JP3964256B2 - Guide device using ultrasonic motor as drive source of movable body - Google Patents

Guide device using ultrasonic motor as drive source of movable body Download PDF

Info

Publication number
JP3964256B2
JP3964256B2 JP2002123841A JP2002123841A JP3964256B2 JP 3964256 B2 JP3964256 B2 JP 3964256B2 JP 2002123841 A JP2002123841 A JP 2002123841A JP 2002123841 A JP2002123841 A JP 2002123841A JP 3964256 B2 JP3964256 B2 JP 3964256B2
Authority
JP
Japan
Prior art keywords
ultrasonic motor
driving
friction
movable body
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123841A
Other languages
Japanese (ja)
Other versions
JP2003324974A (en
Inventor
康司 加藤
幸志 足立
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002123841A priority Critical patent/JP3964256B2/en
Priority to US10/331,110 priority patent/US6897598B2/en
Priority to NL1022282A priority patent/NL1022282C2/en
Publication of JP2003324974A publication Critical patent/JP2003324974A/en
Application granted granted Critical
Publication of JP3964256B2 publication Critical patent/JP3964256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直線運動や回転運動する可動体を超音波モータによって駆動する案内装置に関するものであり、特に、精密加工用工作機械、精密測定装置、半導体製造工程等における描画露光装置に用いられる案内装置として好適なものである。
【0002】
【従来の技術】
超音波モータは、最小振動振幅がナノメートルオーダーと小さく、高分解能の位置決めが可能であり、しかも小型でありながら摩擦駆動であるために駆動力が大きいといった特徴を有するため、これまでカメラのレンズズーム機構や腕時計用バイブレーションアラームなど回転系の装置へ実用化が行われてきた。
【0003】
また、近年では超音波モータを直線系の案内装置へ適用することも試みられている。
【0004】
図5に超音波モータを可動体の駆動源とする従来の案内装置の一例を示すように、この案内装置は、ベース基盤51上にクロスローラガイドの如き一対のガイド部材52を備え、これらのガイド部材52によって可動体としてのステージ53が直線的に案内されるようになっている。
【0005】
また、ステージ53の一方の側面には、ガイド部材52に対して平行に駆動力伝達部材54が、ステージ53の一方の側面には、上記駆動力伝達部材54に対して平行にリニアスケール56aが設置され、該リニアスケール56aと対向する位置には測定ヘッド56bを設けて位置検出手段56を構成するとともに、上記駆動力伝達部材54と対向する位置には超音波モータ55を設置し、超音波モータ55の摩擦部材55aを上記駆動力伝達部材54の駆動面に対して垂直に当接させてある。
【0006】
なお、図中、55dは圧電駆動部55eを収容するケース、55cは圧電駆動部55eをステージ53の駆動力伝達部材54に当接させるためのバネや弾性体であり、55bはベース基盤51上に固定されたケース55d内に圧電駆動部55eを保持するためのバネや弾性体である。
【0007】
また、図6に図5の案内装置に用いる圧電駆動部55eの詳細を示すように、圧電駆動部55eは、圧電セラミック板55fの一方の主面に4分割された電極膜55g,55h,55i、55jを有し、対角に位置する電極膜55gと電極膜55iを結線するとともに、対角に位置する電極膜55hと電極膜5jを結線し、かつ他方の主面には、ほぼ全面に電極膜(不図示)を形成してあり、上記圧電セラミック板55fの端面に設けたセラミックスやガラスからなる摩擦部材55aとからなり、他方の主面に形成された電極膜をアースするとともに、一方の主面に形成された電極膜55gと電極膜55jにそれぞれ位相を異ならせた電圧を印加することにより、圧電セラミック板55fに縦振動と横振動を発生させ、これらの振動の合力によって摩擦部材55aを楕円運動させるようになっていた。
【0008】
そして、ステージ53の移動に伴う位置検出手段56からの位置情報と、予め設定してあるステージ53の移動プロファイルに基づく基準位置情報との偏差に応じて駆動用制御部50にて例えばPID演算処理し、超音波モータ55へ駆動用指令信号を出力する、フィードバック制御を行っていた。なお、PID演算を行うための制御パラメータであるPID項の決定は、移動中の位置偏差や位置決め精度が規格値を満足するように駆動させる前の実験により試行錯誤的に決定するようになっていた。
【0009】
【発明が解決しようとする課題】
ところで、精密加工用工作機械や精密測定装置あるいは半導体製造工程における描画露光装置に用いられる案内装置には、サブミクロンオーダーの高精度な移動中の位置偏差や位置決めの精度と、装置の長寿命化、高信頼性化が望まれている。
【0010】
ところが、図5に示す従来の案内装置のように、移動中の位置偏差や位置決め精度を見て制御パラメータであるPID項を決定しただけでは、偏差が同じでも、超音波モータ55の摩擦部材55aと駆動力伝達部材54との駆動面間に滑りがなく駆動している場合と、超音波モータ55の摩擦部材55aと駆動力伝達部材54との駆動面間に滑りがある状態で駆動している場合があり、後者の場合、超音波モータの摩耗が増大し案内装置の寿命が極端に短くなるといった課題があった。
【0011】
即ち、超音波モータ55を用いた駆動は、摩擦駆動であるため、摩擦部材55a及び駆動力伝達部材54の双方の駆動面が変化し易く、この駆動面の変化によって駆動特性も変化し易いことから、駆動初期に駆動面間の滑りがなかったとしても経時変化により滑りが発生する場合があり、これにより摩耗が進行していた。特に駆動初期に滑りが起こってしまうと、摩擦部材55aや駆動力伝達部材54の表面に大きな摩耗痕を発生させ、それが原因で駆動特性に影響を与えてしまう。また摩耗痕を基点として摩耗が加速度的に増加する場合もあった。
【0012】
そこで、本件出願人は、図7に示すように超音波モータ55の駆動中における摩擦部材55aの変位、速度、加速度時の位置情報を測定する非接触型測定手段77を設け、この位置情報と位置検出手段56の位置情報とから滑り量を算出する算出部58を備え、滑り量が発生するような場合には超音波モータ55の後端に設けた予圧調整部78で予圧を変化させるようにした案内装置を先に提案している(特願平11−120857号参照)。
【0013】
また、本出願人は、図8に示すように超音波モータ55の駆動中における摩擦部材55aの変位、速度、加速度等の位置情報を測定する非接触型測定手段77と、該非接触型測定手段77からの位置情報と該位置検出手段56からの位置情報より、摩擦部材55aの滑り具合を算出する計測部79を設けるとともに、予め設定した案内装置の重量と前記位置検出手段56からの位置情報より得られた加速度を基に駆動面にかかる接線力を算出する算出部89と、該計測部79で測定した滑り量と、該算出部89で算出した接線力を監視する監視部80と摩擦仕事を監視する摩擦仕事算出部81を設け、駆動面の摩耗状態をモニタリングすると共に、摩擦仕事算出部81で算出された摩擦仕事が、予め設定した規格値内にあるか否かを判定する判定部90を設け、判定部90にて判定した結果に基づき、上記摩擦仕事算出部81にて算出した摩擦仕事が規格値内となるように、駆動制御部50の制御パラメータをそれぞれ変更するパラメータ調整部91を設け、常に摩擦仕事が小さい状態で駆動させるようにし長寿命を得ることができ、さらには寿命を予測する案内装置を提案している(特願平2002−73024号公報参照)。
【0014】
しかしながら、図7、8に示す従来の案内装置では、滑り量の特定に非接触型測定手段77を装置に常時取り付けていなければならず、装置の構造が複雑化、大型化するといった問題があった。またこのために、コスト面での問題もあった。
【0015】
そのため、省スペースを要求される精密測定装置、半導体製造工程における描画露光装置等において滑るのを判断するには、設計が困難となり図7、8に示す案内装置を用いる場合は設計上の制約があった。
【0016】
【発明の目的】
本発明の目的は、装置を複雑化、大型化させることなく超音波モータの摩擦部材と駆動力伝達部材との駆動面での滑りを防ぎ長寿命を得ることができる超音波モータを可動体の駆動源とする案内装置を提供することにある。
【0017】
【課題を解決するための手段】
そこで本発明は上記課題に鑑み、摩擦部材を有する超音波モータと、該超音波モータとの摩擦駆動により可動する可動体と、該可動体の位置を測定する位置検出手段と、該位置検出手段からの位置情報と予め設定した移動プロファイルに基づく基準位置情報との偏差を基に演算し、前記超音波モータを駆動させる駆動用指令信号を出力する駆動制御部と、予め上記超音波モータで上記可動体を可動させて測定した固有の駆動用指令信号及び上記摩擦部材の駆動面における振動速度の情報に基づいて、上記超音波モータ駆動中における上記駆動用指令信号を上記摩擦部材の振動速度に置換する置換部と、上記位置検出手段から得られる位置情報を基に算出する上記可動体の速度と上記置換部で置換した上記振動速度とから伝達効率及び滑り量を算出する算出部を有する超音波モータを可動体の駆動源とする案内装置としたことを特徴とする。
【0018】
また上記超音波モータの摩擦駆動により可動体側の駆動面に作用する接線力を算出し、該接線力と上記算出部により得られた滑り量との積を算出する摩擦仕事算出部を有することを特徴とする。
【0019】
更に上記摩擦仕事算出部により得られた摩擦仕事量が予め設定した規格値内にあるか否かを判定する判定部を有することを特徴とする。
【0020】
また上記判定部にて判定した結果に基づき、上記摩擦仕事量が予め設定した規格値内となるように、上記駆動制御部の制御パラメータをそれぞれ変更するパラメータ調整部を有することを特徴とする。
【0021】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
図1は超音波モータを可動体の駆動源とする本発明の案内装置の一例を示す模式図で、この案内装置は、ベース基盤11上にクロスローラガイドの如き一対のガイド部材12を備え、この一対のガイド部材12に沿って可動体としてのステージ13を直線的に案内するようになっている。
【0022】
また、ステージ13の一方の側面には、上記ガイド部材12に対して平行に駆動力伝達部材14を、他方の側面にはガイド部材12に対して平行にリニアスケール16aをそれぞれ設置し、リニアスケール16aと対向する位置には測定ヘッド16bを設けて位置検出手段16を構成するとともに、上記駆動力伝達部材14と対向する位置には超音波モータ15を設置し、超音波モータの摩擦部材15aを上記駆動力伝達部材14の駆動面14aに対して垂直に当接させてある。
【0023】
そして、ステージ13の移動に伴う位置検出手段16からの変位、速度、加速度等の位置情報は駆動制御部10に送られ、この駆動制御部10にて予め設定してあるステージ13の移動プロファイルに基づく基準位置情報(変位、速度、加速度)との偏差に応じて変化するパラメータを基に、例えばPID演算処理し、その出力値を駆動用指令信号として超音波モータ15へ出力するフィードバック制御を行うことにより、超音波モータ15をその駆動用指令信号に応じて摩擦部材15aを楕円運動させ、摩擦部材15aと駆動力伝達部材14との摩擦駆動によりステージ13をガイド部材12に沿って移動させるようになっている。以下ではPID制御を用いた場合の実施例について説明する。
【0024】
なお、図1に示す超音波モータ15の構造及び取り付け構造は、従来技術で説明した図5,6の超音波モータ55の構造及び取り付け構造と同一であるため、ここでは省略する。
【0025】
また、この案内装置には、駆動制御部10より出力される駆動用指令信号を、予め設定されたオープンループ制御での駆動用指令信号と振動速度との値を基に、超音波モータ15の振動速度に演算する置換部17を設けてある。
【0026】
即ち、駆動用指令信号が、摩擦伝達を司る超音波モータ15の摩擦部材15aの振動速度と強い相関を持つことを利用したもので、摩擦部材15aの振動速度を駆動用指令信号に置換して、駆動中においては図7に示すような非接触型測定手段77を使用することなく駆動用指令信号で滑り量を監視できるようにしたものである。摩擦部材15aの振動速度と駆動用指令信号の関係は案内装置のガイド部材12の摩擦抵抗やステージ13の重量や超音波モータ55の押圧力によって異なるため超音波モータ15、ステージ13固有のものとなる。
【0027】
従って、図2の測定装置に示すように、案内装置の駆動開始前に、予め非接触測定手段21を作動させて駆動制御部10から出力される固有の駆動用指令信号と非接触型測定手段21から得られる振動速度の関係を測定器22にて測定し、この測定値を基準値とすればよい。
【0028】
つまり、案内装置の駆動開始前に駆動面における振動速度と駆動用指令信号の値を取り、この基準値を基にして、駆動中はその相関関係を利用して駆動用指令信号のみで振動速度を得ることができ、この基準値を基にして伝達効率や滑り量の算出を行うものである。
【0029】
なお、振動速度と駆動用指令信号の基準値は、一定の駆動用指令信号印可で駆動するオープン駆動にて測定すればよく、駆動用指令信号を任意に数点水準に取り、図3に示すように駆動用指令信号と振動速度の関係を得ることが必要となる。また図3に示すように駆動用指令信号と振動速度の基準値は加速時(三角印)、定速時、減速時(黒丸印)の速度形態で異なる為、加速時の速度領域と定速・減速の速度領域毎に区別することが重要である。即ち、加速域は慣性力の影響で定速や減速時よりも高い電圧が必要になる。よって、例えば、加速されているのか、減速か等の運転状態に応じて駆動用指令信号と振動速度の基準値を変えればよい。
【0030】
この運転状態に応じた基準値の区分は台形制御やS字制御様々な速度波形によっても異なるので非接触型測定手段77を用いた基準値設定時に駆動用指令信号と振動速度との値を見て区分の必要性を判断すればよく加速時と定速時が一致すれば、特に基準値を区分する必要はない。
一方、駆動用指令信号と振動速度の基準値が異なる場合には各速度領域毎に区分を細分化する等の対応をすればよい。そして基準値をとった後は非接触型測定手段21、測定器22を取り外せばよい。
【0031】
駆動用指令信号と振動速度の基準値があれば駆動中は運転状態の基準値を基にして駆動用指令信号から振動速度に置換すればよい。
また、この案内装置には上記置換部17で得た振動速度を基に、ステージ速度と比較し駆動力伝達部材14への伝達効率または駆動力伝達部材14の駆動面14aと摩擦部材15aの滑り量を算出する算出部18を設けてあり、必要に応じて該算出部18で測定した上記伝達効率または上記滑り量を時系列的に監視することができる。従って、この時点で伝達効率または上記滑り量をみて警告するような構成をとることもできる。これにより早期に寿命を把握させることも可能である。
【0032】
なお、上記伝達効率の算出は以下の数式1で確認することができる。
W=B/A×100(%)・・・・・数式1
ただしW:伝達効率
A:駆動面における振動速度
B:位置検出手段からの位置情報
また、滑り量の算出は以下の数式2で確認することができる。
Ls=(A-B)×Tc・・・・・・・数式2
但し Ls:滑り量
A :駆動面における振動速度
B :位置検出手段からの検出速度
Tc :摩擦部材の接触時間
なお、上記伝達効率W及び滑り量Lsはフィードバック制御時のおけるサーボループ間毎に算出すればよい。また、滑り量Lsの算出に使用する接触時間Tcは、駆動開始前に基準値の測定に用いた非接触型測定手段17から得られる振動速度Aの波形を基に、摩擦部材15aの振動速度が遅くなる部分に相当する時間を接触時間Tcとし、駆動中においては基準値測定時に測定した接触時間Tcをそのまま引用すればよい。
【0033】
なお、接触時間Tcにおいてもサーボループ間で判断すればよく、サーボループ間に楕円周期が複数回生じる場合はサーボループ間での接触時間Tcを平均化した値を用いればよい。
【0034】
このように駆動開始前に基準値を測定してしまえば、それ以降は駆動用指令信号のみの測定で振動速度に置換し伝達効率及び滑り量Lsが把握できるため、駆動中は従来のような非接触測定手段20を設置する必要がなくなり装置を小型化できる。
【0035】
また、この案内装置には、予め設定したステージ重量mと前記位置検出手段16からの位置情報より得られた加速度を基に、摩擦部材15aと駆動力伝達部材14との駆動面にかかる接線力を算出し、この接線力と上記置換部17で測定された滑り量との積により摩擦仕事を算出する摩擦仕事算出部24を備えている。
【0036】
即ち、摩擦部材15aと駆動力伝達部材14との駆動面の滑り量と、その駆動面にかかっている駆動面の過酷さを接線力として表し、これらで算出する摩擦仕事を滑り量及び伝達効率と同時に監視するようにしても良い。これは滑り量が一定でも駆動面の受ける動的な接線力が異なると摩耗が変わる場合を考慮したものであり、駆動面の摩耗は滑り量だけではない接線力も含めた総合的なパラメータとして把握できるので、伝達効率や滑り量だけの監視よりもより精度良く摩耗のモニタリングが可能となる。さらに、図4の摩擦仕事と摩耗量(摩擦体積)との関係からもわかるように、滑り量と接線力の積(摩擦仕事)は摩耗と比例関係にあることから、摩擦仕事を監視すれば摩耗量を把握することもできる。
【0037】
なお、摩擦仕事算出部24で算出する摩擦仕事Wfは以下の数式3で確認することができる。
Wf=Ls×F・・・・・・・数式3
F=m×a
但し Ls:滑り量
F :接線力
m :ステージ重量
a :位置検出手段の位置情報から得られる結果を基に算出した加速度
また、摩耗量の計算方法としては滑り量Ls(m)×接線力F(N)×摩耗定数(アルミナの場合3.5×10 5)(mm3/Nm)として求めることができる。摩耗定数は予め行った試験により得た物で材料毎に異なるもので、滑り量Ls×接線力Fの摩擦仕事と摩耗量の比例関係から得られる比例定数にあたる。
【0038】
このように駆動用指令信号のみの測定で得た滑り量Lsと、予め設定したステージ重量mと前記位置検出手段16からの位置情報より得られた加速度aを基に駆動面にかかる接線力Fを算出し、上記置換部17で測定された滑り量Lsとの積の摩擦仕事Wfを算出することで非接触測定手段20を設置することなく摩耗量を把握することができる。
【0039】
また、この案内装置には置換部17、算出部18、摩擦仕事算出部24を経由して算出された摩擦仕事が規格値内にあるか否かを判定する判定部20を設けてある。規格値とは摩擦仕事と摩耗体積との関係から判断するものであり、案内装置の要求されている摩耗量(寿命)に相当する摩擦仕事の値を任意に決定すればよい。
【0040】
即ち、上記摩擦仕事算出部24で算出された摩擦仕事は装置の寿命に大きく影響を与える因子であるから、摩擦仕事の悪化は装置の異常予告と判断しても良い。この判定部20の結果を常に監視することで変化を察知できることは勿論、摩擦仕事の規格値を予め設定し、その規格値内に入るPID領域まで把握しておけば、し規格値を満足するPID定数の範囲がどのくらいの余裕度があるのか、またそれらが経時的にどのように変化していくかといった判断が出来るので、トラブルを未然に防ぐと共に改良への方向性が明確に判断できる。なお、摩擦仕事の規格値は案内装置の寿命の要求特性に応じて任意に決めればよい。図4に示す摩擦仕事と摩耗体積の関係を基により長寿命を要求される案内装置では規格値を低めに設定して駆動中の変化に対して敏感に反応するようにしておけばよい。
【0041】
なお、判定部20では摩擦仕事の判定だけでなく伝達効率、滑り量だけの判定も行うことも可能である。即ち、伝達効率、滑り量は摩擦仕事を算出するための重要な要素であるが、案内装置の寿命の要求が比較的緩い場合は、伝達効率、滑り量は案内装置の異常変化を察するには十分な監視項目であるから、これらのみで判定しても構わない。
【0042】
また、この案内装置には、上記摩擦仕事算出部24で算出された摩擦仕事が予め設定した規格値を超えたら規格値内となるように駆動制御部10の制御パラメータをそれぞれ変更するパラメータ調整部23を設けてある。なお、規格値とは判定部20で用いたものが用いられる。
【0043】
このように摩擦仕事が予め設定した規格値を超えたら、摩耗の増加を意味するから、前記判定部20で得られた結果を基に、摩擦仕事が規格値内に入るPID定数に変更すればよい。
【0044】
なお、パラメータ調整部23で摩擦仕事によるパラメータの変更例を示したがこれに限定されず、伝達効率、滑り量が予め設定した規定値を超えたら規格値内となるように駆動制御部10の制御パラメータをそれぞれ変更するように構成しても良い。
【0045】
また、伝達効率、滑り量、摩擦仕事が予め設定した規格値を満足できなくなったら、PID調整での対応はできなくなっていることを意味するため、結果的に異常摩耗する危険がある。よって案内装置のメンテナンスをするようにしてもよい。
【0046】
かくして、本発明の案内装置を用いれば、超音波モータ15の初期設定時に摩擦部材15aと駆動力伝達部材14との駆動面に滑りのないPID設定が出来ることは勿論、駆動中においては、従来のような非接触型測定手段77を使用することなく伝達効率、滑り量から摩擦仕事を把握でき、長期駆動に伴って摩擦部材15aが摩耗して駆動面が滑るような場合でも、判定部にて判定した結果に基づき、上記摩擦仕事量が予め設定した規格値内となるように、上記駆動制御部の制御パラメータをそれぞれ変更するため、常に駆動面における滑り量や伝達効率、摩擦仕事が規格値を満足でき、耐摩耗状態で駆動させることができため、長期間にわたって安定したステ―ジ13の駆動と位置決めを実現できる。
【0047】
また、摩擦仕事は駆動面の摩擦の過酷さを伝達効率や滑りよりも精度良く捉えられることができるのは勿論、使用する摩擦部材15a毎の摩耗定数を使用すれば非接触型測定手段21を使用することなく摩耗量も把握することが可能となる。
【0048】
そのため、駆動途中におけるステージ13の高い位置精度が要求される精密加工用工作機械、精密測定装置、半導体製造工程における描画露光装置等に用いる特に省スペースを要求される案内装置おいて好適に用いることができる。
【0049】
ところで、本実施形態では、駆動用指令信号として指令電圧を用いた例を説明したが、駆動用指令信号が電圧制御時の電流や電力であっても良く、さらには超音波モータ15が周波数で制御される場合、駆動用指令信号として周波数を用いても構わない。
【0050】
また、本発明の案内装置に用いる超音波モータ15の振動形式は特に限定するものではなく、単一の振動モードのみならず、モード変換型、多重モード型、モード回転型、複合振動型等の複数の振動モードのものを適用することもできる。
【0051】
さらに、本発明の案内装置では、ステージ13をなす可動体が直線運動する例を説明したが、可動体が回転運動する案内装置に適用することもでき、本発明の範囲を逸脱しない範囲で種々改良や変更できることは言うまでもない。
【0052】
【実施例】
ここで、図1に示す超音波モータ15を可動体13の駆動源とする案内装置を製作した。
【0053】
ステージ13を案内するガイド部材12には、200mmのストロークを有するクロスローラガイドを用い、ステージ13は250mm×120mm×30mmの板状体とし、アルミニウムにより形成した。そして、ステージ13上には重り(不図示)を載せ、ステージ13との総重量が100Nとなるようにした。
【0054】
また、ステージ13を駆動させる超音波モータ15は、幅8mm、長さ30mm、厚み3mmの圧電素子の端面にアルミナセラミック製の摩擦部材15aを備え、圧電素子の一方の主面には4つの電極を形成し、対角に位置する電極同士を結線するとともに、他方の主面全体に1つの電極を形成してなり、4つの電極に互いの位相差を90度ずらした指令電圧を印加することにより、摩擦部材15aが楕円運動するようにしたものを用いた。なお、摩擦部材15aの駆動面は、曲率半径が3mmの球面とし、表面粗度を中心線平均粗さ(Ra)で0.05μmとした。
【0055】
さらに、ステージ13の位置検出手段16を構成するリニアスケール16aには、ミツトヨ製のリニアスケールS33Cを用い、ステージ13の一方の側面に設置するとともに、このリニアスケール16aと対向する位置に検出ヘッド16bを設置して位置検出手段16を構成し、ステージ13の他方の側面にはアルミナセラミック製の駆動力伝達部材14を設置した。
【0056】
そして駆動制御部10,置換部17,算出部18、摩擦仕事算出部24をそれぞれ接続し本発明の案内装置を製作した。
【0057】
また、駆動開始前の基準値を測定するために非接触測定手段としてレーザードップラ振動計を超音波モータ15の摩擦部材15aに対して垂直に設置し、オープンループ駆動にてステージ13を駆動させ、その時の駆動用指令信号とレーザードップラ振動計から測定された摩擦部材の駆動面における振動速度との結果を基にして、駆動用指令信号を振動速度に置換するようにした。
【0058】
また置換部17で得られた位置検出手段から得られる位置情報を基に算出した上記可動体の速度と上記置換部で置換された上記振動速度とから算出部にて伝達効率及び滑り量を算出した。
さらに超音波モータ15の摩擦駆動により可動体3側の駆動面に作用する接線力を算出し、該接線力と上記算出部18により得られた滑り量との積を摩擦仕事値として算出するようにした。
(実施例1)
そして、超音波モータ15の駆動制御を、ステージ13の移動距離200mm、加速度0.05G、最高速度100mm/sの台形制御とし、ステージ13の移動プロファイルを予め制御部10に設定した後、サーボループ間の変化率を監視しながら偏差が1μm以内に収まるようにPIDを決定して初期設定した。また、超音波モータ15は40KHzの周波数で駆動させ、その時の算出部18から算出された伝達効率及び滑り量および摩擦仕事算出部24の結果を監視できるようにした。また伝達効率及び滑り量は加速時、定速時・減速時のそれぞれの20サーボループ分の平均値と、その範囲内でのばらつきを表した。
【0059】
ここでは置換部17にて置換する場合の駆動用指令信号と振動速度の基準値は、定速時と減速時と同じであったため区分せず統一した。それぞれの結果は表1に示す通りである。
【0060】
【表1】

Figure 0003964256
【0061】
この結果、算出部17で算出した伝達効率、滑り量及び摩擦仕事算出部24で算出した摩擦仕事はレーザードップラ振動計で実測した値を使って算出した場合と比較してばらつきが若干あるものの絶対値はほぼ一致していることがわかる。駆動制御部10からの駆動用指令信号を摩擦部材15aの駆動面における振動速度に置換したものであっても実測に匹敵する値を示している。
【0062】
ここで伝達効率および滑り量、摩擦仕事のばらつきが大きいのはサーボループ間の平均値を用いているためであり、精度良く測定するにはサーボループを短くした状態で制御しサーボループ間における摩擦部材の振幅数が少ない条件で駆動させればよい。
【0063】
この結果、駆動中においてはレーザードップラ振動計等のような非接触測定手段77を用いることなく、摩擦部材15aの駆動面における滑り状態を定量的に把握できる案内装置を提供できる。
(実施例2)
実施例1で用いた案内装置に判定部20とパラメータ調整部23を設けた案内装置を製作した。
判定部20及びパラメータ調整部23を持たない従来の案内装置を用意し、最高速度100mm/sとし、その他は実施例1と同様の条件にてステージ13を1000km駆動させたときの摩擦仕事と摩耗量を調べる実験を行った。
この結果、従来の案内装置は、ステージの駆動距離が500kmの時点で滑り量が上昇し摩擦仕事は最大値で250Nmまで上昇した。
【0064】
これに対し、本発明の案内装置は、ステージを1000km駆動させても滑り量は一定で、摩擦仕事も120Nmで安定し、ステージ13を駆動した後の摩耗量は、従来の案内装置の摩耗量に対して1/5以下とすることができた。この結果、判定部、パラメータ調整部を備えた本発明の案内装置を用いれば寿命を大幅に向上させることができることが分かる。
【0065】
更に、摩擦仕事に摩擦部材15aに使用したアルミナセラミックの摩耗定数をかけて摩耗量を予測したところ、試験後の摩耗の測定値と予測した摩耗量の値はほぼ一致した。よって非接触測定手段21を使用することなく摩耗量も把握できさらには予測もできることも確認した。
【0066】
また、実施例2では比較的厳しい駆動条件で駆動させたため伝達効率が80%の場合もあったが、伝達効率が95%程度の駆動の場合でもパラメータ調整部23を用いたものは用いないものに比べ摩耗量は1/3程度変化しており、滑り量の把握と滑り量の低減の重要性が高いこともわかっている。
【0067】
この滑り量に対し常に非接触測定手段77を用いることなく滑り量を把握できることは有用であり省スペースが要求される精密測定装置、半導体製造工程における描画露光装置等においても、装置が大型化することがなくまたコスト面でも大きな低減が可能となる。また滑り量を利用して摩擦仕事を監視項目に入れることで伝達効率、滑り量よりも精度の高い摩耗の把握が可能で、さらには摩耗量も予測できる。
【0068】
【発明の効果】
以上のように、超音波モータと、該超音波モータとの摩擦駆動により可動する可動体と、該可動体の位置を測定する位置検出手段と、該位置検出手段からの位置情報と予め設定した移動プロファイルに基づく基準位置情報との偏差を基に演算し、前記超音波モータを駆動させる駆動用指令信号を出力する駆動制御部と、予め上記超音波モータで、上記可動体を可動させて測定した固有の駆動用指令信号及び上記摩擦部材の駆動面における振動速度の情報に基づいて、上記超音波モータ駆動中における上記駆動用指令信号を上記摩擦部材の振動速度に置換する置換部と、上記位置検出手段から得られる位置情報を基に算出される上記可動体の速度と上記置換部で置換された上記振動速度とから伝達効率及び滑り量を算出する算出部を有することを特徴とする超音波モータを可動体の駆動源とする案内装置を構成したことにより駆動開始前に基準値を測定してしまえば、装置を大型化させることなく伝達効率及び滑り量を把握できさらには上記超音波モータの摩擦駆動により可動体側の駆動面に作用する接線力を算出し、該接線力と上記算出部により得られた滑り量との積を算出する摩擦仕事算出部を有したことにより、摩擦部材の摩耗を精度良くモニタリングでき摩耗量も把握できる装置を提供できるものである。
【0069】
また、摩擦仕事算出部で算出された摩擦仕事が、予め設定した規格値内にあるか否かを判定する判定部を設け、さらには上記判定部にて判定した結果に基づき、上記摩擦仕事が予め設定した規格値内となるように駆動制御部の制御パラメータをそれぞれ変更するパラメータ調整部を設けたことで、常に滑り量が少なく伝達効率がよいところで駆動させることができため、長期間にわたって安定したステ―ジ13の駆動と位置決めを実現できる。
【0070】
そのため、本発明の案内装置は装置を複雑化、大型化させることなく超音波モータの摩擦部材と駆動力伝達部材との駆動面での滑りを防ぎ長寿命を要求される精密加工用工作機械、精密測定装置、半導体製造工程における描画露光装置等に好適に用いることができる。
【図面の簡単な説明】
【図1】超音波モータを可動体の駆動源とする本発明の案内装置の一例を示すブロック図である。
【図2】駆動開始前に基準値をとるための案内装置の一例を示すブロック図である。
【図3】図1の実験において、ステージをオープン駆動させた時の駆動用指令信号と振動速度の関係を示すグラフである。
【図4】摩擦仕事と摩耗量の関係を示すグラフである。
【図5】超音波モータを可動体の駆動源とする従来の案内装置の一例を示すブロック図である。
【図6】図5に示す超音波モータ15の詳細を示す図である。
【図7】従来の超音波モータを可動体の駆動源とする案内装置を示すブロック図である。
【図8】従来の他の超音波モータを可動体の駆動源とする案内装置を示すブロック図である。
【符号の説明】
10,50 :駆動制御部
11,51 :ベース基盤
12,52 :ガイド部材
13,53 :ステージ
14,54 :駆動力伝達部材
15,55 :超音波モータ
15a,55a:摩擦部材
15b,55b:弾性体
15c、55c:弾性体
15d,55d:ケース
15e,55e:圧電駆動部
55f :圧電セラミック板
55g〜55j:電極膜
16,56 :位置検出手段
16a,56a:リニアスケール
16b,56b:検出ヘッド
55c :ばね
77、21 :非接触型測定手段
78 :予圧調整部
17 :置換部
18、58 :算出部
20、90 :判定部
22 :測定部
23 :パラメータ調整部
24 :摩擦仕事算出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guide device for driving a movable body that moves linearly or rotationally by an ultrasonic motor, and in particular, a guide used for a drawing exposure apparatus in a precision processing machine tool, a precision measuring device, a semiconductor manufacturing process, and the like. It is suitable as a device.
[0002]
[Prior art]
Ultrasonic motors have a minimum vibration amplitude on the order of nanometers, can be positioned with high resolution, and have a large driving force because they are small but frictionally driven. Practical applications have been made for rotary devices such as zoom mechanisms and wristwatch vibration alarms.
[0003]
In recent years, it has been attempted to apply an ultrasonic motor to a linear guide device.
[0004]
As shown in FIG. 5 as an example of a conventional guide device using an ultrasonic motor as a driving source for a movable body, this guide device includes a pair of guide members 52 such as cross roller guides on a base substrate 51. A stage 53 as a movable body is linearly guided by the guide member 52.
[0005]
A driving force transmission member 54 is parallel to the guide member 52 on one side surface of the stage 53, and a linear scale 56 a is parallel to the driving force transmission member 54 on one side surface of the stage 53. A measuring head 56b is provided at a position facing the linear scale 56a to constitute the position detecting means 56, and an ultrasonic motor 55 is disposed at a position facing the driving force transmitting member 54, thereby The friction member 55a of the motor 55 is brought into contact with the drive surface of the drive force transmission member 54 perpendicularly.
[0006]
In the figure, 55d is a case for accommodating the piezoelectric drive unit 55e, 55c is a spring or elastic body for bringing the piezoelectric drive unit 55e into contact with the driving force transmission member 54 of the stage 53, and 55b is on the base substrate 51. A spring or an elastic body for holding the piezoelectric drive unit 55e in the case 55d fixed to the case.
[0007]
6 shows details of the piezoelectric drive unit 55e used in the guide device of FIG. 5, the piezoelectric drive unit 55e is divided into four electrode films 55g, 55h, 55i on one main surface of the piezoelectric ceramic plate 55f. 55j, and the electrode film 55g and the electrode film 55i located diagonally are connected to each other, and the electrode film 55h and the electrode film 5j located diagonally are connected to each other. An electrode film (not shown) is formed, and includes a friction member 55a made of ceramic or glass provided on the end face of the piezoelectric ceramic plate 55f. The electrode film formed on the other main surface is grounded, By applying voltages with different phases to the electrode film 55g and the electrode film 55j formed on the main surface of the substrate, longitudinal vibration and lateral vibration are generated in the piezoelectric ceramic plate 55f, and the resultant force of these vibrations The friction member 55a has been adapted to elliptical motion I.
[0008]
Then, according to the deviation between the position information from the position detecting means 56 accompanying the movement of the stage 53 and the reference position information based on the preset movement profile of the stage 53, the drive control unit 50 performs, for example, a PID calculation process. Then, feedback control is performed to output a drive command signal to the ultrasonic motor 55. The determination of the PID term, which is a control parameter for performing the PID calculation, is determined by trial and error through experiments before driving so that the positional deviation and positioning accuracy during movement satisfy the standard value. It was.
[0009]
[Problems to be solved by the invention]
By the way, for precision processing machine tools, precision measuring devices, or guide devices used in lithography exposure equipment in the semiconductor manufacturing process, high-precision positional deviation and positioning accuracy during submicron order movements and longer tool life Therefore, high reliability is desired.
[0010]
However, as in the conventional guide device shown in FIG. 5, the frictional member 55a of the ultrasonic motor 55 is the same even if the deviation is the same only by determining the PID term, which is a control parameter, by looking at the positional deviation and positioning accuracy during movement. Driving with no slip between the driving surfaces of the driving force transmission member 54 and the driving force transmission member 54, and with the slip between the driving surfaces of the friction member 55a of the ultrasonic motor 55 and the driving force transmission member 54. In the latter case, there has been a problem that the wear of the ultrasonic motor increases and the life of the guide device becomes extremely short.
[0011]
That is, since the drive using the ultrasonic motor 55 is friction drive, the drive surfaces of both the friction member 55a and the drive force transmission member 54 are likely to change, and the drive characteristics are likely to change due to the change of the drive surface. Therefore, even if there is no slip between the drive surfaces in the initial stage of the drive, the slip may occur due to a change with time, and the wear has progressed. In particular, if slippage occurs in the initial stage of driving, large wear marks are generated on the surfaces of the friction member 55a and the driving force transmission member 54, which affects driving characteristics. In some cases, the wear increased at an accelerated rate from the wear mark.
[0012]
Therefore, as shown in FIG. 7, the applicant of the present application is provided with non-contact type measuring means 77 for measuring position information at the time of displacement, speed, and acceleration of the friction member 55a while the ultrasonic motor 55 is being driven. A calculation unit 58 that calculates the slip amount from the position information of the position detection means 56 is provided, and when the slip amount occurs, the preload is changed by a preload adjustment unit 78 provided at the rear end of the ultrasonic motor 55. The guidance apparatus which was made is proposed previously (refer Japanese Patent Application No. 11-120857).
[0013]
Further, as shown in FIG. 8, the applicant of the present invention is a non-contact type measuring unit 77 for measuring positional information such as displacement, speed, acceleration and the like of the friction member 55a while the ultrasonic motor 55 is being driven, and the non-contact type measuring unit. A measuring unit 79 for calculating the degree of sliding of the friction member 55 a from the position information from the position information 77 and the position information from the position detection means 56 is provided, and the weight of the guide device set in advance and the position information from the position detection means 56 are provided. The calculation unit 89 that calculates the tangential force applied to the driving surface based on the obtained acceleration, the slip amount measured by the measurement unit 79, the monitoring unit 80 that monitors the tangential force calculated by the calculation unit 89, and the friction A friction work calculation unit 81 for monitoring work is provided to monitor the wear state of the drive surface, and to determine whether or not the friction work calculated by the friction work calculation unit 81 is within a preset standard value. Parameter adjustment for changing the control parameters of the drive control unit 50 so that the friction work calculated by the friction work calculation unit 81 falls within the standard value based on the result determined by the determination unit 90 A guide device has been proposed that can provide a long life by providing a portion 91 so that it is always driven with a small friction work (see Japanese Patent Application No. 2002-73024).
[0014]
However, in the conventional guide device shown in FIGS. 7 and 8, the non-contact type measuring means 77 must always be attached to the device for specifying the slippage, and there is a problem that the structure of the device becomes complicated and large. It was. For this reason, there was a problem in terms of cost.
[0015]
For this reason, it is difficult to design in order to determine sliding in a precision measuring apparatus requiring space saving, a drawing exposure apparatus in a semiconductor manufacturing process, etc., and there are design restrictions when using the guide apparatus shown in FIGS. there were.
[0016]
OBJECT OF THE INVENTION
An object of the present invention is to provide an ultrasonic motor capable of preventing a slip on the driving surface between the friction member and the driving force transmission member of the ultrasonic motor and obtaining a long life without complicating and increasing the size of the apparatus. The object is to provide a guide device as a drive source.
[0017]
[Means for Solving the Problems]
Therefore, in view of the above problems, the present invention provides an ultrasonic motor having a friction member, a movable body that is movable by friction driving with the ultrasonic motor, a position detection unit that measures the position of the movable body, and the position detection unit. A drive control unit that calculates a deviation between the position information from the reference position information based on a preset movement profile and outputs a drive command signal for driving the ultrasonic motor, and the ultrasonic motor in advance Based on the specific drive command signal measured by moving the movable body and the information on the vibration speed on the drive surface of the friction member, the drive command signal during the driving of the ultrasonic motor is changed to the vibration speed of the friction member. The transmission efficiency and the slip amount are calculated from the replacement part to be replaced, the speed of the movable body calculated based on the position information obtained from the position detection means, and the vibration speed replaced by the replacement part. An ultrasonic motor having a calculation unit for output, characterized in that a guide device for a driving source of the movable body.
[0018]
Further, it has a friction work calculation unit that calculates a tangential force acting on the driving surface on the movable body side by friction driving of the ultrasonic motor and calculates a product of the tangential force and the amount of slip obtained by the calculation unit. Features.
[0019]
Furthermore, it has a determination part which determines whether the friction work amount obtained by the said friction work calculation part exists in the preset standard value.
[0020]
Further, the present invention is characterized by having a parameter adjustment unit that changes each of the control parameters of the drive control unit so that the frictional work amount is within a preset standard value based on the result of determination by the determination unit.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic view showing an example of a guide device according to the present invention using an ultrasonic motor as a driving source for a movable body. This guide device includes a pair of guide members 12 such as cross roller guides on a base substrate 11. A stage 13 as a movable body is linearly guided along the pair of guide members 12.
[0022]
A driving force transmission member 14 is installed on one side of the stage 13 in parallel with the guide member 12, and a linear scale 16a is installed on the other side in parallel with the guide member 12. A measuring head 16b is provided at a position facing 16a to constitute position detecting means 16, and an ultrasonic motor 15 is installed at a position facing the driving force transmitting member 14, and a friction member 15a of the ultrasonic motor is disposed. The drive force transmission member 14 is in contact with the drive surface 14a perpendicularly.
[0023]
Then, positional information such as displacement, speed, acceleration and the like from the position detection means 16 accompanying the movement of the stage 13 is sent to the drive control unit 10, and the movement profile of the stage 13 set in advance by the drive control unit 10 is added. Based on parameters that change in accordance with deviations from the reference position information (displacement, speed, acceleration) based on this, for example, PID calculation processing is performed, and feedback control is performed to output the output value to the ultrasonic motor 15 as a drive command signal. Thus, the ultrasonic motor 15 causes the friction member 15a to move elliptically in accordance with the drive command signal, and the stage 13 is moved along the guide member 12 by the friction drive of the friction member 15a and the driving force transmission member 14. It has become. In the following, an embodiment in which PID control is used will be described.
[0024]
The structure and attachment structure of the ultrasonic motor 15 shown in FIG. 1 are the same as the structure and attachment structure of the ultrasonic motor 55 shown in FIGS.
[0025]
Further, in this guide device, the drive command signal output from the drive control unit 10 is transmitted to the ultrasonic motor 15 based on the value of the drive command signal and the vibration speed in the preset open loop control. A replacement unit 17 for calculating the vibration speed is provided.
[0026]
In other words, the fact that the drive command signal has a strong correlation with the vibration speed of the friction member 15a of the ultrasonic motor 15 that controls the friction transmission is used. The vibration speed of the friction member 15a is replaced with the drive command signal. During the drive, the slip amount can be monitored by the drive command signal without using the non-contact type measuring means 77 as shown in FIG. The relationship between the vibration speed of the friction member 15a and the drive command signal differs depending on the frictional resistance of the guide member 12 of the guide device, the weight of the stage 13, and the pressing force of the ultrasonic motor 55. Become.
[0027]
Therefore, as shown in the measurement apparatus of FIG. 2, before starting the driving of the guide apparatus, the non-contact measurement means 21 is operated in advance and the specific drive command signal output from the drive control unit 10 and the non-contact measurement means. The relationship between the vibration speeds obtained from 21 is measured by the measuring device 22, and this measured value may be used as a reference value.
[0028]
That is, the vibration speed on the drive surface and the value of the drive command signal are taken before starting the driving of the guide device, and based on this reference value, during the drive, the vibration speed is obtained only by the drive command signal using the correlation. The transmission efficiency and the slip amount are calculated based on this reference value.
[0029]
The reference values of the vibration speed and the drive command signal may be measured by open drive that is driven by applying a constant drive command signal. The drive command signal is arbitrarily set to several levels and shown in FIG. Thus, it is necessary to obtain the relationship between the drive command signal and the vibration speed. As shown in FIG. 3, the drive command signal and the reference value of the vibration speed differ depending on the speed mode at acceleration (triangle mark), constant speed, and deceleration (black circle mark). • It is important to distinguish between the deceleration speed areas. In other words, the acceleration region requires a higher voltage than that during constant speed or deceleration due to the influence of inertial force. Therefore, for example, the drive command signal and the reference value of the vibration speed may be changed according to the operation state such as whether the vehicle is being accelerated or decelerated.
[0030]
Since the classification of the reference value according to the operating state differs depending on various speed waveforms of trapezoidal control and S-shaped control, the values of the drive command signal and the vibration speed are checked when the reference value is set using the non-contact type measuring means 77. It is sufficient to judge the necessity of classification, and if the acceleration time and the constant speed coincide, there is no need to classify the reference value.
On the other hand, when the drive command signal and the vibration speed reference value are different, it is sufficient to take measures such as subdividing the sections for each speed region. Then, after taking the reference value, the non-contact type measuring means 21 and the measuring device 22 may be removed.
[0031]
If there is a drive command signal and a reference value of vibration speed, the drive command signal may be replaced with the vibration speed based on the reference value of the driving state during driving.
In addition, this guide device is based on the vibration speed obtained by the replacement unit 17 and compared with the stage speed, the transmission efficiency to the driving force transmission member 14 or the slip of the driving surface 14a of the driving force transmission member 14 and the friction member 15a. A calculation unit 18 for calculating the amount is provided, and the transmission efficiency or the slip amount measured by the calculation unit 18 can be monitored in time series as necessary. Therefore, it is also possible to take a configuration that warns at this point of time by checking the transmission efficiency or the slip amount. As a result, it is possible to grasp the lifetime at an early stage.
[0032]
The calculation of the transmission efficiency can be confirmed by the following formula 1.
W = B / A × 100 (%) (1)
W: Transmission efficiency
A: Vibration speed on the drive surface
B: Position information from the position detection means
The calculation of the slip amount can be confirmed by the following formula 2.
Ls = (A−B) × Tc... Equation 2
Ls: slip amount
A: Vibration speed on the drive surface
B: Detection speed from the position detection means
Tc: friction member contact time
The transmission efficiency W and the slip amount Ls may be calculated for each servo loop in the feedback control. The contact time Tc used for calculating the slip amount Ls is based on the waveform of the vibration speed A obtained from the non-contact type measuring means 17 used for measuring the reference value before starting driving, and the vibration speed of the friction member 15a. The time corresponding to the portion where the time becomes slow is referred to as the contact time Tc, and the contact time Tc measured at the time of measuring the reference value may be quoted as it is during driving.
[0033]
Note that the contact time Tc may also be determined between servo loops. If an elliptical period occurs a plurality of times between servo loops, a value obtained by averaging the contact times Tc between servo loops may be used.
[0034]
If the reference value is measured before the start of driving as described above, the transmission speed and the slip amount Ls can be grasped by replacing the vibration speed by measuring only the driving command signal thereafter. It is not necessary to install the non-contact measuring means 20, and the apparatus can be miniaturized.
[0035]
In addition, the guide device includes a tangential force applied to the driving surfaces of the friction member 15 a and the driving force transmitting member 14 based on the stage weight m set in advance and the acceleration obtained from the position information from the position detecting means 16. And a friction work calculation unit 24 that calculates the friction work by the product of the tangential force and the slip amount measured by the replacement unit 17.
[0036]
That is, the slip amount of the drive surface between the friction member 15a and the drive force transmission member 14 and the severity of the drive surface applied to the drive surface are expressed as a tangential force, and the friction work calculated by these is expressed as the slip amount and the transmission efficiency. You may make it monitor simultaneously. This is based on the consideration that the wear changes when the dynamic tangential force applied to the drive surface varies even if the amount of slip is constant. The wear on the drive surface is understood as a comprehensive parameter that includes not only the slip amount but also the tangential force. Therefore, it is possible to monitor the wear with higher accuracy than monitoring only the transmission efficiency and the slip amount. Furthermore, as can be seen from the relationship between the friction work and the amount of wear (friction volume) in FIG. 4, the product of the slip amount and the tangential force (friction work) is proportional to the wear. The amount of wear can also be grasped.
[0037]
The friction work Wf calculated by the friction work calculation unit 24 can be confirmed by the following mathematical formula 3.
Wf = Ls × F ... Formula 3
F = m × a
Ls: slip amount
F: Tangent force
m: stage weight
a: Acceleration calculated based on the result obtained from the position information of the position detecting means
Further, as a method of calculating the wear amount, the slip amount Ls (m) × tangential force F (N) × wear constant (3.5 × 10 in the case of alumina).- Five) (MmThree/ Nm). The wear constant is a product obtained by a test conducted in advance and is different for each material, and corresponds to a proportional constant obtained from the proportional relationship between the friction work of the slip amount Ls × tangential force F and the wear amount.
[0038]
In this way, the tangential force F applied to the drive surface based on the slip amount Ls obtained by measuring only the drive command signal, the stage weight m set in advance, and the acceleration a obtained from the position information from the position detecting means 16. And the amount of wear can be grasped without installing the non-contact measuring means 20 by calculating the friction work Wf which is the product of the slip amount Ls measured by the replacement unit 17.
[0039]
In addition, the guide device is provided with a determination unit 20 that determines whether or not the friction work calculated through the replacement unit 17, the calculation unit 18, and the friction work calculation unit 24 is within a standard value. The standard value is determined from the relationship between the friction work and the wear volume, and the value of the friction work corresponding to the required wear amount (life) of the guide device may be arbitrarily determined.
[0040]
That is, since the friction work calculated by the friction work calculation unit 24 is a factor that greatly affects the life of the apparatus, the deterioration of the friction work may be determined as an abnormal notice of the apparatus. Of course, the change can be detected by constantly monitoring the result of the determination unit 20, and if the standard value of the friction work is set in advance and the PID region within the standard value is grasped, the standard value is satisfied. Since it is possible to determine how much the range of the PID constants is available and how they change over time, it is possible to prevent problems before they occur and to clearly determine the direction of improvement. The standard value of the friction work may be arbitrarily determined according to the required characteristics of the life of the guide device. In the guide device that requires a long life based on the relationship between the friction work and the wear volume shown in FIG. 4, the standard value may be set to a low value so as to respond sensitively to changes during driving.
[0041]
The determination unit 20 can determine not only the friction work but also the transmission efficiency and the slip amount. In other words, transmission efficiency and slippage are important factors for calculating frictional work, but when the life expectancy of the guide device is relatively relaxed, the transmission efficiency and slippage can be used to observe abnormal changes in the guide device. Since it is a sufficient monitoring item, it may be determined only by these items.
[0042]
In addition, the guide device includes a parameter adjusting unit that changes the control parameters of the drive control unit 10 so that the frictional work calculated by the frictional work calculating unit 24 is within a standard value when the frictional work exceeds a preset standard value. 23 is provided. In addition, what was used in the determination part 20 is used with a standard value.
[0043]
Thus, if the friction work exceeds a preset standard value, it means an increase in wear. Therefore, based on the result obtained by the determination unit 20, if the friction work is changed to a PID constant that falls within the standard value. Good.
[0044]
In addition, although the example of the parameter change by friction work was shown by the parameter adjustment part 23, it is not limited to this, If transmission efficiency and the slip amount exceed the preset regulation value, it will be in a specification value so that it may become in a standard value. You may comprise so that a control parameter may be changed, respectively.
[0045]
Further, if the transmission efficiency, slippage, and friction work cannot satisfy the preset standard values, it means that the correspondence with the PID adjustment cannot be performed, and as a result, there is a risk of abnormal wear. Therefore, the guide device may be maintained.
[0046]
Thus, by using the guide device of the present invention, it is possible to set the PID so that the drive surfaces of the friction member 15a and the driving force transmission member 14 do not slip when the ultrasonic motor 15 is initially set. The frictional work can be grasped from the transmission efficiency and the slip amount without using the non-contact type measuring means 77 as described above, and even when the friction member 15a wears and the drive surface slips with long-term driving, Based on the determination result, the control parameters of the drive control unit are changed so that the friction work is within a preset standard value, so the slip amount, transmission efficiency, and friction work on the drive surface are always specified. Since the value can be satisfied and driven in a wear-resistant state, the stage 13 can be driven and positioned stably over a long period of time.
[0047]
In addition, the frictional work can capture the severity of friction on the drive surface with higher accuracy than the transmission efficiency and slippage. It is possible to grasp the wear amount without using it.
[0048]
For this reason, it is preferably used in a precision processing machine tool, a precision measuring apparatus, a drawing exposure apparatus in a semiconductor manufacturing process, and the like that require high space accuracy, especially in a guide apparatus that requires space saving. Can do.
[0049]
By the way, in this embodiment, although the example which used the command voltage as a drive command signal was demonstrated, the drive command signal may be the electric current and electric power at the time of voltage control, and also the ultrasonic motor 15 is a frequency. When controlled, a frequency may be used as the drive command signal.
[0050]
Further, the vibration type of the ultrasonic motor 15 used in the guide device of the present invention is not particularly limited, and not only a single vibration mode but also a mode conversion type, a multi-mode type, a mode rotation type, a composite vibration type, etc. A thing with a plurality of vibration modes is also applicable.
[0051]
Furthermore, in the guide device of the present invention, the example in which the movable body forming the stage 13 linearly moves has been described. However, the present invention can be applied to a guide device in which the movable body rotates, and various types can be applied without departing from the scope of the present invention. It goes without saying that improvements and changes can be made.
[0052]
【Example】
Here, a guide device using the ultrasonic motor 15 shown in FIG.
[0053]
A cross roller guide having a stroke of 200 mm was used as the guide member 12 for guiding the stage 13, and the stage 13 was formed into a plate-like body of 250 mm × 120 mm × 30 mm and formed of aluminum. A weight (not shown) was placed on the stage 13 so that the total weight with the stage 13 was 100N.
[0054]
The ultrasonic motor 15 for driving the stage 13 includes a friction member 15a made of alumina ceramic on the end face of a piezoelectric element having a width of 8 mm, a length of 30 mm, and a thickness of 3 mm, and four electrodes on one main surface of the piezoelectric element. Are formed, and the electrodes located diagonally are connected to each other, and one electrode is formed on the entire other main surface, and a command voltage having a phase difference of 90 degrees is applied to the four electrodes. Thus, the friction member 15a was used in an elliptical motion. The drive surface of the friction member 15a was a spherical surface with a radius of curvature of 3 mm, and the surface roughness was 0.05 μm in terms of centerline average roughness (Ra).
[0055]
Further, as the linear scale 16a constituting the position detecting means 16 of the stage 13, a Mitutoyo linear scale S33C is used. The linear scale S33C is installed on one side surface of the stage 13, and the detection head 16b is located at a position facing the linear scale 16a. The position detecting means 16 is configured by installing a driving force transmitting member 14 made of alumina ceramic on the other side surface of the stage 13.
[0056]
And the drive control part 10, the substitution part 17, the calculation part 18, and the friction work calculation part 24 were connected, respectively, and the guide apparatus of this invention was manufactured.
[0057]
Further, in order to measure the reference value before the start of driving, a laser Doppler vibrometer is installed as a non-contact measuring means perpendicular to the friction member 15a of the ultrasonic motor 15, and the stage 13 is driven by open loop driving. Based on the result of the driving command signal at that time and the vibration speed on the driving surface of the friction member measured from the laser Doppler vibrometer, the driving command signal is replaced with the vibration speed.
[0058]
Further, the calculation unit calculates the transmission efficiency and the slip amount from the speed of the movable body calculated based on the position information obtained from the position detection means obtained by the replacement unit 17 and the vibration speed replaced by the replacement unit. did.
Further, a tangential force acting on the driving surface on the movable body 3 side by friction drive of the ultrasonic motor 15 is calculated, and a product of the tangential force and the slip amount obtained by the calculation unit 18 is calculated as a friction work value. I made it.
Example 1
Then, the drive control of the ultrasonic motor 15 is trapezoidal control with a moving distance of the stage 13 of 200 mm, an acceleration of 0.05 G, and a maximum speed of 100 mm / s, and after setting the moving profile of the stage 13 in the control unit 10 in advance, the servo loop While monitoring the rate of change, the PID was determined and initialized so that the deviation was within 1 μm. The ultrasonic motor 15 is driven at a frequency of 40 KHz, and the transmission efficiency and slippage calculated from the calculation unit 18 at that time and the result of the friction work calculation unit 24 can be monitored. In addition, the transmission efficiency and the slip amount represent the average values for 20 servo loops at the time of acceleration, constant speed and deceleration, and the variation within the range.
[0059]
Here, since the drive command signal and the reference value of the vibration speed in the case of replacement by the replacement unit 17 are the same at the time of constant speed and at the time of deceleration, they are unified without being distinguished. Each result is as shown in Table 1.
[0060]
[Table 1]
Figure 0003964256
[0061]
As a result, the transmission efficiency calculated by the calculation unit 17, the slippage, and the friction work calculated by the friction work calculation unit 24 are slightly different from those calculated using values measured by a laser Doppler vibrometer. It can be seen that the values are almost the same. Even when the drive command signal from the drive control unit 10 is replaced with the vibration speed on the drive surface of the friction member 15a, the value is comparable to the actual measurement.
[0062]
Here, the variation in transmission efficiency, slippage, and friction work is large because the average value between servo loops is used. For accurate measurement, the servo loop is controlled in a short state and the friction between servo loops is measured. What is necessary is just to drive on conditions with few amplitude numbers of a member.
[0063]
As a result, it is possible to provide a guide device that can quantitatively grasp the slip state on the drive surface of the friction member 15a without using the non-contact measuring means 77 such as a laser Doppler vibrometer during driving.
(Example 2)
A guidance device in which the determination unit 20 and the parameter adjustment unit 23 are provided in the guidance device used in Example 1 was manufactured.
Frictional work and wear when a conventional guide device having no determination unit 20 and parameter adjustment unit 23 is prepared, the maximum speed is 100 mm / s, and the stage 13 is driven 1000 km under the same conditions as in the first embodiment. An experiment was conducted to check the amount.
As a result, in the conventional guide device, the slip amount increased when the stage driving distance was 500 km, and the friction work increased to 250 Nm at the maximum value.
[0064]
In contrast, the guide device of the present invention has a constant slip amount even when the stage is driven by 1000 km, and the friction work is stabilized at 120 Nm. The wear amount after driving the stage 13 is the wear amount of the conventional guide device. 1/5 or less. As a result, it can be seen that the service life can be significantly improved by using the guide device of the present invention including the determination unit and the parameter adjustment unit.
[0065]
Further, when the wear amount was predicted by multiplying the friction work by the wear constant of the alumina ceramic used for the friction member 15a, the measured value of wear after the test and the predicted value of the wear amount almost coincided. Therefore, it was confirmed that the wear amount can be grasped and predicted without using the non-contact measuring means 21.
[0066]
In the second embodiment, the transmission efficiency may be 80% because the driving is performed under relatively severe driving conditions. However, even when the transmission efficiency is about 95%, the parameter adjustment unit 23 is not used. The amount of wear has changed by about 比 べ, and it is known that the importance of grasping the amount of slip and reducing the amount of slip is high.
[0067]
It is useful to always be able to grasp the slip amount without using the non-contact measuring means 77 with respect to the slip amount, and the size of the apparatus also increases in precision measuring apparatuses that require space saving, drawing exposure apparatuses in semiconductor manufacturing processes, and the like. In addition, the cost can be greatly reduced. In addition, by putting friction work into the monitoring items using the slip amount, it is possible to grasp the wear with higher accuracy than the transmission efficiency and the slip amount, and furthermore, the wear amount can be predicted.
[0068]
【The invention's effect】
As described above, the ultrasonic motor, the movable body that is movable by friction driving with the ultrasonic motor, the position detection unit that measures the position of the movable body, and the position information from the position detection unit are set in advance. Measurement based on deviation from reference position information based on movement profile and measurement by moving the movable body in advance with the drive control unit that outputs a drive command signal for driving the ultrasonic motor and the ultrasonic motor A replacement unit that replaces the driving command signal during driving of the ultrasonic motor with the vibration speed of the friction member based on the specific driving command signal and the information on the vibration speed on the driving surface of the friction member; A calculation unit that calculates transmission efficiency and slippage from the speed of the movable body calculated based on the position information obtained from the position detection unit and the vibration speed replaced by the replacement unit; If the reference value is measured before the start of driving by configuring a guide device using the characteristic ultrasonic motor as the drive source of the movable body, the transmission efficiency and slippage can be grasped without increasing the size of the device. Has a friction work calculation unit that calculates a tangential force acting on the driving surface on the movable body side by friction drive of the ultrasonic motor and calculates a product of the tangential force and the slip amount obtained by the calculation unit. Thus, it is possible to provide a device that can accurately monitor the wear of the friction member and grasp the wear amount.
[0069]
In addition, a determination unit that determines whether or not the friction work calculated by the friction work calculation unit is within a preset standard value is provided, and further, the friction work is determined based on a result determined by the determination unit. By providing a parameter adjustment unit that changes each control parameter of the drive control unit so that it is within the preset standard value, it can always be driven where there is little slippage and good transmission efficiency. The stage 13 can be driven and positioned.
[0070]
Therefore, the guide device of the present invention is a precision machining machine tool that requires a long life by preventing slipping on the driving surface of the friction member and the driving force transmission member of the ultrasonic motor without complicating and increasing the size of the device. It can be suitably used for a precision measuring apparatus, a drawing exposure apparatus in a semiconductor manufacturing process, and the like.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a guide device of the present invention using an ultrasonic motor as a drive source for a movable body.
FIG. 2 is a block diagram showing an example of a guide device for taking a reference value before starting driving.
FIG. 3 is a graph showing a relationship between a driving command signal and a vibration speed when the stage is open-driven in the experiment of FIG. 1;
FIG. 4 is a graph showing the relationship between friction work and wear amount.
FIG. 5 is a block diagram showing an example of a conventional guide device using an ultrasonic motor as a driving source for a movable body.
6 is a diagram showing details of the ultrasonic motor 15 shown in FIG. 5. FIG.
FIG. 7 is a block diagram showing a guide device using a conventional ultrasonic motor as a driving source of a movable body.
FIG. 8 is a block diagram showing a guide device using another conventional ultrasonic motor as a drive source of the movable body.
[Explanation of symbols]
10, 50: Drive control unit
11, 51: Base base
12, 52: guide member
13, 53: Stage
14, 54: Driving force transmission member
15, 55: Ultrasonic motor
15a, 55a: friction member
15b, 55b: elastic body
15c, 55c: elastic body
15d, 55d: Case
15e, 55e: Piezoelectric drive unit
55f: Piezoelectric ceramic plate
55g-55j: Electrode film
16, 56: Position detecting means
16a, 56a: Linear scale
16b, 56b: detection head
55c: Spring
77, 21: Non-contact type measuring means
78: Preload adjustment section
17: replacement part
18, 58: calculation unit
20, 90: determination unit
22: Measurement unit
23: Parameter adjustment unit
24: Friction work calculation section

Claims (4)

摩擦部材を有する超音波モータと、該超音波モータとの摩擦駆動により可動する可動体と、該可動体の位置を測定する位置検出手段と、該位置検出手段からの位置情報と予め設定した移動プロファイルに基づく基準位置情報との偏差を基に演算し、前記超音波モータを駆動させる駆動用指令信号を出力する駆動制御部と、予め上記超音波モータで上記可動体を可動させて測定した固有の駆動用指令信号及び上記摩擦部材の駆動面における振動速度の情報に基づいて、上記超音波モータ駆動中における上記駆動用指令信号を上記摩擦部材の振動速度に置換する置換部と、上記位置検出手段から得られる位置情報を基に算出する上記可動体の速度と、上記置換部で置換した上記振動速度とから伝達効率及び滑り量を算出する算出部とを有することを特徴とする超音波モータを可動体の駆動源とする案内装置。Ultrasonic motor having friction member, movable body movable by friction drive with ultrasonic motor, position detection means for measuring position of movable body, position information from position detection means and preset movement A drive control unit that calculates based on a deviation from reference position information based on a profile and outputs a drive command signal for driving the ultrasonic motor, and a unique characteristic that is measured in advance by moving the movable body with the ultrasonic motor. And a position detecting unit that replaces the driving command signal during driving of the ultrasonic motor with the vibration speed of the friction member based on the driving command signal and the vibration speed information on the driving surface of the friction member. A calculating unit that calculates the transmission efficiency and the slip amount from the speed of the movable body calculated based on the position information obtained from the means and the vibration speed replaced by the replacement unit. Guide device for an ultrasonic motor, wherein a driving source of the movable body. 上記超音波モータの摩擦駆動により可動体側の駆動面に作用する接線力を算出し、該接線力と上記算出部により得られた滑り量との積により摩擦仕事を算出する摩擦仕事算出部を有することを特徴とする請求項1に記載の超音波モータを可動体の駆動源とする案内装置。A friction work calculating unit that calculates a tangential force acting on the driving surface on the movable body side by friction driving of the ultrasonic motor, and calculates a friction work by a product of the tangential force and a slip amount obtained by the calculation unit; A guide device using the ultrasonic motor according to claim 1 as a drive source of the movable body. 上記摩擦仕事算出部により得られた摩擦仕事量が予め設定した規格値内にあるか否かを判定する判定部を有することを特徴とする請求項2に記載の超音波モータを可動体の駆動源とする案内装置。3. The ultrasonic motor according to claim 2, further comprising: a determination unit that determines whether or not the friction work amount obtained by the friction work calculation unit is within a preset standard value. Guide device as a source. 上記判定部にて判定した結果に基づき、上記摩擦仕事量が予め設定した規格値内となるように、上記駆動制御部の制御パラメータをそれぞれ変更するパラメータ調整部を有することを特徴とする請求項3に記載の超音波モータを可動体の駆動源とする案内装置。The apparatus according to claim 1, further comprising a parameter adjustment unit that changes control parameters of the drive control unit so that the frictional work amount is within a preset standard value based on a result of determination by the determination unit. A guide device using the ultrasonic motor according to 3 as a driving source of the movable body.
JP2002123841A 2002-03-15 2002-04-25 Guide device using ultrasonic motor as drive source of movable body Expired - Fee Related JP3964256B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002123841A JP3964256B2 (en) 2002-04-25 2002-04-25 Guide device using ultrasonic motor as drive source of movable body
US10/331,110 US6897598B2 (en) 2002-03-15 2002-12-27 Ultrasonic motor and guide apparatus having the same as driving source of movable body
NL1022282A NL1022282C2 (en) 2002-03-15 2002-12-30 Ultrasonic motor and guide device equipped with it as the driving source of a movable body.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123841A JP3964256B2 (en) 2002-04-25 2002-04-25 Guide device using ultrasonic motor as drive source of movable body

Publications (2)

Publication Number Publication Date
JP2003324974A JP2003324974A (en) 2003-11-14
JP3964256B2 true JP3964256B2 (en) 2007-08-22

Family

ID=29539015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123841A Expired - Fee Related JP3964256B2 (en) 2002-03-15 2002-04-25 Guide device using ultrasonic motor as drive source of movable body

Country Status (1)

Country Link
JP (1) JP3964256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731146B2 (en) * 2004-09-28 2011-07-20 京セラ株式会社 Management control method of apparatus having movable part and precision driving apparatus using the same
US10833610B2 (en) 2016-10-05 2020-11-10 Canon Kabushiki Kaisha Control apparatus for vibration-type actuator, control method for vibration-type actuator, vibration-type driving apparatus, and electronic apparatus that improve acceleration performance and deceleration performance in driving vibration-type actuator
JP7069815B2 (en) * 2018-02-22 2022-05-18 セイコーエプソン株式会社 How to drive piezoelectric drive devices, robot hands, robots, electronic component transfer devices, printers, projectors and piezoelectric drive devices

Also Published As

Publication number Publication date
JP2003324974A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US9352464B2 (en) Robot, carriage device, and control method using inertia sensor
US6494765B2 (en) Method and apparatus for controlled polishing
US7625495B2 (en) Methods and apparatuses for monitoring and controlling mechanical or chemical-mechanical planarization of microelectronic substrate assemblies
CN102348969B (en) Determining elastic modulus for continuous material web
EP1642665A1 (en) Wire-cut electric discharge machine
JP3964256B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP2005096057A (en) Guiding device
JP4703027B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP4127633B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP4493318B2 (en) Precision drive device and aging drive method for precision drive device
KR101159021B1 (en) Moving Seam welding maching and method for controlling of welding threrof
EP4067181A2 (en) Brake device, method for calculating wear amount, and program for calculating wear amount
JP2009125926A (en) Method for sensing applied force for controlling removal rate for flat fine machined surface
JP4703041B2 (en) Friction force measuring device and measuring method
JP2000308939A (en) Guide device with ultrasonic motor as drive source for mobile body
JP4462696B2 (en) Guide device using ultrasonic motor as drive source of movable body
JP4731146B2 (en) Management control method of apparatus having movable part and precision driving apparatus using the same
JP2009293965A (en) Testing apparatus for traction measurement
JP3523510B2 (en) Linear guide device
JP2003288122A (en) Guide device using ultrasonic motor as drive source for moving body
JP5520491B2 (en) Sample stage device
JP3975450B1 (en) Lubricating film evaluation device
JP2003259667A (en) Method of driving piezoelectric motor
JP4335751B2 (en) Wire bonding equipment
JP7114329B2 (en) WEB PROCESSING APPARATUS AND PROCESSING METHOD OF PROCESSED PRODUCT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Ref document number: 3964256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees