member is joined to the tip of the ultrasonic motor, the friction member is brought into contact with the movable body, and the movable body is moved linearly.

好ましくは、前記摩擦仕事積算量が予め設定されたしきい値を越えた場合に、警告を発する警告信号発生部を備えたことを特徴とする。
Preferably, if the previous SL friction work integrated amount exceeds a predetermined threshold value, characterized by comprising a warning signal generator for issuing a warning.

好ましくは、前記予め設定されたしきい値を、前記摩擦部材の駆動面に亀裂が生じた時点の全摩擦仕事量の4/5以下の領域に設定することを特徴とする。
Preferably, the preset threshold value is set to a region equal to or less than 4/5 of the total friction work when the drive surface of the friction member is cracked.

好ましくは、前記接線力が初期の2倍になった場合に、警告を発する警告信号発生部を備えたことを特徴とする。Preferably, there is provided a warning signal generation unit that issues a warning when the tangential force becomes twice the initial value.

好ましくは、前記超音波モータの摩擦部材がアルミナ、アルミナチタンカーバイト、アルミナチタンナイトライドのいずれか一種からなることを特徴とする。Preferably, the friction member of the ultrasonic motor is made of any one of alumina, alumina titanium carbide, and alumina titanium nitride.

好ましくは、前記摩擦部材の先端面を球面とすることを特徴とする。Preferably, the tip surface of the friction member is a spherical surface.

また、本発明の精密駆動装置の駆動方法は、以下の通りである。The driving method of the precision driving device of the present invention is as follows.

本発明の精密駆動装置の駆動方法は、超音波モータ摩擦部材との摩擦駆動により可動する可動体を供えた精密駆動装置の駆動方法であって、該可動体の位置を検出する位置検出工程と、該位置検出工程において測定された位置情報に基づき、前記超音波モータを駆動させる駆動工程と、前記摩擦部材の摩擦仕事積量と予め設定されたしきい値とを比較し、前記摩擦部材の寿命を判定する判定工程とを備え、前記摩擦仕事積算は、摩擦仕事量の積算値であり、前記摩擦仕事量は、前記摩擦部材の滑り量(S)接線力(F)およびサーボループ間の駆動回数f’を用いて算出される。
The driving method of the precision driving device of the present invention is a driving method of a precision driving device provided with a movable body movable by friction driving with a friction member of an ultrasonic motor , and a position detection step of detecting the position of the movable body If, based on the position information measured in the position detecting step, comparing the driving step of driving the ultrasonic motor, and a friction specifications Kotoseki calculated amount and pre Me set threshold value of the friction member, A determination step of determining a life of the friction member, wherein the friction work integrated amount is an integrated value of the friction work amount, and the friction work amount includes a slip amount (S) and a tangential force (F) of the friction member. ) And the number of driving times f ′ between servo loops .

本発明の構成によれば、可動部分を有する装置の該可動部分における物理的劣化に寄与する仕事量の積算値と、所定の値に設定された仕事量の積算値を比較することにより、前記可動部分における稼働状態を管理制御して、装置の異常状態や寿命をいち早く察知し、警告の発生や装置の稼働停止等の処置を実施でき、これにより様々な製品の製造工程において装置の動作不良による不良品の発生を最小限に抑えることが可能となり生産性が向上する。   According to the configuration of the present invention, by comparing the integrated value of the work amount contributing to physical deterioration in the movable part of the device having the movable part with the integrated value of the work amount set to a predetermined value, Manage and control the operating status of moving parts, quickly detect the abnormal status and life of the equipment, and can take actions such as generating warnings and stopping the equipment, thereby causing malfunctions in the manufacturing process of various products. As a result, it is possible to minimize the occurrence of defective products due to, and productivity is improved.

また、本発明では、前記仕事量のうち、稼働状態によりいち早く影響を受け変動しやすい力のファクターについてその変化を検出して、装置の稼働を管理制御することにより、可動部分の単なる劣化だけでなく、劣化により発生する稼働状態の変化をも掌握することが可能となる。   Further, in the present invention, by detecting the change of the force factor that is easily affected and fluctuated quickly by the operating state, and managing and controlling the operation of the apparatus, the mere deterioration of the movable part is achieved. In addition, it is possible to grasp changes in the operating state caused by deterioration.

また本発明では、可動体の駆動により摩擦部材25の駆動面に加わる総摩擦力に相当する摩擦仕事積算量を、前記駆動面に生じる亀裂が発生しない領域となるように設定し、これをしきい値として精密駆動装置10の駆動寿命を判定することにより、亀裂が生じた際の摩擦部材25の駆動面で生じる滑りを防止し、さらに装置を急停止させたときに駆動面に生じる応力により摩擦部材25が亀裂を破壊起点として破損してしまうのを防止することが可能となる。   Further, in the present invention, the friction work integrated amount corresponding to the total friction force applied to the driving surface of the friction member 25 by driving the movable body is set so as to be a region where no cracks occur on the driving surface. By determining the driving life of the precision driving device 10 as a threshold value, slippage generated on the driving surface of the friction member 25 when a crack occurs is prevented, and furthermore, due to stress generated on the driving surface when the device is suddenly stopped. It is possible to prevent the friction member 25 from being damaged with a crack as a starting point.

それにも増して、精密駆動装置10を短時間駆動させ、1回の駆動で発生する摩擦仕事量を算出することで、装置の寿命予測を実施する事が可能となるため、製品製造工程への装置設置後のトラブル対応やメンテナンスの実施回数を大幅に減らすことが可能であり、トラブル対応やメンテナンス対応等、精密駆動装置10のメーカー保証に要する費用を大幅に削減することが可能となる。   In addition, it is possible to predict the life of the device by driving the precision drive device 10 for a short time and calculating the friction work generated by one drive, so that It is possible to greatly reduce the number of troubleshooting and maintenance operations after installation of the apparatus, and it is possible to greatly reduce the cost required for the manufacturer's warranty for the precision drive device 10 such as troubleshooting and maintenance.

また、前記寿命判定部による寿命予測は可動体であるステージ13の移動方向に対し、超音波モータを垂直方向に当接させ、可動体を直線的に可動させた場合により効果的である。   Further, the life prediction by the life determination unit is more effective when the ultrasonic motor is brought into contact with the moving direction of the stage 13 which is a movable body in the vertical direction and the movable body is moved linearly.

また、前記接線力が初期の2倍になった場合に警告を発する警告信号発生部を備えたことにより、摩擦部材25に亀裂が発生するのを事前に察知し装置のメンテナンスを実施することが可能で精密駆動装置10を常に良好な運転状態に維持することが可能となる。   Further, by providing a warning signal generation unit that issues a warning when the tangential force becomes twice the initial value, it is possible to detect in advance that a crack is generated in the friction member 25 and perform maintenance of the apparatus. It is possible to keep the precision drive device 10 in a good operating state at all times.

さらに超音波モータ20の摩擦部材25の材質をアルミナ、アルミナチタンカーバイド、アルミナチタンナイトライドのいずれか一種とすることにより、精密駆動装置10を長時間駆動させても良好な駆動を維持することが可能となる。特に、アルミナチタンカーバイド、アルミナチタンナイトライドについては硬度、靭性等の機械的特性が良好であり、駆動面の熱膨張差により発生する応力、あるいは材質疲労に対して耐久性を有し、長時間の駆動においても駆動面に亀裂が生じにくくすることができる。   Furthermore, the material of the friction member 25 of the ultrasonic motor 20 is any one of alumina, alumina titanium carbide, and alumina titanium nitride, so that good driving can be maintained even if the precision driving device 10 is driven for a long time. It becomes possible. In particular, alumina titanium carbide and alumina titanium nitride have good mechanical properties such as hardness and toughness, have durability against stress generated by the difference in thermal expansion of the drive surface, or material fatigue, and for a long time. In this driving, cracks on the driving surface can be made difficult to occur.

また、前記超音波モータ20の摩擦部材25の先端部を球状とすることにより、可動体であるステージ13の駆動力伝達部材14に摩擦部材25を当接させ位置決めした際に片当たり等の不具合が生じにくい。   In addition, by making the tip of the friction member 25 of the ultrasonic motor 20 spherical, the friction member 25 is brought into contact with the driving force transmission member 14 of the stage 13 which is a movable body and positioned so as to be in contact with one another. Is unlikely to occur.

以下、本発明の実施形態について詳細を説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1に本発明の稼働装置における稼働制御フローチャートを示す。   FIG. 1 shows an operation control flowchart in the operation apparatus of the present invention.

図1に示すように装置稼働スタート後、装置可動部分の可動速度、加速度を演算し、さらにこの値に基づき、可動部分の可動によって行われる仕事量を演算する。ここで、前記仕事量とは、該装置の可動部分が可動することによって行われる仕事、あるいはこの可動部分と接触する部位が行う仕事、もしくは可動部分を可動させるための動力源の仕事を含んだ装置可動部分全体の仕事のうち、物理的劣化、すなわち装置の寿命に関わる仕事の量を示す。この代表例としては摩擦仕事量があるが、摩擦仕事量とは、可動部分とその接触部間の摩擦により生じる仕事の量を示し、この仕事量は可動部分と接触部の摩耗や接触部に用いられる材質の疲労による物理的劣化を伴う、すなわち物理的劣化に寄与する仕事量といえる。   As shown in FIG. 1, after starting the operation of the apparatus, the movable speed and acceleration of the movable part of the apparatus are calculated, and further, the amount of work performed by moving the movable part is calculated based on these values. Here, the work amount includes work performed by moving a movable part of the apparatus, work performed by a portion in contact with the movable part, or work of a power source for moving the movable part. Of the work of the entire apparatus movable part, the amount of work related to physical deterioration, that is, the life of the apparatus is shown. A typical example of this is friction work. The friction work indicates the amount of work caused by friction between the movable part and its contact part. It can be said that the work is accompanied by physical deterioration due to fatigue of the material used, that is, the work amount contributing to the physical deterioration.

そして、前記のような物理的劣化に寄与する仕事量を演算した後、可動部分の可動回数が任意の値に達するごとに仕事量の積算を行い、次の仕事量の積算値が(1)加速度的に変化していないか、(2)所定の値に達していないかを確認する。   Then, after calculating the work amount contributing to the physical deterioration as described above, the work amount is integrated every time the number of movements of the movable portion reaches an arbitrary value, and the integrated value of the next work amount is (1). It is confirmed whether it is changing at an acceleration or (2) a predetermined value is not reached.

前記(1)、(2)のうちいずれかもしくは両方の条件を満たしていれば、装置管理者に対して警告できるよう何らかの警告信号を発生させ、装置の異常を知らしめるとともに、装置の稼働を停止するが、そうでなければ、可動部分の可動速度演算、仕事量演算、積算を繰り返し実施する。   If either or both of the conditions (1) and (2) are satisfied, a warning signal is generated so that a warning can be given to the device manager to notify the device abnormality and to operate the device. If it is not, the moving speed calculation, the work amount calculation, and the integration of the moving part are repeated.

このような制御方法で装置を稼働させることにより、寿命により装置の稼働状態が著しく変化する、あるいは停止した場合に、該装置を導入している物品製造工程の生産性低下を防止する事が可能となる。   By operating the device with such a control method, it is possible to prevent a decrease in the productivity of the article manufacturing process in which the device is introduced when the operating state of the device changes significantly or stops due to its service life. It becomes.

なお、前記仕事量については、特に仕事量の演算式に含まれる力のファクターが稼働状態の影響を受けやすく変動しやすい。本発明では、特にこの加速度的変化を検出することによって、装置の稼働トラブルを回避し、物品の製造工程において他の工程に影響を与えて生産効率が低下することを事前に防止することが可能である。   Note that, with regard to the work amount, the force factor included in the work amount calculation formula is particularly susceptible to the influence of the operating state and is likely to vary. In the present invention, by detecting this acceleration change in particular, it is possible to avoid operation troubles of the apparatus and prevent in advance that the production efficiency is lowered by affecting other processes in the article manufacturing process. It is.

次に、前記の制御方法を用いた、摩擦仕事を伴う本発明の精密駆動装置の実施形態について詳細を説明する。   Next, an embodiment of the precision drive device of the present invention with friction work using the control method will be described in detail.

図2は本発明の精密駆動装置の一例を示す概略図である。なお、従来例と同一部分については同符号で示す。   FIG. 2 is a schematic view showing an example of the precision drive device of the present invention. The same parts as those in the conventional example are denoted by the same reference numerals.

本発明の精密駆動装置1は、ベース盤11上にクロスローラーガイド等の一対のガイド部材12を備え、これらのガイド部材12によって可動体としてのステージ13を直線的に案内するようになっている。   The precision driving device 1 of the present invention includes a pair of guide members 12 such as cross roller guides on a base board 11 and linearly guides a stage 13 as a movable body by these guide members 12. .

また、ステージ13の一方の側面には、ガイド部材12に対して平行に駆動力伝達部材14が、ステージ13の他方の側面には、駆動力伝達部材14と平行にリニアスケール15がそれぞれ設置されており、リニアスケール15と対向する位置には測定ヘッド16を設けて位置検出手段17を構成するとともに、駆動力伝達部材14と対向する位置には2つの超音波モータ20を設置し、各超音波モータ20の摩擦部材25を駆動力伝達部材14の当接面に対して垂直に当接させてある。   A driving force transmission member 14 is installed on one side surface of the stage 13 in parallel with the guide member 12, and a linear scale 15 is installed on the other side surface of the stage 13 in parallel with the driving force transmission member 14. In addition, a measuring head 16 is provided at a position facing the linear scale 15 to constitute a position detecting means 17, and two ultrasonic motors 20 are installed at a position facing the driving force transmitting member 14. The friction member 25 of the sonic motor 20 is in contact with the contact surface of the driving force transmission member 14 perpendicularly.

なお、図2に示す超音波モータ20の取り付け数はステージ荷重等の超音波モータ20へかかる負荷によって1つ以上のモータを設置すれば良く、図2では2つの超音波モータ20を設置している。その取り付け構造については、図4に示した従来と同等であるために説明を省略する。また位置検出手段17については、ステージ13上に反射ミラーを設け、レーザー側長計で位置を検出するような構造としても良い。   Note that the number of ultrasonic motors 20 shown in FIG. 2 may be one or more depending on the load applied to the ultrasonic motor 20 such as a stage load. In FIG. 2, two ultrasonic motors 20 are installed. Yes. The mounting structure is the same as the conventional structure shown in FIG. Further, the position detection means 17 may have a structure in which a reflection mirror is provided on the stage 13 and the position is detected by a laser side length meter.

そして、ステージ13の移動に伴う位置検出手段17からの時間、変位、速度、加速度等の位置情報を駆動制御部18へ送り、この駆動制御部18にて予め設定してあるステージ13の移動プロファイルに基づく基準位置情報(変位、速度、加速度)との偏差をもとに、例えばPID演算処理し、その出力値を駆動用指令信号として超音波モータ20へ出力するフィードバック制御を行うクローズループ駆動制御を行うことで超音波モータ20に備える摩擦部材25との摩擦駆動によりステージ13をガイド部材12に沿って移動し、位置決めさせるようになっている。   Then, position information such as time, displacement, speed, acceleration and the like from the position detection means 17 accompanying the movement of the stage 13 is sent to the drive control unit 18, and the movement profile of the stage 13 set in advance by the drive control unit 18. Closed-loop drive control that performs feedback control that, for example, performs PID calculation processing based on a deviation from reference position information (displacement, velocity, acceleration) based on the output and outputs the output value to the ultrasonic motor 20 as a drive command signal By performing the above, the stage 13 is moved along the guide member 12 by friction drive with the friction member 25 provided in the ultrasonic motor 20, and is positioned.

なお、ステージ13の移動プロファイルとは、ステージ13の目標位置までの時間、変位、速度、加速度等から求まる一括した情報を示す。   The movement profile of the stage 13 indicates collective information obtained from the time to the target position of the stage 13, displacement, speed, acceleration, and the like.

次に、図2に示す本発明の精密駆動装置1には、寿命判定部2、警告信号発生部3が接続されている。以下寿命判定部2、警告信号発生部3について詳細を説明する。   Next, a life determination unit 2 and a warning signal generation unit 3 are connected to the precision drive device 1 of the present invention shown in FIG. Hereinafter, the life determination unit 2 and the warning signal generation unit 3 will be described in detail.

前記寿命判定部2とは、超音波モータ20の摩擦部材25の駆動面に亀裂が発生し、良好な駆動状態を維持できなくなるのを防止するために、位置検出手段17と駆動制御部18間に設置される。   The life determination unit 2 refers to a position between the position detection unit 17 and the drive control unit 18 in order to prevent a crack from occurring on the drive surface of the friction member 25 of the ultrasonic motor 20 and maintain a good drive state. Installed.

この寿命判定部2には、超音波モータ20の摩擦部材25と駆動力伝達部材14の摩擦駆動により発生する摩擦仕事量(W)の総積算量、すなわち摩擦仕事積ΣWf)について、予め実験により超音波モータ20の摩擦部材25の駆動面に亀裂が発生しない領域を経験的に求め、この領域内の摩擦仕事積量ΣWfがしきい値として入力設定されている。そして、寿命判定部2では該しきい値と精密駆動装置1が往復駆動する度に算出される摩擦部材25の単位時間当たりの駆動で生じる摩擦仕事量の積算値である摩擦仕事積算量ΣWfとの比較が実施されており、この値が該しきい値を越えると、摩擦部材25は寿命であると判断されるようになっている。
The total integrated amount of the life determination part 2, friction work quantity generated by the friction driving of the friction member 25 and the driving force transmitting member 14 of the ultrasonic motor 20 (W), i.e. the friction Specification Kotoseki calculated amount (sigma Wf) for, obtains a region that does not crack the drive surface of the friction member 25 of the ultrasonic motor 20 is generated by experiment empirically friction specification Kotoseki calculated amount sigma Wf in this region is inputted set as a threshold . The friction work accumulated amount sigma Wf life determination unit said threshold and precision drive device 1, 2 is an integrating value of the friction work amount generated by the driving per unit time of the friction member 25 that is calculated every time the reciprocating When this value exceeds the threshold value, the friction member 25 is determined to have a lifetime.

ここで、前記摩擦仕事積ΣWf)について算出方法の詳細を説明する。寿命判定部2に送られた時間、変位、速度、加速度等の位置情報と、超音波モータ20の設置数、駆動周波数等の駆動性能、ステージ荷重等の精密駆動装置1の駆動に関する諸条件から、超音波モータ20の単位時間当たりの駆動周波数における滑り量(S)、接線力(F)を求め、この積に前記サーボループ間の超音波モータ2の駆動回数f’をさらに掛け合わせて算出される摩擦仕事量(W)を積算したのが摩擦仕事積ΣWf)であり、以下の数1式にて表される。

Figure 0004731146
Here, details of the friction specification Kotoseki calculated amount (sigma Wf) calculation method for. From the positional information such as time, displacement, speed, acceleration, etc. sent to the life determination unit 2, the number of ultrasonic motors 20 installed, the driving performance such as the driving frequency, and various conditions relating to the driving of the precision driving device 1 such as the stage load , slip of definitive to the number of driving frequency per unit time of the ultrasonic motor 20 (S), the tangential force (F) determined, further multiplied by the ultrasonic motor 2 driving number f between the servo loop 'on this product the by integrating the amount of friction work (W) to be calculated is Kotoseki calculated amount specification friction (sigma Wf), is expressed by the following equation (1) Te.
Figure 0004731146

この数1式中、滑り量Sはステージ13の駆動速度をVs、超音波モータの駆動速度をVt、駆動力伝達部材14と摩擦部材25の接触時間をTcとしS=(Vs−Vt)×Tc、さらに接線力Fはステージ13の加速度をa、ステージ13の重量をmとしF=maによりそれぞれ算出される。   In this equation 1, the slip amount S is expressed by S = (Vs−Vt) × where Vs is the driving speed of the stage 13, Vt is the driving speed of the ultrasonic motor, Tc is the contact time of the driving force transmission member 14 and the friction member 25. Tc and the tangential force F are calculated by F = ma, where a is the acceleration of the stage 13 and m is the weight of the stage 13, respectively.

また、前記数1式のf’は、サーボループ間の時間をt、超音波モータ20の駆動周波数をfとするとt×fによって求められる値、すなわちサーボループ間の超音波モータ20の駆動回数を表す。そして、これらの駆動開始から駆動終了(end)までの数値の積算により前記摩擦仕事積算量ΣWfが求められるのである。
Further, f ′ in the equation 1 is a value obtained by t × f, where t is the time between servo loops and f is the drive frequency of the ultrasonic motor 20, that is, the number of times the ultrasonic motor 20 is driven between servo loops. Represents. Then, it is of the friction work integrated amount sigma Wf by integration of figures from these drive start up drive-end (end) is obtained.

なお、超音波モータ20の設置機数が2機以上である場合には、数1式で求めた摩擦仕事積算量ΣWfを設置機数で除した値と該しきい値との比較により寿命判定を行う。 Incidentally, when the number of installed machines of the ultrasonic motor 20 is equal to or greater than two aircraft is life by comparison with a value obtained by dividing the said threshold the friction work integrated amount sigma Wf obtained in equation (1) with installation unit number Make a decision.

また、前記摩擦仕事積算量のしきい値は、本発明の精密駆動装置をクローズループ駆動制御にて駆動させ、セラミックス製摩擦部材25駆動面の亀裂や駆動状態の変化を確認し、それまでの摩擦仕事を積算した総摩擦仕事量に対し、その4/5以下の領域、すなわち20%の余裕を見て、残り80%の安全領域内に設定する。ここで、前記のように20%の安全を見る理由としては、本発明の精密駆動装置1はナノミクロンオーダーの位置制御が可能であり、これを半導体製造工程等に用いた場合、少しの位置精度のバラツキが製品歩留まりに影響を与えるからであり、駆動状態が変化しない領域で該しきい値を設定する必要があるからである。   In addition, the threshold value of the friction work integration amount is determined by driving the precision drive device of the present invention by closed loop drive control, confirming cracks in the drive surface of the ceramic friction member 25 and changes in the drive state. With respect to the total friction work obtained by integrating the friction work, an area of 4/5 or less, that is, a 20% margin, is set, and the remaining 80% is set in the safety area. Here, as a reason for seeing the safety of 20% as described above, the precision driving device 1 of the present invention can control the position of nano-micron order, and when this is used for a semiconductor manufacturing process or the like, a little position is required. This is because variations in accuracy affect the product yield, and it is necessary to set the threshold value in a region where the driving state does not change.

また、本発明の精密駆動装置は、図2に一例を示すように、可動体であるステージ13の駆動方向に垂直に超音波モータ20の摩擦部材25を当接させ、可動体を直線的に可動させる場合に特に効果的である。すなわち、直線駆動を伴う精密駆動装置は大型のものがほとんどであり、しかも半導体等の製品製造工程で多数の装置を一度に稼働させる場合が多く、精密駆動装置1の駆動状態が製品歩留まりを左右するため、この変化のひとつの目安となる寿命判定部2や警告発生部3を設けることは特に有用といえる。   Further, as shown in FIG. 2, the precision driving device of the present invention brings the friction member 25 of the ultrasonic motor 20 into contact with the moving direction of the stage 13, which is a movable body, so that the movable body is linearly moved. This is particularly effective when moving. That is, most of the precision drive devices with linear drive are large-sized, and many devices are often operated at the same time in the manufacturing process of semiconductors and the like, and the drive state of the precision drive device 1 affects the product yield. Therefore, it can be said that it is particularly useful to provide the life determination unit 2 and the warning generation unit 3 that serve as one standard for this change.

また、図3に超音波モータ20の摩擦部材25としてアルミナを用い、駆動速度100mm/sで駆動させた場合の前記摩擦仕事積算量ΣWfを縦軸に、精密駆動装置1の駆動回数(=超音波モータ20の駆動回数)を横軸にとったグラフを示す。試験に用いた精密駆動装置1では100mm/sで駆動させた場合に、1回の駆動で行われる摩擦仕事量は約1.8mJであり、10万回駆動させれば摩擦仕事積算量は約180Jとなり、駆動回数が多くなるに従って、摩擦仕事積算量ΣWfは増加していく。予め同じ装置、条件設定にてクローズループ駆動制御を実施した駆動試験においては、図のAの境界線を越えると超音波モータ20の摩擦部材25の駆動面に亀裂が生じ、その後駆動を継続すると駆動面の亀裂の影響により摩擦仕事積算量のが増加していくことが確認された。   Further, in FIG. 3, alumina is used as the friction member 25 of the ultrasonic motor 20, and when the friction work integrated amount ΣWf when driven at a driving speed of 100 mm / s is plotted on the vertical axis, the number of times of driving the precision driving device 1 (= super A graph with the horizontal axis representing the number of times the sonic motor 20 is driven) is shown. In the precision driving device 1 used for the test, when driven at 100 mm / s, the frictional work amount performed by one driving is about 1.8 mJ, and when it is driven 100,000 times, the frictional work integrated amount is about The friction work integrated amount ΣWf increases as the number of times of driving increases as 180J. In a drive test in which closed-loop drive control is performed in advance with the same apparatus and condition settings, if the boundary line A in the figure is exceeded, a crack occurs on the drive surface of the friction member 25 of the ultrasonic motor 20, and then the drive is continued. It was confirmed that the amount of friction work increased due to the influence of the cracks on the drive surface.

本発明では、精密駆動装置1の駆動条件や駆動源である超音波モータ20の摩擦部材25の材質によるが、それぞれの精密駆動装置1の条件に合わせてこの境界線Aより下側の安定領域内で摩擦仕事積算量ΣWfのしきい値を決定し、この値を超えると、超音波モータ20の摩擦部材25はその駆動面に亀裂を生じるとして寿命であると判断される。図3においては図のB点を摩擦仕事積算量ΣWfのしきい値とし、これを越えると摩擦部材25が寿命であると判定するように設定してある。   In the present invention, depending on the driving conditions of the precision driving device 1 and the material of the friction member 25 of the ultrasonic motor 20 that is the driving source, the stable region below the boundary line A according to the conditions of each precision driving device 1. The friction work integrated amount ΣWf is determined within the threshold value, and if this value is exceeded, it is determined that the friction member 25 of the ultrasonic motor 20 has a life due to a crack on its drive surface. In FIG. 3, point B in the figure is set as a threshold value of the friction work integration amount ΣWf, and when this value is exceeded, the friction member 25 is determined to have a lifetime.

さらに、前記寿命判定部の寿命限界条件である摩擦仕事積算量ΣWfが、設定されたしきい値を越えた場合に警告を発する警告信号発生部3について説明する。   Furthermore, the warning signal generator 3 that issues a warning when the friction work integrated amount ΣWf, which is the life limit condition of the life determination unit, exceeds a set threshold value will be described.

この警告信号発生部3は、寿命判定部2と、駆動制御部18間に設置され、前記寿命判定部2にて摩擦仕事積算量Wfがしきい値を越えて超音波モータ20の摩擦部材25が寿命であると判断された場合に、精密駆動装置1の管理者に警告信号を発しそれを知らせるために設置されている。ほとんどの場合、精密駆動装置1は自動制御により駆動させており、これをコンピューターで管理している。従って、駆動状態に異常が発生した場合には、それを管理者に早急に伝達しなければ、例えば精密駆動装置1を導入している半導体製造工程全体に影響を及ぼし、著しい生産効率の低下を招く。   This warning signal generation unit 3 is installed between the life determination unit 2 and the drive control unit 18, and the friction work integrated amount Wf exceeds the threshold value in the life determination unit 2 and the friction member 25 of the ultrasonic motor 20. Is installed in order to issue a warning signal to the administrator of the precision drive device 1 and to inform it of it. In most cases, the precision drive device 1 is driven by automatic control and is managed by a computer. Therefore, if an abnormality occurs in the driving state, if it is not promptly transmitted to the manager, for example, the entire semiconductor manufacturing process in which the precision driving device 1 is introduced will be affected, resulting in a significant reduction in production efficiency. Invite.

また、特に前記警告を発すべきは、摩擦仕事積算量Wfのうち、力のファクターである接線力(F)が2倍となった時である。これは、接線力が変化のないステージ荷重mと、より装置の稼働状態を顕著にあらわす加速度aの積により算出されるからであり、接線力が2倍になれば装置の加速度が2倍となり、稼働状態に深刻な変化が生じたのが明らかだからである。   In particular, the warning should be issued when the tangential force (F), which is a factor of the force, of the friction work integrated amount Wf has doubled. This is because the tangential force is calculated by the product of the stage load m that does not change and the acceleration a that more significantly represents the operating state of the apparatus. If the tangential force is doubled, the acceleration of the apparatus is doubled. This is because it is clear that a serious change has occurred in the operating state.

また、前記警告信号発生部3は、一般的によく用いられるパトランプや、警告音を発するブザー等からなり、寿命判定部2により寿命と判断された場合、寿命判定部2からランプやブザーに電気信号を送り作動させることによって、装置管理者の視覚や聴覚に異常を伝えられる形のものであればどのような構成をとってもよい。   The warning signal generator 3 includes a commonly used patrol lamp, a buzzer that emits a warning sound, and the like. When the life determining unit 2 determines that the life is long, the life determining unit 2 Any configuration may be adopted as long as it can transmit an abnormality to the visual and auditory senses of the device manager by sending a signal.

また、本発明の精密駆動装置1に用いる超音波モータ20のセラミックス製摩擦部材25としては、その材質をアルミナ、アルミナチタンカーバイド、アルミナチタンナイトライドのいずれか1種からなるものとするのが良い。   In addition, the ceramic friction member 25 of the ultrasonic motor 20 used in the precision driving device 1 of the present invention is preferably made of any one of alumina, alumina titanium carbide, and alumina titanium nitride. .

前記アルミナについては、一般的に種々の用途で用いられており、コスト的な面で他の材質と比較して安価であり、しかも超音波モータ20の摩擦部材25として用いた場合にも、その駆動面には亀裂が生じにくく優れた耐久性を有している。   The alumina is generally used in various applications, is inexpensive in comparison with other materials in terms of cost, and also when used as the friction member 25 of the ultrasonic motor 20, The drive surface is not easily cracked and has excellent durability.

さらには、前記アルミナよりも優れた耐久性を示す材質としてアルミナチタンカーバイドがある。このアルミナチタンカーバイドは、前記アルミナと炭化チタンの複合材料であり、高硬度、高融点を有するアルミナ(ビッカース硬度(Hv):18GPa、融点2100℃)と、それよりもさらに高硬度、高融点でかつ高靭性を有する炭化チタン(ビッカース硬度(H):28GPa、融点:3200℃、破壊靭性値:6MPam1/2)を含有する複合材料としたことから、アルミナよりも機械的特性に優れており、摩擦部材25の駆動面に熱膨張差により発生する応力に対し耐久性を持つ。さらには駆動面における脱粒、亀裂を生じにくいために、摩擦部材25とその相手材である駆動力伝達部材14の摩擦摩耗も低減することができ、長期間にわたって精密駆動装置1を安定して駆動させることが可能となる。 Furthermore, there is alumina titanium carbide as a material exhibiting durability superior to that of the alumina. This alumina titanium carbide is a composite material of alumina and titanium carbide, and has high hardness and high melting point (Vickers hardness (Hv): 18 GPa, melting point 2100 ° C.) and higher hardness and high melting point. In addition, since the composite material contains titanium carbide having high toughness (Vickers hardness (H V ): 28 GPa, melting point: 3200 ° C., fracture toughness value: 6 MPam 1/2 ), it has better mechanical properties than alumina. In addition, the friction member 25 has durability against the stress generated by the difference in thermal expansion on the driving surface. Furthermore, since the graining and cracks on the drive surface are less likely to occur, the frictional wear of the friction member 25 and the driving force transmission member 14 that is the counterpart material can be reduced, and the precision drive device 1 can be driven stably over a long period of time. It becomes possible to make it.

ここで、前記摩擦部材25を形成するアルミナチタンカーバイドにおける炭化チタンの含有量は10〜50質量%とすることが好ましい。なぜなら、炭化チタンの含有量が10質量%未満であると、硬度、強度、靭性等の機械的特性を向上させることが困難であり、また超音波モータ20を高速駆動させた時の滑りを防止する効果が小さいからであり、逆に炭化チタンの含有量が50質量%を越えると、高温に曝された場合に硬度が低下する傾向を示す炭化チタンの含有量が多くなりすぎるため、駆動力伝達部材14との摩擦駆動が長時間に及んだ場合、摩擦部材5の摩耗が進行してしまうからである。   Here, the content of titanium carbide in the alumina titanium carbide forming the friction member 25 is preferably 10 to 50% by mass. This is because if the content of titanium carbide is less than 10% by mass, it is difficult to improve mechanical properties such as hardness, strength, and toughness, and slipping when the ultrasonic motor 20 is driven at high speed is prevented. On the contrary, if the content of titanium carbide exceeds 50% by mass, the content of titanium carbide, which tends to decrease the hardness when exposed to high temperatures, becomes too large. This is because, when the friction drive with the transmission member 14 takes a long time, wear of the friction member 5 proceeds.

また、前記アルミナチタンカーバイドにはアルミナと炭化チタン以外に焼結助剤等の助剤成分として、Mg、Zr、Si、Y等の酸化物を含有させてあるが、Mg、Zr、Si、Y等は常磁性金属であるため、この酸化物の含有量が多くなりすぎると磁性を示すようになり、常磁性金属酸化物の含有量が7質量%を超えると、最大磁束密度が0.05μTを超え、磁性体を嫌う用途、例えば電子ビーム露光装置等の精密駆動装置には用いることができなくなる。そのため、助剤成分として含有させる常磁性金属酸化物の含有量が0.1質量%未満となると、焼結体を得ることが難しくなる。   The alumina titanium carbide contains oxides such as Mg, Zr, Si, and Y as auxiliary components such as a sintering aid in addition to alumina and titanium carbide, but Mg, Zr, Si, Y Is a paramagnetic metal, so that if the content of this oxide is too high, it becomes magnetic, and if the content of the paramagnetic metal oxide exceeds 7% by mass, the maximum magnetic flux density is 0.05 μT. Therefore, it cannot be used for precision drive devices such as an electron beam exposure device, which dislike magnetic materials. Therefore, when the content of the paramagnetic metal oxide to be contained as an auxiliary component is less than 0.1% by mass, it becomes difficult to obtain a sintered body.

よって、助剤成分として含有させる常磁性金属酸化物の含有量は0.1〜7質量%とすればよく、この範囲で含有すれば、最大磁束密度を0.05μT以下とし、かつ硬度を高めることができる。そして残部は主としてアルミナと炭化チタンからなるのであるが、アルミナ、炭化チタン、焼結助剤へは、常磁性金属酸化物等に含まれるような不可避不純物であれば微量混入していても構わない。   Therefore, the content of the paramagnetic metal oxide contained as an auxiliary component may be 0.1 to 7% by mass, and if contained within this range, the maximum magnetic flux density is 0.05 μT or less and the hardness is increased. be able to. The balance is mainly composed of alumina and titanium carbide, but the alumina, titanium carbide, and sintering aid may be mixed in trace amounts as long as they are inevitable impurities such as those contained in paramagnetic metal oxides. .

また、前記複合材料の焼結体中のアルミナ結晶及び炭化チタン結晶の各最大粒径はそれぞれ4μm以下とするとともに、複合材料の焼結体の最大気孔径を2μm以下とすることが好ましい。   The maximum particle diameters of the alumina crystal and the titanium carbide crystal in the sintered body of the composite material are preferably 4 μm or less, and the maximum pore diameter of the sintered body of the composite material is preferably 2 μm or less.

さらに前記アルミナチタンカーバイドと同等の機械的特性を有するアルミナチタンナイトライドも前記超音波モータ20の摩擦部材25として好適に用いることが可能である。これらアルミナチタンカーバイド、アルミナチタンナイトライドは製造コスト面ではアルミナより高価であり、コスト的にメリットが少ないものの、耐久性に優れ、トータルとして考慮した場合にコスト的に見てもアルミナと同等のメリットがあると言える。   Further, an alumina titanium nitride having mechanical properties equivalent to those of the alumina titanium carbide can be suitably used as the friction member 25 of the ultrasonic motor 20. These alumina titanium carbide and alumina titanium nitride are more expensive than alumina in terms of production cost and have less cost advantage, but they are superior in durability and equivalent to alumina in terms of cost when considered as a total. It can be said that there is.

また、前記超音波モータの摩擦部材25においては、先端部の形状を球面とするのがより好適である。該先端部が球面ではない場合には、超音波モータ20を位置決め固定した際に位置決め精度によっては、ステージ13の駆動力伝達部材14表面に片あたりした状態で固定される場合があり、このような状態では良好な精密駆動装置1の駆動を実施することができなくなる。好ましくは曲率半径100mm以下の球面とするのが良い。   Moreover, in the friction member 25 of the ultrasonic motor, it is more preferable that the shape of the tip portion is a spherical surface. If the tip is not spherical, depending on the positioning accuracy when the ultrasonic motor 20 is positioned and fixed, it may be fixed to the surface of the driving force transmission member 14 of the stage 13 in such a way that it is fixed. In such a state, it becomes impossible to drive the fine precision driving device 1 well. A spherical surface with a radius of curvature of 100 mm or less is preferable.

以上、本発明の実施形態について説明したが、本発明は直線駆動系への適用にとどまらず、回転駆動系へも好適に利用することが可能であり、本発明の範囲を逸脱しない範囲で種々の改良や変更したものにも適用できることは言うまでもない。   The embodiment of the present invention has been described above, but the present invention is not limited to application to a linear drive system, and can be suitably used for a rotary drive system. Various modifications are possible without departing from the scope of the present invention. Needless to say, the present invention can be applied to improvements and modifications.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

図2に示す精密駆動装置1を製造し、長時間駆動させ摩擦仕事積算量ΣWfを算出して予め試験を実施して求めた摩擦仕事積算量のしきい値と比較することによって寿命判定部2により超音波モータ20の摩擦部材25について寿命判定する実験を行った。   The life determination unit 2 is manufactured by manufacturing the precision drive device 1 shown in FIG. 2 and driving it for a long time to calculate the friction work integration amount ΣWf and comparing it with a threshold value of the friction work integration amount obtained by conducting a test in advance. Thus, an experiment for determining the life of the friction member 25 of the ultrasonic motor 20 was performed.

実験に用いた精密駆動装置1は、ステージ13を案内するガイド部材12には、200mmのストロークを有するクロスローラーガイドを用い、ステージ13は250mm×120mm×30mmの板状体とし、その材質をアルミニウムにより形成している。   In the precision drive device 1 used in the experiment, a cross roller guide having a stroke of 200 mm is used as the guide member 12 for guiding the stage 13, and the stage 13 is a plate-like body of 250 mm × 120 mm × 30 mm, and the material thereof is aluminum. It is formed by.

また、ステージ13を駆動させる超音波モータ20は、幅8mm、長さ30mm、厚さ3mmの圧電駆動部24の端面にアルミナセラミックス製の摩擦部材25を備え、圧電駆動部24の一方の主面には4つの電極膜22a、22b、22c、22dを形成し、対角に位置する22aと22d、22bと22c同士を結線するとともに、他方の主面全体に1つの共通電極膜を形成してなり、前記4つの電極膜に互いの位相差を90度ずらした指令電圧を印可することにより、摩擦部材25が楕円運動するようにしたものを用いた。なお、摩擦部材25の摩擦駆動面は、曲率半径が3mmの球面とし、その表面粗さを中心線平均粗さ(Ra)で0.2μmとした。   The ultrasonic motor 20 for driving the stage 13 includes a friction member 25 made of alumina ceramics on the end face of the piezoelectric drive unit 24 having a width of 8 mm, a length of 30 mm, and a thickness of 3 mm. 4 electrode films 22a, 22b, 22c and 22d are formed, 22a and 22d located diagonally, 22b and 22c are connected to each other, and one common electrode film is formed over the other main surface. In other words, the frictional member 25 is elliptically moved by applying a command voltage having a phase difference of 90 degrees to the four electrode films. The friction drive surface of the friction member 25 was a spherical surface with a radius of curvature of 3 mm, and the surface roughness was 0.2 μm in terms of centerline average roughness (Ra).

さらに、ステージ13の位置検出手段17を構成するリニアスケールには、ミツトヨ製のリニアスケールS33Cを用い、ステージ53の一方の側面に設置するとともに、このリニアスケールと対向する位置に測定ヘッド16を設置して位置検出手段17を構成し、ステージ13の他方の側面にはアルミナセラミックス製の駆動力伝達部材14を設置した。なお、前記駆動力伝達部材の駆動面は表面粗さを中心線平均粗さ(Ra)0.2μmとしている。   Further, the linear scale constituting the position detection means 17 of the stage 13 is a Mitutoyo linear scale S33C, which is installed on one side of the stage 53 and the measuring head 16 is installed at a position facing the linear scale. Thus, the position detection means 17 was configured, and a driving force transmission member 14 made of alumina ceramics was installed on the other side surface of the stage 13. The driving surface of the driving force transmitting member has a surface roughness of center line average roughness (Ra) of 0.2 μm.

そして、位置検出手段17と駆動制御部18間に、摩擦仕事積算量のしきい値が入力された寿命判定部2を設置し、さらに寿命判定部2にはサーボループ間の摩擦仕事積算量ΣWfが前記しきい値を越えたらブザーが鳴るように配線された警告ブザーからなる警告信号発生部3を接続してある。   A life determination unit 2 to which a threshold value of the friction work integration amount is input is installed between the position detection unit 17 and the drive control unit 18, and the life determination unit 2 further includes a friction work integration amount ΣWf between servo loops. Is connected to a warning signal generator 3 composed of a warning buzzer wired so that a buzzer will sound when the threshold value exceeds the threshold value.

また、前記寿命判定部には、同様の仕様の精密駆動装置をクローズループ駆動制御にて100mm/sの速度にて駆動させ、アルミナセラミック製摩擦部材25の駆動面に亀裂が生じ、駆動状態も位置決め精度±1μmが維持できなくなるポイントに対し、20%をのぞく残り80%の安全領域、すなわち経験的に予め得られた摩擦仕事積算量のしきい値400J(ジュール)を入力して試験を実施している。   The life determination unit is driven by a precision drive device having the same specifications at a speed of 100 mm / s by closed loop drive control, and the drive surface of the alumina ceramic friction member 25 is cracked, and the drive state is also For points where positioning accuracy of ± 1 μm cannot be maintained, the remaining 80% except for 20%, that is, a threshold value 400J (joules) of frictional work accumulated amount obtained in advance is empirically entered and tested. is doing.

前記駆動試験の結果、本発明の精密駆動装置1における摩擦仕事積算量の値が400Jを越えた直後に警告ブザーが鳴ることが確認された。また、試験後に該セラミックス製摩擦部材25の駆動面を金属顕微鏡にて確認したところ、亀裂が生じており、さらに駆動状態は目標の位置決め精度が±1μmからはずれていることが確認された。   As a result of the driving test, it was confirmed that a warning buzzer sounded immediately after the value of the cumulative amount of friction work in the precision driving device 1 of the present invention exceeded 400J. Further, when the driving surface of the ceramic friction member 25 was confirmed with a metal microscope after the test, it was confirmed that a crack had occurred and that the target positioning accuracy deviated from ± 1 μm in the driving state.

次に、実施例1で用いた本発明の精密駆動装置1の超音波モータ20の摩擦部座25材質を、アルミナチタンカーバイドとして同様の条件にて装置を駆動させる試験を実施した。   Next, the test which drives an apparatus on the same conditions as the material of the friction part seat 25 of the ultrasonic motor 20 of the precision drive apparatus 1 of this invention used in Example 1 by the alumina titanium carbide was implemented.

その結果、アルミナチタンカーバイドにおいては、実施例1のアルミナの10倍以上の総摩擦仕事量となり、寿命判定部2に入力設定するしきい値も実施例1の10倍以上の値4kJを設定することができ、良好な駆動状態をさらに長時間維持することができることが確認された。   As a result, in the alumina titanium carbide, the total friction work is 10 times or more that of the alumina of the first embodiment, and the threshold value to be input and set in the life determination unit 2 is also set to a value 4 kJ that is ten times or more of the first embodiment. It was confirmed that a good driving state can be maintained for a longer time.

また、アルミナチタンナイトライドについても、アルミナチタンカーバイドと同等の結果が得られ、本発明の精密駆動装置の超音波モータ20の摩擦部材25として適用すれば、非常に良好な駆動状態を長時間維持することができることが確認された。   Also, the same results as alumina titanium carbide can be obtained for alumina titanium nitride, and if applied as the friction member 25 of the ultrasonic motor 20 of the precision driving device of the present invention, a very good driving state can be maintained for a long time. Confirmed that you can.

本発明の稼働装置の制御方法のフローチャートを示す。The flowchart of the control method of the operating device of this invention is shown. 本発明の精密駆動装置の一例を示す概略図である。It is the schematic which shows an example of the precision drive device of this invention. 本発明の精密駆動装置において、超音波モータの摩擦部材にアルミナを用いた場合の摩擦仕事積算量ΣWfと駆動回数の関係の一例を示すグラフである。5 is a graph showing an example of a relationship between an accumulated friction work amount ΣWf and the number of driving times when alumina is used as a friction member of an ultrasonic motor in the precision driving device of the present invention. 従来の精密駆動装置の一例を示す概略図である。It is the schematic which shows an example of the conventional precision drive device. 超音波モータの内部構造を示す概略図である。It is the schematic which shows the internal structure of an ultrasonic motor.

符号の説明Explanation of symbols

1、10:精密駆動装置
2:寿命判定部
3:警告信号発生部
11:ベース盤
12:ガイド部材
13:ステージ
14:駆動力伝達部材
15:リニアスケール
16:測定ヘッド
17:位置検出手段
18:駆動制御部
20:超音波モータ
21:圧電セラミック板
22a、22b、22c、22d、23:電極膜
24:振動体
25:摩擦部材
1, 10: Precision drive device
2: Life determination unit 3: Warning signal generation unit 11: Base board 12: Guide member 13: Stage 14: Driving force transmission member 15: Linear scale 16: Measuring head 17: Position detection means 18: Drive control unit 20: Ultrasonic Motor 21: Piezoelectric ceramic plates 22a, 22b, 22c, 22d, 23: Electrode film 24: Vibrating body 25: Friction member

Claims (8)

超音波モータ摩擦部材との摩擦駆動により可動する可動体と、該可動体の位置を測定する位置検出手段と、該位置検出手段からの位置情報に基づき、前記超音波モータを駆動させる駆動用指令信号を出力する駆動制御部と、前記摩擦部材の摩擦仕事積量と予め設定されたしきい値とを比較し、前記摩擦部材の寿命を判定する寿命判定部とを備えた精密駆動装置であって、
前記摩擦仕事積算は、摩擦仕事量の積算値であり、
前記摩擦仕事量は、前記摩擦部材の滑り量(S)接線力(F)、およびサーボループ間の駆動回数f’を用いて算出される精密駆動装置。
A movable body that is movable by friction driving with a friction member of the ultrasonic motor , a position detection unit that measures the position of the movable body, and a drive unit that drives the ultrasonic motor based on position information from the position detection unit precision of a drive control unit for outputting a command signal, comparing the friction specifications Kotoseki calculated amount and pre Me set threshold value of the friction member, and a determining life determination part life of the friction member A driving device comprising:
The friction work integrated amount is an integrated value of the friction work,
The precision work device in which the friction work is calculated using the slip amount (S) of the friction member , the tangential force (F) , and the number of driving times f ′ between servo loops .
前記超音波モータの先端部に摩擦部材を接合し、該摩擦部材を可動体に当接させ、可動体を直線的に可動させることを特徴とする請求項1に記載の精密駆動装置。   2. The precision driving device according to claim 1, wherein a friction member is joined to a tip portion of the ultrasonic motor, the friction member is brought into contact with the movable body, and the movable body is moved linearly. 記摩擦仕事積算量が前記予め設定されたしきい値を越えた場合に、警告を発する警告信号発生部を備えたことを特徴とする請求項1又は2に記載の精密駆動装置。 If the previous SL friction work integration amount exceeds the preset threshold, precision drive system according to claim 1 or 2, further comprising a warning signal generator for issuing a warning. 前記予め設定されたしきい値を、前記摩擦部材の駆動面に亀裂が生じた時点の全摩擦仕事量の4/5以下の領域に設定することを特徴とする請求項に記載の精密駆動装置。 4. The precision drive according to claim 3 , wherein the preset threshold value is set to a region of 4/5 or less of the total friction work when the drive surface of the friction member is cracked. apparatus. 前記接線力が初期の2倍になった場合に、警告を発する警告信号発生部を備えたことを特徴とする請求項1乃至4のいずれかに記載の精密駆動装置。 The precision drive device according to any one of claims 1 to 4, further comprising a warning signal generation unit that issues a warning when the tangential force is twice as large as an initial value. 前記超音波モータの摩擦部材がアルミナ、アルミナチタンカーバイト、アルミナチタンナイトライドのいずれか一種からなることを特徴とした請求項1乃至のいずれかに記載の精密駆動装置。 The precision drive system according to any one friction member of the ultrasonic motor is alumina, alumina titanium carbide, of claims 1 to 5 characterized in that it consists of any one of alumina titanium nitride. 前記摩擦部材の先端面を球面とすることを特徴とする請求項1乃至のいずれかに記載の精密駆動装置。 Precision drive system according to any one of claims 1 to 6, characterized in that the spherical distal end surface of the friction member. 超音波モータ摩擦部材との摩擦駆動により可動する可動体を供えた精密駆動装置の駆動方法であって、
該可動体の位置を検出する位置検出工程と、
該位置検出工程において測定された位置情報に基づき、前記超音波モータを駆動させる駆動工程と、
前記摩擦部材の摩擦仕事積量と予め設定されたしきい値とを比較し、前記摩擦部材の寿命を判定する判定工程とを備え、
前記摩擦仕事積算、摩擦仕事量の積算値であり、
前記摩擦仕事量は、前記摩擦部材の滑り量(S)接線力(F)およびサーボループ間の駆動回数f’を用いて算出される駆動方法。
A driving method of a precision driving device provided with a movable body movable by friction driving with a friction member of an ultrasonic motor,
A position detecting step for detecting the position of the movable body;
A driving step of driving the ultrasonic motor based on the position information measured in the position detecting step;
It said friction Friction specification compares the Kotoseki calculated amount and pre Me set threshold value of the member, and a determination step of determining the life of the friction member,
The friction work integrated amount is the accumulated value of the friction work load,
The driving method in which the friction work is calculated using a slip amount (S) of the friction member , a tangential force (F), and the number of driving times f ′ between servo loops .
JP2004281693A 2004-09-28 2004-09-28 Management control method of apparatus having movable part and precision driving apparatus using the same Expired - Fee Related JP4731146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281693A JP4731146B2 (en) 2004-09-28 2004-09-28 Management control method of apparatus having movable part and precision driving apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281693A JP4731146B2 (en) 2004-09-28 2004-09-28 Management control method of apparatus having movable part and precision driving apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006101579A JP2006101579A (en) 2006-04-13
JP4731146B2 true JP4731146B2 (en) 2011-07-20

Family

ID=36240863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281693A Expired - Fee Related JP4731146B2 (en) 2004-09-28 2004-09-28 Management control method of apparatus having movable part and precision driving apparatus using the same

Country Status (1)

Country Link
JP (1) JP4731146B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440133B2 (en) * 2018-05-04 2022-09-13 Mazak Corporation Low-cost friction stir processing tool
WO2022172731A1 (en) * 2021-02-12 2022-08-18 株式会社村田製作所 Drive control device and ultrasonic motor system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252767A (en) * 1992-03-03 1993-09-28 Olympus Optical Co Ltd Ultrasonic motor
JPH11113273A (en) * 1997-10-03 1999-04-23 Sharp Corp Ultrasonic motor, driving stage, and projection aligner
JP2000308939A (en) * 1999-04-28 2000-11-07 Kyocera Corp Guide device with ultrasonic motor as drive source for mobile body
JP2003139657A (en) * 2001-10-29 2003-05-14 Mitsubishi Heavy Ind Ltd Apparatus and method for control of remaining life of seal in exciter
JP2003324974A (en) * 2002-04-25 2003-11-14 Kyocera Corp Guiding means using ultrasonic motor as driving source for movable body
JP2003339175A (en) * 2002-03-15 2003-11-28 Kyocera Corp Guiding apparatus using ultrasonic motor as drive source of movable unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252767A (en) * 1992-03-03 1993-09-28 Olympus Optical Co Ltd Ultrasonic motor
JPH11113273A (en) * 1997-10-03 1999-04-23 Sharp Corp Ultrasonic motor, driving stage, and projection aligner
JP2000308939A (en) * 1999-04-28 2000-11-07 Kyocera Corp Guide device with ultrasonic motor as drive source for mobile body
JP2003139657A (en) * 2001-10-29 2003-05-14 Mitsubishi Heavy Ind Ltd Apparatus and method for control of remaining life of seal in exciter
JP2003339175A (en) * 2002-03-15 2003-11-28 Kyocera Corp Guiding apparatus using ultrasonic motor as drive source of movable unit
JP2003324974A (en) * 2002-04-25 2003-11-14 Kyocera Corp Guiding means using ultrasonic motor as driving source for movable body

Also Published As

Publication number Publication date
JP2006101579A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US20030173869A1 (en) Ultrasonic motor and guide apparatus having the same as driving source of movable body
JP2005096057A (en) Guiding device
JP2017532527A (en) Precise tightening device on the precision position rating drive side
JP4731146B2 (en) Management control method of apparatus having movable part and precision driving apparatus using the same
WO2014156510A1 (en) Fatigue testing device
JP2016007660A (en) Ultrasonic vibration cutting device
CN114918499B (en) Wire conveying system and device for micro-electric spark micro-nano coordination control wire electrode
JP4493318B2 (en) Precision drive device and aging drive method for precision drive device
US10284116B2 (en) Drive mechanism
JP4127633B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP4703027B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP3964256B2 (en) Guide device using ultrasonic motor as drive source of movable body
Oiwa Friction control using ultrasonic oscillation for rolling-element linear-motion guide
JP4891562B2 (en) Drive device and drive / guide device
JP2000308939A (en) Guide device with ultrasonic motor as drive source for mobile body
JP2003289682A (en) Guiding means with ultrasonic motor serving as drive source for movable unit
JP2001069773A (en) Guide unit having ultrasonic motor as drive source for mover
JP2007037368A (en) Ultrasonic motor and monitoring method therefor
JPH08170636A (en) Linear guide unit
JP2001218485A (en) Guiding device that uses ultrasonic motor as driving source for movable body
JP4522055B2 (en) Driving method and driving apparatus for ultrasonic motor
JP2003259667A (en) Method of driving piezoelectric motor
Rouchon et al. Assembling and testing of quasi-static hybrid piezoelectric motor based on electroactive lubrication principle
JP2002107140A (en) Apparatus for measuring fine surface shape and method for fabricating stylus
Sun et al. Investigation on a novel dual-grating macro-micro driven high speed precision positioning system for NEMS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees