JP4731026B2 - Manufacturing method of surface acoustic wave device - Google Patents

Manufacturing method of surface acoustic wave device Download PDF

Info

Publication number
JP4731026B2
JP4731026B2 JP2001052396A JP2001052396A JP4731026B2 JP 4731026 B2 JP4731026 B2 JP 4731026B2 JP 2001052396 A JP2001052396 A JP 2001052396A JP 2001052396 A JP2001052396 A JP 2001052396A JP 4731026 B2 JP4731026 B2 JP 4731026B2
Authority
JP
Japan
Prior art keywords
pad electrode
piezoelectric substrate
electrode
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001052396A
Other languages
Japanese (ja)
Other versions
JP2002261571A (en
Inventor
敏哉 松田
淳雄 旗手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001052396A priority Critical patent/JP4731026B2/en
Publication of JP2002261571A publication Critical patent/JP2002261571A/en
Application granted granted Critical
Publication of JP4731026B2 publication Critical patent/JP4731026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話やセルラ電話等の移動体用通信機器などに高周波素子として好適に使用される弾性表面波装置及びその製造方法に関する。
【0002】
【従来技術とその課題】
従来の弾性表面波装置の構造例を図4(a),(b)に示す。なお、簡単のため、図4(a)においては保護膜2の図示を省略している。また、図4(b)は図4(a)におけるA4−A4線断面図である。
【0003】
図4(a),(b)、に示すように、例えばタンタル酸リチウム単結晶から成る圧電基板1上に、弾性表面波を励振する櫛歯状をなす励振電極4と、これに接続されたパッド電極3と、パッド電極3の上面の一部を除く領域に形成した酸化物等から成る保護膜2とを設けて弾性表面波装置が構成されている。
【0004】
ところが、パッド電極3にワイヤやバンプを接合する場合、その接合時に大きな外力が加わることがあり、パッド電極3が圧電基板1から容易に剥離するなどの問題があった。すなわち、パッド電極3は励起電極4と同時に同一膜厚に形成されるのが一般的であり、例えば約200nm程度と非常に薄いので、バンプ等を形成した後の外力で剥離が生じたり、ワイヤやバンプがパッド電極3に接合しにくいという問題があった。
【0005】
また、励起電極4やパッド電極は一般にAl(アルミニウム)やAlを主成分とした合金の同一材料形成されるが、ワイヤやバンプは一般にAu(金)が使用される。このように、パッド電極3とワイヤやバンプの材料が異なり、両者の材料のなじみが悪い(例えば濡れ性が悪い)ことから、ワイヤやバンプとパッド電極3との接合強度が弱かった。
【0006】
また図4と同様に図示した図3(a)、(b)(図3(b)は図3(a)におけるA3−A3線断面図である)に示すように、図4に示す弾性表面波装置と同様な構成においてパッド電極3を下部層3Aと上部層3Bとから成る2層構造とし、パッド電極3の膜厚を厚くしたものも知られている。
【0007】
ところが、パッド電極3が積層構造であるので、例えばパッド電極の1層目の下部層3Aが製造工程中において大気にさらされたときに表面が酸化し、これにより下部層3Aと2層目の上部層3Bとの接合強度が低下し、両者の界面で密着強度が低下するという問題があった。特に、2層目の上部層3BにAlまたはAlを主成分にした材料を選択した場合、AlまたはAlを主成分にした材料とAuバンプとの接合強度が弱くなる。
【0008】
一方、上部層3BにAuまたはAuを主成分にした材料を選択すると、パッド電極3と励起電極2との接合強度が弱くなる。
【0009】
このような弾性表面波装置を製造する場合、(1)圧電基板1の表面を洗浄処理する工程と、(2)フォトリソグラフィにより所望形状にフォトレジストを形成する工程と、(3)励振電極4及びパッド電極3の下部層3Aの領域をエッチングにより除去する工程と、(4)励振電極4及びパッド電極3の上に保護膜2を成膜する工程と、(5)フォトリソグラフィにより所望形状にフォトレジストを形成する工程と、(6)保護膜2の電極パッド3B領域をエッチングにより除去する工程と、(7)パッド電極3の上部層3Bを成膜する工程と、(8)リフトオフによりパッド電極3の上部層3Bを形成する工程とから成る。
【0010】
ここで、パッド電極3の下部層3Bの剥離を低減するためには、圧電基板1と下部層3Bの密着強度を向上させることも考えられる。そのためには、前記工程(1)の圧電基板1表面をUV照射、O2プラズマ処理、酸溶液により有機物等を除去して清浄化したり、Ar、O2などの逆スパッタなどにより表面を活性化することにより、密着強度を高めるなどの方法が知られている。
【0011】
しかし、前記工程(7)の前において、電極パッド3Aが大気にさらされている1層目の下部層3Aの表面が酸化され、バンプとの接合や2層目のパッド電極との接合が弱くなるという問題があった。
【0012】
そこで本発明は、前記従来の問題を解消し、密着強度を向上させることができ、バンプやワイヤを接合した後の剥がれを極力防止することができる、信頼性の高い弾性表面波装置及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記課題を解決するために、本発明の弾性表面波装置は、圧電基板上に、弾性表面波を励振する励振電極と、該励振電極に接続され該励振電極より厚い単層のパッド電極とをそれぞれ配設するとともに、励振電極の上及びパッド電極の外周部に保護膜を形成したことを特徴とする。ここで特に、励振電極とパッド電極とが互いに異なる導電材料から成ることとする。
【0014】
また、本発明の弾性表面波装置の製造方法は、圧電基板上に、弾性表面波を励振する励振電極を形成する工程と、励振電極を含む領域上に保護膜を積層する工程と、保護膜上のパッド電極形成領域を除く所定領域にフォトレジスト膜を積層する工程と、保護膜のパッド電極形成領域を除去して圧電基板の一部及び励振電極の一部を露出させる工程と、露出させた圧電基板の表面の付着物を除去して表面清浄化処理を行う工程と、フォトレジスト膜の上、露出させた圧電基板の上、及び露出させた励振電極の上に、パッド電極材料を積層する工程と、フォトレジスト膜を除去してパッド電極を形成する工程とを含むことを特徴とする。
【0015】
特に、圧電基板の表面清浄化処理は、紫外線照射、気相反応、またはエッチングにより行うこととする。ここで気相反応は、例えば、酸素を用いたプラズマを利用したり、Ar(アルゴン)または酸素(O2)を用いた逆スパッタにて行うものとする。また、エッチングは、例えばふっ酸、硝酸または燐酸等の酸性溶液により行うものとする。
【0016】
本発明によれば、励振電極とパッド電極とを互いにことなる材料とすることで、ボンディングワイヤやバンプに適したパッド電極の材料を選択でき、ワイヤやバンプの接合強度を高めることができる。また、励振電極の膜厚と関係なくパッド電極を厚くすることにより、外力に対する強度を向上させ、剥離が発生しづらくなる。また、パッド電極が単層なので酸化層の介在を防止することができる。
【0017】
【発明の実施の形態】
以下に、本発明に係る弾性表面波装置及びその製造方法の実施形態について模式的に示した図面に基づき詳細に説明する。
【0018】
本発明の弾性表面波装置の構造例を図1(a),(b)に示す。なお、簡単のため、図1(a)においては保護膜2の図示を省略している。また、図1(b)は図1(a)におけるA1−A1線断面図である。
【0019】
図1に示すように、本発明の弾性表面波装置は、例えばタンタル酸リチウム単結晶、四ほう酸リチウム単結晶、ランガサイト型結晶構造を有する単結晶などから成る厚み0.35mm程度の圧電基板1上に、AlやAlを主成分とした合金から成り、単層または複数層の厚み150〜500nm程度の励振電極4を複数、配設・接続し、さらに各励振電極4にはこれより厚く形成された単層のパッド電極5を接続してラダー型回路構成としている。そして、圧電基板1上にはパッド電極5を除く領域に(パッド電極5の外周部に)、酸化珪素または窒化珪素等の保護膜2を厚み10〜100nm程度に形成している。
【0020】
ここで、各励振電極4は1対の櫛歯状電極を互いに噛み合うように構成されており、その弾性表面波の伝搬方向に位置する両端部に反射器電極を配設した例を示しているが、反射器電極は形成させない場合もある。なお、説明の都合上、励振電極4は各櫛歯状電極に接続された配線をも含めて励振電極というものとする。
【0021】
ここで、パッド電極5を構成する材料を励振電極4に一般に使用されるAlやAlを主体とする合金と異なる導電材料(特に金属材料)、すなわち、Auや半田を用いるバンプやボンディングワイヤと同様な材料を選択することにより、両者の材料がよくなじむのでバンプやボンディングワイヤとの接合強度を大きくすることができる。
【0022】
弾性表面波装置の励振電極の膜厚は、例えば1.9GHz帯に用いる弾性表面波フィルタなどではおよそ200nmである。しかし、この厚さではバンプを形成する際の強度が十分でなく剥がれが生じたり、バンプが接合できなかったりする。そこで、このように、パッド電極5を励振電極4より厚く最適膜厚とすることで、バンプの接合を容易にさせることができる。
【0023】
また、一般に弾性表面波フィルタの励振電極はAlかAlを主成分とした合金であるが、今後他のCu,Agでも作製される可能性がある。その場合も本発明の構造ではパッド電極のほとんどが圧電基板上に成膜されるため、種類の異なる膜同士の密着強度が弱いという問題を考える必要がないので、常に所望の電極パッド材料を適宜に選択できる。
【0024】
本発明の弾性表面波装置の製造方法について、図2(a)〜(g)の工程図に基づき詳細に説明する。
【0025】
まず、図2(a)に示すように、圧電基板1上に励振電極材料を蒸着法やスパッタ法等の薄膜形成法により所定膜厚に形成する。
【0026】
次に、図2(b)に示すように、フォトリソグラフィ法とRIE法等により、所定パターン形状を有する励振電極4を形成した後に、励振電極4を含む領域上、すなわち、圧電基板1上及び励振電極4上にCVD法等の薄膜形成法により、保護膜12を圧電基板1上のほぼ全面に積層する。
【0027】
次に、図2(c)に示すように、保護膜12上のパッド電極形成領域12aを除く所定領域にフォトレジスト膜6を積層する。
【0028】
次に、図2(d)に示すように、フォトリソグラフィ法とRIE法等を用い、図2(c)における保護膜12のパッド電極形成領域12aを除去して、圧電基板1の一部(面1a)及び励振電極4の一部(配線端部4a)を露出させ、所定パターン形状の保護膜2を形成する。
【0029】
次に、図2(e)に示すように、露出させた圧電基板1の表面に付着したレジスト等の付着物を除去して表面清浄化処理を行う。ここで、この表面清浄化処理は、紫外線照射、気相反応、またはエッチングにより行う。
【0030】
次に、図2(f)に示すように、フォトレジスト膜6の上、露出させた圧電基板1の面1a、及び露出させた励振電極4の配線端部4aの上に、スパッタ法や蒸着法等の薄膜形成法を用いて、圧電基板1上のほぼ全面にパッド電極材料15を積層する。
【0031】
そして、図2(g)に示すように、フォトレジスト膜6をリフトオフ法により除去して、所定形状のパッド電極5を形成することによって弾性表面波装置を製造する。
【0032】
ここで、パッド電極5を成膜する前に、その成膜させる圧電基板1の表面を清浄にするので、パッド電極5と圧電基板1との密着強度が増し、その後にバンプやボンディングワイヤを接合させる際の剥離などを極力防止することができる。
【0033】
また、同様に前記表面浄化処理をUV照射、または気相反応(O2によるプラズマ処理、またはArやO2の逆スパッタ粒子による反応を用いたり、薄いふっ酸、硝酸、または燐酸等の酸溶液により圧電基板1の表面をエッチングして清浄化することによっても同様な効果が得られる。
【0034】
【実施例】
次に本発明をより具体化した実施例について説明する。
【0035】
タンタル酸リチウム単結晶からなる厚み0.35mmの圧電基板の上に、DCスパッタ装置を用いてAl−Cu(1wt%)の合金を厚み200nm程度に成膜した(なお、1.9GHz帯SAWフィルタの場合200nmが好適である)。
【0036】
次に、スピンコーターを用いてフォトレジスト膜をコーティングし、縮小投影露光機(ステッパー)により露光を行った。
【0037】
励振電極のパターンはラダー型の1.9GHz帯用に適した回路構成とした。
【0038】
露光後、現像とRIEを行い所望形状の励振電極パターンを形成した。
【0039】
その後、SiO2から成る保護膜をCVD装置で300℃にて成膜した。なお、この保護膜の材料としてはSiO2が好適である。なぜなら、SiO2は熱膨張係数が小さいため基板の伸縮がおさえられ、SAWフィルタの温度特性が改善されるからである。また、この保護膜の好適な膜厚は15nm〜100nmである。その理由は、15nmより薄いと保護膜の絶縁効果がなくなり、100nmより厚いとフィルタの電気特性である挿入損失が5dB以上となり特性が劣化するからである。
【0040】
その後、再度フォトリソグラフィを行い、パッド電極の形状にフォトレジストを現像し除去した。
【0041】
次に、O2とCF4ガスにてSiO2にドライエッチングを施した。
【0042】
このとき、パッド電極形状にタンタル酸リチウム単結晶基板の一部表面と励振電極の一部を露出させた。
【0043】
次に、UV照射を10分行い、基板表面のレジストなどの有機物を除去して清浄化した後、蒸着法によりAuを800nmの厚みに成膜した。ここで、パッド電極の材料は後に付けるバンプの材料と同じものが好適であり、バンプやワイヤの材料をAuとする場合、Auを選択して形成した。また、その厚みは800nm以上であることが好ましい。これは、厚いほど薄膜は破れにくくなるので、バンプやワイヤの形成後の引っ張りに対し耐性が高くなるためである。90℃の剥離液の中でフォトレジスト膜及びその上に成膜したAu膜を剥離し、パッド電極を形成した。
【0044】
次に、これらパッド電極上にAuバンプを形成した。この接合状態は良好であった。
【0045】
かくして、本実施例によれば、ダイシェア強度を測定した結果、従来構造では0.5N以下であったのに対して、1.0N以上の非常に高い値が得られた。
【0046】
【発明の効果】
以上説明したように、本発明の弾性表面波装置及びその製造方法によれば、従来技術に比べ、パッド電極の膜厚を任意に厚くするので剥がれに強い、信頼性の高い優れた弾性表面波装置を提供できる。また、パッド電極部分が単層で積層構造ではないため、従来のように積層界面からの剥離のない、信頼性に優れた弾性表面波装置を提供できる。
【0047】
また、パッド電極の構成材料をバンプやボンディングワイヤとの接合に適した材料にすることにより、バンプやワイヤの接合を確実にかつ堅固にすることができ、剥がれにくい信頼性の高い優れた弾性表面波装置を提供できる。
【0048】
また、パッド電極の剥がれに対する強度やバンプやボンディングワイヤの接着強度が十分な場合は、パッド電極を薄くすることができ、成膜時間や成膜材料の節約が図れる優れた弾性表面波装置を提供できる。
【0049】
また、従来、励振電極と異なる材料のパッド電極を用いる場合は中間層を設ける必要があったが、本発明ではそのような考慮は全く不要であり、圧電基板上に直接単層のパッド電極を設けるので、任意の材料を選択しても圧電基板及びバンプやワイヤに対する密着強度が大きくすることができ、信頼性の高い優れた弾性表面波装置を提供できる。
【0050】
さらに、圧電基板の表面浄化処理により、圧電基板とパッド電極の密着強度を向上させることができ、バンプやワイヤを接合した後の剥がれを極力防止することができる、信頼性の高い弾性表面波装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る弾性表面波装置の実施形態を模式的に説明する図であり、(a)は平面図、(b)は(a)のA1−A1線断面図である。
【図2】(a)〜(g)は、それぞれ本発明に係る弾性表面波装置の製造工程を模式的に説明する断面図である。
【図3】従来の弾性表面波装置を模式的に説明する図であり、(a)は平面図、(b)は(a)のA3−A3線断面図である。
【図4】従来の他の弾性表面波装置を模式的に説明する図であり、(a)は平面図、(b)は(a)のA4−A4線断面図である。
【符号の説明】
1:圧電基板
2、12:保護膜
3:パッド電極
4:励振電極
5:パッド電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device that is suitably used as a high-frequency element in mobile communication devices such as mobile phones and cellular phones, and a method for manufacturing the same.
[0002]
[Prior art and its problems]
An example of the structure of a conventional surface acoustic wave device is shown in FIGS. For simplicity, the protective film 2 is not shown in FIG. Moreover, FIG.4 (b) is the A4-A4 sectional view taken on the line in Fig.4 (a).
[0003]
As shown in FIGS. 4A and 4B, on a piezoelectric substrate 1 made of, for example, a lithium tantalate single crystal, an excitation electrode 4 having a comb-like shape for exciting a surface acoustic wave and connected thereto A surface acoustic wave device is configured by providing a pad electrode 3 and a protective film 2 made of oxide or the like formed in a region excluding a part of the upper surface of the pad electrode 3.
[0004]
However, when a wire or bump is bonded to the pad electrode 3, a large external force may be applied during the bonding, and there is a problem that the pad electrode 3 is easily peeled off from the piezoelectric substrate 1. That is, the pad electrode 3 is generally formed at the same thickness as the excitation electrode 4 and is very thin, for example, about 200 nm. For example, the pad electrode 3 may be peeled off by an external force after forming bumps or the like. There is a problem that the bumps are difficult to be bonded to the pad electrode 3.
[0005]
The excitation electrode 4 and the pad electrode are generally formed of the same material of Al (aluminum) or an alloy containing Al as a main component, but Au (gold) is generally used for the wires and bumps. As described above, since the materials of the pad electrode 3 and the wire or bump are different and the materials of the two are not familiar (for example, poor wettability), the bonding strength between the wire or bump and the pad electrode 3 is weak.
[0006]
Further, as shown in FIGS. 3 (a) and 3 (b) (FIG. 3 (b) is a cross-sectional view taken along line A3-A3 in FIG. 3 (a)) as in FIG. 4, the elastic surface shown in FIG. It is also known that the pad electrode 3 has a two-layer structure composed of a lower layer 3A and an upper layer 3B in the same configuration as the wave device, and the pad electrode 3 is made thicker.
[0007]
However, since the pad electrode 3 has a laminated structure, for example, when the first lower layer 3A of the pad electrode is exposed to the atmosphere during the manufacturing process, the surface is oxidized, thereby causing the lower layer 3A and the second layer upper portion to be oxidized. There was a problem that the bonding strength with the layer 3B was lowered and the adhesion strength was lowered at the interface between them. In particular, when an Al or Al-based material is selected for the second upper layer 3B, the bonding strength between the Al or Al-based material and the Au bump is weakened.
[0008]
On the other hand, if the upper layer 3B is made of Au or a material mainly composed of Au, the bonding strength between the pad electrode 3 and the excitation electrode 2 becomes weak.
[0009]
When manufacturing such a surface acoustic wave device, (1) a step of cleaning the surface of the piezoelectric substrate 1, (2) a step of forming a photoresist in a desired shape by photolithography, and (3) an excitation electrode 4 And a step of removing the region of the lower layer 3A of the pad electrode 3 by etching, (4) a step of forming the protective film 2 on the excitation electrode 4 and the pad electrode 3, and (5) a desired shape by photolithography. A step of forming a photoresist, (6) a step of removing the electrode pad 3B region of the protective film 2 by etching, (7) a step of forming an upper layer 3B of the pad electrode 3, and (8) a pad by lift-off. Forming the upper layer 3B of the electrode 3.
[0010]
Here, in order to reduce the peeling of the lower layer 3B of the pad electrode 3, it is conceivable to improve the adhesion strength between the piezoelectric substrate 1 and the lower layer 3B. For this purpose, the surface of the piezoelectric substrate 1 in the above step (1) is cleaned by UV irradiation, O 2 plasma treatment, removal of organic substances, etc. with an acid solution, or activated by reverse sputtering of Ar, O 2 or the like. By doing so, a method of increasing the adhesion strength is known.
[0011]
However, before the step (7), the surface of the first lower layer 3A where the electrode pad 3A is exposed to the atmosphere is oxidized, and the bonding with the bump and the bonding with the second layer pad electrode become weak. There was a problem.
[0012]
Therefore, the present invention eliminates the above-mentioned conventional problems, can improve adhesion strength, and can prevent peeling after bonding bumps and wires as much as possible, and a highly reliable surface acoustic wave device and its manufacture It aims to provide a method.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, a surface acoustic wave device according to the present invention includes an excitation electrode for exciting a surface acoustic wave on a piezoelectric substrate, and a single-layer pad electrode connected to the excitation electrode and thicker than the excitation electrode. Each of the electrodes is disposed, and a protective film is formed on the excitation electrode and on the outer periphery of the pad electrode. Here, in particular, the excitation electrode and the pad electrode are made of different conductive materials.
[0014]
The method for manufacturing a surface acoustic wave device of the present invention includes a step of forming an excitation electrode for exciting a surface acoustic wave on a piezoelectric substrate, a step of laminating a protective film on a region including the excitation electrode, and a protective film. A step of laminating a photoresist film in a predetermined region excluding the upper pad electrode formation region; a step of removing the pad electrode formation region of the protective film to expose a part of the piezoelectric substrate and a part of the excitation electrode; The surface of the piezoelectric substrate is removed to perform surface cleaning treatment, and the pad electrode material is laminated on the photoresist film, on the exposed piezoelectric substrate, and on the exposed excitation electrode. And a step of forming a pad electrode by removing the photoresist film.
[0015]
In particular, the surface cleaning process of the piezoelectric substrate is performed by ultraviolet irradiation, gas phase reaction, or etching. Here, the gas phase reaction is performed by using, for example, plasma using oxygen or by reverse sputtering using Ar (argon) or oxygen (O 2 ). Etching is performed with an acidic solution such as hydrofluoric acid, nitric acid or phosphoric acid.
[0016]
According to the present invention, by making the excitation electrode and the pad electrode different from each other, a pad electrode material suitable for bonding wires and bumps can be selected, and the bonding strength of the wires and bumps can be increased. Further, by increasing the pad electrode regardless of the thickness of the excitation electrode, the strength against external force is improved, and peeling is less likely to occur. Further, since the pad electrode is a single layer, the intervening oxide layer can be prevented.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a surface acoustic wave device and a method for manufacturing the same according to the present invention will be described below in detail with reference to the drawings schematically shown.
[0018]
A structural example of the surface acoustic wave device of the present invention is shown in FIGS. For simplicity, the protective film 2 is not shown in FIG. FIG. 1B is a cross-sectional view taken along line A1-A1 in FIG.
[0019]
As shown in FIG. 1, a surface acoustic wave device according to the present invention includes a piezoelectric substrate 1 having a thickness of about 0.35 mm made of, for example, a lithium tantalate single crystal, a lithium tetraborate single crystal, a single crystal having a langasite type crystal structure, or the like. A plurality of excitation electrodes 4 having a thickness of about 150 to 500 nm, which are made of Al or an alloy containing Al as a main component, are arranged and connected, and each excitation electrode 4 is formed thicker than this. A single-layer pad electrode 5 is connected to form a ladder circuit configuration. On the piezoelectric substrate 1, a protective film 2 made of silicon oxide or silicon nitride is formed to a thickness of about 10 to 100 nm in a region excluding the pad electrode 5 (on the outer periphery of the pad electrode 5).
[0020]
Here, each excitation electrode 4 is configured to mesh with a pair of comb-like electrodes, and an example is shown in which reflector electrodes are arranged at both ends located in the propagation direction of the surface acoustic wave. However, the reflector electrode may not be formed. For convenience of explanation, the excitation electrode 4 includes the wiring connected to each comb-like electrode and is referred to as an excitation electrode.
[0021]
Here, the material constituting the pad electrode 5 is different from Al or an alloy mainly composed of Al generally used for the excitation electrode 4, that is, the same as the bump or bonding wire using Au or solder. By selecting a suitable material, both materials are well adapted, so that the bonding strength between the bump and the bonding wire can be increased.
[0022]
The film thickness of the excitation electrode of the surface acoustic wave device is approximately 200 nm in the surface acoustic wave filter used in the 1.9 GHz band, for example. However, with this thickness, the strength at the time of forming the bump is not sufficient, and peeling occurs or the bump cannot be joined. Thus, the bump electrode can be easily joined by making the pad electrode 5 thicker than the excitation electrode 4 and having an optimum film thickness.
[0023]
In general, the excitation electrode of the surface acoustic wave filter is Al or an alloy containing Al as a main component, but may be made of other Cu and Ag in the future. Even in that case, since most of the pad electrodes are formed on the piezoelectric substrate in the structure of the present invention, it is not necessary to consider the problem that the adhesion strength between different types of films is weak. Can be selected.
[0024]
The method for manufacturing the surface acoustic wave device of the present invention will be described in detail based on the process diagrams of FIGS.
[0025]
First, as shown in FIG. 2A, an excitation electrode material is formed on the piezoelectric substrate 1 with a predetermined film thickness by a thin film forming method such as a vapor deposition method or a sputtering method.
[0026]
Next, as shown in FIG. 2B, after the excitation electrode 4 having a predetermined pattern shape is formed by photolithography, RIE, or the like, the region including the excitation electrode 4, that is, on the piezoelectric substrate 1 and A protective film 12 is laminated on almost the entire surface of the piezoelectric substrate 1 on the excitation electrode 4 by a thin film forming method such as a CVD method.
[0027]
Next, as shown in FIG. 2C, a photoresist film 6 is laminated in a predetermined region on the protective film 12 except for the pad electrode formation region 12a.
[0028]
Next, as shown in FIG. 2D, the pad electrode formation region 12a of the protective film 12 in FIG. 2C is removed using a photolithography method, an RIE method, or the like, and a part of the piezoelectric substrate 1 ( The surface 1a) and a part of the excitation electrode 4 (wiring end 4a) are exposed to form a protective film 2 having a predetermined pattern shape.
[0029]
Next, as shown in FIG. 2 (e), a surface cleaning process is performed by removing deposits such as a resist adhering to the exposed surface of the piezoelectric substrate 1. Here, the surface cleaning treatment is performed by ultraviolet irradiation, gas phase reaction, or etching.
[0030]
Next, as shown in FIG. 2 (f), sputtering or vapor deposition is performed on the photoresist film 6, the exposed surface 1 a of the piezoelectric substrate 1, and the exposed wiring end 4 a of the excitation electrode 4. A pad electrode material 15 is laminated on almost the entire surface of the piezoelectric substrate 1 by using a thin film forming method such as a method.
[0031]
Then, as shown in FIG. 2G, the photoresist film 6 is removed by a lift-off method to form a pad electrode 5 having a predetermined shape, thereby manufacturing a surface acoustic wave device.
[0032]
Here, before the pad electrode 5 is formed, the surface of the piezoelectric substrate 1 to be formed is cleaned, so that the adhesion strength between the pad electrode 5 and the piezoelectric substrate 1 is increased, and then bumps and bonding wires are bonded. It is possible to prevent peeling as much as possible.
[0033]
Similarly, the surface purification treatment may be performed by UV irradiation or gas phase reaction (plasma treatment with O 2 or reaction with reverse sputtered particles of Ar or O 2), or piezoelectricity with a thin acid solution such as hydrofluoric acid, nitric acid, or phosphoric acid. The same effect can be obtained by cleaning the surface of the substrate 1 by etching.
[0034]
【Example】
Next, an embodiment of the present invention will be described.
[0035]
An Al—Cu (1 wt%) alloy film was formed to a thickness of about 200 nm on a 0.35 mm thick piezoelectric substrate made of a lithium tantalate single crystal using a DC sputtering apparatus (a 1.9 GHz band SAW filter) In this case, 200 nm is preferable).
[0036]
Next, a photoresist film was coated using a spin coater, and exposure was performed using a reduction projection exposure machine (stepper).
[0037]
The excitation electrode pattern was a circuit configuration suitable for a ladder-type 1.9 GHz band.
[0038]
After exposure, development and RIE were performed to form an excitation electrode pattern having a desired shape.
[0039]
Thereafter, a protective film made of SiO 2 was formed at 300 ° C. by a CVD apparatus. As a material for this protective film, SiO 2 is suitable. This is because SiO 2 has a small thermal expansion coefficient, so that the expansion and contraction of the substrate is suppressed, and the temperature characteristics of the SAW filter are improved. Moreover, the suitable film thickness of this protective film is 15 nm-100 nm. The reason is that if the thickness is less than 15 nm, the insulating effect of the protective film is lost, and if the thickness is more than 100 nm, the insertion loss, which is the electrical characteristic of the filter, becomes 5 dB or more and the characteristics deteriorate.
[0040]
Thereafter, photolithography was performed again to develop and remove the photoresist in the shape of the pad electrode.
[0041]
Then, it was subjected to dry etching in the SiO 2 at O 2 and CF 4 gas.
[0042]
At this time, a part of the surface of the lithium tantalate single crystal substrate and a part of the excitation electrode were exposed to the pad electrode shape.
[0043]
Next, UV irradiation was performed for 10 minutes to remove and clean organic substances such as resist on the substrate surface, and then Au was deposited to a thickness of 800 nm by an evaporation method. Here, the material of the pad electrode is preferably the same as the material of the bump to be attached later, and when the material of the bump or wire is Au, Au is selected and formed. The thickness is preferably 800 nm or more. This is because the thicker the film is, the more difficult it is to break, and the higher the resistance to tension after the formation of bumps and wires. The photoresist film and the Au film formed thereon were peeled in a stripping solution at 90 ° C. to form a pad electrode.
[0044]
Next, Au bumps were formed on these pad electrodes. This joined state was good.
[0045]
Thus, according to this example, the die shear strength was measured, and as a result, a very high value of 1.0 N or more was obtained compared to 0.5 N or less in the conventional structure.
[0046]
【The invention's effect】
As described above, according to the surface acoustic wave device and the method for manufacturing the same of the present invention, it is possible to increase the thickness of the pad electrode arbitrarily as compared with the prior art, so the surface acoustic wave device has excellent reliability and high reliability. Equipment can be provided. In addition, since the pad electrode portion is a single layer and does not have a laminated structure, it is possible to provide a highly reliable surface acoustic wave device that does not peel off from the laminated interface as in the prior art.
[0047]
In addition, by making the material of the pad electrode suitable for bonding to bumps and bonding wires, the bonding of bumps and wires can be made solid and firm, and the elastic surface is highly reliable and difficult to peel off. A wave device can be provided.
[0048]
In addition, when the strength against the peeling of the pad electrode and the bonding strength of the bump or bonding wire are sufficient, the pad electrode can be made thin, and an excellent surface acoustic wave device that can save the film forming time and film forming material is provided. it can.
[0049]
Conventionally, when a pad electrode made of a material different from that of the excitation electrode has been used, it is necessary to provide an intermediate layer. However, in the present invention, such a consideration is not necessary at all. Therefore, even if an arbitrary material is selected, the adhesion strength to the piezoelectric substrate, bumps and wires can be increased, and an excellent surface acoustic wave device with high reliability can be provided.
[0050]
In addition, the surface purification treatment of the piezoelectric substrate can improve the adhesion strength between the piezoelectric substrate and the pad electrode, and can prevent peeling after bonding bumps and wires as much as possible. Can provide.
[Brief description of the drawings]
1A and 1B are diagrams schematically illustrating an embodiment of a surface acoustic wave device according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line A1-A1 in FIG.
FIGS. 2A to 2G are cross-sectional views schematically illustrating manufacturing steps of the surface acoustic wave device according to the present invention.
3A and 3B are diagrams schematically illustrating a conventional surface acoustic wave device, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line A3-A3 in FIG.
4A and 4B are diagrams schematically illustrating another conventional surface acoustic wave device, in which FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along line A4-A4 in FIG.
[Explanation of symbols]
1: Piezoelectric substrate 2, 12: Protective film 3: Pad electrode 4: Excitation electrode 5: Pad electrode

Claims (2)

圧電基板上に、弾性表面波を励振する励振電極を形成する工程と、前記励振電極を含む領域上にSiO からなる保護膜を積層した後、前記保護膜上のパッド電極形成領域を除く所定領域にフォトレジスト膜を積層する工程と、前記保護膜の前記パッド電極形成領域を除去して前記圧電基板の一部及び前記励振電極の一部を露出させる工程と、前記圧電基板の露出部分に対し、紫外線照射、気相反応、またはエッチングのいずれかの方法によって表面清浄化処理を行った後、前記フォトレジスト膜の上、前記露出させた圧電基板の上、及び前記露出させた励振電極の上に、単一のパッド電極材料を前記励振電極の厚みよりも厚く積層する工程と、前記フォトレジスト膜を除去してパッド電極を形成する工程とを含むことを特徴とする弾性表面波装置の製造方法。 A step of forming an excitation electrode for exciting a surface acoustic wave on a piezoelectric substrate, and a protective film made of SiO 2 is laminated on a region including the excitation electrode, and then a predetermined region excluding a pad electrode formation region on the protective film Laminating a photoresist film in the region, removing the pad electrode formation region of the protective film to expose a part of the piezoelectric substrate and a part of the excitation electrode, and an exposed part of the piezoelectric substrate On the other hand, after the surface cleaning process is performed by any one of ultraviolet irradiation, gas phase reaction, or etching, the photoresist film, the exposed piezoelectric substrate, and the exposed excitation electrode And an elastic surface comprising: laminating a single pad electrode material thicker than the excitation electrode; and removing the photoresist film to form a pad electrode. Manufacturing method of wave device. 前記圧電基板がタンタル酸リチウム単結晶からなり、前記表面浄化処理が紫外線照射により行われ、前記パッド電極材料がAuであることを特徴とする請求項1に記載の弾性表面波装置の製造方法。 2. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is made of a lithium tantalate single crystal, the surface purification treatment is performed by ultraviolet irradiation, and the pad electrode material is Au .
JP2001052396A 2001-02-27 2001-02-27 Manufacturing method of surface acoustic wave device Expired - Fee Related JP4731026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052396A JP4731026B2 (en) 2001-02-27 2001-02-27 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052396A JP4731026B2 (en) 2001-02-27 2001-02-27 Manufacturing method of surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2002261571A JP2002261571A (en) 2002-09-13
JP4731026B2 true JP4731026B2 (en) 2011-07-20

Family

ID=18913032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052396A Expired - Fee Related JP4731026B2 (en) 2001-02-27 2001-02-27 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4731026B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287881A (en) * 2005-04-05 2006-10-19 Alps Electric Co Ltd Method of manufacturing surface acoustic wave device
EP2093880A4 (en) * 2006-11-29 2013-04-17 Murata Manufacturing Co Surface acoustic wave resonator and surface acoustic wave device
JP5200727B2 (en) * 2008-07-22 2013-06-05 株式会社村田製作所 Method for manufacturing elastic wave device and elastic wave device
JP5402841B2 (en) * 2010-06-14 2014-01-29 株式会社村田製作所 Surface acoustic wave device
JP6432512B2 (en) * 2013-08-14 2018-12-05 株式会社村田製作所 Surface acoustic wave device, electronic component, and method of manufacturing surface acoustic wave device
JP7037333B2 (en) 2017-11-13 2022-03-16 太陽誘電株式会社 Elastic wave devices and their manufacturing methods, filters and multiplexers

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199062A (en) * 1991-09-24 1993-08-06 Seiko Epson Corp Surface acoustic wave element and its manufacture and substrate for surface acoustic wave element
JPH05275964A (en) * 1991-11-15 1993-10-22 Oki Electric Ind Co Ltd Surface acoustic wave filter
JPH09116373A (en) * 1995-10-20 1997-05-02 Japan Radio Co Ltd Saw chip and production of saw device using the chip
JPH09232461A (en) * 1996-02-23 1997-09-05 Nikko Co Manufacture of electronic part having hollow package structure having ceramic lid
JPH10163789A (en) * 1996-11-25 1998-06-19 Sanyo Electric Co Ltd Surface acoustic wave element
JP2000058593A (en) * 1998-08-03 2000-02-25 Nec Corp Mounting structure of surface elastic wave element and mounting thereof
JP2000091870A (en) * 1998-09-14 2000-03-31 Toshiba Corp Surface acoustic wave device and manufacture of the same
JP2000183679A (en) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd Grating type surface acoustic wave filter
JP2000286662A (en) * 1999-03-31 2000-10-13 Toyo Commun Equip Co Ltd Saw device and its production and structure of saw device
JP2001085964A (en) * 1999-09-10 2001-03-30 Toyo Commun Equip Co Ltd Manufacture of saw device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432472B2 (en) * 1999-12-09 2003-08-04 沖電気工業株式会社 Manufacturing method of surface acoustic wave device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199062A (en) * 1991-09-24 1993-08-06 Seiko Epson Corp Surface acoustic wave element and its manufacture and substrate for surface acoustic wave element
JPH05275964A (en) * 1991-11-15 1993-10-22 Oki Electric Ind Co Ltd Surface acoustic wave filter
JPH09116373A (en) * 1995-10-20 1997-05-02 Japan Radio Co Ltd Saw chip and production of saw device using the chip
JPH09232461A (en) * 1996-02-23 1997-09-05 Nikko Co Manufacture of electronic part having hollow package structure having ceramic lid
JPH10163789A (en) * 1996-11-25 1998-06-19 Sanyo Electric Co Ltd Surface acoustic wave element
JP2000058593A (en) * 1998-08-03 2000-02-25 Nec Corp Mounting structure of surface elastic wave element and mounting thereof
JP2000091870A (en) * 1998-09-14 2000-03-31 Toshiba Corp Surface acoustic wave device and manufacture of the same
JP2000183679A (en) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd Grating type surface acoustic wave filter
JP2000286662A (en) * 1999-03-31 2000-10-13 Toyo Commun Equip Co Ltd Saw device and its production and structure of saw device
JP2001085964A (en) * 1999-09-10 2001-03-30 Toyo Commun Equip Co Ltd Manufacture of saw device

Also Published As

Publication number Publication date
JP2002261571A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
JP3925133B2 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP4453701B2 (en) Surface acoustic wave device
JP3470031B2 (en) Manufacturing method of surface acoustic wave device
US10424715B2 (en) Elastic wave device and manufacturing method for same
JP2007318058A (en) Electronic component and manufacturing method thereof
JP6432512B2 (en) Surface acoustic wave device, electronic component, and method of manufacturing surface acoustic wave device
US20130234558A1 (en) Acoustic wave device and method for manufacturing the same
US8477483B2 (en) Electronic component and method for manufacturing electronic component
JP5818946B2 (en) Elastic wave device
JP3870947B2 (en) Manufacturing method of surface acoustic wave device
EP1521362B1 (en) Method of producing surface acoustic wave device and the surface acoustic wave device
JP4731026B2 (en) Manufacturing method of surface acoustic wave device
JP3687601B2 (en) ELECTRONIC COMPONENT ELEMENT, ITS MANUFACTURING METHOD, AND ELECTRONIC COMPONENT DEVICE
JP2007081555A (en) Surface acoustic wave device
JP5131117B2 (en) Elastic wave device and manufacturing method thereof
JP2002026685A (en) Surface acoustic wave element
JP5200727B2 (en) Method for manufacturing elastic wave device and elastic wave device
JP2000261283A (en) Surface acoustic wave device
JP4986540B2 (en) Surface acoustic wave device and manufacturing method thereof
JPH0998043A (en) Surface acoustic wave device and its production
JPH11312942A (en) Production of surface acoustic wave device
JP4349863B2 (en) Surface acoustic wave device and manufacturing method thereof
JPH1174750A (en) Surface acoustic wave device and its manufacture
WO2006126382A1 (en) Piezoelectric device
JPH098595A (en) Surface acoustic wave device and manufacture therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4731026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees