JP4729444B2 - 健康指導支援システム - Google Patents

健康指導支援システム Download PDF

Info

Publication number
JP4729444B2
JP4729444B2 JP2006168261A JP2006168261A JP4729444B2 JP 4729444 B2 JP4729444 B2 JP 4729444B2 JP 2006168261 A JP2006168261 A JP 2006168261A JP 2006168261 A JP2006168261 A JP 2006168261A JP 4729444 B2 JP4729444 B2 JP 4729444B2
Authority
JP
Japan
Prior art keywords
threshold
contradiction
threshold value
rule
hba1c
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006168261A
Other languages
English (en)
Other versions
JP2007334781A (ja
Inventor
泰隆 長谷川
高伸 大崎
伴  秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006168261A priority Critical patent/JP4729444B2/ja
Publication of JP2007334781A publication Critical patent/JP2007334781A/ja
Application granted granted Critical
Publication of JP4729444B2 publication Critical patent/JP4729444B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Description

本発明は,健診結果から疾病予防・健康増進のための情報を提示する健康指導支援システムに関する。
健診施設に蓄積された健診情報を分析し,その結果に基づいて将来発症の可能性のある疾病を予測し,健康指導を支援する健康指導支援システムがある。例えば,特許文献1では,健診項目別に閾値を設定し,その閾値で区分された検査値ランク,年齢階級,生活習慣パターン,家族歴別に,将来検査異常を発生する人の割合を示す発症率を算出してリスク知識を作成する。そして,そのリスク知識から指導対象者の健診結果に該当する発症率を求め,指導を行うシステムが紹介されている。このようなシステムでは,例えば,血糖値の閾値を110,糖尿病の指標の一つであるHbA1cの閾値を5.6と設定した場合,指導対象者の健診結果として血糖値110未満,HbA1c5.6未満を入力すると,リスク知識から,血糖値110未満,HbA1c5.6未満の糖尿病発症率20%が提示される。また,血糖値110未満,HbA1c5.6以上を入力すると,血糖値110未満,HbA1c5.6以上の糖尿病発症率30%が提示され,HbA1cが高いと糖尿病発症率が高いことを提示して健康指導を行う。
特開2002−183647号公報
このような健診情報の分析結果に基づいてリスクを提示して健康指導を行うシステムでは,健康指導を行う指導者が指導しやすい指導内容を提示するリスク知識を作成する必要がある。指導者が指導しやすいリスク知識は,健診項目の値を分割する閾値が学会等の基準値に沿っていること,検査値等が上記の閾値を超える変化をした場合に指導者の知見と一致して値が変化することが必要である。しかし,このようなシステムでは,健診項目の閾値の取り方によって,指導者の知見と矛盾する発症率が提示される場合がある。例えば,閾値の設定が悪く,血糖値の閾値が110,HbA1cの閾値が5.8であった場合,血糖値110未満,HbA1c5.8未満の糖尿病発症率25%に対して,血糖値110未満,HbA1c5.8以上の糖尿病発症率23%が提示される場合がある。この場合,HbA1cの値が高い方が発症率が低くなり,指導者の知見と矛盾し,指導しにくいものになる。しかし,上記従来例では,このような指導者が指導しやすいリスク知識作成方法について具体的な記述はなかった。
また,上記のような矛盾が発生する原因の一つとして,閾値の取り方によって,発症者が少ない区分が生じるために,提示される発症率の信頼性が低くなることが考えられる。この場合,解決方法として,発症者が少ない区分に,十分な発症者が存在するように閾値を設定する方法が考えられる。例えば,閾値で区切られた区分の発症者数を母集団の人数で割った値を示す支持度を導入し,支持度が低い区分の支持度が高くなるように閾値を設定する方法などが考えられる。この方法は,支持度の低い区分が2個の閾値で区切られる区分であった場合,2個の閾値のうち,支持度がより高くなる方の閾値を変更していくことで閾値を設定する。しかし,変更された閾値が,最も矛盾が少なくなる閾値であるとは限らない場合があるなど,具体的な閾値の設定方法について考慮されていなかった。
本発明の目的は,上記課題を解決し,学会等の基準値の近傍で矛盾の少ない閾値を設定してリスク知識を作成する健康指導支援システムを提供することにある。
上記課題を解決し,目的を実現するために,本発明の健康指導支援システムは,健診の項目を区分する初期閾値を設定する初期閾値設定手段と,設定された閾値で区切られた健診項目の区分を条件として,その条件の組合せとその組合せに対する発症者数の割合を示す発症率とその発症者数を母集団の人数で割った値であり発症率の信頼性を示す支持度をルールとして算出し,リスク知識を作成するリスク知識作成手段と,作成されたリスク知識に対して,健診項目の条件の変更に対する発症率の変化が矛盾関係にあるルールを抽出し,そのルールの組合せ数を矛盾発生数として算出する矛盾発生数算出手段と,作成されたリスク知識から,矛盾が発生する健診項目の閾値で区切られた区分の支持度を抽出する支持度抽出手段と,矛盾関係にあるルールと支持度から,そのルールの条件に最も多く含まれる矛盾が発生する健診項目の条件で支持度が低い区分を,閾値を変更する区分として選択する閾値変更区分選択手段と,支持度と矛盾発生数から,変更した場合に矛盾発生数が最も少なくなる閾値を,選択された区分の支持度が高くなる方向に変更する閾値変更手段を有することを特徴としている。
さらに,本発明の健康指導支援システムは,疾病に対する健診項目の寄与度を算出する疾病寄与度算出手段と,寄与度と矛盾発生数から,閾値を変更する項目として,寄与度が高く,かつ,矛盾が発生する健診項目を選択する閾値変更項目選択手段を有することを特徴としている。
さらに,本発明の健康指導支援システムは,矛盾発生数算出手段で算出された矛盾発生数を一覧表示する矛盾発生情報表示手段を有することを特徴としている。
さらに,本発明の健康指導支援システムは,指導対象者の健診結果を入力する健診結果入力手段と,閾値変更手段で閾値を変更して作成したリスク知識の中から,健診結果に該当するルールなどを取得する情報取得手段と,情報取得手段で取得したルールの発症率を表示する指導内容表示手段とを有することを特徴としている。
本発明の健康指導支援システムは,閾値変更区分選択手段が,矛盾発生数算出手段で算出された矛盾関係にあるルールと,支持度抽出手段で抽出された支持度から,閾値を変更すべき区分を選択し,閾値変更手段が,上記区分の閾値を,初期閾値から変更させて矛盾発生数と支持度を確認しながら設定する。これにより,初期閾値の近傍で支持度が高く,矛盾が少ない閾値を設定でき,指導者が指導しやすい指導内容を提示するリスク知識を作成できる効果がある。
さらに,本発明の健康指導支援システムは,閾値変更項目選択手段が,疾病寄与度算出手段で算出された疾病寄与度情報から,疾病に対する寄与度が高い項目順に,矛盾発生数を算出し,矛盾発生数が0でない項目を閾値変更項目として選択する。これにより,疾病に対して寄与度が高い重要な項目から順に閾値を変更して矛盾を少なく出来る効果がある。
さらに,本発明の健康指導支援システムは,矛盾発生情報表示手段が,矛盾発生数情報を一覧表示して,操作者に最終的な閾値を決定させる。これにより,初期閾値から最適閾値までの矛盾発生数の一覧が表示されるので,操作者は,閾値設定による矛盾発生数の傾向を把握でき,指導しやすい初期閾値の近傍で矛盾発生数が少ない閾値を選択できる効果がある。
さらに,本発明の健康指導支援システムは,矛盾発生数算出手段が,矛盾発生数の算出に伴うルール検索の回数を削減するために,リスク知識候補から,指導に使用するルールのみを抽出し,使用ルール間の矛盾チェックを行うことで,矛盾発生数を算出する。これにより,ルール検索回数を削減することができ,高速に矛盾発生数の算出を行うことができる効果がある。
さらに,本発明の健康指導支援システムは,健診結果入力手段が,指導対象者の健診結果を入力し,情報取得手段が,指導用リスク知識から,入力された健診結果に該当するルールを検索し,指導内容表示手段が,指導対象者の発症率を表示する。これにより,指導している操作者は,矛盾の少ない指導用リスク知識から,指導対象者の健診結果に該当する発症率を提示して,効果的な健康指導を行うことが出来る効果がある。
以下,本発明を実施するための最良の形態について図を用いて詳細に説明する。以下の説明では,閾値を変更する健診項目として血糖値とHbA1c,疾病として糖尿病を例にあげ,両項目共,閾値を2個設定してリスク知識を構築する場合を想定して説明する。
図1は,本発明の実施例である健康指導支援システムの一構成例を示す図である。健康指導支援システムは,健康指導支援端末101と,データベース102で構成される。健康指導支援端末101は,コンピュータ装置で,マウスやキーボードなどの入力装置103,ディスプレイやプリンタなどの出力装置104,プログラムを演算・実行するCPU105,ハードディスクやメモリなどの記録装置106を有している。記憶装置106には,以下に説明するプログラムやデータからなる手段が格納されており,これらは,必要に応じてCPU105に読み出されて実行される。
記憶装置106には,指導に使用する健診項目の初期閾値を設定させる初期閾値設定手段107と,相関ルールマイニングを用いて,閾値で分割された健診項目別に発症率,支持度を網羅的に算出し,リスク知識を作成するリスク知識作成手段108と,統計的手法を用いて,検査値・問診結果の疾病に対する寄与度を算出する疾病寄与度算出手段110と,疾病寄与度情報から,閾値変更項目として,疾病に対して寄与度が高い健診項目を選択する閾値変更項目選択手段111と,閾値変更項目選択手段111で選択された健診項目の矛盾発生数を算出する矛盾発生数算出手段109と,データベース102から健診情報,リスク知識候補,矛盾発生数情報,矛盾詳細情報,支持度情報,疾病寄与度情報,ルールなどを取得する情報取得手段112と,矛盾詳細情報,支持度情報から,閾値を変更する区分を選択する閾値変更区分選択手段113と,矛盾発生数情報,支持度情報から,選択された閾値の方向・幅を決定し,閾値を変更する閾値変更手段114と,初期閾値から最適閾値にいたるまでの矛盾発生数履歴を一覧表示して閾値を選択させる矛盾発生情報表示手段115と,受診者の健診結果を入力させる健診結果入力手段116,入力した健診結果に対応した発症率を指導用リスク知識から取り出す指導内容表示手段117と,リスク知識候補から支持度情報を抽出する支持度抽出手段126を格納している。また,データベース102は,健診情報を管理する健診情報管理手段118と,閾値情報を管理する閾値情報管理手段119と,リスク知識候補を管理するリスク知識候補管理手段120と,矛盾発生数情報,矛盾詳細情報を管理する矛盾発生情報管理手段121と,支持度情報を管理する支持度情報管理手段125と,疾病寄与度情報を管理する疾病寄与度情報管理手段122と,指導に用いる指導用リスク知識を管理する指導用リスク知識管理手段124を有している。
図2は,健診情報管理手段118が管理する健診情報の一例を示す図である。個人を特定する個人ID201,受診日202,健診を受診した時の年齢203,などのほか,検査値として,血糖値204,HbA1c205,BMI206検査結果から医師が判定した判定結果として糖尿病に関する判定207などの情報を管理している。
図3は,閾値情報管理手段119が管理する初期閾値情報の一例を示す図である。健診項目301とその項目の初期閾値302〜303を管理している。例えば,年齢の閾値が40と50の2個の場合は,年齢40歳未満,40〜49歳,50歳以上の3つに区切られることを示している。
図4は,疾病寄与度情報管理手段122が管理する疾病寄与度情報の一例を示す図である。健診項目401とその項目の糖尿病に対する寄与度402を管理している。この場合,寄与度402の数値が若いほど寄与が高い項目であることを示しており,寄与度1の項目が最も寄与が高いことを示している。
図5は,リスク知識候補管理手段120が管理するリスク知識候補の一例を示す図である。条件部501が持つ年齢502,BMI503,血糖値504,HbA1c505などの複数の条件の組み合わせを持つ人の糖尿病の発症率507と支持度506を示すルール508〜518を管理している。ここで,発症率507は,同じ検査値・問診結果の条件を持つ群中の発症者数を群中の人数で割ったものを示している。また,支持度506は,同じ検査値・問診結果の条件を持つ群中の発症者数を母集団の人数で割ったものであり,発症率の信頼性を示している。
図6は,矛盾発生情報管理手段121が管理する矛盾発生数情報の一例を示す図である。血糖値とHbA1cの閾値候補を識別する閾値候補ID(601)と,血糖値の閾値A(602),血糖値の閾値B(603),HbA1cの閾値A(604),HbA1cの閾値B(605)と,血糖値の閾値A(602),血糖値の閾値B(603),HbA1cの閾値A(604),HbA1cの閾値B(605)であった場合の血糖値の矛盾発生数606,HbA1cの矛盾発生数607を管理している。例えば,608を説明すると,閾値候補ID(601)の値1は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8を示すIDであり,このIDが付いた矛盾発生数は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8の場合の矛盾発生数を示している。また,血糖値の閾値A(602)の値100は,血糖値の第一閾値が100,血糖値の閾値B(603)の値110は,血糖値の第二閾値が110,HbA1cの閾値A(604)の値5.6は,HbA1cの第一閾値が5.6,HbA1cの閾値B(605)の値5.8は,HbA1cの第二閾値が5.8であることを示している。また,血糖値の矛盾発生数606の値0は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8であった場合の血糖値の矛盾発生数が0,HbA1cの矛盾発生数607の値3は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8であった場合のHbA1cの矛盾発生数が3であることを示している。
図7は,支持度情報管理手段125が管理する支持度情報の一例を示す図である。血糖値とHbA1cの閾値候補を識別する閾値候補ID(601),9個の支持度801〜809を管理している。ここで,9個の支持度801〜809は,図6の血糖値の閾値A(602),血糖値の閾値B(603),HbA1cの閾値A(604),HbA1cの閾値B(605)で区切られた9個の区分のルールの支持度を示している。支持度A〜C(801〜803)は,血糖値が閾値A(602)未満でHbA1cが閾値A(604)未満のルールの支持度,血糖値が閾値A(602)未満でHbA1cが閾値A(604)以上閾値B(605)未満のルールの支持度,血糖値が閾値A(602)未満でHbA1cが閾値B(605)以上のルールの支持度を示している。
また,支持度D〜F(804〜806)は,血糖値が閾値A(602)以上閾値B(603)未満でHbA1cが閾値A(604)未満のルールの支持度,血糖値が閾値A(602)以上閾値B(603)未満でHbA1cが閾値A(604)以上閾値B(605)未満のルールの支持度,血糖値が閾値A(602)以上閾値B(603)未満でHbA1cが閾値B(605)以上のルールの支持度を示している。
さらに,支持度G〜I(807〜809)は,血糖値が閾値B(603)以上でHbA1cが閾値A(604)未満のルールの支持度,血糖値が閾値B(603)以上でHbA1cが閾値A(604)以上閾値B(605)未満のルールの支持度,血糖値が閾値B(603)以上でHbA1cが閾値B(605)以上のルールの支持度を示している。
例えば,810を説明すると,閾値候補ID601の値1は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8を示すIDであり,このIDが付いた支持度は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8の場合の支持度を示している。支持度A(801)の値0.3%は,血糖値が100未満でHbA1cが5.6未満のルールの支持度,支持度B(802)の値0.05%は,血糖値が100未満でHbA1cが5.6以上5.8未満のルールの支持度,支持度C(803)の値0.8%は,血糖値が100未満でHbA1cが5.8以上のルールの支持度を示している。また,支持度D(804)の値0.3%は,血糖値が100以上110未満でHbA1cが5.6未満のルールの支持度,支持度E(805)の値0.15%は,血糖値が100以上110未満でHbA1cが5.6以上5.8未満のルールの支持度,支持度F(806)の値0.9%は,血糖値が100以上110未満でHbA1cが5.8以上のルールの支持度を示している。また,支持度G(807)の値0.5%は,血糖値が110以上でHbA1cが5.6未満のルールの支持度,支持度H(808)の値0.2%は,血糖値が110以上でHbA1cが5.6以上5.8未満のルールの支持度,支持度I(809)の値0.8%は,血糖値が110以上でHbA1cが5.8以上のルールの支持度を示している。
図8は,矛盾発生情報管理手段121が管理する矛盾詳細情報の一例を示す図である。血糖値とHbA1cの閾値候補を識別する閾値候補ID(601),矛盾関係にあるルールを識別する矛盾詳細ID(702),ルールの条件502〜505とその条件の組合せを持つ人の糖尿病の発症率507,支持度506を管理している。この場合,閾値候補ID(601)の値1は,血糖値の閾値100,110,HbA1cの閾値5.6,5.8を示すIDであり,このIDが付いたルールは,血糖値の閾値100,110,HbA1cの閾値5.6,5.8の場合に矛盾関係となるルールである。また,矛盾詳細ID(702)の値1は,ルール709とルール710が矛盾関係にあるルールであることを示しており,矛盾詳細ID(702)が同じ値である,ルール709とルール710(矛盾詳細IDの値1),ルール711とルール712(矛盾詳細IDの値2),ルール713とルール714(矛盾詳細IDの値3)は矛盾関係にあるルールであることを示している。
図9は,血糖値とHbA1cの閾値で区切られた区分のルールの支持度の一例を示す図である。この図の例では,血糖値の閾値A:100(1101),B:110(1102),HbA1cの閾値A:5.6(1103),B:5.8(1104)で区切った場合の各区分のルールの支持度1105〜1113を示しており,図7の810の支持度A〜I(801〜809)に対応している。
図10は,矛盾発生情報表示手段115が,出力装置104に,初期閾値から最適閾値までの血糖値とHbA1cの矛盾発生数を一覧表示して,操作者に閾値を選択させる矛盾発生数表示画面1200の一例を示す図である。閾値1201〜1204は血糖値の閾値を示し,閾値1205〜1209はHbA1cの閾値を示している。また,矛盾発生数ボタン1210〜1214は,ボタン上に,血糖値の閾値とHbA1cの閾値を設定した場合の血糖値の矛盾発生数とHbA1cの矛盾発生数を表示している。この場合,矛盾発生数ボタン1212,1213は,血糖値の初期閾値を100(1203),110(1202),HbA1cの初期閾値を5.6(1207),5.8(1208)と設定した場合の矛盾発生数を,ボタン上に,血糖値の矛盾発生数0(1218,1219),HbA1cの矛盾発生数3(1223,1224)と表示している。
また,矛盾発生数ボタン1214は,血糖値の閾値100(1203),110(1202),HbA1cの閾値5.6(1207)を初期閾値から変更せず,HbA1cの閾値5.8(1208)を5.9(1209)に変更した場合の矛盾発生数を,ボタン上に,血糖値の矛盾発生数0(1220),HbA1cの矛盾発生数2(1225)と表示している。
また,矛盾発生数ボタン1211は,血糖値の閾値100(1203),110(1202),HbA1cの閾値5.8(1207)を初期閾値から変更せず,HbA1cの閾値5.6(1207)を5.5(1206)に変更した場合の矛盾発生数を,ボタン上に,血糖値の矛盾発生数0(1217),HbA1cの矛盾発生数1(1222)と表示している。
閾値の決定は,まず,矛盾発生数ボタン1212か1213のどちらかを押し,1213を押した場合は,矛盾発生数ボタン1210〜1212の中から,1212を押した場合は,矛盾発生数ボタン1213〜1214の中から選択して,最後に閾値決定ボタン1215を押すことで行う。例えば,まず,矛盾発生数ボタン1213を押し,次に1210を選択して閾値決定ボタン1215を押すと,血糖値の閾値は100(1203),110(1202),HbA1cの閾値は5.4(1205),5.8(1208)となり,血糖値とHbA1cの矛盾発生数が両方とも0である最適閾値となる。
図11は,初期閾値設定手段107が,出力装置104に表示して,健診項目の初期閾値を入力させる初期閾値入力画面1301の一例を示す図である。第一閾値入力欄1302〜1305は,健診項目の第一閾値を入力する欄を示している。第二閾値入力欄1306〜1309は,健診項目の第二閾値を入力する欄を示している。また,1310は決定ボタンを示している。例えば,血糖値の第一閾値入力欄1303に100,第二閾値入力欄1307に110を入力して決定ボタン1310を押すと,血糖値は100未満,100〜110,110以上の3区分に区切られる。この画面で入力された健診項目の初期閾値情報は,データベース102の閾値情報管理手段119に,図3の形式で管理される。
図12は,矛盾発生数算出手段109が健診項目の矛盾発生数を算出するために,リスク知識候補管理手段120が管理する図5のリスク知識候補から指導に使用するルールのみを抽出したリスク知識候補の一例を示す図である。指導に使用するルールとして,年齢502,BMI503,血糖値504,HbA1c505等の条件と支持度507,発症率506を示している。
図13は,矛盾発生数算出手段109が健診項目の矛盾発生数を算出するために,図12の使用ルールのみのリスク知識候補に対して,ルール間の矛盾チェックを行い抽出した矛盾関係にあるルールの一例を示す図である。この例では,図12の使用ルールのみのリスク知識候補から,HbA1c5.6未満の条件を含むルール1507を抽出し,このルールのHbA1cの条件のみを5.6未満から5.6以上5.8未満に変更した場合に矛盾関係となるルールを抽出している。1508は,ルール510のHbA1cの条件のみを5.6未満から5.6以上5.8未満に変更した場合に,図12の使用ルールのみのリスク知識候補から,指導に使用されるルールを抽出する条件である。この場合,HbA1cの条件が5.6〜5.8,他の条件はルール510と同じかnullとなる。また,ルール517,511は,抽出条件1508で抽出されたルールを示しており,ルール510より発症率が高いルール517は,矛盾関係にないルールとなり,ルール510より発症率が低いルール511は,矛盾関係にあるルールとなる。
図14は,指導用リスク知識管理手段124が管理する指導用リスク知識の一例を示す図である。条件部501が持つ年齢502,BMI503,血糖値504,HbA1c505などの複数の条件の組み合わせを持つ人の糖尿病の発症率507と支持度506を示すルール1502〜1505を管理している。
次に,フローチャートとシーケンス図を用いて,動作を詳細に説明する。まず,健診情報から指導用リスク知識を作成する手順の一例を,図15〜18のフローチャート,図23のフローチャート,図19のシーケンス図を用いて説明する。図15は,健診情報から指導用リスク知識作成の処理の流れを示すフローチャートの一例を示す図である。図16は,図15のフローチャートにおける変更する閾値を決定する変更閾値決定ステップ1710の詳細なフローチャートの一例を示す図である。図17は,図15と図16のフローチャートにおける健診項目の矛盾発生数を算出する矛盾発生数算出ステップ1706の詳細なフローチャートの一例を示す図である。また,図18は,図15のフローチャートにおける閾値を変更する健診項目を選択する閾値変更項目選択ステップ1705の詳細なフローチャートの一例を示す図である。また,図23は,図15のフローチャートにおける矛盾の少ない閾値を探索する閾値探索ステップ1709の詳細なフローチャートの一例を示す図である。また,図19は,図15のフローチャートにおける健康指導支援端末101とデータベース102の間のやり取りを示すシーケンス図の一例である。
指導用リスク知識の作成を開始(1701)すると,まず,初期閾値入力ステップ1702を行う。ここでは,初期閾値設定手段107が,図11の初期閾値入力画面1301を出力装置104に表示して,操作者が指導しやすい健診項目の初期閾値を入力させる。操作者は,学会の基準値や,健診項目単項目の発症率分布,支持度分布等に基づいて初期閾値を,入力装置103を用いて第一閾値入力欄1302〜1305,第二閾値入力欄1306〜1309に入力する。この場合,年齢の第一閾値40(1302),第二閾値50(1306),血糖値の第一閾値100(1303),第二閾値110(1307),HbA1cの第一閾値5.6(1304),第二閾値5.8(1308),BMIの第一閾値25(1305),第二閾値28(1309)を入力する。入力終了後,決定ボタン1310を押すと,入力された初期閾値情報は,データベース102の閾値情報管理手段119に,図3の形式で管理される。図19のシーケンス図では,健康指導支援端末101から,データベース102に初期閾値情報登録2102を行う。
次に,図15のリスク知識候補作成ステップ1703を行う。ここでは,まず,情報取得手段112が,健診情報管理手段118で管理される図2の健診情報と閾値情報管理手段119で管理される図3の初期閾値情報を取得する。次に,リスク知識作成手段108が,健診情報を,初期閾値情報を用いて分割する。そして,分割された健診情報に対して相関ルールマイニングによる分析を行い,分割された健診項目の値を組合せた条件部と条件部ごとの発症率と支持度を示したリスク知識候補を作成する。ここで,糖尿病発症率は,複数年分の健診情報から,初回に糖尿病でない人を抽出し,その中で,その後糖尿病を発症した人の割合を求めたものである。糖尿病の発症は,例えば医師による判定の情報や空腹時血糖値が126以上になった場合などで判断する。また,作成されたリスク知識候補は,図5に示すように複数の条件を組み合わせた条件部501とその条件部を持つ人の糖尿病発症率507,支持度506を記録したデータである。例えば,ルール508は,年齢40〜49,BMI25〜28,血糖値100〜110,HbA1c5.6未満という健診結果の人の発症率は11%であり,その発症率の信頼性を示す支持度は0.1%であることを示している。リスク知識候補はこのような様々な条件の組み合わせを持つルールを用意する。図19のシーケンス図では,健康指導支援端末101が,健診情報,初期閾値情報取得要求2103を行い,データベース102から,健診情報,初期閾値情報2104を取得し,リスク知識候補登録2105を行う。
次に,疾病寄与度算出ステップ1704を行う。ここでは,まず,情報取得手段112が,健診情報管理手段118で管理される図2の健診情報を取得する。次に,疾病寄与度算出手段109が,取得した健診情報に対してロジスティック回帰分析による分析を行い,糖尿病発症に対する健診項目の寄与度を算出する。算出された疾病寄与度情報は,図4に示すように健診項目401と寄与度402を記録したデータとなる。この例では,数値が若いほど疾病寄与度が高い項目を示しており,寄与度1の血糖値が最も寄与度が高い項目となる。
次に,閾値変更項目選択ステップ1705を行う。ここでは,閾値変更項目選択手段111が,疾病に対する寄与度が高い項目順に,矛盾発生数を算出し,矛盾発生数が0でない項目を閾値変更項目として選択する。これにより,疾病に対して寄与度が高い重要な項目から順に閾値を変更して矛盾を少なく出来る。具体的な手順の一例を,図18のフローチャートを用いて説明する。閾値変更項目の選択を開始(2401)すると,まず,高寄与度項目選択ステップ2402を行う。ここでは,まず,情報取得手段112が,疾病寄与度情報管理手段122で管理される図4の疾病寄与度情報を取得する。次に,糖尿病発症に対する寄与度が最も高い項目を選択する。この場合,寄与度1の血糖値が選択される。
次に,図18の矛盾発生数算出ステップ1706を行う。ここでは,まず,情報取得手段112が,リスク知識候補管理手段120で管理される図5のリスク知識候補を取得する。次に,矛盾発生数算出手段109が,リスク知識候補に対して,高寄与度項目選択ステップ2402で選択された血糖値の矛盾発生数を算出する。ここで,血糖値の矛盾発生数とは,血糖値以外の項目の条件は変更せず,血糖値の条件のみを変更した場合に,血糖値が高い方の発症率が低くなり,発症率が逆転するルールの組合せ数を算出したものである。具体的な算出手順は,後述する。この場合,血糖値の矛盾発生数は0であったとする。
次に,矛盾発生数有無判断ステップ2403を行う。ここでは,矛盾発生数算出ステップ1706で算出された健診項目の矛盾発生数が0であるかどうか判断を行う。0の場合は,高寄与度項目選択ステップ2402に戻る。また,0で無い場合は,その健診項目を閾値変更項目として選択し,閾値変更項目の選択を終了する(2404)。この場合,血糖値の矛盾発生数は0であるため,高寄与度項目選択ステップ2402に戻る。そして,疾病寄与度情報管理手段122が管理する図4の疾病寄与度情報から,次に寄与度が高い項目として,寄与度2のHbA1cを選択する。次に,矛盾発生数算出ステップ1706で,矛盾発生数算出手段109が,HbA1cの矛盾発生数を算出する。
ここで,具体的な矛盾発生数の算出手順の一例について,図17の矛盾発生数算出ステップ1706の詳細なフローチャート,図5のリスク知識候補,図12の使用ルールのみのリスク知識候補,図13を用いて説明する。算出項目は,HbA1cとする。リスク知識作成手段108で作成された図5のリスク知識候補は,指導に使用されないルールも含んでいる。そこで,矛盾発生数算出手段109が,矛盾発生数の算出に伴うルール検索の回数を削減するために,図5のリスク知識候補から,指導に使用するルールのみを抽出し,使用ルール間の矛盾チェックを行うことで,矛盾発生数を算出する。これにより,ルール検索回数を削減することができ,高速に矛盾発生数の算出を行うことができる。
矛盾発生数算出を開始(2001)すると,まず,使用ルール抽出ステップ2002を行う。リスク知識作成手段108で作成された図5のリスク知識候補は,指導に使用しないルールも含んでいるため,矛盾発生数算出手段109が,図5のリスク知識候補から,指導に使用するルールのみを抽出して図12の使用ルールのみのリスク知識候補を作成する。具体的には,まず,図5のリスク知識候補のルールを発症率の降順に並べ替える。この場合,ルール512の発症率20%が最も高い発症率となり,上からルール512(発症率20%),ルール513(発症率19%),ルール514(発症率18%),ルール517(発症率15%),ルール510(発症率13%),ルール511(発症率12%),ルール508(発症率11%),ルール509(発症率10%),ルール518(発症率9%),ルール515(発症率8%),ルール516(発症率5%)の順に並べ替えられる。次に,発症率最大のルールを使用ルールとして抽出し,そのルールとそのルールの条件と同じ条件を含むルールを図5のリスク知識候補から削除する。また,一定支持度未満のルールも削除する。この場合,ルール512(発症率20%)が使用ルールとして抽出され,ルール512とルール512と同じ条件を含むルール514が削除される。また,支持度の条件を0.1% とすると,支持度0.1%未満であるルール509も削除される。以上のように,発症率の降順で並べ替える処理,発症率最大のルールを抽出する処理,ルールを削除する処理を繰り返すと,図12の使用ルールのみのリスク知識候補が作成される。この場合,使用ルールとして,ルール512,ルール513,ルール517,ルール510,ルール511,ルール518,ルール515,ルール516が抽出される。ルール508は,ルール510と同じ条件を含み,かつ,発症率がルール510より低いルールであるため削除される。
次に,ルール間矛盾チェックステップ2003を行う。ここでは,矛盾発生数算出手段109が,使用ルール抽出ステップ2002で抽出された使用ルールのみのリスク知識候補に対して矛盾チェックを行い,矛盾関係にあるルールを抽出して矛盾発生数を算出する。具体的には,まず,図12の使用ルールのみのリスク知識候補から,HbA1cの条件を含むルールを抽出する。この場合,図12の使用ルールのみのリスク知識候補から,HbA1c5.6未満の条件を含むルール510を抽出する。次に,抽出されたルールのHbA1cの条件のみを1段階上に変更した場合に,指導に使用されるルールを図12の使用ルールのみのリスク知識候補から抽出する。この場合,ルール510のHbA1cの条件を5.6未満から5.6以上5.8未満に変更した場合に指導に使用されるルールを,HbA1c5.6〜5.8,他の条件はルール510と同じかnullの抽出条件1508で取り出す。図13では,ルール517,511が,抽出条件1508で抽出されたルールとなる。次に,抽出条件1508で抽出された指導に使用されるルールの中から,矛盾関係にあるルールを抽出し,矛盾発生数をカウントする。この場合,ルール510より発症率が低いルール511が,ルール510と矛盾関係にあるルールとなり,矛盾発生数1がカウントされる。以上の手順を,HbA1cの条件を含むルールを変更して繰り返すと,HbA1cの矛盾発生数が算出される。
この場合,矛盾関係にあるルールは,ルール510とルール511,ルール512とルール513,ルール515とルール516となり,HbA1cの矛盾発生数は3となる。算出された矛盾発生数は,図6の形式でデータベース102に記録され,矛盾発生情報管理手段121に管理される。この場合,血糖値の閾値100,110,HbA1cの閾値5.6,5.8における血糖値の矛盾発生数が0,HbA1cの矛盾発生数が3となるため,図6の608のように,閾値候補IDに1,血糖値の閾値A(602)に100,血糖値の閾値B(603)に110,HbA1cの閾値A(604)に5.6,HbA1cの閾値B(605)に5.8,血糖値の矛盾発生数606に0,HbA1cの矛盾発生数607に3が記録される。また,抽出された矛盾関係にあるルールは,図8の形式でデータベース102に記録され,矛盾発生情報管理手段121に管理される。この場合,矛盾関係にあるルールは,ルール510とルール511,ルール512とルール513,ルール515とルール516であるため,図8の709〜714のように,709と710にルール510とルール511が,711と712にルール512とルール513が,713と714にルール515と516が記録される。記録が終了すると,矛盾発生数の算出を終了する(2004)。
そして,再び矛盾発生数有無判断ステップ2403を行う。HbA1cの矛盾発生数が0でないため,閾値変更項目としてHbA1cを選択し,閾値変更項目の選択を終了する(2404)。
次に,図15の支持度抽出ステップ1707を行う。ここでは,まず,情報取得手段112が,リスク知識候補管理手段120で管理される図5のリスク知識候補を取得する。次に,支持度抽出手段126が,図5のリスク知識候補から,血糖値とHbA1cの閾値で区切られた区分のルールの支持度を抽出する。この場合,血糖値の閾値100,110,HbA1cの閾値5.6,5.8で区切られた区分のルールの支持度を抽出する。抽出されたルールの支持度は,図7の形式でデータベース102に記録され,支持度情報管理手段125に管理される。この場合,図7の810のように管理される。
図19のシーケンス図では,健康指導支援端末101が,リスク知識候補取得要求2105を行い,データベース102から,リスク知識候補2107を取得し,矛盾発生数情報,矛盾詳細情報などの矛盾発生情報と支持度情報登録2108を行う。
次に,閾値変更区分選択ステップ1708を行う。ここでは,まず, 情報取得手段112が,矛盾発生情報管理手段121で管理される図8の矛盾詳細情報と,支持度情報管理手段125で管理される図7の支持度情報を取得する。次に,閾値変更区分選択手段113が,図8の矛盾詳細情報から,矛盾関係にあるルールの条件で,最も多く含まれる閾値変更項目の条件を閾値変更区分として選択する。選択された閾値変更区分が複数ある場合は,図7の支持度情報から,その中で最も支持度が低い閾値変更項目の区分を選択する。これにより,矛盾が発生する原因となり,閾値を変更すべき区分を選択できる。この場合,閾値変更項目HbA1cの条件5.6〜5.8が,矛盾関係にあるルールの条件に3つ(図8の710,711,714)含まれ,最も多く含まれる条件となるため,HbA1cが5.6以上5.8未満の区分を閾値変更区分として選択する。そして,選択された閾値変更区分が,閾値2個で区切られる区分の場合は,変更閾値決定ステップ1710に進む。閾値1個で区切られる区分の場合は,閾値探索ステップ1709に進む。この場合,選択された区分は,HbA1cが5.6以上5.8未満の区分となり,閾値変更項目HbA1cの閾値2個(5.6,5.8)で区切られる区分となるため,変更閾値決定ステップ1710に進む。
次に,変更閾値決定ステップ1710を行う。ここでは,まず,情報取得手段112が,支持度情報管理手段125で管理される図7の支持度情報を取得する。次に,閾値変更手段114が,支持度情報から,2個の閾値を片方ずつ,閾値変更区分の支持度が高くなる方向へ変更して矛盾発生数をそれぞれ算出する。そして,その矛盾発生数情報から,矛盾発生数がより少なくなる閾値を変更閾値として決定する。これにより,閾値変更区分の2個の閾値のうち,変更すると矛盾発生数がより少なくなる閾値を決定することが出来る。
図16の変更閾値決定ステップ1710の詳細なフローチャートと図9を用いて詳細に説明する。変更閾値決定を開始(1801)すると,まず,第一閾値変更方向・幅決定ステップ1802を行う。ここでは,閾値変更手段114が,第一閾値の変更方向と変更幅を決定する。変更方向は,支持度情報から,閾値変更区分の支持度が高くなるように決定する。この場合,閾値変更区分がHbA1c5.6〜5.8であるため,この区分の支持度が高くなるように,第一閾値である5.6の値をより小さい値にする。図9で説明すると,HbA1cの閾値5.6(1103)と閾値5.8(1104)で区切られる区分の支持度1105,1109,1112が高くなるように,HbA1cの閾値5.6(1103)をより小さい値にする。また,変更幅は,ここでは,HbA1cの値の最小単位にする。この場合,HbA1cの値の最小単位が0.1であったとすると,変更幅は0.1となる。
次に,図16の閾値変更ステップ1712を行う。ここでは,閾値変更手段114が,第一閾値変更方向・幅決定ステップ1802で決定された変更方向と変更幅で閾値を変更する。この場合,HbA1cの第一閾値5.6は,5.5に変更される。次に,図16のリスク知識候補作成ステップ1703を行う。ここでは,リスク知識作成手段108が,閾値変更ステップ1712で変更されたHbA1cの閾値5.5を用いてリスク知識候補を作成する。次に,図16の矛盾発生数算出ステップ1706を行う。ここでは,矛盾発生数算出手段109が,作成されたリスク知識候補に対して血糖値とHbA1cの矛盾発生数を算出する。この場合,血糖値の矛盾発生数が0,HbA1cの矛盾発生数が1であったとすると,図6の609のようにデータベース102に記録する。次に,図16の支持度抽出ステップ1707を行う。ここでは,支持度抽出手段126が,作成されたリスク知識候補から,血糖値とHbA1cの閾値で区切られた区分のルールの支持度を抽出する。この場合,血糖値の閾値100,110,HbA1cの閾値5.5,5.8で区切られた区分のルールの支持度を抽出する。抽出されたルールの支持度は,図7の811のようにデータベース102に記録する。
次に,第二閾値変更・幅決定ステップ1808を行う。ここでは,第二閾値の変更方向と変更幅を決定する。変更方向は,支持度情報から,閾値変更区分の支持度が高くなるように決定する。この場合,閾値変更区分がHbA1c5.6〜5.8であるため,この区分の支持度が高くなるように,第二閾値である5.8の値をより大きい値にする。図9で説明すると,HbA1cの閾値5.6(1103)と閾値5.8(1104)で区切られる区分の支持度1105,1109,1112が高くなるように,HbA1cの閾値5.8(1104)をより大きい値にする。また,変更幅は,第一閾値と第二閾値を同じ変更幅で変更した場合の矛盾発生数を比較するため,第一閾値変更・幅決定ステップ1802で決定された変更幅と同じ幅にする。次に,図16の閾値変更ステップ1712を行う。ここでは,閾値変更手段114が,第二閾値変更方向・幅決定ステップ1802で決定された変更方向と変更幅で閾値を変更する。この場合,HbA1cの第二閾値5.8は,5.9に変更される。次に,図16のリスク知識候補作成ステップ1703を行う。ここでは,リスク知識作成手段108が,閾値変更ステップ1712で変更されたHbA1cの閾値5.9を用いてリスク知識候補を作成する。次に,図16の矛盾発生数算出ステップ1706を行う。ここでは,矛盾発生数算出手段109が,作成されたリスク知識候補に対して血糖値とHbA1cの矛盾発生数を算出する。この場合,血糖値の矛盾発生数が0,HbA1cの矛盾発生数が2であったとすると,図6の610のようにデータベース102に記録する。次に,図16の支持度抽出ステップ1707を行う。ここでは,支持度抽出手段126が,作成されたリスク知識候補から,血糖値とHbA1cの閾値で区切られた区分のルールの支持度を抽出する。この場合,血糖値の閾値100,110,HbA1cの閾値5.6,5.9で区切られた区分のルールの支持度を抽出する。抽出されたルールの支持度は,図7の812のようにデータベース102に記録する。
次に,矛盾発生数比較ステップ1806を行う。ここでは,第一閾値を変更した場合HbA1cの矛盾発生数と第二閾値を変更した場合のHbA1cの矛盾発生数を比較する。矛盾発生数が同じ値であった場合は,第一閾値変更方向・幅決定ステップ1802に戻り,変更幅の値を大きくする。矛盾発生数が異なる場合は,変更閾値決定ステップ1814を行う。この場合,第一閾値を5.5に変更した場合のHbA1cの矛盾発生数が1で,第二閾値を5.9に変更した場合のHbA1cの矛盾発生数が2であるため,変更閾値決定ステップ1814に進む。変更閾値決定ステップ1814では,閾値変更手段114が,矛盾発生数情報から,第一閾値を変更した場合の矛盾発生数と第二閾値を変更した場合の矛盾発生数を比較して,矛盾発生数が最も少なくなる閾値を変更閾値として決定する。この場合,第一閾値を5.5に変更した場合のHbA1cの矛盾発生数が1で,第二閾値を5.9に変更した場合のHbA1cの矛盾発生数が2であるため,矛盾発生数がより少なくなる第一閾値を変更閾値として決定する。変更閾値が決定すると,変更閾値決定を終了する(1815)。
次に,閾値探索ステップ1709を行う。ここでは,閾値変更手段114が,変更閾値決定ステップ1710で決定された変更閾値の変更方向と変更幅を決定し,その閾値を閾値変更区分の支持度が高くなる方向に少しずつ変更して,矛盾発生数が最も少なくなる最適閾値を探索する。これにより,より矛盾発生数が少なくなる閾値を,初期閾値設定手段107で設定された初期閾値から少しずつ変更していくので,操作者が指導しやすい初期閾値の近傍で矛盾発生数が最も少ない最適閾値を探索することができる。
図23の閾値探索ステップ1709の詳細なフローチャートを用いて詳細に説明する。閾値探索を開始(2501)すると,まず,図23の閾値変更方向・幅決定ステップ1711を行う。ここでは,閾値変更手段114が,変更閾値決定ステップ1710で決定された変更閾値の変更方向と変更幅を決定する。この場合,変更方向は,閾値変更区分の支持度が高くなる方向にし,第一閾値5.6の値をより小さい値にする。また,変更幅は,ここでは,変更閾値決定ステップ1710の変更幅より最小単位分増加させる。この場合は,0.1増加して0.2となる。
次に,図23の閾値変更ステップ1712を行う。ここでは,閾値変更手段114が,閾値変更方向・幅決定ステップ1711で決定された変更方向と変更幅で閾値を変更する。この場合,HbA1cの第一閾値5.6は,5.4に変更される。次に,図23のリスク知識候補作成ステップ1703を行う。ここでは,リスク知識作成手段108が,閾値変更ステップ1712で変更されたHbA1cの閾値5.4を用いてリスク知識候補を作成する。次に,図23の矛盾発生数算出ステップ1706を行う。ここでは,矛盾発生数算出手段109が,作成されたリスク知識候補に対して血糖値とHbA1cの矛盾発生数を算出する。この場合,血糖値の矛盾発生数が0,HbA1cの矛盾発生数が0であったとすると,図6の611のようにデータベース102に記録する。次に,図23の支持度抽出ステップ1707を行う。ここでは,支持度抽出手段126が,作成されたリスク知識候補から,血糖値とHbA1cの閾値で区切られた区分のルールの支持度を抽出する。この場合,血糖値の閾値100,110,HbA1cの閾値5.4,5.8で区切られた区分のルールの支持度を抽出する。抽出されたルールの支持度は,図7の813のようにデータベース102に記録する。
次に,矛盾発生数判断ステップ1715を行う。閾値を変更して閾値変更項目の矛盾発生数が0になった場合,あるいは,矛盾発生数が増加した場合は,閾値探索を終了し(2502),閾値決定ステップ1716に進む。そうでない場合は,閾値変更方向・幅決定ステップ1711に戻る。この場合,HbA1cの閾値を5.4に変更して矛盾発生数が0になったため,閾値探索を終了し(2502),閾値決定ステップ1716に進む。
図19のシーケンス図では,健康指導支援端末101が,矛盾発生数情報,矛盾詳細情報などの矛盾発生情報と支持度情報取得要求2109を行い,データベース102から,矛盾発生情報と支持度情報2110を取得し,閾値を変更して作成したリスク知識候補とその矛盾発生情報,支持度情報登録2111を行う。
次に,閾値決定ステップ1716を行う。ここでは,まず,情報取得手段112が,矛盾発生情報管理手段121で管理される図6の矛盾発生数情報を取得する。次に,矛盾発生情報表示手段115が,取得した矛盾発生数情報を,図10の矛盾発生数表示画面1200のように出力装置104に一覧表示して,操作者に最終的な閾値を決定させる。これにより,初期閾値から最適閾値までの矛盾発生数の一覧が表示されるので,操作者は,閾値設定による矛盾発生数の傾向を把握でき,指導しやすい初期閾値の近傍で矛盾発生数が少ない閾値を選択できる。
この場合,図6の608の矛盾発生数が矛盾発生数ボタン1212,1213上に,609の矛盾発生数が矛盾発生数ボタン1211上に,610の矛盾発生数が矛盾発生数ボタン1214上に,611の矛盾発生数が矛盾発生数ボタン1210上に表示される。操作者は,まず,矛盾発生数ボタン1212か1213のどちらかを押し,1213を押した場合は,矛盾発生数ボタン1210〜1212の中から,1212を押した場合は,矛盾発生数ボタン1213〜1214の中から選択して,最後に閾値決定ボタン1215を押すと最終的な閾値が決定される。例えば,まず,矛盾発生数ボタン1213を押し,次に1210を選択して閾値決定ボタン1215を押すと,血糖値の閾値は100(1203),110(1202),HbA1cの閾値は5.4(1205),5.8(1208)となり,血糖値とHbA1cの矛盾発生数が両方とも0である最適閾値となる。
図19のシーケンス図では,健康指導支援端末101が,矛盾発生数情報取得要求2112を行い,データベース102から,矛盾発生数情報2113を取得し,閾値を決定して指導用リスク知識登録2114を行う。
次に,閾値変更区分有無判断ステップ1717を行う。ここでは,支持度情報,矛盾発生数情報,矛盾詳細情報から,閾値を変更していない区分で,支持度が低く矛盾が発生する区分がまだあるか判断を行う。支持度が低く矛盾が発生する区分がまだある場合は,閾値変更区分選択ステップ1708に戻り,ない場合は,全閾値決定判断ステップ1718に進む。
次に,全項目の閾値決定判断ステップ1718を行う。ここでは,指導に使用する全健診項目の閾値が決定したかどうか判断を行う。未決定の場合は,閾値変更項目選択ステップ1705に戻り,決定した場合は,指導用リスク知識作成ステップ1719に進む。
次に,指導用リスク知識作成ステップ1719を行う。ここでは,リスク知識作成手段108が,決定した閾値を用いて指導用リスク知識を作成する。この場合,血糖値の閾値100,110,HbA1cの閾値5.4,5.8を用いて指導用リスク知識を作成する。作成された指導用リスク知識は,図14の形式でデータベース102に記録され,指導用リスク知識管理手段124に管理される。
続いて,健診結果入力から発症率表示までの処理の流れを図22のフローチャート,図20,図21を用いて説明する。この処理は,医師や保健師などの指導者が健診受診者などの指導対象者に発症率を提示して指導する場合の処理である。
図20は,指導内容表示手段117が出力装置104に表示した指導画面の例を示す図であり,指導対象者の健診結果を入力する前の状態を示す図である。また,図21は,指導内容表示手段117が出力装置104に表示した指導画面の例を示す図であり,指導対象者の健診結果から発症率を表示した状態を示す図である。指導画面2201では,健診項目2204〜2209から条件を選択し,予測ボタン2203を押すと,発症率表示欄2202に発症率を表示する。2210〜2212は年齢を選択するボタン,2213〜2215はBMIを選択するボタン,2216〜2218は血糖値を選択するボタン,2219〜2221はHbA1cを選択するボタン,2222〜2223は飲酒習慣を選択するボタン,2224〜2225は両親兄弟などの家族の糖尿病歴を選択するボタンである。
図22の処理を開始すると(2301),健診結果入力ステップ2302を行う。健診結果入力ステップ2302では,健診結果入力手段116により,指導対象者の健診結果を入力する。まず,出力装置104に図20の画面を表示し,指導対象者の健診結果の入力を待つ。そして,操作者が指導対象者の健診結果を2204〜2209の健診項目についてボタンや入力欄を入力装置103の操作により入力し,予測ボタン2203を押すと,健診結果入力手段116は入力された条件を取得する。ここでは,対象者の健診結果は,年齢40〜49(2211),BMI25〜28(2214),血糖値100〜110(2217),HbA1c5.4未満(2219),お酒飲まない(2222),家族歴なし(2224)を入力したものとする。
次に,ルール検索ステップ2303では,情報取得手段112により,指導用リスク知識から,健診結果入力ステップ2302で入力された健診結果に該当するルールを検索する。まず,健診結果入力手段116で取得した条件を情報取得手段112において,図14に示すルールの中から該当するルールを検索する。この場合,入力した対象者の条件の組み合わせで出来る条件部を持つルールの中で発症率が最も高いルール1503を検索結果とする。
次に,結果表示ステップ2304において,指導内容表示手段117は出力装置104に結果を表示する。このときの結果表示は,図21のように,年齢40〜49(2211),BMI25〜28(2214),血糖値100〜110(2217),HbA1c5.4未満(2219),お酒飲まない(2222),家族歴なし(2224)のボタンが選択された状態で,発症率表示欄2202に,ルール検索ステップ2303で取得したルール1502の発症率10%を表示する。
そして,健診結果入力ステップ2302に戻る。指導している操作者が,HbA1cが高いとリスクが高いことを提示して指導したい場合,HbA1cのみを5.4〜5.8(2220)に変更して予測ボタン2203を押す。すると,ルール検索ステップ2303において,図14に示す指導用リスク知識からルール1503を取得し,結果表示ステップ2304において,HbA1c5.4未満の場合の発症率10%より高い発症率14%を表示する。
このように,この健診結果入力ステップ2302,ルール検索ステップ2303,結果表示ステップ2304を繰り返して発症率を予測して,同じ人の入力条件を変更した場合の発症率の変化,また,別の指導対象者の健診結果による発症率の表示を行い,指導を行う。そして,終了判断ステップ2305で終了するように判断された場合,処理を終了(2306)する。
以上に示したように,本発明の健康指導支援システムは,閾値変更区分選択手段が,矛盾発生数算出手段で算出された矛盾関係にあるルールと,支持度抽出手段で抽出された支持度から,閾値を変更すべき区分を選択し,閾値変更手段が,上記区分の閾値を,初期閾値から変更させて矛盾発生数と支持度を確認しながら設定する。これにより,初期閾値の近傍で支持度が高く,矛盾が少ない閾値を設定でき,指導者が指導しやすい指導内容を提示するリスク知識を作成できる効果がある。
また,本発明の健康指導支援システムは,閾値変更区分選択手段113が,矛盾発生数算出手段109で算出された矛盾詳細情報から,矛盾関係にあるルールの条件で,最も多く含まれる閾値変更項目の条件を閾値変更区分として選択する。選択された閾値変更区分が複数ある場合は,支持度抽出手段126で抽出された支持度情報から,その中で最も支持度が低い閾値変更項目の区分を選択する。これにより,矛盾が発生する原因となり,閾値を変更すべき区分を選択できる効果がある。
また,本発明の健康指導支援システムは,閾値変更手段114が,支持度情報から,2個の閾値を片方ずつ,閾値変更区分の支持度が高くなる方向へ変更して矛盾発生数をそれぞれ算出する。そして,その矛盾発生数情報から,矛盾発生数がより少なくなる閾値を変更閾値として決定する。これにより,閾値変更区分の2個の閾値のうち,変更すると矛盾発生数がより少なくなる閾値を決定することが出来る効果がある。
また,本発明の健康指導支援システムは,閾値変更手段114が,変更閾値決定ステップ1710で決定された変更閾値の変更方向と変更幅を決定し,その閾値を閾値変更区分の支持度が高くなる方向に少しずつ変更して,矛盾発生数が最も少なくなる最適閾値を探索する。これにより,より矛盾発生数が少なくなる閾値を,初期閾値設定手段107で設定された初期閾値から少しずつ変更していくので,操作者が指導しやすい初期閾値の近傍で矛盾発生数が最も少ない最適閾値を探索することができる効果がある。
さらに,本発明の健康指導支援システムは,閾値変更項目選択手段111が,疾病寄与度算出手段110で算出された疾病寄与度情報から,疾病に対する寄与度が高い項目順に,矛盾発生数を算出し,矛盾発生数が0でない項目を閾値変更項目として選択する。これにより,疾病に対して寄与度が高い重要な項目から順に閾値を変更して矛盾を少なく出来る効果がある。
さらに,本発明の健康指導支援システムは,矛盾発生情報表示手段115が,矛盾発生数情報を,図10の矛盾発生数表示画面1200のように出力装置104に一覧表示して,操作者に最終的な閾値を決定させる。これにより,初期閾値から最適閾値までの矛盾発生数の一覧が表示されるので,操作者は,閾値設定による矛盾発生数の傾向を把握でき,指導しやすい初期閾値の近傍で矛盾発生数が少ない閾値を選択できる効果がある。
さらに,本発明の健康指導支援システムは,矛盾発生数算出手段109が,矛盾発生数の算出に伴うルール検索の回数を削減するために,図5のリスク知識候補から,指導に使用するルールのみを抽出し,使用ルール間の矛盾チェックを行うことで,矛盾発生数を算出する。これにより,ルール検索回数を削減することができ,高速に矛盾発生数の算出を行うことができる効果がある。
さらに,本発明の健康指導支援システムは,健診結果入力手段116が,指導対象者の健診結果を入力し,情報取得手段112が,指導用リスク知識から,入力された健診結果に該当するルールを検索し,指導内容表示手段117が,指導対象者の発症率を表示する。これにより,指導している操作者は,矛盾の少ない指導用リスク知識から,指導対象者の健診結果に該当する発症率を提示して,効果的な健康指導を行うことが出来る効果がある。
上記実施例では,閾値変更手段114が閾値変更項目の閾値を少しずつ変更しながら矛盾発生数を算出し,その矛盾発生数情報から,操作者が矛盾発生数の少ない閾値を決定する方法を説明したが,例えばHbA1cの閾値を0.1刻み,血糖値の閾値を5刻みで閾値候補を複数作成し,その閾値候補の矛盾発生数から閾値を決定してもよい。このように,閾値候補を複数作成することで,操作者は,閾値を変更した場合の矛盾発生数の傾向をより詳細に把握しながら,閾値を決定することができる効果がある。
また,上記実施例では,血糖値の閾値2個とHbA1cの閾値2個を決定する例について説明したが,閾値の数は,何個であってもよい。閾値変更区分選択手段113が,矛盾詳細情報,支持度情報から,閾値を変更していない区分で,矛盾が発生し,支持度が低い区分を選択し,閾値変更手段114が,矛盾発生数情報,支持度情報から,より矛盾発生数が少なくなる閾値を,支持度が高くなる方向へ変更することで可能となる。複数の閾値を決定することにより,指導する操作者は,より細かい指導が出来る効果がある。
また,上記実施例では,血糖値とHbA1cの2つの項目の閾値を決定する例について説明したが,2つ以上の複数の項目であってもよい。閾値変更項目選択手段111が,疾病寄与度情報から,疾病に対する寄与度が高い項目順に,閾値変更項目を選択し,閾値変更区分選択手段113が,矛盾詳細情報,支持度情報から,閾値変更項目の閾値変更区分を選択し,閾値変更手段114が,矛盾発生数情報,支持度情報から,より矛盾発生数が少なくなる閾値を,支持度が高くなる方向へ変更することで可能となる。他の様々な項目についても矛盾を少なくできるため,指導する操作者が指導しやすくなる効果がある。
また,上記実施例では,血糖値とHbA1cの2つの項目の閾値を決定する例について説明したが,他の項目であってもよい。例えば,指導によく使用する項目を用いた場合,その項目の矛盾発生数を少なくできるため,指導しやすくなる効果がある。
また,上記実施例では,初期閾値設定手段107が初期閾値入力画面を表示して,操作者が指導しやすい健診項目の初期閾値を入力させる例について説明したが,学会の基準値等の情報をデータベース102に記録しておき,その情報から初期閾値を設定してもよい。このようにすることで,操作者が自分で初期閾値を入力する手間を省くことが出来る効果がある。
また,上記実施例では,閾値変更手段114が決定する閾値の変更幅を,閾値変更項目の最小単位とする例について説明したが,操作者が任意の変更幅を設定してもよい。このようにすることで,操作者の意図をより反映した閾値を設定できる効果がある。
また,上記実施例では,年齢,BMI,血糖値,HbA1c,飲酒習慣,家族歴を条件とする例について説明したが,他の条件を用いても良い。健診情報に含まれる,各種の検査,問診などによる生活習慣,医師の判断などあらゆる項目を条件として使用してもよい。また,上記実施例では,表示する発症率として糖尿病の発症率を例として説明したが,他の疾病に関する発症率を用いても良い。糖尿病の他に,高脂血症,高血圧,腎疾患など,健診の項目や生活習慣が関連するあらゆる疾病に対して使用できる。また,発症率として,複数の疾病を組み合わせて表示するようにしてもよい。
また,上記実施例では,疾病寄与度を算出する方法として,ロジスティック回帰モデルを用いたが,他の方法を用いてもよい。例えば,Cox比例ハザードモデルなど他の統計モデルを用いることが出来る。また,指導する操作者が,独自の寄与度を設定してもよい。このようにすることで,操作者の意図をより反映した指導内容を提示するリスク知識を構築することが出来る効果がある。
上記実施例では,疾病のリスクとして発症率を使用する場合を例に説明したが,他の指標を用いてもよい。健康度,危険度など他の方法で算出される指標や統計的な指標,また,健康,病気に関するあらゆる指標を使用することができる。また,上記実施例では,リスク知識を作成する方法として相関ルールマイニングを用いる方法について説明したが,他のマイニング手法を用いてルールデータを作成しても良い。
また,上記実施例では,疾病寄与度算出ステップ1704をリスク知識候補作成ステップ1703より前に行うように説明したがどちらを先に処理してもよい。また,並列に処理してもよい。並列に処理することで,処理時間を軽減できる効果がある。
また,上記実施例では,健診結果入力手段116での健診結果の入力は,ボタンなどで入力する方法について説明したが,他の方法を用いてもよい。例えば,テキスト入力欄を設けてキーボードなどから入力したり,スライドバー型の入力I/Fを設けて数値を設定するようにしてもよい。様々なユーザインターフェースを使用することが出来る。
また,上記実施例では,操作者が入力装置103を用いて健診結果を入力する方法について示したが,健診結果入力手段116が受診者の健診結果を,図2の健診情報が蓄積されたデータベース102から取得するようにしてもよい。これにより,操作者が自分で健診結果を入力する手間を省略できる。
本発明の健康指導支援システムの一構成例を示す図。 健診情報管理手段が管理する健診情報の一例を示す図。 閾値情報管理手段が管理する初期閾値情報の一例を示す図。 疾病寄与度情報管理手段が管理する疾病寄与度情報の一例を示す図。 リスク知識候補管理手段が管理するリスク知識候補の一例を示す図。 矛盾発生情報管理手段が管理する矛盾発生数情報の一例を示す図。 支持度情報管理手段が管理する支持度情報の一例を示す図。 矛盾発生情報管理手段が管理する矛盾詳細情報の一例を示す図。 血糖値とHbA1cの閾値で区切られた区分のルールの支持度の一例を示す図。 矛盾発生数情報の一覧を表示する矛盾発生数表示画面の一例を示す 図。 健診項目の初期閾値を入力させる初期閾値入力画面の一例を示す図。 指導に使用ルールのみのリスク知識候補の一例を示す図。 使用ルールのみのリスク知識候補から抽出した矛盾関係にあるルールの一例を示す図。 指導用リスク知識管理手段が管理する指導用リスク知識の一例を示す図。 健診情報から指導用リスク知識作成の処理の流れの一例を示すフローチャート。 変更する閾値を決定する処理の流れの一例を示すフローチャート。 健診項目の矛盾発生数を算出する処理の流れの一例を示すフローチャート。 閾値を変更する健診項目を選択する処理の流れの一例を示すフローチャート。 健康指導支援端末とデータベースの間のやり取りの一例を示すシーケンス図。 指導画面の例を示す図であり,指導対象者の健診結果を入力する前の状態を示す図。 指導画面の例を示す図であり,指導対象者の健診結果から発症率を表示した状態を示す図。 健診結果入力から発症率表示までの処理の流れの一例を示すフローチャート。 矛盾発生数が少なくなる閾値を探索する処理の流れの一例を示すフローチャート。
符号の説明
101…健康指導支援端末,102…データベース,103…入力装置,104…出力装置,105…CPU,106…記憶装置,107…初期閾値設定手段,108…リスク知識作成手段,109…矛盾発生数算出手段,110…疾病寄与度算出手段,111…閾値変更項目選択手段,112…情報取得手段,113…閾値変更区分選択手段,114…閾値変更手段,115…矛盾発生情報表示手段,116…健診結果入力手段,117…指導内容表示手段,118…健診情報管理手段,119…閾値情報管理手段,120…リスク知識候補管理手段,121…矛盾発生情報管理手段,122…疾病寄与度情報管理手段,124…指導用リスク知識管理手段,125…支持度情報管理手段,126…支持度抽出手段,201…個人ID,202…受診日,203…年齢,204…血糖値,205…HbA1c,206…BMI,207…糖尿判定,301…項目,302…閾値1,303…閾値2,401…項目,402…寄与度,501…条件部,502…年齢の条件,503…BMIの条件,504…血糖値の条件,505…HbA1cの条件,506…支持度,507…発症率,508〜518…ルール,601…閾値候補ID,602…血糖値の閾値A,603…血糖値の閾値B,604…HbA1cの閾値A、605…HbA1cの閾値B,606…血糖値の矛盾発生数,607…HbA1cの矛盾発生数,608〜611…矛盾発生数情報,801〜809…支持度A〜I,810〜813…支持度情報,702…矛盾詳細ID,709〜714…矛盾関係にあるルール,1101…血糖値の閾値A:100,1102…血糖値の閾値B:110, 1103…HbA1cの閾値A:5.6,1104…HbA1cの閾値B:5.8,1105〜1113…支持度A〜Iの支持度,1200…矛盾発生数表示画面,1201〜1204…血糖値の閾値,1205〜1209…HbA1cの閾値,1210〜1214…矛盾発生数ボタン,1216〜1220…血糖値の矛盾発生数,1221〜1225…HbA1cの矛盾発生数,1215…閾値決定ボタン,1301…初期閾値入力画面,1302〜1305…第一閾値入力欄,1306〜1309…第二閾値入力欄,1310…決定ボタン,1508…抽出条件,1502〜1505…ルール,1701…指導用リスク知識作成開始ステップ,1702…初期閾値入力ステップ,1703…リスク知識候補作成ステップ,1704…疾病寄与度算出ステップ,1705…閾値変更項目選択ステップ,1707…支持度抽出ステップ,1708…閾値変更区分選択ステップ,1709…閾値探索ステップ,1710…変更閾値決定ステップ,1711…閾値変更方向・幅決定ステップ,1712…閾値決定ステップ,1706…矛盾発生数算出ステップ,1715…矛盾発生数判断ステップ,1716…閾値決定ステップ,1717…閾値変更区分有無判断ステップ,1718…全項目の閾値決定判断ステップ,1719…指導用リスク知識作成ステップ,1720…指導用リスク知識作成終了ステップ,1801…変更閾値決定開始ステップ,1802…第一閾値変更方向・幅決定ステップ,1808…第二閾値変更方向・幅決定ステップ,1806…矛盾発生数比較ステップ,1814…変更閾値決定ステップ,1815…変更閾値決定終了ステップ,2001…矛盾発生数算出開始ステップ,2002…使用ルール抽出ステップ,2003…ルール間矛盾チェックステップ,2004…矛盾発生数終了ステップ,2401…閾値変更項目選択開始ステップ,2402…高寄与度項目選択ステップ,2403…矛盾発生数有無判断ステップ,2404…閾値変更項目選択終了ステップ,2102…初期閾値情報登録,2103…健診情報,初期閾値情報取得要求,2104…健診情報,初期閾値情報,2105…リスク知識候補登録,2106…リスク知識候補取得要求,2107…リスク知識候補,2108…矛盾発生情報,支持度情報登録,2109…矛盾発生情報,支持度情報取得要求,2110…矛盾発生情報,支持度情報,2111…閾値変更リスク知識候補とその矛盾発生情報,支持度情報登録,2112…矛盾発生数情報取得要求,2113…矛盾発生数情報,2114…指導用リスク知識登録,2201…指導画面,2202…発症率表示欄,2203…予測ボタン,2204〜2209…健診項目,2210〜2225…条件入力ボタン,2301…指導内容表示開始ステップ,2302…健診結果入力ステップ,2303…ルール検索ステップ,2304…結果表示ステップ,2305…終了判断ステップ,2306…指導内容表示終了ステップ,2501…閾値探索開始ステップ,2502…閾値探索終了ステップ。

Claims (4)

  1. 健診情報から疾病予防・健康増進のための情報を提示する健康指導支援システムであって,
    前記健診の項目を区分する初期閾値を設定する初期閾値設定手段と,
    設定された前記閾値で区切られた健診項目の区分を条件として,その条件の組合せとその組合せに対する発症者数の割合を示す発症率とその発症者数を母集団の人数で割った値であり前記発症率の信頼性を示す支持度をルールとして算出し,リスク知識を作成するリスク知識作成手段と,
    作成された前記リスク知識に対して,前記健診項目の条件の変更に対する発症率の変化が矛盾関係にあるルールを抽出し,そのルールの組合せ数を矛盾発生数として算出する矛盾発生数算出手段と,
    作成された前記リスク知識から,矛盾が発生する健診項目の閾値で区切られた区分の支持度を抽出する支持度抽出手段と,
    前記矛盾関係にあるルールと前記支持度から,そのルールの条件に最も多く含まれる前記矛盾が発生する健診項目の条件で支持度が低い区分を,閾値を変更する区分として選択する閾値変更区分選択手段と,
    前記支持度と前記矛盾発生数から,変更した場合に矛盾発生数が最も少なくなる閾値を,選択された区分の支持度が高くなる方向に変更する閾値変更手段を有することを特徴とする健康指導支援システム。
  2. 請求項1記載の健康指導支援システムにおいて,疾病に対する健診項目の寄与度を算出する疾病寄与度算出手段と,前記寄与度と前記矛盾発生数から,閾値を変更する項目として,寄与度が高く,かつ,矛盾が発生する健診項目を選択する閾値変更項目選択手段を有することを特徴とする健康指導支援システム。
  3. 請求項1,2記載の健康指導支援システムにおいて,前記矛盾発生数算出手段で算出された矛盾発生数を一覧表示する矛盾発生情報表示手段を有することを特徴とする健康指導支援システム。
  4. 請求項1,2,3記載の健康指導支援システムにおいて,指導対象者の健診結果を入力する健診結果入力手段と,前記閾値変更手段で閾値を変更して作成したリスク知識の中から,健診結果に該当するルールなどを取得する情報取得手段と,前記情報取得手段で取得した前記ルールの前記発症率を表示する指導内容表示手段を有することを特徴とする健康指導支援システム。
JP2006168261A 2006-06-19 2006-06-19 健康指導支援システム Expired - Fee Related JP4729444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168261A JP4729444B2 (ja) 2006-06-19 2006-06-19 健康指導支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168261A JP4729444B2 (ja) 2006-06-19 2006-06-19 健康指導支援システム

Publications (2)

Publication Number Publication Date
JP2007334781A JP2007334781A (ja) 2007-12-27
JP4729444B2 true JP4729444B2 (ja) 2011-07-20

Family

ID=38934178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168261A Expired - Fee Related JP4729444B2 (ja) 2006-06-19 2006-06-19 健康指導支援システム

Country Status (1)

Country Link
JP (1) JP4729444B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054984B2 (ja) * 2007-01-17 2012-10-24 株式会社日立メディコ 個別健康指導支援システム
JP5245420B2 (ja) * 2008-01-23 2013-07-24 株式会社デンソー データ検索表示システム
JP2010198411A (ja) * 2009-02-26 2010-09-09 Hitachi Information & Control Solutions Ltd 疾病発症リスクシミュレーションシステムの改善指標表示装置及び改善指標表示方法
CN109598354A (zh) * 2018-09-11 2019-04-09 李涛 一种船舶压力表计量管理分类方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064292A (ja) * 1992-06-19 1994-01-14 Toshiba Corp 判断規則生成装置
JPH06131188A (ja) * 1992-10-22 1994-05-13 Hitachi Ltd ファジィルール獲得方法およびファジィ推論システム
JPH0916402A (ja) * 1995-07-04 1997-01-17 Toshiba Corp 修正知識獲得装置、推論装置、修正知識獲得方法及び推論方法
JP4287212B2 (ja) * 2003-07-30 2009-07-01 株式会社日立製作所 健康指導支援システム及びそのソフトウェアを記録した媒体
JP4034741B2 (ja) * 2004-01-14 2008-01-16 株式会社日立製作所 診療支援システム

Also Published As

Publication number Publication date
JP2007334781A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
Suominen et al. Overview of the CLEF eHealth evaluation lab 2018
JP5054984B2 (ja) 個別健康指導支援システム
Rathmann et al. Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000
US10593431B1 (en) Methods and systems for causative chaining of prognostic label classifications
JP5977898B1 (ja) 行動予測装置、行動予測装置の制御方法、および行動予測装置の制御プログラム
US20140095204A1 (en) Automated medical cohort determination
US20220261693A1 (en) Methods and systems for classification to prognostic labels using expert inputs
US11581094B2 (en) Methods and systems for generating a descriptor trail using artificial intelligence
CN111164705A (zh) 预测从总群体中任意选择的亚群体中测试对象的不利健康状况的风险、发生或发展的医学设备和计算机实施的方法
Glueck et al. PhenoBlocks: Phenotype comparison visualizations
US11915827B2 (en) Methods and systems for classification to prognostic labels
Stiglic et al. Challenges associated with missing data in electronic health records: a case study of a risk prediction model for diabetes using data from Slovenian primary care
US20200342332A1 (en) Methods and systems for classification using expert data
CN113851220A (zh) 基于时序医疗健康数据的病情趋势预测方法和系统
JP4287212B2 (ja) 健康指導支援システム及びそのソフトウェアを記録した媒体
US20240197245A1 (en) Methods and systems for utilizing diagnostics for informed vibrant constituional guidance
JP4729444B2 (ja) 健康指導支援システム
Tanguay-Sabourin et al. A data-driven biopsychosocial framework determining the spreading of chronic pain
JP4895577B2 (ja) 健康指導支援システム
US20210271924A1 (en) Analyzer, analysis method, and analysis program
JP2011134106A (ja) 医療情報収集システム、医療情報収集処理方法及び医療情報収集画面表示制御方法
JP2005000265A (ja) 健康状態別の発症リスク知識構築方法及び健康管理装置
US11810669B2 (en) Methods and systems for generating a descriptor trail using artificial intelligence
US11710069B2 (en) Methods and systems for causative chaining of prognostic label classifications
CN112184084B (zh) 一种病历学习质量评估方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees